JP2000091083A - Organic el display - Google Patents

Organic el display

Info

Publication number
JP2000091083A
JP2000091083A JP10254701A JP25470198A JP2000091083A JP 2000091083 A JP2000091083 A JP 2000091083A JP 10254701 A JP10254701 A JP 10254701A JP 25470198 A JP25470198 A JP 25470198A JP 2000091083 A JP2000091083 A JP 2000091083A
Authority
JP
Japan
Prior art keywords
organic
display
light
wiring
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10254701A
Other languages
Japanese (ja)
Inventor
Naoki Sano
直樹 佐野
Takayuki Hirano
貴之 平野
Tetsuo Nakayama
徹生 中山
Mitsunobu Sekiya
光信 関谷
Tatsuya Sasaoka
龍哉 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10254701A priority Critical patent/JP2000091083A/en
Publication of JP2000091083A publication Critical patent/JP2000091083A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80516Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • H10K59/1795Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic EL display having high quality of display, a large area and low power consumption. SOLUTION: This organic EL display 10 is formed by laminating a stripe positive electrode wiring part 12, an organic layer 13 having at least a layer made of an organic light emitting material, and a negative electrode 14 on a transparent board 11 in this order to from a state of plural organic EL elements disposed. The positive electrode wiring part 12 is formed with a translucent part 12a made of the transparent conductive material 12A, and formed with a non-light-emitting area 12b having the metal material 12B having 2×10-5 Ωcm or less of electrical resistivity in parts except for the translucent part 12a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機発光層を備え
て構成される有機EL素子を有した、有機EL(有機エ
レクトロルミネセンス)ディスプレイに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic EL (organic electroluminescence) display having an organic EL element provided with an organic light emitting layer.

【0002】[0002]

【従来の技術】近年、自発光型フラットパネルディスプ
レイのニーズが高まっており、様々なディスプレイ表示
装置の開発が盛んに行われている。特に、液晶ディスプ
レイ(LCD)やプラズマディスプレイ(PDP)、有
機ELディスプレイなどの開発が精力的に進められてお
り、なかでも、自発光型で高精細の表示も可能である方
式のものとして有機ELディスプレイが注目され、盛ん
にその研究開発がなされている。
2. Description of the Related Art In recent years, the need for self-luminous flat panel displays has been increasing, and various display devices have been actively developed. In particular, the development of a liquid crystal display (LCD), a plasma display (PDP), an organic EL display, etc. has been vigorously pursued. Among them, a self-luminous type which is capable of high-definition display is an organic EL display. Display has attracted attention, and its research and development has been actively pursued.

【0003】有機ELは、文献「Appl.Phys.Lett.51,91
3(1987) 」に示されるように、酸化インジウムスズ(I
TO)/有機正孔輸送層/有機発光層/陰極という素子
構造を持つものがC.W.Tangらによって1987
年に提案されたことをきっかけにして、一層広く研究開
発がなされるようになってきている。
[0003] Organic EL is described in the document "Appl. Phys. Lett. 51, 91".
3 (1987) ".
TO) / organic hole transport layer / organic light emitting layer / cathode has a device structure of C.I. W. 1987 by Tang et al.
Research and development has become more widespread following the proposals made in the year.

【0004】一般にXYマトリクス型の有機ELディス
プレイは、図8に示すようにガラス等からなる透明基板
1の表面にデータラインとなるストライプ状の陽極配線
部2…が形成され、この上に正孔輸送層、有機蛍光体層
(有機発光層)などからなる有機層3…がストライプ状
に形成され、さらにこの上に金属等からなるストライプ
状の陰極配線部4…が形成されて構成されたものであ
る。陽極配線部2…と陰極配線部4…とは互いに直交し
て配置されており、この交差部において有機EL素子が
構成されている。有機層3…は、通常陰極配線部4…と
同じマスクを用いてパターニングされるため、陰極配線
部4…と同一の平面視形状に形成されている。
In general, in an XY matrix type organic EL display, as shown in FIG. 8, a stripe-shaped anode wiring portion 2 serving as a data line is formed on the surface of a transparent substrate 1 made of glass or the like, and holes are formed thereon. An organic layer 3 composed of a transport layer, an organic phosphor layer (organic light emitting layer), etc. is formed in a stripe shape, and a stripe-shaped cathode wiring portion 4 composed of a metal or the like is further formed thereon. It is. The anode wiring portions 2 and the cathode wiring portions 4 are arranged orthogonal to each other, and an organic EL element is formed at the intersection. Since the organic layers 3 are usually patterned using the same mask as the cathode wiring portions 4, they are formed in the same plan view shape as the cathode wiring portions 4.

【0005】陽極配線部2…は、図9に示すように発光
エリア(透光部)、非発光エリア共に同一の透明導電材
料からなっており、したがって単純なストライプの繰り
返しパターンに形成されたものとなっている。すなわ
ち、データラインは、通常陽極として機能する透明電極
部分を含んだ状態で一体に形成されるのである。なお、
陰極配線部4…上には、通常有機層3の劣化を防ぐた
め、絶縁材料等からなる保護膜(図示略)が形成されて
いる。
As shown in FIG. 9, the anode wiring portions 2 are made of the same transparent conductive material in both the light emitting area (light transmitting section) and the non-light emitting area, and are therefore formed in a simple stripe repetition pattern. It has become. That is, the data line is formed integrally with the transparent electrode portion that normally functions as an anode. In addition,
A protective film (not shown) made of an insulating material or the like is usually formed on the cathode wiring portions 4 to prevent the organic layer 3 from deteriorating.

【0006】ところで、このようなマトリクス型の有機
ELディスプレイでは、前述したように陽極として機能
する透明電極部分を含んだ状態でデータライン(陽極配
線部2…)を形成するため、有機ELからの発光を取り
出す透明電極(陽極)として例えば酸化インジウムスズ
(ITO)を用いると、当然データライン、すなわち非
発光エリアの部分についてもこのITOで形成すること
になる。ところが、透明導電材料としては低抵抗である
ITOも、その電気抵抗率は1×10-4Ωcm程度であ
り、通常の金属材料に比べるとその電気抵抗率が1〜2
桁高いものとなっている。
By the way, in such a matrix type organic EL display, as described above, since the data lines (anode wiring portions 2...) Are formed while including the transparent electrode portion functioning as the anode, the organic EL display is used. If, for example, indium tin oxide (ITO) is used as a transparent electrode (anode) for extracting light emission, a data line, that is, a portion of a non-light emitting area is naturally formed of this ITO. However, ITO, which has a low resistance as a transparent conductive material, also has an electrical resistivity of about 1 × 10 −4 Ωcm, and has an electrical resistivity of 1 to 2 as compared with a normal metal material.
It is an order of magnitude higher.

【0007】[0007]

【発明が解決しようとする課題】しかして、大電流を用
いて駆動する電流駆動型のデバイスである有機ELディ
スプレイでは、電気抵抗の高い材料によって配線(デー
タライン)を形成すると、その配線抵抗と電流の積に対
応する電位降下が生じ、配線自体に大きな電圧が印加さ
れてしまう。すると、その分有機EL自体に有効な電圧
が印加されないことになり、消費電力のロスを招いてし
まう。
However, in an organic EL display which is a current-driven device driven by using a large current, if a wiring (data line) is formed of a material having a high electric resistance, the wiring resistance and the wiring resistance are reduced. A potential drop corresponding to the product of the current occurs, and a large voltage is applied to the wiring itself. As a result, an effective voltage is not applied to the organic EL itself, which results in a loss of power consumption.

【0008】例えば、対角20インチで一画素が100
μm×300μmの高精細有機ELディスプレイを想定
した場合、データラインをITOのみで作製すると、デ
ータライン1本あたりの配線抵抗は、データラインの線
幅を100μm、膜厚を150nm、ストライプ長を3
0cmと仮定すると、2×104 Ωとなる。なお、膜厚
を150nmとしたのは、光線透過率との兼ね合いでこ
れをあまり厚くすることができないからである。
For example, one pixel is 100 inches at a diagonal of 20 inches.
Assuming a high-resolution organic EL display of μm × 300 μm, if the data line is made of only ITO, the wiring resistance per data line is 100 μm for the data line, 150 nm for the film thickness, and 3 for the stripe length.
Assuming 0 cm, it is 2 × 10 4 Ω. The thickness is set to 150 nm because it cannot be made too thick in consideration of the light transmittance.

【0009】また、有機ELディスプレイを高輝度で光
らせるため、電流密度が1A/cm2 の電流を一画素に
流すとすると、データライン1本あたり3×10-4Aの
電流が必要となる。このとき、画面中心部での電圧降下
は、 V(電圧降下)=I(配線を流れる電流)×R(配線抵
抗) の式より、3Vと推算される。そして、全てのデータラ
インについて推算すると、全白ピーク時での画面全体の
配線抵抗による電力損失は、数Wにも及んでしまう。こ
の電力は全て熱になってしまうので、耐熱性の低い有機
ELディスプレイにとっては、その寿命や信頼性に関し
て極めて不利になってしまうのである。
Further, if a current having a current density of 1 A / cm 2 is supplied to one pixel in order to illuminate the organic EL display with high luminance, a current of 3 × 10 -4 A per data line is required. At this time, the voltage drop at the center of the screen is estimated to be 3 V from the equation: V (voltage drop) = I (current flowing through wiring) × R (wiring resistance). When the estimation is performed for all data lines, the power loss due to the wiring resistance of the entire screen at the time of the all white peak reaches several W. Since all of the electric power is converted to heat, an organic EL display having low heat resistance is extremely disadvantageous in terms of its life and reliability.

【0010】近年、フラットパネルディスプレイは特に
大画面化の方向で開発が盛んになっており、有機ELデ
ィスプレイも大型化が期待されている。しかしながら、
大画面化すると、前述の理由によってデータラインまた
は走査ラインの配線抵抗が高くなってしまい、消費電力
の増大が避けられなくなってしまう。
[0010] In recent years, flat panel displays have been actively developed especially in the direction of larger screens, and organic EL displays are also expected to be larger. However,
When the screen is enlarged, the wiring resistance of a data line or a scanning line increases for the above-mentioned reason, and an increase in power consumption cannot be avoided.

【0011】また、各画素を電圧駆動しようとすると、
ドライバー(電源)からの距離の遠い画素では、距離が
近い画素に比べて表示が暗くなるという、シェーディン
グと呼ばれる表示品位の不良が生じてしまう。電流駆動
を行う場合にはこの限りではないが、その場合、ドライ
バー回路が複雑になって高コスト化を招くといった別の
問題が起きてしまう。なお、高抵抗の配線材料を用いた
場合での、消費電力の増大の問題については、電圧駆
動、電流駆動のいずれにおいても同様に起こる。
Further, when each pixel is driven by voltage,
At a pixel farther from the driver (power supply), a display quality defect called shading occurs, in which the display becomes darker than a pixel at a shorter distance. This is not the case when the current driving is performed, but in that case, another problem occurs in that the driver circuit becomes complicated and the cost is increased. Note that the problem of increase in power consumption when a high-resistance wiring material is used similarly occurs in both voltage driving and current driving.

【0012】近年、情報の高密度化、多様化に伴い、有
機ELディスプレイにおいても低電力損失でかつ高精
細、多色化(フルカラー化)などの高表示品位のものが
要求されてきている。しかしながら、従来では陽極側の
配線抵抗の低減化が行われておらず、電気抵抗の高い透
明電極材料によってそのまま配線(データライン)が形
成されていることから、ディスプレイパネルの大面積化
および省電力化は困難な状況であった。すなわち、消費
電力増大の問題が、大画面ディスプレイを実現するうえ
での大きな障壁となっているのである。
In recent years, with the increase in density and diversification of information, there has been a demand for an organic EL display having low power loss, high definition, and high display quality such as multicolor (full color). However, conventionally, the wiring resistance on the anode side has not been reduced, and the wiring (data line) is directly formed of a transparent electrode material having a high electric resistance. The situation was difficult. That is, the problem of increased power consumption is a major barrier to realizing a large-screen display.

【0013】本発明は前記事情に鑑みてなされたもの
で、その目的とするところは、高表示品位でありかつ大
面積、低消費電力の有機ELディスプレイを提供するこ
とにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an organic EL display having a high display quality, a large area, and low power consumption.

【0014】[0014]

【課題を解決するための手段】本発明の有機ELディス
プレイでは、透明基板上に、ストライプ状の陽極配線部
と、少なくとも有機発光材料からなる層を有した有機層
と、陰極とがこの順に形成されて複数の有機EL素子が
配列した状態に形成されてなり、前記陽極配線部は、少
なくとも透光部となる部分が透明導電材料からなり、透
光部でない非発光エリアの部分が電気抵抗率2×10-5
Ωcm以下の金属材料を有してなっていることを前記課
題の解決手段とした。
According to the organic EL display of the present invention, a stripe-shaped anode wiring portion, an organic layer having at least a layer made of an organic luminescent material, and a cathode are formed in this order on a transparent substrate. The anode wiring portion is formed of a transparent conductive material at least in a portion to be a light-transmitting portion, and a portion of a non-light-emitting area other than the light-transmitting portion is an electric resistivity. 2 × 10 -5
The solution to the above problem is to have a metal material of Ωcm or less.

【0015】この有機ELディスプレイの製造方法によ
れば、陽極配線部の透光部となる部分を透明導電材料か
ら形成し、透光部でない非発光エリアの部分を電気抵抗
率2×10-5Ωcm以下の金属材料によって形成したの
で、陽極配線部全体を透明導電材料で形成していた従来
に比べ、陽極側の配線抵抗が大幅に低減する。
According to this method of manufacturing an organic EL display, the light-transmitting portion of the anode wiring portion is formed of a transparent conductive material, and the non-light-emitting area, which is not the light-transmitting portion, has an electric resistivity of 2 × 10 −5. Since it is formed of a metal material of Ωcm or less, the wiring resistance on the anode side is greatly reduced as compared with the conventional case where the entire anode wiring portion is formed of a transparent conductive material.

【0016】[0016]

【発明の実施の形態】以下、本発明の有機ELディスプ
レイを詳しく説明する。図1(a)、(b)は本発明の
有機ELディスプレイの一実施形態例であるRGB方式
によるフルカラーのXYマトリクス型有機ELディスプ
レイを示す図であり、図1(a)中符号10はXYマト
リクス型有機ELディスプレイである。なお、図1
(b)は、図1(a)におけるB−B線の矢印方向に見
た平面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an organic EL display of the present invention will be described in detail. FIGS. 1A and 1B are views showing an RGB type full-color XY matrix type organic EL display according to an embodiment of the organic EL display of the present invention. In FIG. 1A, reference numeral 10 denotes XY. It is a matrix type organic EL display. FIG.
FIG. 2B is a plan view as seen in the direction of the arrow BB in FIG.

【0017】この有機ELディスプレイ10は、透明ガ
ラスからなる透明基板11の表面にデータラインとなる
ストライプ状の陽極配線部12…が形成され、この上に
正孔輸送層、有機蛍光体層(有機発光層)などからなる
ストライプ状の有機層13…が形成され、さらにこの上
に走査ラインとなるストライプ状の陰極配線部(陰極)
14…が形成されて構成されたものである。陽極配線部
12…と陰極配線部14…とは、XYマトリクスを形成
すべく互いに直交して配置されており、このような構成
のもとに、陽極配線部12…と陰極配線部14…との交
差部においては、陽極(陽極配線部12)、有機層1
3、陰極(陰極配線部14)からなる有機EL素子が形
成されている。
In this organic EL display 10, a stripe-shaped anode wiring portion 12 serving as a data line is formed on the surface of a transparent substrate 11 made of transparent glass, and a hole transport layer and an organic phosphor layer (organic phosphor layer) are formed thereon. A stripe-shaped organic layer 13 composed of a light-emitting layer) is formed, and a stripe-shaped cathode wiring portion (cathode) serving as a scanning line is formed thereon.
.. Are formed. The anode wiring sections 12 and the cathode wiring sections 14 are arranged orthogonally to each other to form an XY matrix. Under such a configuration, the anode wiring sections 12 and the cathode wiring sections 14 are formed. At the intersection of the anode (anode wiring section 12) and the organic layer 1
3. An organic EL element including a cathode (cathode wiring section 14) is formed.

【0018】陽極配線部12は、本例においてはストラ
イプ状に形成された透明導電材料部12Aと、この透明
導電材料部12Aの所定位置を覆う金属材料部12Bと
によって構成されたもので、図1(b)に示すように有
機EL素子における有機層13で発光した光を透過する
透光部(発光エリア)12aと、透光部でない非発光エ
リア(非透光部)12bとからなるハイブリッド型の配
線方式をとるものである。透光部12aは、有機EL素
子において陽極として機能するもので、後述するように
前記金属材料部12Bが開口したことによって有機層1
3に接するよう構成されたものである。この透光部12
aは、酸化インジウムスズ(ITO)や酸化スズ(Sn
2 )、酸化亜鉛(ZnO)等の導電性の高い透明導電
材料から形成されるものであり、本例では酸化インジウ
ムスズによって形成されている。
The anode wiring portion 12 is composed of a transparent conductive material portion 12A formed in a stripe shape in this example and a metal material portion 12B covering a predetermined position of the transparent conductive material portion 12A. As shown in FIG. 1B, a hybrid including a light-transmitting portion (light-emitting area) 12a that transmits light emitted from the organic layer 13 in the organic EL element and a non-light-emitting area (non-light-transmitting portion) 12b that is not a light-transmitting portion. The wiring method of the mold is adopted. The light transmitting portion 12a functions as an anode in the organic EL element, and the organic layer 1 is formed by opening the metal material portion 12B as described later.
3. This translucent part 12
a is indium tin oxide (ITO) or tin oxide (Sn
O 2 ), zinc oxide (ZnO), and other highly conductive transparent conductive materials. In this example, the conductive material is made of indium tin oxide.

【0019】一方、非発光エリア12bは、本例では透
光部12aを除く箇所、すなわち非透光部にて前記透明
導電材料部12Aを金属材料部12Bで覆うことによっ
て形成されたものであり、したがって透明導電材料部1
2Aと金属材料部12Bとの積層構造によって形成され
たものである。金属材料部12Bを形成する金属材料と
しては、表1に示すような2×10-5Ωcm以下の低抵
抗率の材料が好適に用いられる。なお、本例において
は、安価で比較的低抵抗の材料であるAlが用いられて
いる。また、これら以外の金属材料、あるいはこれら金
属の複数以上からなる合金、さらにはこれら金属が積層
されてなる多層膜であっても、2×10-5Ωcm以下の
低抵抗率であれば本発明において使用可能である。
On the other hand, in this embodiment, the non-light emitting area 12b is formed by covering the transparent conductive material portion 12A with the metal material portion 12B at a portion other than the light transmitting portion 12a, that is, at the non-light transmitting portion. Therefore, the transparent conductive material portion 1
This is formed by a laminated structure of 2A and metal material portion 12B. As the metal material forming the metal material portion 12B, a material having a low resistivity of 2 × 10 −5 Ωcm or less as shown in Table 1 is preferably used. In this example, Al, which is an inexpensive and relatively low-resistance material, is used. Further, even if a metal material other than these, or an alloy composed of a plurality of these metals, or a multilayer film formed by laminating these metals is used, as long as it has a low resistivity of 2 × 10 −5 Ωcm or less, the present invention Can be used.

【表1】 [Table 1]

【0020】前記有機層13…は、赤色を発光する赤色
有機層と、緑色を発光する緑色有機層と、青色を発光す
る青色有機層とが同じ繰り返し順序に並列されて構成さ
れたものである。各色の有機層は、前記陽極配線部12
の上にこれの長さ方向に沿って形成されたもので、透光
部12a上においてこれに接した状態に形成されたもの
である。これら有機層13…については、その材料の種
類、構成、膜厚、色素のドーピング形態等について特に
限定されることはない。例えば、緑色を発光する有機層
13としては、正孔輸送層としてTPDやα−NPDな
どが形成され、電子輸送層かつ発光層としてAlq3等
が形成された2層構造のものが用いられるが、これに限
定されることはない。また、発光色によっては、Alq
3に適当な色素をドーピングされて用いられる。
The organic layers 13 are composed of a red organic layer emitting red light, a green organic layer emitting green light, and a blue organic layer emitting blue light arranged in the same repetition order. . The organic layer of each color is formed on the anode wiring section 12.
On the light-transmitting portion 12a and in contact with the light-transmitting portion 12a. Regarding the organic layers 13, there is no particular limitation on the type, configuration, film thickness, dye doping form, and the like of the materials. For example, the organic layer 13 that emits green light has a two-layer structure in which TPD, α-NPD, or the like is formed as a hole transport layer, and Alq3 or the like is formed as an electron transport layer and a light emitting layer. It is not limited to this. Also, depending on the emission color, Alq
3 is used after being doped with an appropriate dye.

【0021】陰極配線部14…は一般にAlによって形
成されており、本例においてもAlによって形成されて
いる。なお、この陰極配線部14…の形成材料として他
に例えば、AlにLiを適当な方法でドーピングした材
料や、Mg−Ag系の合金など周期律表第IIa族系ア
ルカリ土類金属含有の合金を用いることもできる。これ
らはいずれも仕事関数の低い材料であり、発光のしきい
値電圧を下げる効果を有している。陰極配線部14…上
には、有機層13…の劣化を防ぐため、絶縁材料等から
なる保護膜(図示略)が形成されている。
The cathode wiring portions 14 are generally formed of Al, and in this embodiment, also formed of Al. In addition, as a material for forming the cathode wiring portions 14..., For example, a material in which Al is doped with Li by an appropriate method, an alloy containing a group IIa alkaline earth metal of the periodic table such as an Mg-Ag alloy, or the like. Can also be used. All of these are materials having a low work function and have an effect of lowering the threshold voltage of light emission. A protective film (not shown) made of an insulating material or the like is formed on the cathode wiring portions 14 to prevent the organic layers 13 from deteriorating.

【0022】このような構成の有機ELディスプレイ1
0を作製するには、まず、図2(a)に示すようにガラ
ス等からなる透光性(すなわち透明)の透明基板11を
用意し、この透明基板11の上に透明導電材料層(図示
略)を成膜する。そして、この透明導電材料層をストラ
イプ状、すなわちXYマトリクスタイプのディスプレイ
におけるデータラインのパターン形状にパターニング
し、透明導電材料部12A…を複数並列した状態に形成
する。ここで、透明導電材料層の成膜法としては、DC
およびRFマグネトロンスパッタ法が一般的であるが、
CVD法や反応性真空蒸着法等を採用することもでき
る。また、透明導電材料層のパターニング方法について
も特に限定されることなく、ドライエッチング法、ウエ
ットエッチング法のいずれも採用可能である。
The organic EL display 1 having such a configuration
In order to manufacture the transparent substrate 11, first, as shown in FIG. 2A, a transparent (ie, transparent) transparent substrate 11 made of glass or the like is prepared, and a transparent conductive material layer (shown in FIG. (Abbreviation). Then, this transparent conductive material layer is patterned into a stripe shape, that is, a data line pattern shape in an XY matrix type display, and a plurality of transparent conductive material portions 12A are formed in parallel. Here, as a method of forming the transparent conductive material layer, DC
And RF magnetron sputtering method is common,
A CVD method, a reactive vacuum evaporation method, or the like can also be employed. Further, the method of patterning the transparent conductive material layer is not particularly limited, and any of a dry etching method and a wet etching method can be adopted.

【0023】次に、透明導電材料部12A…を覆って透
明基板11上にAlからなる低抵抗金属層を形成し、さ
らにこれを図1(b)に示したように透光部12a上を
開口し透明導電材料部12Aを露出した状態にパターニ
ングして図2(b)に示すように金属材料部12Bを形
成し、これにより透光部12aと非発光エリア12bと
からなるハイブリッド型配線方式の陽極配線部12…を
得る。低抵抗金属層のパターニング方法については特に
限定されないものの、得られた金属材料部12Bの上に
形成される陰極配線部14…の断線の抑制や、陰極配線
部14と陽極配線部12との間のショート防止のため、
透光部(発光エリア)12a周辺のAl(金属材料部1
2B)の側端部については、上から下に行くに連れて陽
極配線部12の幅が広がるようにテーパ状にエッチング
することが望ましい。
Next, a low-resistance metal layer made of Al is formed on the transparent substrate 11 so as to cover the transparent conductive material portions 12A... A hybrid wiring system comprising a light transmitting portion 12a and a non-light emitting area 12b is formed by patterning the opening and exposing the transparent conductive material portion 12A so as to expose the transparent conductive material portion 12A as shown in FIG. 2B. Are obtained. The method of patterning the low-resistance metal layer is not particularly limited, but it is possible to prevent disconnection of the cathode wiring portions 14 formed on the obtained metal material portion 12B and to prevent the cathode wiring portions 14 and the anode wiring portion 12 from being disconnected. To prevent short circuit
Al (metal material portion 1) around light transmitting portion (light emitting area) 12a
2B), it is desirable to etch in a tapered shape so that the width of the anode wiring portion 12 increases from the top to the bottom.

【0024】次いで、有機正孔輸送膜(図示略)や有機
蛍光体膜(図示略)等の積層膜(図示略)からなる発光
材料層(図示略)の成膜、およびこれのパターニングを
R(赤)、G(緑)、B(青)のそれぞれについて順次
行い、図2(c)に示すように赤色を発光する有機層1
3、緑色を発光する有機層13、青色を発光する有機層
13をそれぞれ所定パターン、すなわち陽極配線部12
上においてこれの長さ方向に沿い、かつ透光部12a上
において透明導電材料部12Aに接したパターンに形成
する。
Next, a light emitting material layer (not shown) composed of a laminated film (not shown) such as an organic hole transport film (not shown) and an organic phosphor film (not shown) is formed and patterned. (Red), G (Green), and B (Blue) are sequentially performed, and the organic layer 1 that emits red light as shown in FIG.
3, the organic layer 13 for emitting green light and the organic layer 13 for emitting blue light are each provided in a predetermined pattern,
It is formed in a pattern along the length direction thereof on the upper side and in contact with the transparent conductive material portion 12A on the light transmitting portion 12a.

【0025】これら有機層13については、前述したよ
うにその材料の種類、構成、膜厚、色素のドーピング形
態等について特に限定されることはなく、また成膜法に
ついては、材料として低分子有機発光材料を用いた場
合、通常は真空蒸着法が採用される。したがって、ディ
スプレイパネルを多色化にするべく、赤色、緑色、青色
の三種類の有機層を形成するには、真空蒸着による成膜
時に、蒸着マスクを用いて所定の場所のみに特定の発光
材料を成膜するようにし、これを複数回(3回)繰り返
してRGBのパターンをそれぞれに形成すればよいので
ある。
As described above, the type, structure, film thickness, dye doping form, etc. of the material of the organic layer 13 are not particularly limited. When a light emitting material is used, a vacuum evaporation method is usually employed. Therefore, in order to form three types of organic layers of red, green, and blue in order to make the display panel multi-colored, a specific luminescent material is used only at a predetermined place using a deposition mask during film formation by vacuum deposition. Is formed, and this is repeated a plurality of times (three times) to form RGB patterns respectively.

【0026】次いで、図1(a)に示したように前記陽
極配線部12…、有機層13…に直交するストライプ状
の陰極配線部14…を形成する。この陰極配線部14…
の配線パターニングとしては、該陰極配線部14…がX
Yマトリクスの走査線として用いられるようにして行
う。これら陰極配線部14…の形成方法としては、マス
クを用いてパターン形成する真空蒸着法が好適に採用さ
れるが、他にスパッタ法などを用いることもできる。
Next, as shown in FIG. 1A, striped cathode wiring portions 14 orthogonal to the anode wiring portions 12 and the organic layers 13 are formed. This cathode wiring section 14 ...
The wiring pattern of the cathode wiring portions 14
This is performed so as to be used as a scanning line of the Y matrix. As a method for forming the cathode wiring portions 14, a vacuum deposition method for forming a pattern using a mask is suitably adopted, but a sputtering method or the like can also be used.

【0027】その後、有機層13…が空気中の酸素や水
分に触れないようにこれらを保護するため、例えば低温
で低ダメージの成膜が可能な材料によってオーバーコー
ト用の保護膜を形成することなどにより、本発明の有機
ELディスプレイ10を得る。
After that, in order to protect the organic layers 13 from being exposed to oxygen and moisture in the air, for example, a protective film for overcoating is formed by a material capable of forming a film with low damage at a low temperature. Thus, the organic EL display 10 of the present invention is obtained.

【0028】このような構成の有機ELディスプレイ1
0にあっては、陽極配線部12の透光部12aとなる部
分を透明導電材料部12Aで形成し、 透光部12aで
ない非発光エリア12bを透明導電材料部12Aと電気
抵抗率2×10-5Ωcm以下の金属材料部12Bとの積
層膜によって形成したので、陽極配線部全体を透明導電
材料で形成していた従来に比べ、陽極側の配線抵抗を大
幅に低減することができる。
The organic EL display 1 having such a configuration
In the case of No. 0, a portion to be the light transmitting portion 12a of the anode wiring portion 12 is formed by the transparent conductive material portion 12A, and the non-light emitting area 12b which is not the light transmitting portion 12a is formed by the transparent conductive material portion 12A and the electric resistivity 2 × 10 2. Since the anode wiring portion is formed of a laminated film with the metal material portion 12B of -5 Ωcm or less, the wiring resistance on the anode side can be significantly reduced as compared with the related art in which the entire anode wiring portion is formed of a transparent conductive material.

【0029】このような配線抵抗の低減効果について以
下に詳述する。有機ELディスプレイ10の一画素あた
りの陽極配線部12の平面図を図3に示す。図3に示す
ように、一画素あたりの配線長をL、陽極配線部12の
幅をW、陽極配線部12における透光部12aのスケー
ルファクターをx(<1)とする(便宜上、幅方向のス
ケールファクターと長さ方向のスケールファクターとを
同一にする。したがって透光部12aの面積は陽極配線
部12の面積のx2 倍となる)と、このときの配線抵抗
は以下のように推算される。
The effect of reducing the wiring resistance will be described in detail below. FIG. 3 shows a plan view of the anode wiring section 12 per pixel of the organic EL display 10. As shown in FIG. 3, the wiring length per pixel is L, the width of the anode wiring section 12 is W, and the scale factor of the translucent section 12a in the anode wiring section 12 is x (<1) (for convenience, in the width direction). to the the scale factor and the longitudinal direction of the scale factor to the same. Therefore the area of the transmissive portion 12a is twice x the area of the anode wiring portion 12) and, estimated as wiring resistance following this time Is done.

【0030】陽極配線部12に用いられたITO(透明
導電材料部12A)の抵抗率および低抵抗金属材料(金
属材料部12B)の抵抗率をそれぞれρITO およびρM
とすると、 ρM =α・ρITO (ただし、α≪1) となる。
また、ITOの膜厚と低抵抗金属の膜厚とを同じとす
る。このとき、陽極配線部12における一画素ピッチあ
たりの配線抵抗RH と、ITOのみによる一画素ピッチ
あたりの配線抵抗RITO との比を求めると、 (RH /RITO )=α・{1−x+(α・x)/(1−
x+α・x)} となる。ITOの抵抗率を1×10-4Ωcmとし、メタ
ル材料の抵抗率を2×10-6Ωcmとすると、α=0.
02となる。
The resistivity of the ITO (transparent conductive material portion 12A) and the resistivity of the low-resistance metal material (metal material portion 12B) used for the anode wiring portion 12 are ρ ITO and ρ M , respectively.
Then, ρ M = α · ρ ITO (where α≪1).
The thickness of the ITO and the thickness of the low-resistance metal are the same. At this time, when the ratio of the wiring resistance R H per pixel pitch in the anode wiring section 12 to the wiring resistance R ITO per pixel pitch due to ITO alone is calculated, (R H / R ITO ) = α · {1 −x + (α · x) / (1−
x + α · x)}. If the resistivity of ITO is 1 × 10 −4 Ωcm and the resistivity of the metal material is 2 × 10 −6 Ωcm, α = 0.
02.

【0031】本発明による陽極配線部12の配線抵抗低
減効果を表す一例として、このときの(RH /RITO
のITOのスケールファクターx依存性を図4に示す。
図4に示すように、xを90%にすると、配線抵抗RH
はITOのみの場合(RITO )の15.4%になる。さ
らに、80%に縮小すると7.4%となり、配線抵抗R
H が1桁以上低下することになる。したがって、この配
線抵抗の低下に伴って消費電力のロスも1桁以上低下す
ることになるのである。
As an example showing the effect of reducing the wiring resistance of the anode wiring portion 12 according to the present invention, (R H / R ITO )
FIG. 4 shows the dependence of ITO on the scale factor x.
As shown in FIG. 4, when x is set to 90%, the wiring resistance R H
Is 15.4% of the case of only ITO (R ITO ). Further, when reduced to 80%, it becomes 7.4%, and the wiring resistance R
H will decrease by one digit or more. Therefore, the loss of power consumption is reduced by one digit or more with the reduction of the wiring resistance.

【0032】なお、これよりxを小さな値にしてさらに
配線抵抗を低減しようとしても、図4に示すように大き
な変化、すなわち大きな効果がなくなる。よって、極端
にxを小さくするのは、かえって発光エリア(透光部1
2a)における電流密度を上げることになり、これが有
機EL材料の劣化の原因ともなるので好ましくない。以
上は、画素部のみについて推算した結果であるが、ドラ
イバー部への引出し配線にも低抵抗の金属材料を用いれ
ば、さらなる抵抗の低減化を図ることができる。
If the value of x is set to a smaller value to further reduce the wiring resistance, as shown in FIG. 4, a large change, that is, a large effect is lost. Therefore, when the value of x is extremely reduced, the light emitting area (the light transmitting portion 1) is rather changed.
The current density in 2a) is increased, which is not preferable because it causes deterioration of the organic EL material. The above is the result of estimation for only the pixel portion. However, if a low-resistance metal material is used for the lead wiring to the driver portion, the resistance can be further reduced.

【0033】なお、本発明は前記実施形態例に限定され
ることなく、例えば陽極配線部12の形態についても種
々のバリエーションが可能である。例えば、陽極配線部
のパターンとして、図5に示すように、透光部20aを
陽極配線部20の片側に配置し、その反対側およびこれ
ら透光部20a、20a間を金属材料部20Bで覆って
なる非発光エリア20bとしてもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible for the form of the anode wiring section 12, for example. For example, as a pattern of the anode wiring section, as shown in FIG. 5, the light transmitting section 20a is arranged on one side of the anode wiring section 20, and the opposite side and the space between these light transmitting sections 20a, 20a are covered with the metal material section 20B. The non-light-emitting area 20b may be used.

【0034】また、図6(a)、(b)に示すように、
予め透明導電材料をストライプ状でなく発光エリアのみ
に残るようにアイランド化して島状の透明導電材料部2
1Aを配列形成し、これら透明導電材料部21A、21
A間およびその両側部を覆った状態に金属材料部21B
を形成し、陽極配線部21としてもよい。
As shown in FIGS. 6A and 6B,
An island-shaped transparent conductive material portion 2 is formed in advance so that the transparent conductive material is islanded so as to remain only in the light emitting area instead of the stripe shape.
1A are formed in an array, and these transparent conductive material portions 21A, 21A
A and the metal material portion 21B
To form the anode wiring portion 21.

【0035】また、金属材料部を形成する材料として耐
熱性の高い金属材料を用いるならば、図7(a)、
(b)に示すようにこの材料を透明基板11上に成膜
し、続いてこれをパターニングして画素発光エリア(透
光部)を窓あけ(開口)した低抵抗金属からなる金属材
料部22Bに形成し、その後、この上にITO等からな
る透明導電材料部22Aを形成して陽極配線部22とし
てもよい。この場合にも、図7(a)に示したように透
明導電材料部22Aを下地となる金属材料部22Bに沿
ってストライプ状に形成してもよく、また、図7(b)
に示したように発光エリア(透光部)のみとなるように
アイランド化して島状に形成してもよい。
If a metal material having high heat resistance is used as the material for forming the metal material portion, FIG.
As shown in (b), this material is formed on the transparent substrate 11 and subsequently patterned to form a metal material portion 22B made of a low-resistance metal having a window (opening) in a pixel light emitting area (light transmitting portion). Then, a transparent conductive material portion 22A made of ITO or the like may be formed thereon to form the anode wiring portion 22. Also in this case, the transparent conductive material portion 22A may be formed in a stripe shape along the metal material portion 22B serving as a base as shown in FIG.
As shown in (1), an island may be formed by forming an island so as to include only a light emitting area (light transmitting portion).

【0036】また、前記実施形態例では陽極配線部12
上に直接有機層13を形成したが、陽極(陽極配線部1
2)と陰極(陰極配線部14)との間の電気的な短絡を
防止するため、特に陽極配線部12の側端部を覆った状
態で隣り合う陽極配線部12、12間に、シリコン酸化
物(SiOx )、シリコン窒化物(Six y )、シリ
コン酸窒化物(SiOx y )、アルミニウム酸化物
(Alx y )等の無機絶縁材料からなる無機絶縁膜を
形成してもよく、このように無機絶縁膜を形成すれば、
短絡防止により高い信頼性を得ることができる。
In the embodiment, the anode wiring section 12
Although the organic layer 13 was formed directly on the anode,
In order to prevent an electrical short circuit between 2) and the cathode (cathode wiring section 14), silicon oxide is preferably applied between the adjacent anode wiring sections 12 while covering the side ends of the anode wiring section 12. things (SiO x), silicon nitride (Si x N y), silicon oxynitride (SiO x N y), aluminum oxide (Al x O y) has an inorganic inorganic insulating film made of an insulating material such as If you form the inorganic insulating film like this,
High reliability can be obtained by short circuit prevention.

【0037】また、前記実施形態例では透明基板11と
して透明ガラスを用いたが、本発明は透明基板としてそ
の材質や厚さ、サイズについて特に限定されることな
く、例えば、透光性のあるポリエステルフィルムのよう
な有機高分子材料を透明基板に用いてもよい。また、前
記実施形態例では、特にRGB3色をもつフルカラーデ
ィスプレイについて延べたが、発光色についてもこれに
限定されることはない。また、有機層13および陰極配
線部14のパターニング方法についても、マスク蒸着に
よる方法以外に、リソグラフィー技術とドライエッチン
グ技術によるパターニング法など、従来公知の種々の技
術が採用可能である。
Although the transparent glass is used as the transparent substrate 11 in the above embodiment, the present invention is not limited to the material, thickness and size of the transparent substrate. An organic polymer material such as a film may be used for the transparent substrate. Further, in the above-described embodiment, the full color display having three colors of RGB is particularly provided, but the emission color is not limited to this. As for the patterning method of the organic layer 13 and the cathode wiring section 14, various conventionally known techniques such as a patterning method using a lithography technique and a dry etching technique can be adopted in addition to a method using a mask evaporation.

【0038】[0038]

【発明の効果】以上説明したように本発明の有機ELデ
ィスプレイは、陽極配線部の透光部となる部分を透明導
電材料から形成し、透光部でない非発光エリアの部分を
電気抵抗率2×10-5Ωcm以下の金属材料によって形
成したものであるから、陽極配線部全体を透明導電材料
で形成していた従来に比べ、陽極側の配線抵抗の大幅に
低減することができ、これにより優れた表示品位を確保
しつつ、大面積化および省電力化を図ることができる。
As described above, in the organic EL display of the present invention, the light-transmitting portion of the anode wiring portion is formed of a transparent conductive material, and the non-light-emitting area, which is not the light-transmitting portion, has an electric resistivity of 2%. Since it is formed of a metal material of × 10 −5 Ωcm or less, the wiring resistance on the anode side can be greatly reduced as compared with the conventional method in which the entire anode wiring portion is formed of a transparent conductive material. A large area and power saving can be achieved while ensuring excellent display quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)、(b)は本発明の有機ELディスプレ
イの一実施形態例を示す図であり、(a)は有機ELデ
ィスプレイの発光エリアの概略構成を示す要部側断面
図、(b)は(a)におけるB−B線の矢印方向に見た
平面図である。
FIGS. 1A and 1B are diagrams showing an embodiment of an organic EL display according to the present invention, wherein FIG. 1A is a cross-sectional side view of a main part showing a schematic configuration of a light emitting area of the organic EL display; (B) is a plan view as seen in the direction of the arrow BB in (a).

【図2】(a)〜(c)は、図1に示した有機ELディ
スプレイの製造方法を工程順に説明するための要部側断
面図である。
FIGS. 2 (a) to 2 (c) are cross-sectional side views of a main part for describing a method of manufacturing the organic EL display shown in FIG. 1 in the order of steps.

【図3】図1に示した有機ELディスプレイの、一画素
あたりの陽極配線部を示す平面図である。
FIG. 3 is a plan view showing an anode wiring portion per pixel of the organic EL display shown in FIG. 1;

【図4】(RH /RITO )と透光部のスケールファクタ
ーxとの関係を示すグラフ図である。
FIG. 4 is a graph showing a relationship between (R H / R ITO ) and a scale factor x of a light transmitting part.

【図5】本発明の変形例を示す図であって、陽極配線部
のパターンを示す平面図である。
FIG. 5 is a view showing a modification of the present invention, and is a plan view showing a pattern of an anode wiring portion.

【図6】本発明の変形例を示す図であって、(a)は一
画素あたりの陽極配線部を示す平面図、(b)は一画素
あたりの陽極配線部を示す側断面図である。
6A and 6B are diagrams showing a modification of the present invention, wherein FIG. 6A is a plan view showing an anode wiring portion per pixel, and FIG. 6B is a side sectional view showing an anode wiring portion per pixel. .

【図7】(a)、(b)はいずれも本発明の変形例を示
す図であって、一画素あたりの陽極配線部をその幅方向
で断面視したときの側断面図である。
FIGS. 7A and 7B are diagrams showing modified examples of the present invention, and are side sectional views of the anode wiring portion per pixel when viewed in a cross section in the width direction thereof.

【図8】従来の有機ELディスプレイの一例の概略構成
を示す要部側断面図である。
FIG. 8 is a sectional side view of a main part showing a schematic configuration of an example of a conventional organic EL display.

【図9】従来の有機ELディスプレイにおける陽極配線
部のパターンを示す平面図である。
FIG. 9 is a plan view showing a pattern of an anode wiring portion in a conventional organic EL display.

【符号の説明】[Explanation of symbols]

10…有機ELディスプレイ、11…透明基板、12,
20,21,22…陽極配線部、12A,21A,22
A…透明導電材料部、12B,20B,21B,22B
…金属材料部、12a,20a…透光部、12b,20
b…非発光エリア、13…有機層、14…陰極配線部
10 ... organic EL display, 11 ... transparent substrate, 12,
20, 21, 22,... Anode wiring part, 12A, 21A, 22
A: Transparent conductive material part, 12B, 20B, 21B, 22B
... Metal material part, 12a, 20a ... Translucent part, 12b, 20
b: non-light-emitting area, 13: organic layer, 14: cathode wiring section

フロントページの続き (72)発明者 中山 徹生 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 関谷 光信 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 笹岡 龍哉 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 3K007 AB00 AB04 AB05 BA06 CA01 CA06 CB01 DA00 DB03 EB00 FA01 5C094 AA02 AA14 AA22 BA27 CA19 EA05 EB02 FB01 Continued on the front page (72) Inventor Tetsuo Nakayama 6-7-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Inventor Mitsunobu Sekiya 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo Sonny shares In-house (72) Inventor Tatsuya Sasaoka 6-35, Kita-Shinagawa, Shinagawa-ku, Tokyo F-term in Sony Corporation (reference) 3K007 AB00 AB04 AB05 BA06 CA01 CA06 CB01 DA00 DB03 EB00 FA01 5C094 AA02 AA14 AA22 BA27 CA19 EA05 EB02 FB01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明基板上に、ストライプ状の陽極配線
部と、少なくとも有機発光材料からなる層を有した有機
層と、陰極とがこの順に形成されて複数の有機EL素子
が配列した状態に形成されてなり、 前記陽極配線部は、少なくとも透光部となる部分が透明
導電材料からなり、透光部でない非発光エリアの部分が
電気抵抗率2×10-5Ωcm以下の金属材料を有してな
っていることを特徴とする有機ELディスプレイ。
1. A state in which a stripe-shaped anode wiring portion, an organic layer having at least a layer made of an organic light emitting material, and a cathode are formed in this order on a transparent substrate, and a plurality of organic EL elements are arranged. In the anode wiring portion, at least a portion that becomes a light-transmitting portion is made of a transparent conductive material, and a non-light-emitting area portion that is not a light-transmitting portion has a metal material having an electric resistivity of 2 × 10 −5 Ωcm or less. An organic EL display, comprising:
【請求項2】 前記金属材料がAg、Al、Cu、A
u、Ni、Co、Fe、Mo、Nb、Pd、Ptのうち
の一種あるいは複数種であることを特徴とする請求項1
記載の有機ELディスプレイ。
2. The method according to claim 1, wherein the metal material is Ag, Al, Cu, A
2. The semiconductor device according to claim 1, wherein the material is at least one of u, Ni, Co, Fe, Mo, Nb, Pd, and Pt.
The organic EL display according to the above.
【請求項3】 前記陽極配線部における非発光エリアの
部分の下地の一部にCrの酸化膜が設けられていること
を特徴とする請求項1記載の有機ELディスプレイ。
3. The organic EL display according to claim 1, wherein a Cr oxide film is provided on a part of a base of a non-light-emitting area in said anode wiring portion.
JP10254701A 1998-09-09 1998-09-09 Organic el display Pending JP2000091083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10254701A JP2000091083A (en) 1998-09-09 1998-09-09 Organic el display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10254701A JP2000091083A (en) 1998-09-09 1998-09-09 Organic el display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008227850A Division JP4557069B2 (en) 2008-09-05 2008-09-05 Organic EL display and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2000091083A true JP2000091083A (en) 2000-03-31

Family

ID=17268663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10254701A Pending JP2000091083A (en) 1998-09-09 1998-09-09 Organic el display

Country Status (1)

Country Link
JP (1) JP2000091083A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060907A1 (en) * 1999-04-02 2000-10-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence display device and method of producing the same
WO2000067531A1 (en) * 1999-04-30 2000-11-09 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method of manufacture thereof
JP2001345185A (en) * 2000-03-27 2001-12-14 Semiconductor Energy Lab Co Ltd Light emitting device and method of manufacture
JP2002156633A (en) * 2000-11-20 2002-05-31 Stanley Electric Co Ltd Liquid crystal display device with illumination, and method for manufacturing surface light emitting element light source
JP2004031201A (en) * 2002-06-27 2004-01-29 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
WO2004045253A1 (en) * 2002-11-11 2004-05-27 Matsushita Electric Industrial Co., Ltd. Organic light emitting element, production method oforganic light emitting element, image forming device, and display unit
US6784459B2 (en) 2000-11-27 2004-08-31 Seiko Epson Corporation Organic electroluminescent device, manufacturing method therefor, and electronic devices therewith
EP1168448A3 (en) * 2000-06-19 2005-03-23 Lg Electronics Inc. Full color organic EL display panel, manufacturing method thereof and driving circuit thereof
US6900470B2 (en) 2001-04-20 2005-05-31 Kabushiki Kaisha Toshiba Display device and method of manufacturing the same
JP2005276828A (en) * 2004-03-23 2005-10-06 Lg Electron Inc Organic electroluminescence element and its manufacturing method
KR100736008B1 (en) 2004-06-07 2007-07-06 가시오게산키 가부시키가이샤 Display device and method of manufacturing the same
JP2008084837A (en) * 2006-08-30 2008-04-10 Sumitomo Chemical Co Ltd Organic electroluminescence element
JP2008103305A (en) * 2006-10-17 2008-05-01 Lg Electron Inc Electroluminescent panel, and light source apparatus including the same
US7394442B2 (en) 2002-02-01 2008-07-01 Seiko Epson Corporation Electro-optical apparatus, driving method thereof, and electronic device
US7459849B2 (en) 2000-09-18 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
JP2010218805A (en) * 2009-03-16 2010-09-30 Fuji Xerox Co Ltd Organic electroluminescent device, luminescent device array, exposure head, and image forming device
JP2011170358A (en) * 1999-12-15 2011-09-01 Semiconductor Energy Lab Co Ltd Electric appliance
JP2012084535A (en) * 2006-08-30 2012-04-26 Sumitomo Chemical Co Ltd Organic electroluminescent element
WO2012057011A1 (en) * 2010-10-26 2012-05-03 出光興産株式会社 Photoelectric conversion device, and process for manufacturing photoelectric conversion device
US9000429B2 (en) 2002-04-24 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9287330B2 (en) 2002-04-23 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9412804B2 (en) 2002-04-26 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method of the same
CN107732026A (en) * 2017-10-16 2018-02-23 深圳市华星光电半导体显示技术有限公司 OLED substrate structure
CN111899648A (en) * 2020-08-24 2020-11-06 云谷(固安)科技有限公司 Display panel and display device
KR20220006001A (en) 2020-07-07 2022-01-14 호도가야 가가쿠 고교 가부시키가이샤 Organic patterning layer and matal patterning method using the same

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060907A1 (en) * 1999-04-02 2000-10-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence display device and method of producing the same
JP2011060785A (en) * 1999-04-02 2011-03-24 Idemitsu Kosan Co Ltd Organic electroluminescent display device and method for producing the same
JP4608105B2 (en) * 1999-04-02 2011-01-05 出光興産株式会社 Organic electroluminescence display device and manufacturing method thereof
JP2010080453A (en) * 1999-04-02 2010-04-08 Idemitsu Kosan Co Ltd Organic electroluminescent display and method for manufacturing the same
US6998773B2 (en) 1999-04-30 2006-02-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and manufacturing method thereof
WO2000067531A1 (en) * 1999-04-30 2000-11-09 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and method of manufacture thereof
JP4594446B2 (en) * 1999-04-30 2010-12-08 出光興産株式会社 Organic electroluminescence device
EP2202822A3 (en) * 1999-04-30 2010-09-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and manufacturing method thereof
US6856089B2 (en) 1999-04-30 2005-02-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and manufacturing method thereof
JP2010157524A (en) * 1999-04-30 2010-07-15 Idemitsu Kosan Co Ltd Organic electroluminescent element
US7423371B2 (en) 1999-04-30 2008-09-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and manufacturing method thereof
US8754577B2 (en) 1999-12-15 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. EL display device
JP2011170358A (en) * 1999-12-15 2011-09-01 Semiconductor Energy Lab Co Ltd Electric appliance
JP2013235861A (en) * 1999-12-15 2013-11-21 Semiconductor Energy Lab Co Ltd Electric appliance
JP2001345185A (en) * 2000-03-27 2001-12-14 Semiconductor Energy Lab Co Ltd Light emitting device and method of manufacture
JP4693262B2 (en) * 2000-03-27 2011-06-01 株式会社半導体エネルギー研究所 Passive matrix light emitting device
EP2264768A3 (en) * 2000-06-19 2013-07-31 LG Electronics, Inc. Full color organic el display panel.
EP1168448A3 (en) * 2000-06-19 2005-03-23 Lg Electronics Inc. Full color organic EL display panel, manufacturing method thereof and driving circuit thereof
EP2264768A2 (en) 2000-06-19 2010-12-22 LG Electronics, Inc. Full color organic el display panel.
US9263503B2 (en) 2000-09-18 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US8044588B2 (en) 2000-09-18 2011-10-25 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US7459849B2 (en) 2000-09-18 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
US7514868B2 (en) 2000-09-18 2009-04-07 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating the display device
JP2011066019A (en) * 2000-09-18 2011-03-31 Semiconductor Energy Lab Co Ltd Light emitting device
JP4711273B2 (en) * 2000-11-20 2011-06-29 スタンレー電気株式会社 Illuminated liquid crystal display device
JP2002156633A (en) * 2000-11-20 2002-05-31 Stanley Electric Co Ltd Liquid crystal display device with illumination, and method for manufacturing surface light emitting element light source
US7755277B2 (en) 2000-11-27 2010-07-13 Seiko Epson Corporation Organic electroluminescent device, manufacturing method therefor, and electronic devices therewith
US8454403B2 (en) 2000-11-27 2013-06-04 Seiko Epson Corporation Methods of manufacturing an organic electroluminescent device
US7186581B2 (en) 2000-11-27 2007-03-06 Seiko Epson Corporation Organic electroluminescent device, manufacturing method therefor, and electronic devices therewith
US8698136B2 (en) 2000-11-27 2014-04-15 Seiko Epson Corporation Methods of manufacturing an organic electroluminescent device
US6784459B2 (en) 2000-11-27 2004-08-31 Seiko Epson Corporation Organic electroluminescent device, manufacturing method therefor, and electronic devices therewith
US8128448B2 (en) 2000-11-27 2012-03-06 Seiko Epson Corporation Methods of manufacturing an organic electroluminescent device
US6924593B2 (en) 2000-11-27 2005-08-02 Seiko Epson Corporation Manufacturing method for organic electroluminescent device including an effectively optical area and an organic electroluminescent layer, organic electroluminescent device, and electronic devices therewith
US7990052B2 (en) 2000-11-27 2011-08-02 Seiko Epson Corporation Organic electroluminescent device
US7470976B2 (en) 2000-11-27 2008-12-30 Seiko Epson Corporation Organic electroluminescent device, manufacturing method therefor, and electronic devices therewith
US7521709B2 (en) 2000-11-27 2009-04-21 Seiko Epson Corporation Organic electroluminescent device, manufacturing method therefor, and electronic devices therewith
US6900470B2 (en) 2001-04-20 2005-05-31 Kabushiki Kaisha Toshiba Display device and method of manufacturing the same
US7394442B2 (en) 2002-02-01 2008-07-01 Seiko Epson Corporation Electro-optical apparatus, driving method thereof, and electronic device
US7593008B2 (en) 2002-02-01 2009-09-22 Seiko Epson Corporation Electro-optical apparatus, driving method thereof, and electronic device
US9978811B2 (en) 2002-04-23 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9287330B2 (en) 2002-04-23 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9000429B2 (en) 2002-04-24 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US10454059B2 (en) 2002-04-24 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9831459B2 (en) 2002-04-24 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Display module with white light
US9362534B2 (en) 2002-04-24 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9165987B2 (en) 2002-04-24 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing same
US9853098B2 (en) 2002-04-26 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method of the same
US9412804B2 (en) 2002-04-26 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method of the same
JP2004031201A (en) * 2002-06-27 2004-01-29 Semiconductor Energy Lab Co Ltd Semiconductor device and its manufacturing method
WO2004045253A1 (en) * 2002-11-11 2004-05-27 Matsushita Electric Industrial Co., Ltd. Organic light emitting element, production method oforganic light emitting element, image forming device, and display unit
US7825593B2 (en) 2004-03-23 2010-11-02 Lg Electronics Inc. Organic electro-luminescence display device and method of fabricating the same
JP2005276828A (en) * 2004-03-23 2005-10-06 Lg Electron Inc Organic electroluminescence element and its manufacturing method
KR100736008B1 (en) 2004-06-07 2007-07-06 가시오게산키 가부시키가이샤 Display device and method of manufacturing the same
US8324801B2 (en) 2006-08-30 2012-12-04 Sumitomo Chemical Company, Limited Organic electroluminescence element
JP2012084535A (en) * 2006-08-30 2012-04-26 Sumitomo Chemical Co Ltd Organic electroluminescent element
JP2008084837A (en) * 2006-08-30 2008-04-10 Sumitomo Chemical Co Ltd Organic electroluminescence element
JP2008103305A (en) * 2006-10-17 2008-05-01 Lg Electron Inc Electroluminescent panel, and light source apparatus including the same
JP2010218805A (en) * 2009-03-16 2010-09-30 Fuji Xerox Co Ltd Organic electroluminescent device, luminescent device array, exposure head, and image forming device
JP2012094348A (en) * 2010-10-26 2012-05-17 Idemitsu Kosan Co Ltd Photoelectric conversion device and method for manufacturing the same
WO2012057011A1 (en) * 2010-10-26 2012-05-03 出光興産株式会社 Photoelectric conversion device, and process for manufacturing photoelectric conversion device
CN107732026A (en) * 2017-10-16 2018-02-23 深圳市华星光电半导体显示技术有限公司 OLED substrate structure
WO2019075855A1 (en) * 2017-10-16 2019-04-25 深圳市华星光电半导体显示技术有限公司 Oled substrate structure
KR20220006001A (en) 2020-07-07 2022-01-14 호도가야 가가쿠 고교 가부시키가이샤 Organic patterning layer and matal patterning method using the same
CN111899648A (en) * 2020-08-24 2020-11-06 云谷(固安)科技有限公司 Display panel and display device

Similar Documents

Publication Publication Date Title
JP2000091083A (en) Organic el display
US5399936A (en) Organic electroluminescent device
JP4185002B2 (en) EL display element
KR100267964B1 (en) Organic electroluminescent display panel and method for fabricating the same
US7633218B2 (en) OLED device having improved lifetime and resolution
JP4264994B2 (en) Method for manufacturing organic electroluminescence display element
KR101649225B1 (en) Organic Light Emitting Display Device and Method for fabricating the same
JP4684592B2 (en) Method for manufacturing organic electroluminescent device
JP4164910B2 (en) Organic EL display and organic EL display manufacturing method
US6541910B2 (en) Organic el display
US20020043928A1 (en) Organic EL device with high contrast ratio and method for maufacturing the same
US7221094B2 (en) Electroluminescent device and method of manufacturing the same
JP2001338770A (en) Luminescent display device and its manufacturing method
WO2006064443A2 (en) Display panel and method for manufacturing the same
JP2000100576A5 (en)
US20100252841A1 (en) Oled device having improved lifetime and resolution
JP3517099B2 (en) Method for manufacturing organic electroluminescence device
JP2000058270A (en) Optical element and organic el display
JP2000091082A (en) Organic el display
JPH1187052A (en) Organic electroluminescence element
JP2003017263A (en) El display, its manufacturing method, color filter and its manufacturing method
JP2008108680A (en) Manufacturing method of organic el element
JP4242203B2 (en) Organic EL display device
JPH10284254A (en) Organic electroluminescence element
JP4557069B2 (en) Organic EL display and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080912

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081024