FR2924179A1 - MICRO CENTRAL MAREMOTRICE - Google Patents

MICRO CENTRAL MAREMOTRICE Download PDF

Info

Publication number
FR2924179A1
FR2924179A1 FR0802706A FR0802706A FR2924179A1 FR 2924179 A1 FR2924179 A1 FR 2924179A1 FR 0802706 A FR0802706 A FR 0802706A FR 0802706 A FR0802706 A FR 0802706A FR 2924179 A1 FR2924179 A1 FR 2924179A1
Authority
FR
France
Prior art keywords
platform
sea
rack
water
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0802706A
Other languages
French (fr)
Inventor
Emanuel Jose Fernandes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR0802706A priority Critical patent/FR2924179A1/en
Publication of FR2924179A1 publication Critical patent/FR2924179A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/144Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which lifts water above sea level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • F03B13/1855Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem where the connection between wom and conversion system takes tension and compression
    • F03B13/186Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem where the connection between wom and conversion system takes tension and compression the connection being of the rack-and-pinion type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Cette invention concerne un système composé d'une partie propulsion et d'une partie production pour utiliser la pression et le dénivellement de la mer pendant les marées et les vagues pour produire de l'énergie électrique. La partie propulsion, installée en mer, est composée d'une base (B1) avec une plateforme (P1) sur laquelle sont installées deux pompes (PM) et (PD) équipés de roues dentées et, flottant sur la mer, d'un caisson étanche (CE) avec une crémaillère intégrée (C) dessus, assez longue pour glisser entre les bouts d'arbre dentés des pompes sur la plateforme (P1). La partie production, installé en terre ferme, est composée d'un réservoir inférieur (RI) surmonté d'une centrale hydroélectrique (CH), et d'une plateforme (P2) avec un réservoir supérieur (RS) dessus. Lorsque la mer monte ou descend par l'effet des marées ou des vagues, la crémaillère fait tourner, soit la pompe (PM) en montant, soit la pompe (PD) en descendant, qui transfèrent l'eau du réservoir inférieur (RI) par un tuyau d'aspiration (TA) vers le réservoir supérieur (RS) par un tuyau de remplissage (TR). Pendant ce temps, la centrale hydroélectrique (CH) produit de l'énergie électrique, alimentée en eau par une conduite forcée (CF) venant du réservoir supérieur (RS), la sortie de l'eau se faisant directement dans le réservoir inférieur (RI).A system consisting of a propulsion portion and a production portion for utilizing sea pressure and tide during tides and waves to produce electrical energy. The propulsion part, installed at sea, consists of a base (B1) with a platform (P1) on which are installed two pumps (PM) and (PD) equipped with toothed wheels and, floating on the sea, a waterproof case (CE) with integrated rack (C) on it, long enough to slide between the toothed shaft ends of the pumps on the platform (P1). The production part, installed on dry land, consists of a lower reservoir (RI) surmounted by a hydroelectric power station (CH), and a platform (P2) with an upper reservoir (RS) on it. When the sea rises or falls due to tides or waves, the rack rotates, either the pump (PM) up, or the pump (PD) down, which transfer water from the lower tank (RI) by a suction pipe (TA) to the upper tank (RS) by a filling pipe (TR). Meanwhile, the hydropower plant (CH) produces electrical energy, supplied with water by a forced pipe (CF) from the upper reservoir (RS), the water outlet being directly into the lower reservoir (RI). ).

Description

La présente invention concerne un système marémoteur pour élever un volume donné d'eau douce d'un réservoir situé à un niveau inférieur vers un réservoir installé à une hauteur supérieure, pour créer une chute d'eau suffisante pour faire marcher une centrale hydroélectrique Avantage de ce système par rapport aux systèmes actuels : a) Mouvement perpétuel du même volume d'eau douce. b) Aucun contact de la turbine hydraulique avec l'eau salée, donc, aucune corrosion. D'autre part, la production de l'énergie électrique commence à être limitée par deux facteurs: a) La réduction, à moyen terme, du nucléaire, pour des questions de sécurité. b) L'arrêt des hydrocarbures, due à la pollution, à son effet de serre et à son prix. The present invention relates to a tidal system for raising a given volume of freshwater from a reservoir at a lower level to a tank installed at a higher height, to create a waterfall sufficient to operate an Advantage hydroelectric plant. this system compared to current systems: a) Perpetual movement of the same volume of fresh water. b) No contact of the hydraulic turbine with salt water, therefore, no corrosion. On the other hand, the production of electrical energy begins to be limited by two factors: a) The reduction, in the medium term, of the nuclear, for questions of security. (b) The cessation of hydrocarbons due to pollution, its greenhouse effect and its price.

Il est, donc, urgent, de commencer à chercher à remplacer les moyens actuels par d'autres non polluants et moins dangereux. Si l'on tient compte que 75% de notre planète Terre est constitué d'eau, on doit mettre à noire profit cette énorme source d'énergie. Le principe de fonctionnement de cette invention est fondé sur l'utilisation de la pression, et du dénivellement créés par les marées et par les vagues dans la mer pour acheminer un volume donné d'eau douce d'un réservoir inférieur vers un réservoir supérieur, installé à une hauteur suffisante pour créer une chute d'eau pour faire tourner une turbine dans une centrale hydroélectrique. Ce cycle, renouvelable à chaque marée est, donc, perpétuel. Ce système est composé de deux parties: une partie propulsion installée dans la mer et une partie production qui peut se situer, soit à, terre, soit dans la mer au-dessus de la partie propulsion. Si 20 nécessaire, il peut travailler avec l'eau de mer. Les dessins annexés illustrent l'invention. La figure 1 représente l'ensemble des composants du système : En référence à ce dessin, le système comporte, pour la partie propulsion installée en mer, une plateforme (Pl) soutenue par des supports (Sl) fixés à une base solide (Bl) implantée au fond de 25 la mer. Sur la plateforme (Pl) est montée une centrale de pompage (CP) où sont installées, vis-à-vis, deux pompes à eau (PM) et (PD) avec leurs bouts d'arbre respectifs équipés de roues dentées, un guide crémaillère court (GC), ainsi qu'un guide crémaillère long (GL) soutenu par les supports guide (SG). Dans les supports (SI) de la plateforme (Pl) sont installés des glissières (OL) en longueur, entre 30 lesquelles glissent des guides crémaillère (GC) courts. Sur la mer, glissant entre les supports (Si) de la plateforme (P1) flotte un caisson étanche (CE) avec des ouvertures dans les parties inférieur et supérieur équipées de vannes papillon (VP). Dans le milieu de la partie inférieure de ce caisson étanche (CE) il est fixé un caisson de charge (CC) avec une ouverture dans le côté inférieur équipée d'une vanne libre (VL). Ce caisson sert à alourdir le caisson étanche (CE) lors du retour vers le bas par l'effet du mouvement ondulatoire des vagues, ainsi que lors de la marée descendante. Au milieu de la partie supérieur du caisson étanche (CE) est intégrée une crémaillère (C) suffisamment longue pour atteindre le guide crémaillère long (GL) à l'intérieur de la çentrale de pompage (CP) en période de marée basse, se glissant entre les guides courts (GC) des supports (Si) de la plateforme (Pi) et de l'intérieur de la centrale de pompage (CP). Dans la centrale de pompage (CP), les pompes à eau (PM) et (PD) sont montées vis-à-vis de telle sorte que les roues dentées de leurs bouts d'arbre soient mises en contact, de part et d'autre de la crémaillère intégrée (C). De cette façon, le caisson étanche (CE) avec la crémaillère intégrée (C) et le caisson de charge (CC) font tourner, soit la pompe (PM) lors de la montée des vagues et de la marée montante, soit la pompe (PD) lors de la descente des vagues et de la marée descendante. Le caisson étanche (CE) peut être remplacé par un bateau adapté à là même fin. Pour la partie production, le système comporte une plateforme (P2) soutenue par des supports (S2) fixés à une base solide (B2) ici implantée sur la terre ferme. Sur cette base (B2) est installée 15 un réservoir inférieur (RI) surmonté d'une centrale hydroélectrique (CH). Sur la plateforme (P2) est installé un réservoir supérieur (RS) qui est alimenté en eau par le tuyau de remplissage (TR) relié au côté refoulement des pompes (PM) et (PD) installées dans la centrale de pompage (CP) sur la plateforme (Pl) en mer,'lesquelles s'alimentent en eau, çôté aspiration, par le tuyau d'aspiration (TA) dans le réservoir inférieur (RI) installé sur la base (B2). 20 L'alimentation en eau de la centrale hydroélectrique (CH) est faite par une conduite forcée (CF) équipée d'une vanne papillon (VP), venant du réservoir supérieur (RS), la sortie d'eau de la centrale (CH) se faisant directement dans le réservoir inférieur (RI) sur la base (B2). La figure 2 représente le système en période de marée montante: Le caisson étanche (CE) vide, avec toutes les vannes papillon (VP) fermées, flotte sur la mer, le 25 caisson de charge (CC) en dessous avec sa vanne libre (YL) ouverte, donc, sans charge. Poussé par la marée montante ou par les vagues, le caisson, étanche (CE) monte. La crémaillère intégrée (C) suit le mpuvement vers le haut, faisant tourner dans la centrale de pompage (CP) la pompe (PM) laquelle aspire, par le tuyau (TA), l'eau du réservoir inférieur (RI) sur la base (B2) à terre, pour la refouler, par le tuyau de remplissage (TR), vers le réservoir supérieur (RS) sur la 30 plateforme (P2), l'autre pompe (PD) restant sans action pendant ce temps. La figure 3 représente la mise en service du caisson de charge (CC) qui sert à alourdir le caisson étanche (CE), soit lors des marées descendantes, soit quand, par l'action du mouvement ondulatoire des vagues, la mer redescend. Chaque fois que le caisson étanche (CE) descend, le caisson de charge (CC) ferme sa vanne libre (VL) s'alourdissant par le poids de l'eau à l'intérieur. It is, therefore, urgent to start looking to replace current means with other non-polluting and less dangerous ones. If we take into account that 75% of our planet Earth is made of water, we must put to profit this enormous source of energy. The operating principle of this invention is based on the use of tidal pressure and tidal leveling in the sea to convey a given volume of fresh water from a lower reservoir to an upper reservoir, installed at a height sufficient to create a waterfall to run a turbine in a hydroelectric plant. This cycle, renewable at each tide, is therefore perpetual. This system is composed of two parts: a propulsion part installed in the sea and a production part that can be located either at ground or in the sea above the propulsion part. If necessary, it can work with seawater. The accompanying drawings illustrate the invention. FIG. 1 represents all the system components: With reference to this drawing, the system comprises, for the propulsion portion installed at sea, a platform (P1) supported by supports (S1) fixed to a solid base (B1). located on the bottom of the sea. On the platform (Pl) is mounted a pumping station (CP) where are installed, vis-à-vis, two water pumps (PM) and (PD) with their ends of tree respective geared wheels, a short rack guide (GC), and a long rack guide (GL) supported by the guide brackets (SG). In the supports (SI) of the platform (Pl) are installed slideways (OL) in length, between which slide short rack guides (GC). On the sea, sliding between the supports (Si) of the platform (P1) floats a waterproof case (CE) with openings in the lower and upper parts equipped with butterfly valves (VP). In the middle of the lower part of this waterproof case (CE) there is fixed a load box (CC) with an opening in the lower side equipped with a free valve (VL). This box is used to weigh down the water chamber (CE) during the return down by the effect of wave movement of the waves, as well as during the tide down. In the middle of the upper part of the waterproof case (CE) is integrated a rack (C) long enough to reach the long rack guide (GL) inside the pump center (CP) during low tide, slipping between the short guides (GC) of the supports (Si) of the platform (Pi) and the inside of the pumping station (CP). In the pumping station (CP), the water pumps (PM) and (PD) are mounted so that the toothed wheels of their shaft ends are brought into contact with each other on both sides. other of the integrated rack (C). In this way, the water chamber (CE) with the integrated rack (C) and the load box (CC) rotate either the pump (PM) during the rise of the waves and the rising tide, or the pump ( PD) during the descent of the waves and the ebb tide. The waterproof case (CE) can be replaced by a boat adapted for the same purpose. For the production part, the system comprises a platform (P2) supported by supports (S2) fixed to a solid base (B2) here implanted on the mainland. On this base (B2) is installed a lower tank (RI) surmounted by a hydroelectric power station (CH). On the platform (P2) is installed an upper tank (RS) which is supplied with water by the filling pipe (TR) connected to the discharge side of the pumps (PM) and (PD) installed in the pumping station (CP) on the platform (Pl) at sea, which feeds water, suction side, through the suction pipe (TA) into the lower tank (RI) installed on the base (B2). The water supply of the hydroelectric plant (CH) is made by a forced pipe (CF) equipped with a butterfly valve (VP), coming from the upper tank (RS), the water outlet of the plant (CH). ) occurring directly in the lower tank (RI) on the base (B2). FIG. 2 shows the system during a rising tide: The empty tank (CE), with all closed butterfly valves (VP), floats on the sea, the load box (CC) underneath with its free valve ( YL) open, therefore, without charge. Driven by rising tide or waves, the box, waterproof (CE) rises. The integrated rack (C) moves upwards, rotating the pump (PM) in the pump unit (CP), which draws water from the lower tank (RI) on the base through the pipe (TA). (B2) on the ground, for the discharge, by the filling pipe (TR), to the upper reservoir (RS) on the platform (P2), the other pump (PD) remaining without action during this time. Figure 3 shows the commissioning of the load box (CC) used to weigh down the water chamber (EC), either during tides down, or when, by the action of waves wave movement, the sea back down. Each time the waterproof case (CE) goes down, the load box (CC) closes its free valve (VL), which is weighed down by the weight of the water inside.

Avec cet alourdissement, ainsi qu'avec le poids de la crémaillère intégrée (C), le caisson étanche (CE) descend. La crémaillère intégrée (C) suit le mouvement vers le bas, faisant tourner dans la centrale de pompage (CR) la pompe (PD) laquelle aspire, par le tuyau (TA), l'eau du réservoir inférieur (RI) sur la base (B2) à terre pour la refouler, par le tuyau de remplissage (TR), vers le réservoir supérieur (RS) sur la plateforme (P2), la pompe (PM) restant sans action pendant ce temps. With this weight, as well as with the weight of the integrated rack (C), the waterproof case (CE) goes down. The integrated rack (C) follows the downward movement, rotating the pump (PD) in the pumping station (CR), which draws the water from the lower tank (RI) on the base through the pipe (TA). (B2) on the ground to discharge it, by the filling pipe (TR), to the upper tank (RS) on the platform (P2), the pump (PM) remaining without action during this time.

La figure 4 représente le système au niveau maximum de la marée haute. Figure 4 shows the system at the maximum level of high tide.

Propulsé par la marée, le caisson étanche (CE) avec la crémaillère intégrée (C) et le caisson de charge (CC), montent jusqu'au niveau le plus haut de la marée montante, faisant tourner soit la pompe (PM) soit la pompe (PD) qui vont, ainsi, transférer l'eau du réservoir inférieur (RI) vers le réservoir supérieur (RS). Powered by the tide, the waterproof case (CE) with the integrated rack (C) and the load box (CC), rise to the highest level of the rising tide, rotating either the pump (PM) or the pump (PD) which will thus transfer water from the lower tank (RI) to the upper tank (RS).

La mise en service de la centrale hydroélectrique (CH). The commissioning of the hydroelectric plant (CH).

Lorsque l'eau dans le réservoir supérieur (RS) arrive à un niveau prédéterminé, la vanne papillon (VP) de la conduite forcée (CF) s'ouvre et la centrale hydroélectrique (CH) se met en route, produisant de l'électricité. De même, si l'eau descend à un niveau minimum pré-établi, la vanne papillon (VP) de la conduite forcée (CF) se ferme et la centrale hydroélectrique (CH) s'arrête. La figure 5 représente le système au moment du passage de la marée haute vers la marée basse: Lorsque le caisson étanche (CE) arrive au niveau maximum de la marée haute, les vannes papillon (VP) s'ouvrent laissant l'eau de mer entrer. Quand le caisson étanche (CE) est rempli d'eau, les vannes papillon (W) se ferment, l'alourdissant. La vanne libre (VL) du caisson de charge (CC) se ferme, aussi, augmentant le poids de l'ensemble When the water in the upper reservoir (RS) reaches a predetermined level, the throttle valve (VP) of the penstock (CF) opens and the hydroelectric plant (CH) starts, producing electricity . Likewise, if the water drops to a pre-set minimum level, the throttle valve (VP) of the penstock (CF) closes and the hydroelectric station (CH) stops. Figure 5 shows the system at the time of the passage from high tide to low tide: When the water chamber (CE) reaches the maximum level of high tide, butterfly valves (VP) open leaving sea water enter. When the water chamber (EC) is filled with water, the butterfly valves (W) close, weighing it down. The free valve (VL) of the load box (CC) closes, too, increasing the overall weight

La figure 6 représente le système en période de marée descendante: Figure 6 shows the system during the ebb tide:

Alourdi par l'eau dans son intérieur, par le poids de la crémaillère intégrée (C) ainsi que par le caisson de charge (CC), le caisson étanche (CE) commence à descendre, suivant, avec un certain décalage, la marée descendante. La çrém,aillère (C) suit le mouvement vers le bas, faisant tourner dans la centrale de pompage (CP) la pompe (PD) laquelle aspire, par le tuyau (TA), l'eau du réservoir inférieur (RI) sur la base ($2) à terre pour la refouler, par le tuyau de remplissage (TR), vers le réservoir supérieur (RS) sur la plateforme (P2), la pompe (PM) restant sans action pendant ce temps. Burdened by the water in its interior, by the weight of the integrated rack (C) as well as by the load box (CC), the waterproof case (CE) begins to descend, following, with a certain lag, the ebb tide . The spindle (C) follows the downward movement, causing the pump (PD) to rotate in the pumping station (CP), which draws, through the pipe (TA), the water from the lower reservoir (RI) onto the base ($ 2) on the ground to discharge it, through the filling pipe (TR), to the upper tank (RS) on the platform (P2), the pump (PM) remaining without action during this time.

Durant ce temps, la centrale hydroélectrique (CH) produit de l'énergie électrique modulant sa puissance en fonction du niveau d'eau dans le réservoir supérieur (RS). During this time, the hydropower plant (CH) produces electrical energy modulating its power according to the level of water in the upper reservoir (RS).

La figure 7 représente le système au moment du passage de la marée basse vers la marée haute: Le caisson étanche (CE), arrivant à un niveau pré-établi avant le niveau le plus bas de la marée descendante, s'arrête, ouvrant ses vannes papillon (W) pour vider l'eau de son intérieur. Quand le caisson étanche (CE) est vide, les vannes papillon (VP) se ferment. La vanne libre du caisson de charge (CC) s'ouvre, le dégageant de son poids supplémentaire. La marée, après avoir passée par son niveau le plus bas, remonte, poussant le caisson étanche (CE) avec la crémaillère intégrée (C) vers le haut pour recommencer le cycle avec la marée 5 montante. La figure S/M représente le système avec les parties propulsion et production en mer. Figure 7 shows the system at the time of the passage from low tide to high tide: The watertight caisson (CE), arriving at a pre-established level before the lowest level of the ebb tide, stops, opening its doors. butterfly valves (W) to empty the water from inside. When the water chamber (EC) is empty, the butterfly valves (VP) close. The free valve of the load box (CC) opens, releasing it from its extra weight. The tide, after passing through its lowest level, rises, pushing the water box (CE) with the integrated rack (C) upwards to start the cycle again with the rising tide. Figure S / M shows the system with the parts propulsion and production at sea.

Claims (7)

REVENDICATIONS 1) Système marémoteur fondé sur l'utilisation de la pression et du dénivellement créés par les marées et par les vagues dans la mer pour acheminer un volume donné d'eau douce d'un réservoir inférieur vers un réservoir supérieur installé à une hauteur suffisante pour créer une chute d'eau pour faire tourner une turbine dans une centrale hydroélectrique, eomposé de deux parties: une partie propulsion installée dans la mer et une partie production qui peut se situer, soit à terre, soit dans la mer, caractérisé en ce qu'il est constitué, pour la partie propulsion installée en mer: d'une plateforme (Pl) soutenue par des supports (Si) fixés à une base solide (B1) implantée au fond de la mer. Sur la plateforme (P1) est montée une centrale de pompage (CP) où sont Io installées, vis-à-vis, deux pompes à eau (PM) et (PD) avec leurs bouts d'arbre respectifs équipés de roues dentées, un guide crémaillère court (GC), ainsi qu'un guide crémaillère long (GL) soutenu par les supports guide (SG). Sur la mer, glissant entre les supports (S 1) de la plateforme (P 1) flotte un caisson étanche (CE) avec des ouvertures dans les parties inférieur et supérieur équipées de vannes papillon (VP). 15 Au milieu de la partie supérieure du caisson étanche (CE) est intégrée une crémaillère (C) suffisamment longue pour atteindre le guide crémaillère long (GL) à l'intérieur de la centrale de pompage (CP) en période de marée basse, se glissant entre les guides courts (GC) des supports (Si) de la plateforme (PI) et de l'intérieur de la centrale de pompage (CP). Dans la centrale de pompage (CP), les pompes à eau (PM) et (PD) sont montées vis-à-vis de telle sorte que les roues 20 dentées de leurs bouts d'arbre soient mises en contact de part et d'autre de la crémaillère intégrée (C). De cette façon, le caisson étanche (CE) avec la crémaillère intégrée (C) et le caisson de charge (CC) font tourner, soit la pompe (PM) à la montée des vagues et de la marée montante soit la pompe (PD) à la descente des vagues et de la marée descendante, et, pour la partie production à, terre, eune plateforme (P2) soutenue par des supports (S2) fixés à 25 une base solide (B2) implantée en terre ferme. Sur cette base (B2) est installée un réservoir inférieur (RI) surmonté d'une centrale hydroélectrique (CH) et sur la plateforme (P2) est installé un réservoir supérieur (R$). 1) Tidal system based on the use of tidal and wave pressure and tidal elevation in the sea to convey a given volume of freshwater from a lower reservoir to an upper reservoir at a height sufficient to creating a waterfall for rotating a turbine in a hydroelectric plant, composed of two parts: a propulsion part installed in the sea and a production part that can be located either on land or in the sea, characterized in that it is constituted, for the propulsion part installed at sea: a platform (Pl) supported by supports (Si) fixed to a solid base (B1) implanted at the bottom of the sea. On the platform (P1) is mounted a pumping station (CP) where are installed, vis-à-vis, two water pumps (PM) and (PD) with their respective shaft ends equipped with toothed wheels, a short rack guide (GC), and that a long rack guide (GL) back by the guide supports (SG). On the sea, sliding between the supports (S 1) of the platform (P 1) floats a watertight box (CE) with openings in the lower and upper parts equipped with butterfly valves (VP). In the middle of the upper part of the watertight case (CE) is integrated a rack (C) long enough to reach the long rack guide (GL) inside the pumping station (CP) at low tide, sliding between the short guides (GC) supports (Si) of the platform (PI) and the inside of the pumping station (CP). In the pumping station (CP) the water pumps (PM) and (PD) are mounted so that the toothed wheels of their shaft ends are brought into contact with each other. other of the integrated rack (C). In this way, the waterproof case (CE) with the integrated rack (C) and the load box (DC) rotate either the pump (PM) at the rise of the waves and the rising tide or the pump (PD) at the descent of the waves and the ebb tide, and, for the production part to land, eune platform (P2) supported by supports (S2) fixed to a solid base (B2) implanted in dry land. On this base (B2) is installed a lower reservoir (RI) surmounted by a hydroelectric power plant (CH) and on the platform (P2) is installed an upper reservoir (R $). 2) Système selon la revendication 1, caractérisé en ce que au milieu de la partie inférieure du caisson étanche (CE) il est fixé un caisson de charge (CC) avec une ouverture dans le côté 30 inférieur équipée d'une vanne libre (VL). Ce caisson sert à alourdir le caisson étanche (CE) lors du retour vers le bas du caisson étanche (CE) avec la crémaillère intégrée (C) par l'effet du mouvement ondulatoire des vagues et de la marée descendante.REVENDICATIONS 2) System according to claim 1, characterized in that in the middle of the lower part of the watertight container (CE) there is fixed a load box (CC) with an opening in the lower 30 equipped with a free valve (VL ). This box is used to weigh the watertight box (CE) during the return down of the waterproof case (CE) with the integrated rack (C) by the effect of wave movement of the waves and the ebb tide. 3) Système selon la revendication 1, caractérisé en ce que dans les supports (S1) de la plateforme (Pl) sont installés des glissières (GL) en longueur, entre lesquelles glissent les guides crémaillère (GC) courts qui soutiennent la crémaillère (C). 3) System according to claim 1, characterized in that in the supports (S1) of the platform (Pl) are installed slides (GL) in length, between which slide the short rack guides (GC) which support the rack (C) ). 4) Système selon la revendication 1, caractérisé en ce que le réservoir supérieur (RS) installé sur la plateforme (P2) est alimenté en eau par le tuyau de remplissage (TR) relié au côté refoulement des pompes (PM) et (PD) installées dans la centrale de pompage (CP) sur la plateforme (Pl) en mer, lesquelles s'alimentent en eau, côté aspiration, par le tuyau d'aspiration (TA) venant du réservoir inférieur (RI) installé sur la base (B2) à terre. 4) System according to claim 1, characterized in that the upper reservoir (RS) installed on the platform (P2) is supplied with water by the filling pipe (TR) connected to the discharge side of the pumps (PM) and (PD) installed in the pumping station (CP) on the platform (Pl) at sea, which feed water, suction side, by the suction pipe (TA) coming from the lower tank (RI) installed on the base (B2 ) down. 5) Système selon la revendication précédente, caractérisé en ce que l'alimentation en eau de to la centrale hydroélectrique (CH) est faite par une conduite forcée (CF) équipée d'une vanne papillon (VP), venant du réservoir supérieur (RS), la sortie de l'eau de la centrale (CH) se faisant directement dans le réservoir inférieur (RI) sur la base (B2). 5) System according to the preceding claim, characterized in that the water supply to the hydroelectric plant (CH) is made by a forced pipe (CF) equipped with a butterfly valve (VP) from the upper reservoir (RS). ), the water outlet of the plant (CH) being directly in the lower tank (RI) on the base (B2). 6) Système selon les revendications précédentes, caractérisé en ce que le caisson étanche (CE) peut être remplacé par un bateau adapté pour la même fin. 15 6) System according to the preceding claims, characterized in that the waterproof case (CE) can be replaced by a boat adapted for the same purpose. 15 7) Système selon une quelconque des revendications précédentes, caractérisé en ce que la partie production peut être installé en mer, au dessus de la partie propulsion. 7) System according to any one of the preceding claims, characterized in that the production part can be installed at sea, above the propulsion part.
FR0802706A 2007-11-28 2008-05-15 MICRO CENTRAL MAREMOTRICE Withdrawn FR2924179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0802706A FR2924179A1 (en) 2007-11-28 2008-05-15 MICRO CENTRAL MAREMOTRICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0708331A FR2924178B3 (en) 2007-11-28 2007-11-28 MAREMOTRICE HYDROELECTRIC CENTRAL MICRO
FR0802706A FR2924179A1 (en) 2007-11-28 2008-05-15 MICRO CENTRAL MAREMOTRICE

Publications (1)

Publication Number Publication Date
FR2924179A1 true FR2924179A1 (en) 2009-05-29

Family

ID=39769418

Family Applications (2)

Application Number Title Priority Date Filing Date
FR0708331A Expired - Fee Related FR2924178B3 (en) 2007-11-28 2007-11-28 MAREMOTRICE HYDROELECTRIC CENTRAL MICRO
FR0802706A Withdrawn FR2924179A1 (en) 2007-11-28 2008-05-15 MICRO CENTRAL MAREMOTRICE

Family Applications Before (1)

Application Number Title Priority Date Filing Date
FR0708331A Expired - Fee Related FR2924178B3 (en) 2007-11-28 2007-11-28 MAREMOTRICE HYDROELECTRIC CENTRAL MICRO

Country Status (1)

Country Link
FR (2) FR2924178B3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016066866A1 (en) * 2014-10-31 2016-05-06 Cortes Sanchez Francisco System for producing drinking water and electricity and supplying same to a population centre, using sea water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1523031A (en) * 1923-04-16 1925-01-13 Jr Dillard C Mitchell Tide and wave motor
US3487228A (en) * 1967-04-17 1969-12-30 Bernard Kriegel Power generating system
US4883411A (en) * 1988-09-01 1989-11-28 Windle Tom J Wave powered pumping apparatus and method
WO2005108778A1 (en) * 2004-05-10 2005-11-17 Maria Giuliana Irti Modular system for the electric energy production from wave motion
US20070130929A1 (en) * 2005-12-13 2007-06-14 Ghazi Khan Wave power generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1523031A (en) * 1923-04-16 1925-01-13 Jr Dillard C Mitchell Tide and wave motor
US3487228A (en) * 1967-04-17 1969-12-30 Bernard Kriegel Power generating system
US4883411A (en) * 1988-09-01 1989-11-28 Windle Tom J Wave powered pumping apparatus and method
WO2005108778A1 (en) * 2004-05-10 2005-11-17 Maria Giuliana Irti Modular system for the electric energy production from wave motion
US20070130929A1 (en) * 2005-12-13 2007-06-14 Ghazi Khan Wave power generator

Also Published As

Publication number Publication date
FR2924178B3 (en) 2010-09-03
FR2924178A1 (en) 2009-05-29

Similar Documents

Publication Publication Date Title
US6800954B1 (en) System and method for producing energy
US20070130929A1 (en) Wave power generator
US20110162356A1 (en) Rotational gravity/buoyancy power generator
RU2347937C1 (en) Damless hydroelectric station
EP3394424B1 (en) Device for collecting energy from broad wave spectra
US8310078B2 (en) Apparatus for receiving and transferring kinetic energy from water flow
JP5486600B2 (en) Fluid generator
JP2016517923A (en) Submersible hydroelectric generator device and method for draining water from such device
US10844828B2 (en) Water powered motor for producing useful work
WO2004107527A2 (en) Low head, dynamic variable pitch, submersible hydro generator
CA2681089A1 (en) Method and apparatus for a vacuum hydroelectric power generation station system
CN103527391B (en) Ocean wave power generation system
FR2924179A1 (en) MICRO CENTRAL MAREMOTRICE
FR2933752A1 (en) Electrical energy producing system for charging batteries of e.g. electrical boat, has floater shell and toothed bar for turning alternators to produce electricity to charge batteries, when sea raises and lowers by tide and swell effects
EP2392817A1 (en) System for generating electric energy making use of water currents
BE1027368B1 (en) Method and System of continuous electrical generation from tides
FR2813925A1 (en) Electricity generation by tidal flow pressure uses rising tide to transfer fresh water to a floating reservoir which then supplies a fixed reservoir via a turbine during ebbing tide
WO2008114074A1 (en) Network of hydroelectric plants supplied from water tables by renewable energies for storing same
JPH08312519A (en) Buoy for wave power pumping device and wave power pumping device
FR2950398A1 (en) Electricity and drinking water producing device for sandy electric power plant, has containers fixed to rotating band or chain and coupled to turbo-alternator, where device utilizes kinetic energy of sand that is filled in containers
FR3022955A1 (en) DEVICE FOR THE RECOVERY OF ENERGY ON BROAD SPARES OF HOLES
FR2970747A1 (en) Electricity producing device e.g. wind turbine, has hydraulic circuit comprising hydraulic motor, accumulator filled with nitrogen, and electric circuit comprising electric generator for load shedding
FR2917138A1 (en) Electrical energy producing device, has transmission system increasing and transmitting upward and downward movements of ballast to generator, and locking system locking ballast in top and bottom positions
WO2024186195A1 (en) Autonomous closed-circuit system for producing hydroelectric power
FR3116547A1 (en) ENERGY RECOVERY DEVICE

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20140131