FR2765707A1 - METHOD OF DETECTING AND / OR DETERMINING CHARACTERISTICS RELATED TO REMARKABLE POINTS OF AN IMAGE - Google Patents

METHOD OF DETECTING AND / OR DETERMINING CHARACTERISTICS RELATED TO REMARKABLE POINTS OF AN IMAGE Download PDF

Info

Publication number
FR2765707A1
FR2765707A1 FR9708602A FR9708602A FR2765707A1 FR 2765707 A1 FR2765707 A1 FR 2765707A1 FR 9708602 A FR9708602 A FR 9708602A FR 9708602 A FR9708602 A FR 9708602A FR 2765707 A1 FR2765707 A1 FR 2765707A1
Authority
FR
France
Prior art keywords
image
points
point
anisotropy
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9708602A
Other languages
French (fr)
Other versions
FR2765707B1 (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elf Exploration Production SAS
Original Assignee
Elf Exploration Production SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Exploration Production SAS filed Critical Elf Exploration Production SAS
Priority to FR9708602A priority Critical patent/FR2765707B1/en
Priority to EP98935085A priority patent/EP0923764A1/en
Priority to CA002264903A priority patent/CA2264903A1/en
Priority to PCT/FR1998/001418 priority patent/WO1999003065A1/en
Publication of FR2765707A1 publication Critical patent/FR2765707A1/en
Priority to NO990883A priority patent/NO990883L/en
Priority to OA9900050A priority patent/OA10989A/en
Application granted granted Critical
Publication of FR2765707B1 publication Critical patent/FR2765707B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20164Salient point detection; Corner detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30184Infrastructure

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

The invention concerns a method for detecting and/or determining characteristics related to remarkable points in an image, characterised in that it consists in evaluating the local dip variability of a first point in the image relative to at least another point located in the proximity of said first point, by computing the local anisotropy on said point gradient field, said anisotropy being dependent on terms related to a dispersion of orientations and to the module of gradient vectors, and at least one of said terms is weighted.

Description

Méthode de détection et/ou de détermination de caractéristiques liées à
des points remarquables d'une image
La présente invention concerne une méthode de détection et/ou de détermination de caractéristiques liées à des points remarquables d'une image multidimensionnelle donnée et susceptible d'être mise en oeuvre pour notamment la détection de contours virtuels susceptibles d'être présents dans ladite image.
Method for detecting and / or determining characteristics related to
remarkable points of an image
The present invention relates to a method for detecting and / or determining characteristics linked to remarkable points of a given multidimensional image and capable of being implemented, in particular for the detection of virtual contours which may be present in said image.

Les contours virtuels résultent de la proximité de points remarquables regroupés ou non dans des supports longiformes, lesdits points remarquables étant notamment des points de jonction, des points anguleux ou encore des points de terminaison. The virtual contours result from the proximity of remarkable points grouped or not grouped in elongated supports, said remarkable points being in particular junction points, angular points or even termination points.

Un observateur humain, lorsqu'il étudie ou interprète une image, quelle que soit la nature de ladite image, tente de déterminer les contours de ce qui pourrait être considéré comme étant un évènement caractéristique de l'image. La transposition de cette faculté d'observation de l'oeil humain dans un système d'interprétation automatique s'avère très délicate et il est, en général, difficile d'élaborer et d'appliquer des opérateurs rendant compte d'une impression subjective. En général, un contour virtuel, désigné parfois par les expressions de contour subjectif ou perceptuel, est repéré par l'oeil en deux étapes, I'une détectant les terminaisons et l'autre s'efforçant d'établir les relations de connexité entre lesdites terminaisons. A human observer, when studying or interpreting an image, whatever the nature of said image, tries to determine the contours of what could be considered to be a characteristic event of the image. The transposition of this faculty of observation of the human eye into an automatic interpretation system proves to be very delicate and it is, in general, difficult to develop and apply operators giving an account of a subjective impression. In general, a virtual contour, sometimes designated by the expressions of subjective or perceptual contour, is identified by the eye in two stages, one detecting the endings and the other trying to establish the relationships of connectedness between said endings.

Il existe des méthodes susceptibles de détecter des points remarquables d'une image. Une des méthodes est due aux travaux de J.P. There are methods that can detect remarkable points in an image. One of the methods is due to the work of J.P.

COCQUEREZ et S. PHILIPP décrits dans un livre intitulé "Analyse d'images : filtrage et segmentation" (MASSON, 1995). Une autre méthode, due aux travaux de P. BAYLOU et al., est décrite dans un article intitulé "Evaluation de l'anisotropie des textures. Comparaison des méthodes appliquées à la caractérisation de matériaux" GRETSI 95, JUAN LES PINS, pages 1245-1248, 1995.COCQUEREZ and S. PHILIPP described in a book entitled "Image analysis: filtering and segmentation" (MASSON, 1995). Another method, due to the work of P. BAYLOU et al., Is described in an article entitled "Evaluation of the anisotropy of textures. Comparison of the methods applied to the characterization of materials" GRETSI 95, JUAN LES PINS, pages 1245- 1248, 1995.

Toutefois, ces méthodes proposent de calculer l'anisotropie globale d'une image qui est donnée par la formule

Figure img00020001

dans laquelle Ci,j sont des couples de pixels voisins (au sens de 4v),
Gj et Gj sont les modules des gradients aux positions i et j de deux pixels voisins, et est j es l'angle formé par les vecteurs gradients des pixels i etj. However, these methods propose to calculate the global anisotropy of an image which is given by the formula
Figure img00020001

in which Ci, j are pairs of neighboring pixels (in the sense of 4v),
Gj and Gj are the modules of the gradients at positions i and j of two neighboring pixels, and is j es the angle formed by the gradient vectors of the pixels i andj.

De telles déterminations de l'anisotropie globale ne font aucune différence entre les forts et faibles gradients et présentent, en conséquence, un faible pouvoir séparateur ou un pouvoir discriminateur faible puisque les vecteurs gradients de tous les pixels sont pris en considération. De plus, elles nécessitent de calculer tous les angles formés entre les vecteurs gradients ainsi que leurs arguments car cri aij=arg()aQ() . Enfin, ces méthodes sont très sensibles aux bruits et ne permettent pas de procéder à une distinction entre les vecteurs gradients attachés à un point remarquable et ceux attachés à un bruit. Ainsi, la sélectivité obtenue par ces méthodes est vraiment très réduite. Such determinations of the overall anisotropy make no difference between the strong and weak gradients and therefore have a weak separating power or a weak discriminating power since the gradient vectors of all the pixels are taken into account. In addition, they require to compute all the angles formed between the gradient vectors as well as their arguments because cry aij = arg () aQ (). Finally, these methods are very sensitive to noise and do not allow a distinction to be made between gradient vectors attached to a remarkable point and those attached to noise. Thus, the selectivity obtained by these methods is really very reduced.

La présente invention a pour but de proposer une méthode qui permette de transformer une image initiale donnée en une autre image ou représentation dans laquelle sont mises en valeur des caractéristiques spécifiques de l'image initiale. Cette méthode considère la cohérence directionnelle des vecteurs gradients selon des cliques d'ordre 2. The object of the present invention is to propose a method which makes it possible to transform a given initial image into another image or representation in which specific characteristics of the initial image are highlighted. This method considers the directional coherence of the gradient vectors according to order 2 cliques.

Un autre but de la présente invention est de proposer une méthode qui soit applicable quelle que soit la nature de l'image initiale, comme par exemple une image sismique, une image médicale dans laquelle on veut mettre en évidence notamment l'embranchement ou la division des vaisseaux sanguins, une image aérienne pour mettre en évidence notamment un croisement de routes, un lieu ou un objet caractéristique. Dans ce qui suit on donne l'exemple d'une image sismique dans laquelle on souhaite mettre en valeur des caractéristiques sismiques relatives notamment à des horizons sismiques, à des limites de zones (contours), à des textures chaotiques ou chenalisantes, sans considérer cette énumération comme exhaustive.  Another object of the present invention is to propose a method which is applicable whatever the nature of the initial image, such as for example a seismic image, a medical image in which one wishes to highlight in particular the branching or the division blood vessels, an aerial image to highlight in particular a crossing of roads, a place or a characteristic object. In what follows we give the example of a seismic image in which we wish to highlight seismic characteristics relating in particular to seismic horizons, to zone boundaries (contours), to chaotic or channeling textures, without considering this enumeration as exhaustive.

Un objet de la présente invention est une méthode de détection et de détermination de caractéristiques d'une image multidimensionnelle liées à des points remarquables de ladite image, qui est caractérisée en ce qu'elle consiste à évaluer la variabilité d'un pendage local d'un premier point de l'image par rapport à au moins un autre point situé au voisinage dudit premier point, en calculant l'anisotropie locale sur le champ de gradients dudit point, ladite anisotropie étant dépendante de termes liés à une dispersion des orientations et au module des vecteurs gradients, et en ce qu'au moins un desdits termes est pondéré.  An object of the present invention is a method of detecting and determining characteristics of a multidimensional image linked to remarkable points of said image, which is characterized in that it consists in evaluating the variability of a local dip of a first point of the image with respect to at least one other point located in the vicinity of said first point, by calculating the local anisotropy on the field of gradients of said point, said anisotropy being dependent on terms related to a dispersion of the orientations and to the modulus of the gradient vectors, and in that at least one of said terms is weighted.

Selon une autre caractéristique, chacun desdits termes est pondéré. According to another characteristic, each of said terms is weighted.

Selon une autre caractéristique, la pondération est réalisée en élevant au moins un desdits termes à une puissance. According to another characteristic, the weighting is carried out by raising at least one of said terms to a power.

Selon une autre caractéristique, chacun des termes est élevé à une puissance dont le facteur de puissance est différent d'un terme à l'autre. According to another characteristic, each of the terms is raised to a power whose power factor is different from one term to another.

Selon une autre caractéristique, la pondération est effectuée en fonction de la nature du point remarquable à détecter. According to another characteristic, the weighting is carried out according to the nature of the remarkable point to be detected.

Selon une autre caractéristique, la méthode est appliquée à une image sismique. According to another characteristic, the method is applied to a seismic image.

Selon une autre caractéristique, les points à détecter sont des points sélectionnés parmi les points de jonction, les points anguleux ou les points terminaisons. According to another characteristic, the points to be detected are points selected from the junction points, the angular points or the end points.

Un avantage de la présente invention réside dans le fait qu'on ne détecte que les points remarquables qui présentent un caractère discontinu et ce, au moyen d'un opérateur de mesure d'anisotropie locale du champ de gradients autour desdits points remarquables car on a constaté que localement, le long d'un contour, les gradients présentent une distribution fortement anisotrope avec une direction dominante orthogonale audit contour, alors qu'aux points remarquables la distribution des gradients est plus isotrope. An advantage of the present invention resides in the fact that only the remarkable points which have a discontinuous character are detected, and this, by means of an operator for measuring the local anisotropy of the field of gradients around said remarkable points because there is noted that locally, along a contour, the gradients have a strongly anisotropic distribution with a dominant direction orthogonal to said contour, while at the remarkable points the distribution of the gradients is more isotropic.

Un autre avantage de la présente invention est que l'opérateur est paramètrable, ce qui permet de l'adapter en fonction du type de point remarquable à détecter et/ou à mettre en valeur ainsi que du rapport signal/bruit. En d'autres termes, on peut ajuster la pondération de chacun des termes de l'opérateur en fonction de la nature du point remarquable à détecter. Another advantage of the present invention is that the operator is configurable, which makes it possible to adapt it as a function of the type of remarkable point to be detected and / or to be highlighted as well as the signal / noise ratio. In other words, the weighting of each of the operator's terms can be adjusted according to the nature of the remarkable point to be detected.

D'autres avantages et caractéristiques ressortiront à la lecture de la description de la méthode selon l'invention, ainsi que des dessins annexés sur lesquels
- la figure 1 est une image extraite d'une section sismique présentant une faille et un chenal,
- la figure 2 est une représentation de l'anisotropie de l'image de la figure 1,
- la figure 3 est une image extraite d'une section sismique présentant un chenal,
- les figures 4 et 5 sont des représentations de l'anisotropie de l'image de la figure 3.
Other advantages and characteristics will emerge on reading the description of the method according to the invention, as well as the appended drawings in which
FIG. 1 is an image extracted from a seismic section having a fault and a channel,
FIG. 2 is a representation of the anisotropy of the image of FIG. 1,
FIG. 3 is an image extracted from a seismic section having a channel,
- Figures 4 and 5 are representations of the anisotropy of the image of Figure 3.

La présente invention utilise un opérateur qui permet d'analyser la dispersion locale des orientations du vecteur gradient des pixels d'une image. The present invention uses an operator which makes it possible to analyze the local dispersion of the orientations of the gradient vector of the pixels of an image.

En effet, localement et le long de contours délimitant, par exemple une faille ou un chenal, comme ceux représentés sur les figures 1 et 3, les gradients des points (pixels) ont une distribution fortement anisotrope c'est-à-dire que la direction dominante est orthogonale au contour, sauf aux points de ruptures, aux points anguleux ou aux points triples sur lesquels la distribution des gradients est plus isotrope. Selon l'invention, on mesure le degré d'anisotropie de la distribution des gradients.Indeed, locally and along delimiting contours, for example a fault or a channel, like those represented in FIGS. 1 and 3, the gradients of the points (pixels) have a strongly anisotropic distribution, that is to say that the dominant direction is orthogonal to the contour, except at break points, angular points or triple points on which the distribution of the gradients is more isotropic. According to the invention, the degree of anisotropy of the distribution of the gradients is measured.

Afin d'évaluer la variabilité de l'orientation des gradients, on détermine localement l'anisotropie pour chaque pixel d'une image plutôt que globalement sur toute l'image. La détermination qu'on effectue consiste à calculer les différences d'orientation pour des couples de points voisins, par exemple pour des couples de pixels voisins, lesdites différences étant pondérées par les modules des gradients des pixels considérés. In order to evaluate the variability of the orientation of the gradients, the anisotropy is determined locally for each pixel of an image rather than globally over the entire image. The determination which is carried out consists in calculating the orientation differences for pairs of neighboring points, for example for pairs of neighboring pixels, said differences being weighted by the modules of the gradients of the pixels considered.

Si on utilisait la formule générale (1), il faudrait mesurer les arguments des gradients puisque l'angle ajj j entre les deux directions est égal à arg(ts)-arg(j).  If we used the general formula (1), we would have to measure the arguments of the gradients since the angle ajj j between the two directions is equal to arg (ts) -arg (j).

Pour éviter la mesure des angles uj j, on propose de remplacer le numérateur de la formule (1) par CGiGi 'i" a. c'est-à-dire S|GI qui donne la formule suivante

Figure img00050001
To avoid measuring the angles uj j, we suggest replacing the numerator of formula (1) by CGiGi 'i "a. Ie S | GI which gives the following formula
Figure img00050001

Le calcul qui résulte de l'application de la formule (2) est moins coûteux car seules des multiplications sont à effectuer. The calculation which results from the application of formula (2) is less costly since only multiplications are to be carried out.

La détermination de l'anisotropie effectuée à l'aide de ce calcul s'est révélée peu sensible aux amplitudes des gradients, les zones de faibles gradients pouvant donner des résultats similaires à ceux obtenus pour des zones de forts gradients. The determination of the anisotropy carried out using this calculation proved to be insensitive to the amplitudes of the gradients, the zones of weak gradients being able to give results similar to those obtained for zones of strong gradients.

Un autre aspect de l'invention est de changer le facteur de normalisation qui est représenté par le dénominateur des formules (1) ou (2), ce qui conduit privilégier les pixels de fort gradient. La détermination de l'anisotropie à effectuer est alors calculée par la formule

Figure img00050002
Another aspect of the invention is to change the normalization factor which is represented by the denominator of formulas (1) or (2), which leads to favor the pixels of strong gradient. The determination of the anisotropy to be carried out is then calculated by the formula
Figure img00050002

L'anisotropie locale calculée avec la formule (3) permet alors de détecter uniquement les points caractéristiques de fort gradient alors qu'avec la formule (2), les points sont détectés indépendamment de la norme de leur gradient, seule intervient la dispersion angulaire des gradients. The local anisotropy calculated with formula (3) then makes it possible to detect only the characteristic points of strong gradient whereas with formula (2), the points are detected independently of the norm of their gradient, only the angular dispersion of the gradients.

Les points à détecter ayant des propriétés différentes suivant le type d'image à traiter, il est proposé selon un autre aspect de l'invention de pondérer le facteur de dispersion angulaire des gradients représenté par le numérateur de a formule (3) et/ou le facteur de normalisation. The points to be detected having different properties depending on the type of image to be processed, it is proposed according to another aspect of the invention to weight the angular dispersion factor of the gradients represented by the numerator of the formula (3) and / or the normalization factor.

De la sorte, l'anisotropie est mesurée à l'aide de la formule

Figure img00050003

dans laquelle - Gj et Gj sont les modules des vecteurs gradients ti et tj aux pixels
voisins i et j considérés et qui appartiennent à l'ensemble des cliques
d'ordre 2, au sens du voisinage 4v, dans le plan le gradient utilisé étant
notamment le gradient de DERICHE tel qu'explicité par exemple dans le
livre de J.P. COCQUEREZ et S. PHILIPP "Analyse d'images : filtrage
et segmentation", MASSON, 1995, - n est un paramètre qui gère l'influence de l'amplitude des gradients, - p est un paramètre qui gère l'influence de la variation angulaire des
couples de vecteurs gradients sur l'anisotropie, - q est un paramètre qui gère également l'influence de l'amplitude des
gradients et qui doit être combiné avec le paramètre n, car lorsqu'on
augmente le paramètre q, on limite l'effet du paramètre n et on atténue la
contribution des forts gradients.In this way, the anisotropy is measured using the formula
Figure img00050003

in which - Gj and Gj are the modules of the gradient vectors ti and tj to the pixels
neighbors i and j considered and which belong to the set of cliques
of order 2, in the sense of neighborhood 4v, in the plane the gradient used being
in particular the gradient of DERICHE as explained for example in the
book by JP COCQUEREZ and S. PHILIPP "Image analysis: filtering
et segmentation ", MASSON, 1995, - n is a parameter which manages the influence of the amplitude of the gradients, - p is a parameter which manages the influence of the angular variation of
couples of vector gradients on the anisotropy, - q is a parameter which also manages the influence of the amplitude of
gradients and which must be combined with the parameter n, because when
increases the parameter q, we limit the effect of the parameter n and we reduce the
contribution of strong gradients.

Lorsqu'on souhaite détecter les points dont le gradient est de forte amplitude, constitués par exemple par les points de contours bien marqués, alors on augmente le paramètre n et on diminue le paramètre q. Cela permet de limiter les fausses détections dans les régions bruitées dans lesquelles les points présentent un champ de gradient isotrope mais de faibles amplitudes. When it is desired to detect the points whose gradient is of high amplitude, constituted for example by well-marked contour points, then the parameter n is increased and the parameter q is decreased. This makes it possible to limit false detections in noisy regions in which the points have an isotropic gradient field but small amplitudes.

Lorsqu'on augmente le paramètre p, la fonction sinP devient très sélective autour de s/2 et on ne détecte plus à la limite que les points des contours situés sur un angle droit. Ainsi, lorsqu'on augmente le paramètre p, les angles importants sont privilégiés et l'anisotropie n'est alors sensible qu'aux fortes variations angulaires. When we increase the parameter p, the sinP function becomes very selective around s / 2 and we only detect at the limit the points of the contours located on a right angle. Thus, when the parameter p is increased, the important angles are favored and the anisotropy is then sensitive only to strong angular variations.

De ce qui précède, on constate que suivant la nature des points qu on désire détecter, on peut donner à chacun des trois paramètres n, p et q les valeurs les plus appropriées à ces points. From the above, we see that depending on the nature of the points that we want to detect, we can give each of the three parameters n, p and q the most appropriate values for these points.

Des exemples d'application sont donnés à propos des figures 1 à 5. Examples of application are given with reference to FIGS. 1 to 5.

La figure 1 est une image extraite d'une section sismique présentant une faille F et un chenal C. Afin de détecter les zones de ruptures qui comprennent des terminaisons ou des points triples et qui sont associées à des régions de forts gradients, on prend n=l, p=1,5 et q=0,5. Le choix de n plus grand que q(n > q) permet de tenir compte plus fortement des régions contrastées. Le choix de p plus grand que 1 permet d'être plus sélectif sur les variations de pendage. FIG. 1 is an image extracted from a seismic section presenting a fault F and a channel C. In order to detect the zones of ruptures which include terminations or triple points and which are associated with regions of strong gradients, we take n = l, p = 1.5 and q = 0.5. The choice of n greater than q (n> q) makes it possible to take more account of the contrasting regions. The choice of p greater than 1 makes it possible to be more selective on the dip variations.

Le calcul de l'anisotropie selon la méthode de la présente invention pour l'image conduit à une représentation de ladite anisotropie telle que représentée sur la figure 2. On constate sur la figure 2 que la faille F et le chenal C sont bien détectés. The calculation of the anisotropy according to the method of the present invention for the image leads to a representation of said anisotropy as represented in FIG. 2. It can be seen in FIG. 2 that the fault F and the channel C are indeed detected.

Pour l'image de la figure 3 qui est extraite d'une section sismique, on veut mettre en évidence la présence apparente d'un chenal. For the image of Figure 3 which is extracted from a seismic section, we want to highlight the apparent presence of a channel.

Pour cette image de la figure 3, on a effectué deux déterminations de l'anisotropie dont les résultats sont représentés sur les figures 4 et 5. For this image of FIG. 3, two determinations of the anisotropy were carried out, the results of which are shown in FIGS. 4 and 5.

La première détermination est effectuée avec : n=1,2 ; p=0,5 q=0,5 et donne l'enveloppe du chenal qui est bien détecté comme cela apparaît sur la figure 4. The first determination is made with: n = 1.2; p = 0.5 q = 0.5 and gives the envelope of the channel which is well detected as it appears on figure 4.

La deuxième détermination est effectuée avec : n=2 ; p=2 q=0,5, ce qui permet d'obtenir des points remarquables à l'intérieur du chenal, ainsi que cela apparaît sur la figure 5. The second determination is made with: n = 2; p = 2 q = 0.5, which allows remarkable points to be obtained inside the channel, as shown in Figure 5.

Selon un autre aspect de la présente invention, il est possible de procéder également à un filtrage. Pour cela, on effectue le calcul de l'anisotropie localement sur une fenêtre d'observation, en sommant les termes sur les couples de points qui sont voisins au sens 4v. Une fenêtre de taille 5x5 ou 7x7 suffit à donner de bons résultats. Si l'on désire pondérer la contribution de chaque couple de points en fonction de leur écart au centre de la fenêtre d'observation, on peut utiliser un filtre passe-bas du type
DERICHE dont la réponse impulsionnelle est

Figure img00070001
According to another aspect of the present invention, it is also possible to carry out a filtering. For this, the anisotropy is calculated locally on an observation window, by summing the terms on the pairs of points which are neighbors in the 4v sense. A 5x5 or 7x7 size window is enough to give good results. If we want to weight the contribution of each pair of points according to their difference in the center of the observation window, we can use a low-pass filter of the type
DERICHE whose impulse response is
Figure img00070001

Le choix de u permet de gérer la largeur de la fenêtre de calcul en pratique on choisit a - 1. The choice of u allows you to manage the width of the calculation window in practice, you choose a - 1.

On calcule alors deux images, l'une étant représentative du numérateur et l'autre étant représentative du dénominateur de la formule (5), en ne considérant que les couples de points voisins incluant le point courant. Two images are then calculated, one being representative of the numerator and the other being representative of the denominator of formula (5), considering only the pairs of neighboring points including the current point.

Chaque composante est ensuite filtrée recursivement avant de calculer l'isotropie comme le rapport de deux images filtrées.Each component is then filtered recursively before calculating the isotropy as the ratio of two filtered images.

Le passage d'une image bidimensionnelle (2D) à une image tridimensionnelle (3D) est une simple extension en prenant pour chaque point le gradient 3D et en considérant le voisinage au sens de 6v.  The transition from a two-dimensional (2D) image to a three-dimensional (3D) image is a simple extension by taking for each point the 3D gradient and considering the neighborhood in the sense of 6v.

Claims (7)

REVENDICATIONS 1. Méthode de détection et de détermination de caractéristiques d'une image multidimensionnelle liées à des points remarquables de ladite image, caractérisée en ce qu'elle consiste à évaluer la variabilité d'un pendage local d'un premier point de l'image par rapport à au moins un autre point situé au voisinage dudit premier point, en calculant l'anisotropie locale sur le champ de gradients dudit point, ladite anisotropie étant dépendante de termes liés à une dispersion des orientations et au module des vecteurs gradients, et en ce qu'au moins un desdits termes est pondéré.1. Method for detecting and determining the characteristics of a multidimensional image linked to remarkable points of said image, characterized in that it consists in evaluating the variability of a local dip of a first point of the image by relative to at least one other point located in the vicinity of said first point, by calculating the local anisotropy on the field of gradients of said point, said anisotropy being dependent on terms related to a dispersion of the orientations and to the modulus of the gradient vectors, and in this that at least one of said terms is weighted. 2. Méthode selon la revendication 1, caractérisée en ce que chacun desdits termes est pondéré.2. Method according to claim 1, characterized in that each of said terms is weighted. 3. Méthode selon la revendication 1 ou 2, caractérisée en ce que la pondération est réalisée en élevant au moins un desdits termes à une puissance.3. Method according to claim 1 or 2, characterized in that the weighting is carried out by raising at least one of said terms to a power. 4. Méthode selon la revendication 1 ou 2, caractérisée en ce que chacun des termes est élevé à une puissance dont le facteur de puissance est différent d'un terme à l'autre.4. Method according to claim 1 or 2, characterized in that each of the terms is raised to a power whose power factor is different from one term to another. 5. Méthode selon l'une des revendications 1 à 4, caractérisée en ce que la pondération est effectuée en fonction de la nature du point remarquable à détecter.5. Method according to one of claims 1 to 4, characterized in that the weighting is carried out according to the nature of the remarkable point to be detected. 6. Méthode selon l'une des revendications 1 à 4, caractérisée en ce qu'elle est appliquée à une image sismique.6. Method according to one of claims 1 to 4, characterized in that it is applied to a seismic image. 7. Méthode selon la revendication 6, caractérisée en ce que les points caractéristiques à détecter sont des points sélectionnés parmi les points de jonction, les points anguleux ou les points terminaisons. 7. Method according to claim 6, characterized in that the characteristic points to be detected are points selected from the junction points, the angular points or the termination points.
FR9708602A 1997-07-07 1997-07-07 METHOD OF DETECTING AND / OR DETERMINING CHARACTERISTICS RELATED TO REMARKABLE POINTS OF AN IMAGE Expired - Fee Related FR2765707B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FR9708602A FR2765707B1 (en) 1997-07-07 1997-07-07 METHOD OF DETECTING AND / OR DETERMINING CHARACTERISTICS RELATED TO REMARKABLE POINTS OF AN IMAGE
EP98935085A EP0923764A1 (en) 1997-07-07 1998-07-02 Method for detecting and/or determining characteristics related to remarkable points of an image
CA002264903A CA2264903A1 (en) 1997-07-07 1998-07-02 Method for detecting and/or determining characteristics related to remarkable points of an image
PCT/FR1998/001418 WO1999003065A1 (en) 1997-07-07 1998-07-02 Method for detecting and/or determining characteristics related to remarkable points of an image
NO990883A NO990883L (en) 1997-07-07 1999-02-24 Method for detecting and / or determining the characteristics of notable points on an image
OA9900050A OA10989A (en) 1997-07-07 1999-03-05 Method for detecting and/or determining characteristics related to remarkable points of an image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9708602A FR2765707B1 (en) 1997-07-07 1997-07-07 METHOD OF DETECTING AND / OR DETERMINING CHARACTERISTICS RELATED TO REMARKABLE POINTS OF AN IMAGE

Publications (2)

Publication Number Publication Date
FR2765707A1 true FR2765707A1 (en) 1999-01-08
FR2765707B1 FR2765707B1 (en) 1999-08-20

Family

ID=9508959

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9708602A Expired - Fee Related FR2765707B1 (en) 1997-07-07 1997-07-07 METHOD OF DETECTING AND / OR DETERMINING CHARACTERISTICS RELATED TO REMARKABLE POINTS OF AN IMAGE

Country Status (6)

Country Link
EP (1) EP0923764A1 (en)
CA (1) CA2264903A1 (en)
FR (1) FR2765707B1 (en)
NO (1) NO990883L (en)
OA (1) OA10989A (en)
WO (1) WO1999003065A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808336A1 (en) * 2000-04-26 2001-11-02 Elf Exploration Prod METHOD OF CHRONO-STRATIGRAPHIC INTERPRETATION OF A SEISMIC SECTION OR BLOCK
EP1707993A1 (en) * 2005-03-29 2006-10-04 Total S.A. Method and computer program for the determination of discontinuities

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966732B (en) * 2017-11-10 2019-06-04 西南石油大学 Seismic properties change rate acquiring method based on space structure guiding
WO2023194763A1 (en) 2022-04-06 2023-10-12 Totalenergies Onetech Method and system for detecting a geological object in a seismic 3d image by using image segmentation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908872A (en) * 1987-02-06 1990-03-13 Fujitsu Limited Method and apparatus for extracting pattern contours in image processing
US5003618A (en) * 1989-07-14 1991-03-26 University Of Pittsburgh Of The Commonwealth System Of Higher Education Automatic adaptive anisotropic digital filtering and biasing of digitized images
US5226019A (en) * 1992-01-10 1993-07-06 Amoco Corporation Method of geophysical exploration
GB2279457A (en) * 1993-06-11 1995-01-04 Phillips Petroleum Co Locating hydrocarbon reservoirs
US5572565A (en) * 1994-12-30 1996-11-05 Philips Electronics North America Corporation Automatic segmentation, skinline and nipple detection in digital mammograms
WO1997013166A1 (en) * 1995-10-06 1997-04-10 Amoco Corporation Method and apparatus for seismic signal processing and exploration

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908872A (en) * 1987-02-06 1990-03-13 Fujitsu Limited Method and apparatus for extracting pattern contours in image processing
US5003618A (en) * 1989-07-14 1991-03-26 University Of Pittsburgh Of The Commonwealth System Of Higher Education Automatic adaptive anisotropic digital filtering and biasing of digitized images
US5226019A (en) * 1992-01-10 1993-07-06 Amoco Corporation Method of geophysical exploration
GB2279457A (en) * 1993-06-11 1995-01-04 Phillips Petroleum Co Locating hydrocarbon reservoirs
US5572565A (en) * 1994-12-30 1996-11-05 Philips Electronics North America Corporation Automatic segmentation, skinline and nipple detection in digital mammograms
WO1997013166A1 (en) * 1995-10-06 1997-04-10 Amoco Corporation Method and apparatus for seismic signal processing and exploration

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MORRIS D: "COHERENCE CUBE TECHNOLOGY ADDS GEOLOGIC INSIGHT TO 3-D DATA", WORLD OIL, vol. 218, no. 5, May 1997 (1997-05-01), pages 80, 82, 84, XP000703907 *
PITAS I ET AL: "TEXTURE ANALYSIS AND SEGMENTATION OF SEISMIC IMAGES", MULTIDIMENSIONAL SIGNAL PROCESSING, AUDIO AND ELECTROACOUSTICS, GLASGOW, MAY 23 - 26, 1989, vol. VOL. 3, no. CONF. 14, 23 May 1989 (1989-05-23), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 1437 - 1440, XP000089134 *
PITAS I.: "AGIS: an expert system for automated geophysical interpretation of seismic images", ACOUSTICS, SPEECH AND SIGNAL PROCESSING, DALLAS, APRIL 6-9 1987, vol. 4, no. CONF., 6 April 1987 (1987-04-06), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 2256 - 2259, XP002062610 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2808336A1 (en) * 2000-04-26 2001-11-02 Elf Exploration Prod METHOD OF CHRONO-STRATIGRAPHIC INTERPRETATION OF A SEISMIC SECTION OR BLOCK
NL1017936C2 (en) * 2000-04-26 2003-07-01 Elf Exploration Prod Method for chrono-stratigraphic interpretation of a seismic cross-section or block.
US6771800B2 (en) 2000-04-26 2004-08-03 Elf Exploration Production Method of chrono-stratigraphic interpretation of a seismic cross section or block
EP1707993A1 (en) * 2005-03-29 2006-10-04 Total S.A. Method and computer program for the determination of discontinuities

Also Published As

Publication number Publication date
FR2765707B1 (en) 1999-08-20
NO990883L (en) 1999-04-23
NO990883D0 (en) 1999-02-24
OA10989A (en) 2003-03-04
WO1999003065A1 (en) 1999-01-21
CA2264903A1 (en) 1999-01-21
EP0923764A1 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
Ansari et al. A comprehensive analysis of image edge detection techniques
Kovesi Phase congruency: A low-level image invariant
Roushdy Comparative study of edge detection algorithms applying on the grayscale noisy image using morphological filter
Schechner et al. Separation of transparent layers using focus
JP6056980B2 (en) Peak detection method
EP3608834A1 (en) Method for analysing a fingerprint
EP1958158B1 (en) Method for detecting streaks in digital images
Lenzen et al. Automatic detection of arcs and arclets formed by gravitational lensing
KR20010105386A (en) Method and apparatus for edge detection
Al-Sammaraie Contrast enhancement of roads images with foggy scenes based on histogram equalization
FR2765707A1 (en) METHOD OF DETECTING AND / OR DETERMINING CHARACTERISTICS RELATED TO REMARKABLE POINTS OF AN IMAGE
Ben Said et al. Total variation for image denoising based on a novel smart edge detector: an application to medical images
JP6362062B2 (en) Image generating apparatus and image generating method
Ma et al. Defocus blur detection via edge pixel DCT feature of local patches
Teranikar et al. Correcting anisotropic intensity in light sheet images using dehazing and image morphology
KR20220122106A (en) Multi-focus microscopic image fusion method using local area feature extraction
Colores et al. Iris image evaluation for non-cooperative biometric iris recognition system
KR20020000151A (en) Method and apparatus for improving conversion from SD to HDTV
AU2011265379A1 (en) Single shot image based depth mapping
EP2980529A1 (en) Method for estimating the distance from an object to an imaging system
Petrescu et al. Kinect depth inpainting in real time
Celik et al. Gradient adaptive Gaussian image filter
Chen et al. Adaptive fourth-order diffusion smoothing via bilateral kernel
Distante et al. Local Operations: Edging
FR2776459A1 (en) Procedure for detection of movement in a video image sequence

Legal Events

Date Code Title Description
ST Notification of lapse