FR2641530A2 - NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION - Google Patents
NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION Download PDFInfo
- Publication number
- FR2641530A2 FR2641530A2 FR8900156A FR8900156A FR2641530A2 FR 2641530 A2 FR2641530 A2 FR 2641530A2 FR 8900156 A FR8900156 A FR 8900156A FR 8900156 A FR8900156 A FR 8900156A FR 2641530 A2 FR2641530 A2 FR 2641530A2
- Authority
- FR
- France
- Prior art keywords
- composite material
- copper oxide
- alkaline earth
- mixed valence
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 title 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000001301 oxygen Substances 0.000 claims abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 11
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000005751 Copper oxide Substances 0.000 claims abstract description 7
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract description 7
- 230000002950 deficient Effects 0.000 claims abstract description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 6
- 150000001342 alkaline earth metals Chemical group 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/45—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
- C04B35/4521—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0617—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/087—Oxides of copper or solid solutions thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
- C23C14/5853—Oxidation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5893—Mixing of deposited material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/044—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0296—Processes for depositing or forming copper oxide superconductor layers
- H10N60/0521—Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0296—Processes for depositing or forming copper oxide superconductor layers
- H10N60/0576—Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
- H10N60/0632—Intermediate layers, e.g. for growth control
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0661—Processes performed after copper oxide formation, e.g. patterning
- H10N60/0716—Passivating
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
La présente invention concerne des oxydes de cuivre à valence mixte de type perovskite. The present invention relates to mixed valence copper oxides of the perovskite type.
Elle a plus particulièrement trait à une sous famille de ce type d'oxyde et à un perfectionnement à la demande de brevet- français n0 88 01059. It relates more particularly to a subfamily of this type of oxide and to an improvement at French patent application No. 88 01 059.
Au cours du dernier lustre, les structures du type perovskite, c'est-à-dire dérivé de la structure de la perovskite elle-même (CaTiO3) ont fait l'objet de très nombreuses études. En particulier, les recherches ont beaucoup porté sur les oxydes de cuivre à valence mixte qui dérivaient de la perovskite. During the last chandelier, structures of the perovskite type, that is to say derived from the structure of perovskite itself (CaTiO3) have been the subject of very numerous studies. In particular, much research has been done on mixed valence copper oxides derived from perovskite.
Ces structures ont des propriétés intéressantes de divers ordres. These structures have interesting properties of various orders.
Toutefois, c'est leur propriété supraconductrice qui a été le moteur de ces recherches.However, it is their superconducting property that has been the driving force behind this research.
il est extrêmement difficile de donner une formule générale de ces dérivés des perovskites ; en effet, de très nombreuses sortes de substitution ont été réalisées, et un très grand nombre de composés ont déjà été synthétisés ou sont sur le point de l'être. it is extremely difficult to give a general formula for these derivatives of perovskites; indeed, many kinds of substitution have been made, and a very large number of compounds have already been synthesized or are about to be.
A titre indicatif, et sans que cela soit en rien limitatif, on peut donner l'allure générale de la formule des oxydes de cuivre à valence mixte dérivés de la perovskite (dans la suite de la description, ce type d'oxyde de cuivre à valence mixte de type perovskite sera indifféremment appelé oxyde de cuivre ou perovskite) TX(iNlAT)yCU2O(2 + 3x/2 +y |ss avec ou x et y sont des nombres choisis dans l'intervalle fermé O et 4 avec la contrainte x + y = 4. De préférence, x est au moins égal à I
T représente un élément dont la valence la plus élevée est 3 et présent à cette dernière valence dans la structure ; de préférence, le numéro atomique de cet élément est supérieur à 20.Les éléments donnant les meilleurs résultats sont ceux de l'ancien groupe des terres rares, c'est-à-dire les lanthanides (à l'exception du cérium) l'yttrium et le scandium, aUxquels on ajoute le bismuth, le thallium et leurs mélanges
MAT représente un métal divalent et est dans son état de valence le plus élevé quand il y en a plusieurs. En particulier, les alcalino-terreux auxquels on ajoute les éléments qui leur sont voisins et le cuivre ainsi que leur mélange. Les alcalino-terreux préférés sont le baryum, le strontium et le calcium ; lorsque MAT représente le cuivre, d'une part cet élément n'est pas seul, et d'autre part, il intervient rarement pour une valeur supérieure à 1 dans la valeur de y
6 est l'excédent d'oxygène par rapport à la stoechiométrie.As an indication, and without this being in any way limiting, one can give the general appearance of the formula of copper oxides with mixed valence derived from perovskite (in the following description, this type of copper oxide with mixed valence of perovskite type will be indifferently called copper oxide or perovskite) TX (iNlAT) yCU2O (2 + 3x / 2 + y | ss with or x and y are numbers chosen in the closed interval O and 4 with the constraint x + y = 4. Preferably, x is at least equal to I
T represents an element whose highest valence is 3 and present at this latter valence in the structure; preferably, the atomic number of this element is greater than 20. The elements giving the best results are those of the old group of rare earths, that is to say the lanthanides (with the exception of cerium) l yttrium and scandium, to which bismuth, thallium and their mixtures are added
MAT represents a divalent metal and is in its highest valence state when there are several. In particular, the alkaline earths to which the elements which are adjacent to them and copper and their mixture are added. The preferred alkaline earths are barium, strontium and calcium; when MAT represents copper, on the one hand this element is not alone, and on the other hand, it rarely intervenes for a value greater than 1 in the value of y
6 is the excess oxygen relative to the stoichiometry.
Il est parfois égal à zéro.Sometimes it is zero.
En effet, les structures de type spécifié ci-dessus sont des structures dont le réseau est déficitaire en oxygène. Pour pallier ce déficit, ces structures cristallines absorbent un excédent d'oxygène par rapport à la stoechiométrie, c'est cet excédent qui donnerait aux structures leur propriété supraconductrice. Indeed, the structures of the type specified above are structures whose network is deficient in oxygen. To overcome this deficit, these crystal structures absorb an excess of oxygen compared to stoichiometry, it is this excess which would give the structures their superconductive property.
L'oxygène ainsi fixé, bien qu'il soit fortement ancré dans le réseau cristallin, peut jouer un râle d'oxydant vis-à-vis de matériau ou de milieux réducteurs. Par exemple, il peut être absorbé par des substrats réducteurs du type silicium ou être relargué lentement en atmosphère de vide très poussé. The oxygen thus fixed, although it is strongly anchored in the crystal lattice, can play a rattle of oxidant with respect to material or reducing media. For example, it can be absorbed by reducing substrates of the silicon type or be released slowly in a very high vacuum atmosphere.
Pour pallier ces difficultés selon la demande de brevet principal, il a été proposé de recouvrir les éléments perovskites d'une couche de nitrure d'épaisseur convenable. To overcome these difficulties according to the main patent application, it has been proposed to cover the perovskite elements with a layer of nitride of suitable thickness.
Cette technique, qui a un caractère très général, peut s'appliquer aussi bien aux perovskites pures qu'aux perovskites dans lesquelles l'oxygène a été partiellement substitué par de l'azote, et peut permettre de protéger les perovskites qui ne sont pas supraconductrices, pour d'autres emplois qui ne sont pas impliqués par cette propriété, permet d'obtenir selon la revendication 1 de la demande de brevet principal "un matériau composite caractérisé par le fait qu'il comporte une phase oxyde de cuivre à valence mixte du type perovskite déficitaire en oxygène, en contact avec une phase nitrure". This technique, which is very general in nature, can be applied to both pure perovskites and perovskites in which oxygen has been partially substituted by nitrogen, and can protect perovskites which are not superconductive , for other uses which are not involved in this property, makes it possible to obtain according to claim 1 of the main patent application "a composite material characterized in that it comprises a copper oxide phase with mixed valence of perovskite type deficient in oxygen, in contact with a nitride phase ".
Parmi les perovskites qui présentent un intérêt particulier, il convient de citer celles dont la formule générale est
I3i2(MAT)n+îCunO#n+#+ b où MAT est un métal alcalino-terreux ou un mélange de métaux alcalino-terreux et n un entier choisi entre 1 et 2.Among the perovskites which are of particular interest, mention should be made of those whose general formula is
I3i2 (MAT) n + îCunO # n + # + b where MAT is an alkaline earth metal or a mixture of alkaline earth metals and n an integer chosen between 1 and 2.
De préférence, ledit métal alcalino-terreux est choisi dans le groupe constitué par le strontium, le calcium et le baryum et leur mélange. Preferably, said alkaline earth metal is chosen from the group consisting of strontium, calcium and barium and their mixture.
Parmi cette famille de composés, celle qui correspond à la structure
Bi2Sr2CuO6 + , et celle a pour formule Bi2Sr2CaCu208 +6
L'application de la technique décrite et revendiquée dans la demande de brevet principal a conduit a des matériaux composites satisfaisant. Toutefois, on a constaté que les meilleurs résultats étaient obtenus lorsque la température du traitement thermique c) était de p#référence inférieure à 800 C. Among this family of compounds, that which corresponds to the structure
Bi2Sr2CuO6 +, and that has the formula Bi2Sr2CaCu208 +6
The application of the technique described and claimed in the main patent application has led to satisfactory composite materials. However, it has been found that the best results are obtained when the temperature of the heat treatment c) is at p # reference less than 800 C.
Si l'on désire toutefois maintenir une température plus élevée, qui devra toutefois rester compatible avec la résistance des nitrures, il convient alors de procéder le traitement thermique en deux étapes, une première étape que l'on pourra qualifier d'homogénéisation par diffusion à une température qui pourra être plus élevée de 8000C, suivie par une deuxième étape de recuit à température nettement inférieure 8000C et ce, sous une pression de préférence élevée d'oxygène, par exemple une pression partielle d'oxygène comprise entre 10 et 1000 kPa, de préférence entre 100 et 1000 kPa. If, however, it is desired to maintain a higher temperature, which must nevertheless remain compatible with the resistance of the nitrides, it is then necessary to carry out the heat treatment in two stages, a first stage which can be described as homogenization by diffusion at a temperature which may be higher by 8000C, followed by a second annealing step at a much lower temperature 8000C and this, under a preferably high oxygen pressure, for example a partial oxygen pressure of between 10 and 1000 kPa, preferably between 100 and 1000 kPa.
Selon le présent perfectionnement, on a également trouvé qu'il était souhaitable de chauffer la phase dérivée de la perovskite de manière directe et non au travers du support et du porte-échantillon. Pour ce faire, l'on peut faire appel aux techniques de chauffage par laser, balayant la surface de la couche de perovskite déposée après l'étape b). According to the present improvement, it has also been found that it is desirable to heat the phase derived from perovskite directly and not through the support and the sample holder. To do this, we can use laser heating techniques, scanning the surface of the perovskite layer deposited after step b).
Cette technique permet de déposer des perovskites pour lesquelles la température préférée de traitement thermique est supérieure à la température de résistance des nitrures et/ou du substrat. Il s'établit en effet un gradient de température entre la perovskite et le porte-échantillon qui permet à la couche de nitrure de résister tout en ayant une
température convenable pour le traitement thermique de ladite perovskite. This technique makes it possible to deposit perovskites for which the preferred heat treatment temperature is higher than the resistance temperature of the nitrides and / or of the substrate. A temperature gradient is established between the perovskite and the sample holder which allows the nitride layer to resist while having a
temperature suitable for the heat treatment of said perovskite.
Claims (4)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR898900156A FR2641530B2 (en) | 1988-01-29 | 1989-01-09 | NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION |
EP89901861A EP0397743A1 (en) | 1988-01-29 | 1989-01-27 | New composite material comprising a perowskite-type phase and a nitride phase, process for producing it and electrical assemblies containing it |
JP1501727A JPH03503157A (en) | 1988-01-29 | 1989-01-27 | A novel composite material having a perovskite phase and a nitride phase, its manufacturing method, and electrical components containing the same |
PCT/FR1989/000028 WO1989007344A1 (en) | 1988-01-29 | 1989-01-27 | New composite material comprising a perowskite-type phase and a nitride phase, process for producing it and electrical assemblies containing it |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8801059A FR2626569A1 (en) | 1988-01-29 | 1988-01-29 | New composite material comprising a phase of perovskite type and a nitride phase, process of manufacture and electrical systems containing it |
FR898900156A FR2641530B2 (en) | 1988-01-29 | 1989-01-09 | NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2641530A2 true FR2641530A2 (en) | 1990-07-13 |
FR2641530B2 FR2641530B2 (en) | 1993-05-28 |
Family
ID=26226467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR898900156A Expired - Lifetime FR2641530B2 (en) | 1988-01-29 | 1989-01-09 | NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0397743A1 (en) |
JP (1) | JPH03503157A (en) |
FR (1) | FR2641530B2 (en) |
WO (1) | WO1989007344A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988010009A1 (en) * | 1987-06-09 | 1988-12-15 | E.I. Du Pont De Nemours And Company | Improved process for making superconductors |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3600218A (en) * | 1968-05-15 | 1971-08-17 | Ibm | Method for depositing insulating films of silicon nitride and aluminum nitride |
AU599223B2 (en) * | 1987-04-15 | 1990-07-12 | Semiconductor Energy Laboratory Co. Ltd. | Superconducting ceramic pattern and its manufacturing method |
CA1326976C (en) * | 1987-05-26 | 1994-02-15 | Satoshi Takano | Superconducting member |
FR2617645B1 (en) * | 1987-07-03 | 1989-10-20 | Thomson Csf | DEVICE IN SUPERCONDUCTING MATERIAL AND METHOD FOR PRODUCING THE SAME |
-
1989
- 1989-01-09 FR FR898900156A patent/FR2641530B2/en not_active Expired - Lifetime
- 1989-01-27 JP JP1501727A patent/JPH03503157A/en active Pending
- 1989-01-27 WO PCT/FR1989/000028 patent/WO1989007344A1/en not_active Application Discontinuation
- 1989-01-27 EP EP89901861A patent/EP0397743A1/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988010009A1 (en) * | 1987-06-09 | 1988-12-15 | E.I. Du Pont De Nemours And Company | Improved process for making superconductors |
Non-Patent Citations (5)
Title |
---|
CHEMICAL ABSTRACTS, vol. 109, no. 26, 26 décembre 1988, page 766, résumé no. 242016w, Columbus, Ohio, US; C.M. SUNG et al.: "Microstructure of the superconducting phase (85 K) in bismuth strontium calcium copper oxide", & PROC. - ANNU. MEET., ELECTRON MICROSC. SOC. AM. 1988, 46th, 876-7 * |
JOURNAL OF THE LESS-COMMON METALS, vol. 144, 1988, pages L1-L3, Elsevier Sequoia, Lausanne, CH; S. KEMMLER-SACK et al.: "Neuer Hoch-Tc-supraleiter im system Bi-Pb-Sr-Ca-Cu-O" * |
MATERIALS LETTERS, vol. 6, nos. 11,12, juillet 1988, pages 438-443, Elsevier Science Publishers B.V., Amsterdam, NL; L.M. FALTER et al.: "Thermal processing of ceramic superconductors in the system Bi-Ca-Sr-Cu-O" * |
NATURE, vol. 332, 14 avril 1988, pages 620-624; H.W. ZANDBERGEN et al.: "Electron microscopy on the Tc = 110 K (midpoint) phase in the system Bi2O3-SrO-CaO-CuO" * |
PHYSICA C/SUPERCONDUCTIVITY, vol. 156, no. 5, 1 décembre 1988, pages 827-833, Elsevier Science Publishers B.V., Amsterdam, NL; C.N.R. RAO et al.: Superconductivity in the Bi2(Ca,Sr)n+1CunO2n+4 (n=1,2,or 3) series: synthesis, characterization and mechanism" * |
Also Published As
Publication number | Publication date |
---|---|
FR2641530B2 (en) | 1993-05-28 |
EP0397743A1 (en) | 1990-11-22 |
WO1989007344A1 (en) | 1989-08-10 |
JPH03503157A (en) | 1991-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sporken et al. | Molecular beam epitaxial growth of CdTe and HgCdTe on Si (100) | |
Tsybeskov et al. | Nanocrystalline-silicon superlattice produced by controlled recrystallization | |
Jiang et al. | SrTiO3 (001)-c (6× 2): a long-range, atomically ordered surface stable in oxygen and ambient air | |
KR970004555B1 (en) | Superconductive thin layer | |
Li et al. | Field‐ion scanning tunneling microscopy study of the atomic structure of 6H–SiC (0001) surfaces cleaned by in situ Si molecular beam etching | |
CA2392445C (en) | Silicon layer highly sensitive to oxygen and method for obtaining same | |
WO2007003639A2 (en) | Substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and method for obtaining such a film | |
Koch et al. | Zr-silicide formation during the epitaxial growth of Y-stabilized zirconia films on Si (100) and its avoidance by ion beam assisted deposition at a reduced temperature | |
FR2641530A2 (en) | NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION | |
EP0222908A1 (en) | Wafer base for silicon carbide semiconductor device | |
Kawano et al. | HgCdTe and CdTe (1 1 3) B growth on Si (112) 5 off by molecular beam epitaxy | |
US4900710A (en) | Process of depositing an alkali metal layer onto the surface of an oxide superconductor | |
Aslam et al. | Rapid thermal annealing of YBaCuO films on Si and SiO2 substrates | |
WO2007003638A1 (en) | Highly oxygen-sensitive silicon layer and method for obtaining same | |
JPH01305580A (en) | Monocrystalline wafer material for forming superconductive ceramic thin film for manufacturing semiconductor element | |
Wahab et al. | Composition and structure of epitaxial β-SiC films grown by reactive magnetron sputtering on Si (100) substrates | |
EP0390016B1 (en) | Superconducting oxide tape manufacturing method | |
FR2617644A1 (en) | METHOD FOR MAKING THIN FILM DEVICES OF SUPERCONDUCTING MATERIALS AND DEVICES PRODUCED THEREBY | |
Amy et al. | Si/6H–SiC (0001): An unexpected cubic 4× 3 Si phase overlayer | |
Hughes et al. | In situ growth of PbSrYCaCuO films by laser ablation | |
US6099639A (en) | Method for solid-state formation of diamond | |
WO2000032853A1 (en) | Large-size monoatomic and monocrystalline layer, made of diamond-type carbon and device for making same | |
Chunlin et al. | The PL “violet shift” of cerium dioxide on silicon | |
EP0325526A2 (en) | Device made of superconducting material and method of making the same | |
Chen et al. | Microstructure of epitaxial YbBa2Cu3O7 superconducting films grown by a new liquid‐gas‐solidification technique |