FR2641530A2 - NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION - Google Patents

NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION Download PDF

Info

Publication number
FR2641530A2
FR2641530A2 FR8900156A FR8900156A FR2641530A2 FR 2641530 A2 FR2641530 A2 FR 2641530A2 FR 8900156 A FR8900156 A FR 8900156A FR 8900156 A FR8900156 A FR 8900156A FR 2641530 A2 FR2641530 A2 FR 2641530A2
Authority
FR
France
Prior art keywords
composite material
copper oxide
alkaline earth
mixed valence
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR8900156A
Other languages
French (fr)
Other versions
FR2641530B2 (en
Inventor
Bernard Mercey
Hugues Murray
Gilles Poullain
Bernard Raveau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8801059A external-priority patent/FR2626569A1/en
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR898900156A priority Critical patent/FR2641530B2/en
Priority to EP89901861A priority patent/EP0397743A1/en
Priority to JP1501727A priority patent/JPH03503157A/en
Priority to PCT/FR1989/000028 priority patent/WO1989007344A1/en
Publication of FR2641530A2 publication Critical patent/FR2641530A2/en
Application granted granted Critical
Publication of FR2641530B2 publication Critical patent/FR2641530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5893Mixing of deposited material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0521Processes for depositing or forming copper oxide superconductor layers by pulsed laser deposition, e.g. laser sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • H10N60/0632Intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0661Processes performed after copper oxide formation, e.g. patterning
    • H10N60/0716Passivating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

New composite material comprising a petrowskite-type, mixed-valency copper oxide phase deficient in oxygen, in contact with a nitride phase. Application to electrical and electronic circuits.

Description

La présente invention concerne des oxydes de cuivre à valence mixte de type perovskite. The present invention relates to mixed valence copper oxides of the perovskite type.

Elle a plus particulièrement trait à une sous famille de ce type d'oxyde et à un perfectionnement à la demande de brevet- français n0 88 01059. It relates more particularly to a subfamily of this type of oxide and to an improvement at French patent application No. 88 01 059.

Au cours du dernier lustre, les structures du type perovskite, c'est-à-dire dérivé de la structure de la perovskite elle-même (CaTiO3) ont fait l'objet de très nombreuses études. En particulier, les recherches ont beaucoup porté sur les oxydes de cuivre à valence mixte qui dérivaient de la perovskite. During the last chandelier, structures of the perovskite type, that is to say derived from the structure of perovskite itself (CaTiO3) have been the subject of very numerous studies. In particular, much research has been done on mixed valence copper oxides derived from perovskite.

Ces structures ont des propriétés intéressantes de divers ordres. These structures have interesting properties of various orders.

Toutefois, c'est leur propriété supraconductrice qui a été le moteur de ces recherches.However, it is their superconducting property that has been the driving force behind this research.

il est extrêmement difficile de donner une formule générale de ces dérivés des perovskites ; en effet, de très nombreuses sortes de substitution ont été réalisées, et un très grand nombre de composés ont déjà été synthétisés ou sont sur le point de l'être. it is extremely difficult to give a general formula for these derivatives of perovskites; indeed, many kinds of substitution have been made, and a very large number of compounds have already been synthesized or are about to be.

A titre indicatif, et sans que cela soit en rien limitatif, on peut donner l'allure générale de la formule des oxydes de cuivre à valence mixte dérivés de la perovskite (dans la suite de la description, ce type d'oxyde de cuivre à valence mixte de type perovskite sera indifféremment appelé oxyde de cuivre ou perovskite) TX(iNlAT)yCU2O(2 + 3x/2 +y |ss avec ou x et y sont des nombres choisis dans l'intervalle fermé O et 4 avec la contrainte x + y = 4. De préférence, x est au moins égal à I
T représente un élément dont la valence la plus élevée est 3 et présent à cette dernière valence dans la structure ; de préférence, le numéro atomique de cet élément est supérieur à 20.Les éléments donnant les meilleurs résultats sont ceux de l'ancien groupe des terres rares, c'est-à-dire les lanthanides (à l'exception du cérium) l'yttrium et le scandium, aUxquels on ajoute le bismuth, le thallium et leurs mélanges
MAT représente un métal divalent et est dans son état de valence le plus élevé quand il y en a plusieurs. En particulier, les alcalino-terreux auxquels on ajoute les éléments qui leur sont voisins et le cuivre ainsi que leur mélange. Les alcalino-terreux préférés sont le baryum, le strontium et le calcium ; lorsque MAT représente le cuivre, d'une part cet élément n'est pas seul, et d'autre part, il intervient rarement pour une valeur supérieure à 1 dans la valeur de y
6 est l'excédent d'oxygène par rapport à la stoechiométrie.
As an indication, and without this being in any way limiting, one can give the general appearance of the formula of copper oxides with mixed valence derived from perovskite (in the following description, this type of copper oxide with mixed valence of perovskite type will be indifferently called copper oxide or perovskite) TX (iNlAT) yCU2O (2 + 3x / 2 + y | ss with or x and y are numbers chosen in the closed interval O and 4 with the constraint x + y = 4. Preferably, x is at least equal to I
T represents an element whose highest valence is 3 and present at this latter valence in the structure; preferably, the atomic number of this element is greater than 20. The elements giving the best results are those of the old group of rare earths, that is to say the lanthanides (with the exception of cerium) l yttrium and scandium, to which bismuth, thallium and their mixtures are added
MAT represents a divalent metal and is in its highest valence state when there are several. In particular, the alkaline earths to which the elements which are adjacent to them and copper and their mixture are added. The preferred alkaline earths are barium, strontium and calcium; when MAT represents copper, on the one hand this element is not alone, and on the other hand, it rarely intervenes for a value greater than 1 in the value of y
6 is the excess oxygen relative to the stoichiometry.

Il est parfois égal à zéro.Sometimes it is zero.

En effet, les structures de type spécifié ci-dessus sont des structures dont le réseau est déficitaire en oxygène. Pour pallier ce déficit, ces structures cristallines absorbent un excédent d'oxygène par rapport à la stoechiométrie, c'est cet excédent qui donnerait aux structures leur propriété supraconductrice. Indeed, the structures of the type specified above are structures whose network is deficient in oxygen. To overcome this deficit, these crystal structures absorb an excess of oxygen compared to stoichiometry, it is this excess which would give the structures their superconductive property.

L'oxygène ainsi fixé, bien qu'il soit fortement ancré dans le réseau cristallin, peut jouer un râle d'oxydant vis-à-vis de matériau ou de milieux réducteurs. Par exemple, il peut être absorbé par des substrats réducteurs du type silicium ou être relargué lentement en atmosphère de vide très poussé. The oxygen thus fixed, although it is strongly anchored in the crystal lattice, can play a rattle of oxidant with respect to material or reducing media. For example, it can be absorbed by reducing substrates of the silicon type or be released slowly in a very high vacuum atmosphere.

Pour pallier ces difficultés selon la demande de brevet principal, il a été proposé de recouvrir les éléments perovskites d'une couche de nitrure d'épaisseur convenable. To overcome these difficulties according to the main patent application, it has been proposed to cover the perovskite elements with a layer of nitride of suitable thickness.

Cette technique, qui a un caractère très général, peut s'appliquer aussi bien aux perovskites pures qu'aux perovskites dans lesquelles l'oxygène a été partiellement substitué par de l'azote, et peut permettre de protéger les perovskites qui ne sont pas supraconductrices, pour d'autres emplois qui ne sont pas impliqués par cette propriété, permet d'obtenir selon la revendication 1 de la demande de brevet principal "un matériau composite caractérisé par le fait qu'il comporte une phase oxyde de cuivre à valence mixte du type perovskite déficitaire en oxygène, en contact avec une phase nitrure".  This technique, which is very general in nature, can be applied to both pure perovskites and perovskites in which oxygen has been partially substituted by nitrogen, and can protect perovskites which are not superconductive , for other uses which are not involved in this property, makes it possible to obtain according to claim 1 of the main patent application "a composite material characterized in that it comprises a copper oxide phase with mixed valence of perovskite type deficient in oxygen, in contact with a nitride phase ".

Parmi les perovskites qui présentent un intérêt particulier, il convient de citer celles dont la formule générale est
I3i2(MAT)n+îCunO#n+#+ b où MAT est un métal alcalino-terreux ou un mélange de métaux alcalino-terreux et n un entier choisi entre 1 et 2.
Among the perovskites which are of particular interest, mention should be made of those whose general formula is
I3i2 (MAT) n + îCunO # n + # + b where MAT is an alkaline earth metal or a mixture of alkaline earth metals and n an integer chosen between 1 and 2.

De préférence, ledit métal alcalino-terreux est choisi dans le groupe constitué par le strontium, le calcium et le baryum et leur mélange. Preferably, said alkaline earth metal is chosen from the group consisting of strontium, calcium and barium and their mixture.

Parmi cette famille de composés, celle qui correspond à la structure
Bi2Sr2CuO6 + , et celle a pour formule Bi2Sr2CaCu208 +6
L'application de la technique décrite et revendiquée dans la demande de brevet principal a conduit a des matériaux composites satisfaisant. Toutefois, on a constaté que les meilleurs résultats étaient obtenus lorsque la température du traitement thermique c) était de p#référence inférieure à 800 C.
Among this family of compounds, that which corresponds to the structure
Bi2Sr2CuO6 +, and that has the formula Bi2Sr2CaCu208 +6
The application of the technique described and claimed in the main patent application has led to satisfactory composite materials. However, it has been found that the best results are obtained when the temperature of the heat treatment c) is at p # reference less than 800 C.

Si l'on désire toutefois maintenir une température plus élevée, qui devra toutefois rester compatible avec la résistance des nitrures, il convient alors de procéder le traitement thermique en deux étapes, une première étape que l'on pourra qualifier d'homogénéisation par diffusion à une température qui pourra être plus élevée de 8000C, suivie par une deuxième étape de recuit à température nettement inférieure 8000C et ce, sous une pression de préférence élevée d'oxygène, par exemple une pression partielle d'oxygène comprise entre 10 et 1000 kPa, de préférence entre 100 et 1000 kPa. If, however, it is desired to maintain a higher temperature, which must nevertheless remain compatible with the resistance of the nitrides, it is then necessary to carry out the heat treatment in two stages, a first stage which can be described as homogenization by diffusion at a temperature which may be higher by 8000C, followed by a second annealing step at a much lower temperature 8000C and this, under a preferably high oxygen pressure, for example a partial oxygen pressure of between 10 and 1000 kPa, preferably between 100 and 1000 kPa.

Selon le présent perfectionnement, on a également trouvé qu'il était souhaitable de chauffer la phase dérivée de la perovskite de manière directe et non au travers du support et du porte-échantillon. Pour ce faire, l'on peut faire appel aux techniques de chauffage par laser, balayant la surface de la couche de perovskite déposée après l'étape b).  According to the present improvement, it has also been found that it is desirable to heat the phase derived from perovskite directly and not through the support and the sample holder. To do this, we can use laser heating techniques, scanning the surface of the perovskite layer deposited after step b).

Cette technique permet de déposer des perovskites pour lesquelles la température préférée de traitement thermique est supérieure à la température de résistance des nitrures et/ou du substrat. Il s'établit en effet un gradient de température entre la perovskite et le porte-échantillon qui permet à la couche de nitrure de résister tout en ayant une
température convenable pour le traitement thermique de ladite perovskite.
This technique makes it possible to deposit perovskites for which the preferred heat treatment temperature is higher than the resistance temperature of the nitrides and / or of the substrate. A temperature gradient is established between the perovskite and the sample holder which allows the nitride layer to resist while having a
temperature suitable for the heat treatment of said perovskite.

Claims (4)

REVENDICATIONS fi est l'excédent d'oxygène par rapport à la stoechiométrie, et n est un entier choisi entre 1 et 2. fi is the excess oxygen over the stoichiometry, and n is an integer chosen between 1 and 2. B#2(MAT)n+I S ou MAT est un métal alcalino-terreux ou un mélange de métaux alcalino-terreux B # 2 (MAT) n + I S or MAT is an alkaline earth metal or a mixture of alkaline earth metals 1. Matériau composite selon l'une des revendications 1 à 6 prises séparément du brevet principal, caractérisé par le fait que ladite phase oxyde de cuivre à valence mixte du type pérowskite déficitaire en oxygène correspond à la formule générale  1. Composite material according to one of claims 1 to 6 taken separately from the main patent, characterized in that the said copper oxide phase with mixed valence of the oxygen-deficient perowskite type corresponds to the general formula 2. Matériau composite selon la revendication I, caractérisé par le fiat que ledit métal alcalino-terreux est choisi dans le groupe constitué par le strontium, le calcium et le baryum. 2. Composite material according to claim I, characterized by the fact that said alkaline earth metal is chosen from the group consisting of strontium, calcium and barium. 3. Matériau composite selon les revendications 1 et 2 prises séparément, caractérisé par le fait que ledit oxyde de cuivre à valence mixte répond à la formule  3. Composite material according to claims 1 and 2 taken separately, characterized in that said copper oxide with mixed valence corresponds to the formula Bi2 Sr2 CuO6 + Bi2 Sr2 CuO6 + 4. Matériaux selon les revendications 1 et 2, prises séparément, caractérisé par le fait que ledit oxyde de cuivre à valence mixte a polir formule  4. Materials according to claims 1 and 2, taken separately, characterized in that said copper oxide with mixed valence to polish formula Bi2 Sr2 Cal Cu2O8 +  Bi2 Sr2 Cal Cu2O8 +
FR898900156A 1988-01-29 1989-01-09 NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION Expired - Lifetime FR2641530B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR898900156A FR2641530B2 (en) 1988-01-29 1989-01-09 NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION
EP89901861A EP0397743A1 (en) 1988-01-29 1989-01-27 New composite material comprising a perowskite-type phase and a nitride phase, process for producing it and electrical assemblies containing it
JP1501727A JPH03503157A (en) 1988-01-29 1989-01-27 A novel composite material having a perovskite phase and a nitride phase, its manufacturing method, and electrical components containing the same
PCT/FR1989/000028 WO1989007344A1 (en) 1988-01-29 1989-01-27 New composite material comprising a perowskite-type phase and a nitride phase, process for producing it and electrical assemblies containing it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8801059A FR2626569A1 (en) 1988-01-29 1988-01-29 New composite material comprising a phase of perovskite type and a nitride phase, process of manufacture and electrical systems containing it
FR898900156A FR2641530B2 (en) 1988-01-29 1989-01-09 NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION

Publications (2)

Publication Number Publication Date
FR2641530A2 true FR2641530A2 (en) 1990-07-13
FR2641530B2 FR2641530B2 (en) 1993-05-28

Family

ID=26226467

Family Applications (1)

Application Number Title Priority Date Filing Date
FR898900156A Expired - Lifetime FR2641530B2 (en) 1988-01-29 1989-01-09 NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION

Country Status (4)

Country Link
EP (1) EP0397743A1 (en)
JP (1) JPH03503157A (en)
FR (1) FR2641530B2 (en)
WO (1) WO1989007344A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988010009A1 (en) * 1987-06-09 1988-12-15 E.I. Du Pont De Nemours And Company Improved process for making superconductors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600218A (en) * 1968-05-15 1971-08-17 Ibm Method for depositing insulating films of silicon nitride and aluminum nitride
AU599223B2 (en) * 1987-04-15 1990-07-12 Semiconductor Energy Laboratory Co. Ltd. Superconducting ceramic pattern and its manufacturing method
CA1326976C (en) * 1987-05-26 1994-02-15 Satoshi Takano Superconducting member
FR2617645B1 (en) * 1987-07-03 1989-10-20 Thomson Csf DEVICE IN SUPERCONDUCTING MATERIAL AND METHOD FOR PRODUCING THE SAME

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988010009A1 (en) * 1987-06-09 1988-12-15 E.I. Du Pont De Nemours And Company Improved process for making superconductors

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 109, no. 26, 26 décembre 1988, page 766, résumé no. 242016w, Columbus, Ohio, US; C.M. SUNG et al.: "Microstructure of the superconducting phase (85 K) in bismuth strontium calcium copper oxide", & PROC. - ANNU. MEET., ELECTRON MICROSC. SOC. AM. 1988, 46th, 876-7 *
JOURNAL OF THE LESS-COMMON METALS, vol. 144, 1988, pages L1-L3, Elsevier Sequoia, Lausanne, CH; S. KEMMLER-SACK et al.: "Neuer Hoch-Tc-supraleiter im system Bi-Pb-Sr-Ca-Cu-O" *
MATERIALS LETTERS, vol. 6, nos. 11,12, juillet 1988, pages 438-443, Elsevier Science Publishers B.V., Amsterdam, NL; L.M. FALTER et al.: "Thermal processing of ceramic superconductors in the system Bi-Ca-Sr-Cu-O" *
NATURE, vol. 332, 14 avril 1988, pages 620-624; H.W. ZANDBERGEN et al.: "Electron microscopy on the Tc = 110 K (midpoint) phase in the system Bi2O3-SrO-CaO-CuO" *
PHYSICA C/SUPERCONDUCTIVITY, vol. 156, no. 5, 1 décembre 1988, pages 827-833, Elsevier Science Publishers B.V., Amsterdam, NL; C.N.R. RAO et al.: Superconductivity in the Bi2(Ca,Sr)n+1CunO2n+4 (n=1,2,or 3) series: synthesis, characterization and mechanism" *

Also Published As

Publication number Publication date
FR2641530B2 (en) 1993-05-28
EP0397743A1 (en) 1990-11-22
WO1989007344A1 (en) 1989-08-10
JPH03503157A (en) 1991-07-18

Similar Documents

Publication Publication Date Title
Sporken et al. Molecular beam epitaxial growth of CdTe and HgCdTe on Si (100)
Tsybeskov et al. Nanocrystalline-silicon superlattice produced by controlled recrystallization
Jiang et al. SrTiO3 (001)-c (6× 2): a long-range, atomically ordered surface stable in oxygen and ambient air
KR970004555B1 (en) Superconductive thin layer
Li et al. Field‐ion scanning tunneling microscopy study of the atomic structure of 6H–SiC (0001) surfaces cleaned by in situ Si molecular beam etching
CA2392445C (en) Silicon layer highly sensitive to oxygen and method for obtaining same
WO2007003639A2 (en) Substrate, in particular made of silicon carbide, coated with a thin stoichiometric film of silicon nitride, for making electronic components, and method for obtaining such a film
Koch et al. Zr-silicide formation during the epitaxial growth of Y-stabilized zirconia films on Si (100) and its avoidance by ion beam assisted deposition at a reduced temperature
FR2641530A2 (en) NOVEL COMPOSITE MATERIAL, MANUFACTURING METHOD AND APPLICATION
EP0222908A1 (en) Wafer base for silicon carbide semiconductor device
Kawano et al. HgCdTe and CdTe (1 1 3) B growth on Si (112) 5 off by molecular beam epitaxy
US4900710A (en) Process of depositing an alkali metal layer onto the surface of an oxide superconductor
Aslam et al. Rapid thermal annealing of YBaCuO films on Si and SiO2 substrates
WO2007003638A1 (en) Highly oxygen-sensitive silicon layer and method for obtaining same
JPH01305580A (en) Monocrystalline wafer material for forming superconductive ceramic thin film for manufacturing semiconductor element
Wahab et al. Composition and structure of epitaxial β-SiC films grown by reactive magnetron sputtering on Si (100) substrates
EP0390016B1 (en) Superconducting oxide tape manufacturing method
FR2617644A1 (en) METHOD FOR MAKING THIN FILM DEVICES OF SUPERCONDUCTING MATERIALS AND DEVICES PRODUCED THEREBY
Amy et al. Si/6H–SiC (0001): An unexpected cubic 4× 3 Si phase overlayer
Hughes et al. In situ growth of PbSrYCaCuO films by laser ablation
US6099639A (en) Method for solid-state formation of diamond
WO2000032853A1 (en) Large-size monoatomic and monocrystalline layer, made of diamond-type carbon and device for making same
Chunlin et al. The PL “violet shift” of cerium dioxide on silicon
EP0325526A2 (en) Device made of superconducting material and method of making the same
Chen et al. Microstructure of epitaxial YbBa2Cu3O7 superconducting films grown by a new liquid‐gas‐solidification technique