FR2551664A1 - Thin mirror for illuminating an area for a medical electron accelerator - Google Patents
Thin mirror for illuminating an area for a medical electron accelerator Download PDFInfo
- Publication number
- FR2551664A1 FR2551664A1 FR8314556A FR8314556A FR2551664A1 FR 2551664 A1 FR2551664 A1 FR 2551664A1 FR 8314556 A FR8314556 A FR 8314556A FR 8314556 A FR8314556 A FR 8314556A FR 2551664 A1 FR2551664 A1 FR 2551664A1
- Authority
- FR
- France
- Prior art keywords
- mirror
- visible light
- path
- electron
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004033 plastic Substances 0.000 claims abstract description 10
- 229920003023 plastic Polymers 0.000 claims abstract description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 239000011248 coating agent Substances 0.000 claims abstract description 4
- 238000000576 coating method Methods 0.000 claims abstract description 4
- 238000010894 electron beam technology Methods 0.000 claims description 12
- 230000005855 radiation Effects 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000010409 thin film Substances 0.000 abstract description 2
- 239000004411 aluminium Substances 0.000 abstract 1
- 238000012800 visualization Methods 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1073—Beam splitting or combining systems characterized by manufacturing or alignment methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/08—Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/142—Coating structures, e.g. thin films multilayers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/02—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
- G21K1/04—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/10—Scattering devices; Absorbing devices; Ionising radiation filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/22—Optical, image processing or photographic arrangements associated with the tube
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
- A61N2005/1056—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam by projecting a visible image of the treatment field
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Engineering & Computer Science (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Manufacturing & Machinery (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Description
La présente invention se rapporte au domaine de la simulation visuelle du diagramme de rayonnement formé par un dispositif médical d'application de faisceau électrons et concerne plus particulièrement un miroir qui, dans ce but, peut être laissé fixe dans un faisceau de rayons X ou d'électrons comme une partie d'un système optique. The present invention relates to the field of visual simulation of the radiation diagram formed by a medical electron beam application device and relates more particularly to a mirror which, for this purpose, can be left fixed in an X-ray beam or d electrons as part of an optical system.
Pendant le fonctionnement d'un appareil à rayons X, il est souhaitable de pouvoir visualiser ses limites de rayonnement par un diagramme lumineux visible, et cela se fait généralement au moyen d'un dispositif optique comprenant une source de lumière visible située à une certaine distance du faisceau de rayons X et un réflecteur positionné dans le trajet du faisceau de manière que l'image virtuelle de la source lumineuse soit formée à l'origine du faisceau de rayons X. Ce réflecteur peut être à miroir de verre courant fixé dans le trajet du faisceau et un tel dispositif optique est décrit dans le brevet des Etats-Unis d'Amérique n0 3.767.931. During the operation of an X-ray device, it is desirable to be able to visualize its radiation limits by a visible light diagram, and this is generally done by means of an optical device comprising a visible light source located at a certain distance of the X-ray beam and a reflector positioned in the path of the beam so that the virtual image of the light source is formed at the origin of the X-ray beam. This reflector may be with current glass mirror fixed in the path of the beam and such an optical device is described in US Patent No. 3,767,931.
Mais, ce même dispositif optique ne peut être utilisé dans le cas d'un faisceau d'électrons car la perte d'énergie et la dispersion des électrons dans le miroir seraient intolérables. Des miroirs en matière plastique ont été utilisés dans des faisceaux d'électrons de haute énergie, dans la plage du GeV pour réfléchir la lumière visible, mais le taux d'absorption de l'énergie des électrons augmente généralement quand l'énergie du faisceau diminue. However, this same optical device cannot be used in the case of an electron beam since the loss of energy and the dispersion of the electrons in the mirror would be intolerable. Plastic mirrors have been used in high energy electron beams in the GeV range to reflect visible light, but the rate of absorption of electron energy generally increases as the beam energy decreases .
Dans le cas d'un appareil de traitement médical, l'énergie du faisceau d'électrons est généralement inférieure à 50 MeV et il n'est pas souhaitable qu'un miroir conçu pour une machine à faisceau d'électrons de haute énergie soit maintenue immobile dans le trajet d'un faisceau d'électrons de basse énergie comme celui d'un accélérateur médical d'électrons. Le miroir courant doit être rétractable ou l'ensemble du dispositif optique, y compris le miroir doit être monté de manière qu'il puisse être déplacé hors du trajet, que la machine fonctionne dans le mode de traitement par rayons X ou par électrons. Mais ces procédés nécessitent des pièces mobiles entraînées, ils nécessitent des tolérances de repositionnement très serré.;;p et les mécanismes sont coûteux à fabriquer.In the case of a medical treatment device, the energy of the electron beam is generally less than 50 MeV and it is undesirable that a mirror designed for a high energy electron beam machine is maintained motionless in the path of a low energy electron beam like that of a medical electron accelerator. The current mirror must be retractable or the entire optical device, including the mirror, must be mounted so that it can be moved out of the way, whether the machine is operating in the X-ray or electron treatment mode. However, these methods require driven moving parts, they require very tight repositioning tolerances; and the mechanisms are expensive to manufacture.
Un but de l'invention est donc de proposer un miroir qui peut être laissé fixe dans un faisceau de rayons X ou d'électrons sans compromettre de façon notable les qualités du faisceau. An object of the invention is therefore to provide a mirror which can be left fixed in an X-ray or electron beam without significantly compromising the qualities of the beam.
Un autre but de l'invention est de proposer un accélérateur d'électrons pour un traitement médical qui comporte un dispositif fixé dans le trajet du faisceau pour réfléchir la lumière visible afin de simuler le diagramme de rayonnement du champ. Another object of the invention is to provide an electron accelerator for medical treatment which comprises a device fixed in the path of the beam to reflect visible light in order to simulate the radiation pattern of the field.
D'autres caractéristiques et avantages de l'invention apparaitront au cours de la description qui va suivre. Other characteristics and advantages of the invention will appear during the description which follows.
Au dessin annexé donné uniquement à titre d'exemple nullement limitatif
La figure 1 est une coupe schématique partielle d'un dispositif médical d'application de faisceau avec un miroir positionné defaçon non rétractable selon l'invention, lorsque le dispositif est utilisé dans le mode d'électrons,
La figure 2 est une coupe schématique du dispositif d'application de la figure 1, lorsqu'il est utilisé dans le mode de rayons X.In the appended drawing given solely by way of nonlimiting example
FIG. 1 is a partial schematic section of a medical beam application device with a mirror positioned in a non-retractable manner according to the invention, when the device is used in the electron mode,
Figure 2 is a schematic section of the application device of Figure 1, when used in the X-ray mode.
Les figures 1 et 2 représentent donc schématiquement un accélérateur médical d'électrons, pouvant fonctionner à la fois dans le mode d'électrons et le mode de rayons X. La figure représente particulièrement un dispositif optique selon l'invention au moyen duquel le champ à irradier peut-être simulé visuellement. Un accélérateur de particules chargées (non-représenté) produit un faisceau d'électrons 11 qui, quand la machine fonctionne dans le mode de rayons X comme selon la figure 2, bombarde une anticathode 12 qui produit un faisceau de rayons X de forme générale conique autour de la direction initiale de l'axe du faisceau.Quand la machine est utilisée dans le mode d'électrons comme le montre la figure 1, l'anticathode 12 est extraite du trajet du faisceau 11 et le faisceau d'électrons 11 provenant de l'accélérateur s'étale dans une forme générale conique en raison de la répulsion électrostatique entre les électrons et des composantes transversales de leurs vitesses initiales. FIGS. 1 and 2 therefore schematically represent a medical electron accelerator, capable of operating in both the electron mode and the X-ray mode. The figure particularly represents an optical device according to the invention by means of which the field at irradiate may be visually simulated. A charged particle accelerator (not shown) produces an electron beam 11 which, when the machine operates in the X-ray mode as according to FIG. 2, bombards an anticathode 12 which produces an X-ray beam of generally conical shape around the initial direction of the beam axis. When the machine is used in the electron mode as shown in figure 1, the anticathode 12 is extracted from the beam path 11 and the electron beam 11 coming from the accelerator spreads in a generally conical shape due to the electrostatic repulsion between the electrons and transverse components of their initial speeds.
Le faisceau est dirigé par une ouverture de forme conique dans un collimateur primaire 15. L'ouverture est un passage central conique qui, avec les machoires réglables 16 et 17 servent à collimater le faisceau. Selon les figures 1 et 2, les mâchoires supérieures 16 et les mâchoires inférieures 17 sont positionnées sous un angle de 900 autour de la direction initiale du faisceau 11. The beam is directed by a conical opening in a primary collimator 15. The opening is a conical central passage which, with the adjustable jaws 16 and 17 serve to collimate the beam. According to FIGS. 1 and 2, the upper jaws 16 and the lower jaws 17 are positioned at an angle of 900 around the initial direction of the beam 11.
Un dispositif de régularisation destiné à produire une intensité uniforme du faisceau dans toute sa section transversale est disposé dans le trajet du faisceau. A regulation device for producing a uniform intensity of the beam throughout its cross section is arranged in the path of the beam.
Dans le mode de rayons X, un filtre correcteur 20 du type décrit dans le brevet des Etats-Unis d'Amérique n0 4.286.167 peut être utilisé. Dans le mode d'électrons, le filtre correcteur 20 est rétracté et une ou plusieurs feuilles 21 sont introduites transversalement dans le trajet du faisceau, dans une ou plusieurs positions appropriées en fonction de l'énergie et d'autres caractéristiques du faisceau d'électrons.In the X-ray mode, a correction filter 20 of the type described in US Patent No. 4,286,167 can be used. In the electron mode, the corrector filter 20 is retracted and one or more sheets 21 are introduced transversely in the path of the beam, in one or more positions suitable according to the energy and other characteristics of the electron beam .
Un miroir 25 est monté sur un cadre fixe 26 et il est orienté de façon appropriée pour que de la lumière visible provenant d'une source 27 située à l'extérieur de la structure d'enveloppe 28 traverse un passage 29 de position appropriée vers le miroir pour être réfléchi sur l'objet 30 à irradier, de manière qu'une image virtuelle de la source lumineuse 27 soit formée au sommet du cone en lequel le faisceau 11 est transformé par le collimateur primaire 15 et les mâchoires 16 et 17. A mirror 25 is mounted on a fixed frame 26 and it is appropriately oriented so that visible light coming from a source 27 situated outside the envelope structure 28 passes through a passage 29 of suitable position towards the mirror to be reflected on the object 30 to be irradiated, so that a virtual image of the light source 27 is formed at the top of the cone into which the beam 11 is transformed by the primary collimator 15 and the jaws 16 and 17.
Dans le cas du mode de rayons X, le sommet peut être considéré comme se trouvant sur l'anticathode 12. Dans le mode d'électrons, la même position peut être traitée comme le sonnet et le collimateur 15 et les mâchoires 16 et 17 peuvent être réglés en conséquence bien que l'anticathode 12 soit retiree. In the case of the X-ray mode, the vertex can be considered as being on the anticathode 12. In the electron mode, the same position can be treated as the sonnet and the collimator 15 and the jaws 16 and 17 can be adjusted accordingly although anticathode 12 is removed.
Dans le cas idéal, le miroir 25 serait complètement transparent aux faisceaux de rayons X et d'électrons. Etant donné que les miroirs de verre courants ne sont pas suffisamment transparents aux électrons de faible énergie, le miroir 25 consiste en une mince pellicule d'une matière plastique métallisée avec un revêtement d'aluminium. Cette pellicule est faite en fixant une feuille de matière plastique sous tension sur un anneau circulaire plat. L'épaisseur de la matière plastique est environ 0,05 mm (densité de surface d'environ 5 mg/cm2). L'épaisseur du revêtement d'aluminium est de l'ordre de la longueur d'onde de la lumière visible à réfléchir et elle est par conséquent négligeable comparativement à celle de la pellicule de matière plastique.Un certain nombre de matières plastiques ou autres matières peuvent être utilisées pour produire cette pellicule, mais dans le présent mode de réalisation, la matière plastique KaptorTR de Dupont a été choisie en raison de sa résistance supérieure aux dommages par le rayonnement. In the ideal case, the mirror 25 would be completely transparent to the beams of X-rays and electrons. Since common glass mirrors are not sufficiently transparent to low energy electrons, mirror 25 consists of a thin film of metallized plastic with an aluminum coating. This film is made by fixing a sheet of plastic material under tension on a flat circular ring. The thickness of the plastic is approximately 0.05 mm (surface density of approximately 5 mg / cm2). The thickness of the aluminum coating is on the order of the wavelength of visible light to be reflected and is therefore negligible compared to that of the plastic film. A number of plastics or other materials can be used to produce this film, but in this embodiment, Dupont's KaptorTR plastic was chosen because of its superior resistance to radiation damage.
L'invention a été décrite ci-dessus en regard d'un seul mode de réalisation. Mais cette description doit être considérée comme un exemple nullement limitatif, et l'invention doit être considérée plus largement. Par exemple, il n'est pas nécessaire que le diagramme de rayonnements à simuler soit celui d'un faisceau d'électrons ou d'un faisceau de rayons X. Il faut envisager que l'accélérateur et l'anticathode 12 de la figure peuvent être remplacés par une matière radioactive de sorte que l'appareil selon l'invention peut être utilisé avec un faisceau de rayons gamma. Il faut considérer également que la source de lumière visible 27 pourrait être remplacée par une source de lumière ultraviolette. Une grande variété de dispositifs de régularisation peuvent être -utilisés pour uniformiser l'intensité du rayonnement dans la section transversale du faisceau. The invention has been described above with reference to a single embodiment. However, this description should be considered as a non-limiting example, and the invention should be considered more broadly. For example, it is not necessary for the radiation diagram to be simulated to be that of an electron beam or an X-ray beam. It should be considered that the accelerator and the anticathode 12 of the figure can be replaced by a radioactive material so that the device according to the invention can be used with a beam of gamma rays. It should also be considered that the visible light source 27 could be replaced by an ultraviolet light source. A wide variety of regulating devices can be used to standardize the intensity of the radiation in the cross section of the beam.
Le dispositif peut également comporter une chambre à ions disposée près du filtre 20 pour mesurer l'intensité totale du rayonnement. Le miroir peut être fait de nombreux types différents de matière plastique, en fonction de leur transmission des faisceaux et de leur résistance aux dommages par le rayonnement
Son épaisseur et sa forme peuvent être modifiées en frmction du cas, bien qu'une épaisseur de l'ordre de 0,025 à 0,125 mm soit généralement préférable. Des mâchoires et autres dispositifs pour collimater le faisceau peuvent être disposés de différentes manières. The device can also include an ion chamber disposed near the filter 20 to measure the total intensity of the radiation. The mirror can be made of many different types of plastic, depending on their transmission of the beams and their resistance to radiation damage
Its thickness and shape can be changed depending on the case, although a thickness of the order of 0.025 to 0.125 mm is generally preferable. Jaws and other devices for collimating the beam can be arranged in different ways.
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41679582A | 1982-09-13 | 1982-09-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
FR2551664A1 true FR2551664A1 (en) | 1985-03-15 |
Family
ID=23651334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8314556A Pending FR2551664A1 (en) | 1982-09-13 | 1983-09-13 | Thin mirror for illuminating an area for a medical electron accelerator |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS5964068A (en) |
FR (1) | FR2551664A1 (en) |
GB (1) | GB2127173A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999020347A1 (en) * | 1997-10-16 | 1999-04-29 | Varian Medical Systems, Inc. | X-ray treatment method and apparatus |
US6888919B2 (en) | 2001-11-02 | 2005-05-03 | Varian Medical Systems, Inc. | Radiotherapy apparatus equipped with an articulable gantry for positioning an imaging unit |
US7227925B1 (en) | 2002-10-02 | 2007-06-05 | Varian Medical Systems Technologies, Inc. | Gantry mounted stereoscopic imaging system |
US7412029B2 (en) | 2003-06-25 | 2008-08-12 | Varian Medical Systems Technologies, Inc. | Treatment planning, simulation, and verification system |
US7657304B2 (en) | 2002-10-05 | 2010-02-02 | Varian Medical Systems, Inc. | Imaging device for radiation treatment applications |
US7945021B2 (en) | 2002-12-18 | 2011-05-17 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US9498167B2 (en) | 2005-04-29 | 2016-11-22 | Varian Medical Systems, Inc. | System and methods for treating patients using radiation |
US9630025B2 (en) | 2005-07-25 | 2017-04-25 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US10004650B2 (en) | 2005-04-29 | 2018-06-26 | Varian Medical Systems, Inc. | Dynamic patient positioning system |
USRE46953E1 (en) | 2007-04-20 | 2018-07-17 | University Of Maryland, Baltimore | Single-arc dose painting for precision radiation therapy |
US10773101B2 (en) | 2010-06-22 | 2020-09-15 | Varian Medical Systems International Ag | System and method for estimating and manipulating estimated radiation dose |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS629458U (en) * | 1985-07-01 | 1987-01-21 | ||
WO2021108375A1 (en) * | 2019-11-27 | 2021-06-03 | Intraop Medical Corporation | Electron beam radiation system with advanced applicator coupling system having integrated distance detection and target illumination |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1199974A (en) * | 1957-07-22 | 1959-12-17 | Philips Nv | Device for luminous indication of the space explored by a beam of chi rays |
US4198565A (en) * | 1976-11-26 | 1980-04-15 | Tokyo Shibaura Electric Co., Ltd. | Charged particle beam scanning apparatus |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB372592A (en) * | 1931-06-16 | 1932-05-12 | John Gunning | Improvements in apparatus for automatically operating gas valves |
GB647541A (en) * | 1946-11-16 | 1950-12-13 | Andre Clement Coutant | Improvements relating to cameras |
GB1066839A (en) * | 1964-11-24 | 1967-04-26 | Peterlite Products Ltd | Mirrors |
GB1313296A (en) * | 1969-05-22 | 1973-04-11 | Philips Electronic Associated | X-ray apparatus |
US3921001A (en) * | 1972-08-21 | 1975-11-18 | Medinova Ab Of Sweden | Screening or aperture device for an x-ray apparatus |
US3863073A (en) * | 1973-04-26 | 1975-01-28 | Machlett Lab Inc | Automatic system for precise collimation of radiation |
SE417278B (en) * | 1978-04-12 | 1981-03-09 | Philips Svenska Ab | MEDICAL RADIATION EQUIPMENT |
GB2054188A (en) * | 1979-07-11 | 1981-02-11 | Bratland E A | Method for Making Mirrors and Mirrors Made Thereby |
JPS6047562B2 (en) * | 1980-04-23 | 1985-10-22 | 日産自動車株式会社 | Synthetic resin mirror |
-
1983
- 1983-08-17 GB GB08322100A patent/GB2127173A/en not_active Withdrawn
- 1983-08-29 JP JP15656783A patent/JPS5964068A/en active Pending
- 1983-09-13 FR FR8314556A patent/FR2551664A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1199974A (en) * | 1957-07-22 | 1959-12-17 | Philips Nv | Device for luminous indication of the space explored by a beam of chi rays |
US4198565A (en) * | 1976-11-26 | 1980-04-15 | Tokyo Shibaura Electric Co., Ltd. | Charged particle beam scanning apparatus |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104778A (en) * | 1997-10-16 | 2000-08-15 | Varian Systems, Inc. | X-ray treatment method and apparatus |
WO1999020347A1 (en) * | 1997-10-16 | 1999-04-29 | Varian Medical Systems, Inc. | X-ray treatment method and apparatus |
US6888919B2 (en) | 2001-11-02 | 2005-05-03 | Varian Medical Systems, Inc. | Radiotherapy apparatus equipped with an articulable gantry for positioning an imaging unit |
US7227925B1 (en) | 2002-10-02 | 2007-06-05 | Varian Medical Systems Technologies, Inc. | Gantry mounted stereoscopic imaging system |
US7657304B2 (en) | 2002-10-05 | 2010-02-02 | Varian Medical Systems, Inc. | Imaging device for radiation treatment applications |
US8867703B2 (en) | 2002-12-18 | 2014-10-21 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US9901750B2 (en) | 2002-12-18 | 2018-02-27 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US7945021B2 (en) | 2002-12-18 | 2011-05-17 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US8116430B1 (en) | 2002-12-18 | 2012-02-14 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US11344748B2 (en) | 2002-12-18 | 2022-05-31 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US9421399B2 (en) | 2002-12-18 | 2016-08-23 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
US7831017B2 (en) | 2003-06-25 | 2010-11-09 | Varian Medical Systems Technologies, Inc. | Treatment planning simulation and verification system |
US8681938B2 (en) | 2003-06-25 | 2014-03-25 | Varian Medical Systems, Inc. | Treatment planning simulation and verification system |
US8385502B1 (en) | 2003-06-25 | 2013-02-26 | Varian Medical Systems, Inc. | Treatment planning simulation and verification system |
US7412029B2 (en) | 2003-06-25 | 2008-08-12 | Varian Medical Systems Technologies, Inc. | Treatment planning, simulation, and verification system |
US9974494B2 (en) | 2005-04-29 | 2018-05-22 | Varian Medical Systems, Inc. | System and methods for treating patients using radiation |
US10004650B2 (en) | 2005-04-29 | 2018-06-26 | Varian Medical Systems, Inc. | Dynamic patient positioning system |
US9498167B2 (en) | 2005-04-29 | 2016-11-22 | Varian Medical Systems, Inc. | System and methods for treating patients using radiation |
US9630025B2 (en) | 2005-07-25 | 2017-04-25 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687676B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687673B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9764159B2 (en) | 2005-07-25 | 2017-09-19 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9788783B2 (en) | 2005-07-25 | 2017-10-17 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687674B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687675B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US9687678B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US11642027B2 (en) | 2005-07-25 | 2023-05-09 | Siemens Healthineers International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
US10595774B2 (en) | 2005-07-25 | 2020-03-24 | Varian Medical Systems International | Methods and apparatus for the planning and delivery of radiation treatments |
US9687677B2 (en) | 2005-07-25 | 2017-06-27 | Varian Medical Systems International Ag | Methods and apparatus for the planning and delivery of radiation treatments |
USRE46953E1 (en) | 2007-04-20 | 2018-07-17 | University Of Maryland, Baltimore | Single-arc dose painting for precision radiation therapy |
US10773101B2 (en) | 2010-06-22 | 2020-09-15 | Varian Medical Systems International Ag | System and method for estimating and manipulating estimated radiation dose |
US11986671B2 (en) | 2010-06-22 | 2024-05-21 | Siemens Healthineers International Ag | System and method for estimating and manipulating estimated radiation dose |
Also Published As
Publication number | Publication date |
---|---|
GB2127173A (en) | 1984-04-04 |
JPS5964068A (en) | 1984-04-11 |
GB8322100D0 (en) | 1983-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2551664A1 (en) | Thin mirror for illuminating an area for a medical electron accelerator | |
TW200808478A (en) | Methods and apparatus for processing a pulsed laser beam to create apertures through microlens arrays, and products produced thereby | |
JPS5891422A (en) | Light beam equalizer | |
Zhvaniya et al. | Electron acceleration up to MeV level under nonlinear interaction of subterawatt femtosecond laser chirped pulses with Kr clusters | |
CN111948783A (en) | Incident light angle continuous adjustable device and angle continuous adjusting method | |
Tanaka et al. | Mitigation of debris from a laser plasma EUV source and from focusing optics for thin film deposition by intense EUV radiation | |
US5159169A (en) | Laser sputtering apparatus | |
EP0003454B1 (en) | X-ray tube comprising a device for reducing the divergence of its useful beam | |
Poletto et al. | Double-grating monochromatic beamline with ultrafast response for FLASH2 at DESY | |
JPH09511835A (en) | Spectrometer for X-ray beam | |
Reese et al. | Submicron focusing of XUV radiation from a laser plasma source using a multilayer Laue lens | |
Pikuz et al. | Easy spectrally tunable highly efficient X-ray backlighting schemes based on spherically bent crystals | |
Elton et al. | X‐ray damage to optical components using a laser‐plasma source | |
EP0493249A1 (en) | Process, tube and system for eliminating a stationary stray radiation grid in a radiograph | |
US6617600B1 (en) | Radiation shield device and method | |
FR2683071A1 (en) | BACKLIGHT DISPLAY DEVICE, ESPECIALLY BACKLIGHT LIQUID CRYSTAL DISPLAY, AND METHOD FOR MANUFACTURING A SCATTERING SHEET FOR SUCH A DEVICE. | |
WO2004004832A1 (en) | Device for irradiating a target with a hadron-charged beam, use in hadrontherapy | |
GB2255483A (en) | Beam-diverging multi-aperture diffraction plate | |
Rajeev et al. | Role of prepulses in the interaction of intense, ultrashort lasers with “structured” surfaces | |
CN114205929B (en) | Infrared optical system for heating suspended nanoparticles | |
CN212483957U (en) | Incident light angle continuous adjustable device | |
CN209514200U (en) | The adjustable optical trap of optical pressure forms device | |
US7449684B2 (en) | Mass spectrometer | |
Bartnik et al. | Creation of nanostructures on polymer surfaces irradiated with extreme ultraviolet pulses | |
FR2709563A1 (en) | System for focusing high-energy radiation |