FR2551664A1 - Thin mirror for illuminating an area for a medical electron accelerator - Google Patents

Thin mirror for illuminating an area for a medical electron accelerator Download PDF

Info

Publication number
FR2551664A1
FR2551664A1 FR8314556A FR8314556A FR2551664A1 FR 2551664 A1 FR2551664 A1 FR 2551664A1 FR 8314556 A FR8314556 A FR 8314556A FR 8314556 A FR8314556 A FR 8314556A FR 2551664 A1 FR2551664 A1 FR 2551664A1
Authority
FR
France
Prior art keywords
mirror
visible light
path
electron
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR8314556A
Other languages
French (fr)
Inventor
Philip Dean La Riviere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Publication of FR2551664A1 publication Critical patent/FR2551664A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1073Beam splitting or combining systems characterized by manufacturing or alignment methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/142Coating structures, e.g. thin films multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1056Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam by projecting a visible image of the treatment field

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The invention relates to a medical device for irradiation comprising a device for visualising the treatment area. The visualisation device comprises a visible light source 27 positioned outside the path of the beam and the mirror 25 mounted fixedly in the path of the beam and orientated so that the visible light from the source is reflected so as to illuminate the treatment area 30. The mirror consists of a thin film of plastic metallised with an aluminium coating. The invention applies in particular to a medical apparatus for irradiation with a beam of electrons or X-rays.

Description

La présente invention se rapporte au domaine de la simulation visuelle du diagramme de rayonnement formé par un dispositif médical d'application de faisceau électrons et concerne plus particulièrement un miroir qui, dans ce but, peut être laissé fixe dans un faisceau de rayons X ou d'électrons comme une partie d'un système optique. The present invention relates to the field of visual simulation of the radiation diagram formed by a medical electron beam application device and relates more particularly to a mirror which, for this purpose, can be left fixed in an X-ray beam or d electrons as part of an optical system.

Pendant le fonctionnement d'un appareil à rayons X, il est souhaitable de pouvoir visualiser ses limites de rayonnement par un diagramme lumineux visible, et cela se fait généralement au moyen d'un dispositif optique comprenant une source de lumière visible située à une certaine distance du faisceau de rayons X et un réflecteur positionné dans le trajet du faisceau de manière que l'image virtuelle de la source lumineuse soit formée à l'origine du faisceau de rayons X. Ce réflecteur peut être à miroir de verre courant fixé dans le trajet du faisceau et un tel dispositif optique est décrit dans le brevet des Etats-Unis d'Amérique n0 3.767.931. During the operation of an X-ray device, it is desirable to be able to visualize its radiation limits by a visible light diagram, and this is generally done by means of an optical device comprising a visible light source located at a certain distance of the X-ray beam and a reflector positioned in the path of the beam so that the virtual image of the light source is formed at the origin of the X-ray beam. This reflector may be with current glass mirror fixed in the path of the beam and such an optical device is described in US Patent No. 3,767,931.

Mais, ce même dispositif optique ne peut être utilisé dans le cas d'un faisceau d'électrons car la perte d'énergie et la dispersion des électrons dans le miroir seraient intolérables. Des miroirs en matière plastique ont été utilisés dans des faisceaux d'électrons de haute énergie, dans la plage du GeV pour réfléchir la lumière visible, mais le taux d'absorption de l'énergie des électrons augmente généralement quand l'énergie du faisceau diminue. However, this same optical device cannot be used in the case of an electron beam since the loss of energy and the dispersion of the electrons in the mirror would be intolerable. Plastic mirrors have been used in high energy electron beams in the GeV range to reflect visible light, but the rate of absorption of electron energy generally increases as the beam energy decreases .

Dans le cas d'un appareil de traitement médical, l'énergie du faisceau d'électrons est généralement inférieure à 50 MeV et il n'est pas souhaitable qu'un miroir conçu pour une machine à faisceau d'électrons de haute énergie soit maintenue immobile dans le trajet d'un faisceau d'électrons de basse énergie comme celui d'un accélérateur médical d'électrons. Le miroir courant doit être rétractable ou l'ensemble du dispositif optique, y compris le miroir doit être monté de manière qu'il puisse être déplacé hors du trajet, que la machine fonctionne dans le mode de traitement par rayons X ou par électrons. Mais ces procédés nécessitent des pièces mobiles entraînées, ils nécessitent des tolérances de repositionnement très serré.;;p et les mécanismes sont coûteux à fabriquer.In the case of a medical treatment device, the energy of the electron beam is generally less than 50 MeV and it is undesirable that a mirror designed for a high energy electron beam machine is maintained motionless in the path of a low energy electron beam like that of a medical electron accelerator. The current mirror must be retractable or the entire optical device, including the mirror, must be mounted so that it can be moved out of the way, whether the machine is operating in the X-ray or electron treatment mode. However, these methods require driven moving parts, they require very tight repositioning tolerances; and the mechanisms are expensive to manufacture.

Un but de l'invention est donc de proposer un miroir qui peut être laissé fixe dans un faisceau de rayons X ou d'électrons sans compromettre de façon notable les qualités du faisceau. An object of the invention is therefore to provide a mirror which can be left fixed in an X-ray or electron beam without significantly compromising the qualities of the beam.

Un autre but de l'invention est de proposer un accélérateur d'électrons pour un traitement médical qui comporte un dispositif fixé dans le trajet du faisceau pour réfléchir la lumière visible afin de simuler le diagramme de rayonnement du champ. Another object of the invention is to provide an electron accelerator for medical treatment which comprises a device fixed in the path of the beam to reflect visible light in order to simulate the radiation pattern of the field.

D'autres caractéristiques et avantages de l'invention apparaitront au cours de la description qui va suivre. Other characteristics and advantages of the invention will appear during the description which follows.

Au dessin annexé donné uniquement à titre d'exemple nullement limitatif
La figure 1 est une coupe schématique partielle d'un dispositif médical d'application de faisceau avec un miroir positionné defaçon non rétractable selon l'invention, lorsque le dispositif est utilisé dans le mode d'électrons,
La figure 2 est une coupe schématique du dispositif d'application de la figure 1, lorsqu'il est utilisé dans le mode de rayons X.
In the appended drawing given solely by way of nonlimiting example
FIG. 1 is a partial schematic section of a medical beam application device with a mirror positioned in a non-retractable manner according to the invention, when the device is used in the electron mode,
Figure 2 is a schematic section of the application device of Figure 1, when used in the X-ray mode.

Les figures 1 et 2 représentent donc schématiquement un accélérateur médical d'électrons, pouvant fonctionner à la fois dans le mode d'électrons et le mode de rayons X. La figure représente particulièrement un dispositif optique selon l'invention au moyen duquel le champ à irradier peut-être simulé visuellement. Un accélérateur de particules chargées (non-représenté) produit un faisceau d'électrons 11 qui, quand la machine fonctionne dans le mode de rayons X comme selon la figure 2, bombarde une anticathode 12 qui produit un faisceau de rayons X de forme générale conique autour de la direction initiale de l'axe du faisceau.Quand la machine est utilisée dans le mode d'électrons comme le montre la figure 1, l'anticathode 12 est extraite du trajet du faisceau 11 et le faisceau d'électrons 11 provenant de l'accélérateur s'étale dans une forme générale conique en raison de la répulsion électrostatique entre les électrons et des composantes transversales de leurs vitesses initiales. FIGS. 1 and 2 therefore schematically represent a medical electron accelerator, capable of operating in both the electron mode and the X-ray mode. The figure particularly represents an optical device according to the invention by means of which the field at irradiate may be visually simulated. A charged particle accelerator (not shown) produces an electron beam 11 which, when the machine operates in the X-ray mode as according to FIG. 2, bombards an anticathode 12 which produces an X-ray beam of generally conical shape around the initial direction of the beam axis. When the machine is used in the electron mode as shown in figure 1, the anticathode 12 is extracted from the beam path 11 and the electron beam 11 coming from the accelerator spreads in a generally conical shape due to the electrostatic repulsion between the electrons and transverse components of their initial speeds.

Le faisceau est dirigé par une ouverture de forme conique dans un collimateur primaire 15. L'ouverture est un passage central conique qui, avec les machoires réglables 16 et 17 servent à collimater le faisceau. Selon les figures 1 et 2, les mâchoires supérieures 16 et les mâchoires inférieures 17 sont positionnées sous un angle de 900 autour de la direction initiale du faisceau 11. The beam is directed by a conical opening in a primary collimator 15. The opening is a conical central passage which, with the adjustable jaws 16 and 17 serve to collimate the beam. According to FIGS. 1 and 2, the upper jaws 16 and the lower jaws 17 are positioned at an angle of 900 around the initial direction of the beam 11.

Un dispositif de régularisation destiné à produire une intensité uniforme du faisceau dans toute sa section transversale est disposé dans le trajet du faisceau. A regulation device for producing a uniform intensity of the beam throughout its cross section is arranged in the path of the beam.

Dans le mode de rayons X, un filtre correcteur 20 du type décrit dans le brevet des Etats-Unis d'Amérique n0 4.286.167 peut être utilisé. Dans le mode d'électrons, le filtre correcteur 20 est rétracté et une ou plusieurs feuilles 21 sont introduites transversalement dans le trajet du faisceau, dans une ou plusieurs positions appropriées en fonction de l'énergie et d'autres caractéristiques du faisceau d'électrons.In the X-ray mode, a correction filter 20 of the type described in US Patent No. 4,286,167 can be used. In the electron mode, the corrector filter 20 is retracted and one or more sheets 21 are introduced transversely in the path of the beam, in one or more positions suitable according to the energy and other characteristics of the electron beam .

Un miroir 25 est monté sur un cadre fixe 26 et il est orienté de façon appropriée pour que de la lumière visible provenant d'une source 27 située à l'extérieur de la structure d'enveloppe 28 traverse un passage 29 de position appropriée vers le miroir pour être réfléchi sur l'objet 30 à irradier, de manière qu'une image virtuelle de la source lumineuse 27 soit formée au sommet du cone en lequel le faisceau 11 est transformé par le collimateur primaire 15 et les mâchoires 16 et 17. A mirror 25 is mounted on a fixed frame 26 and it is appropriately oriented so that visible light coming from a source 27 situated outside the envelope structure 28 passes through a passage 29 of suitable position towards the mirror to be reflected on the object 30 to be irradiated, so that a virtual image of the light source 27 is formed at the top of the cone into which the beam 11 is transformed by the primary collimator 15 and the jaws 16 and 17.

Dans le cas du mode de rayons X, le sommet peut être considéré comme se trouvant sur l'anticathode 12. Dans le mode d'électrons, la même position peut être traitée comme le sonnet et le collimateur 15 et les mâchoires 16 et 17 peuvent être réglés en conséquence bien que l'anticathode 12 soit retiree. In the case of the X-ray mode, the vertex can be considered as being on the anticathode 12. In the electron mode, the same position can be treated as the sonnet and the collimator 15 and the jaws 16 and 17 can be adjusted accordingly although anticathode 12 is removed.

Dans le cas idéal, le miroir 25 serait complètement transparent aux faisceaux de rayons X et d'électrons. Etant donné que les miroirs de verre courants ne sont pas suffisamment transparents aux électrons de faible énergie, le miroir 25 consiste en une mince pellicule d'une matière plastique métallisée avec un revêtement d'aluminium. Cette pellicule est faite en fixant une feuille de matière plastique sous tension sur un anneau circulaire plat. L'épaisseur de la matière plastique est environ 0,05 mm (densité de surface d'environ 5 mg/cm2). L'épaisseur du revêtement d'aluminium est de l'ordre de la longueur d'onde de la lumière visible à réfléchir et elle est par conséquent négligeable comparativement à celle de la pellicule de matière plastique.Un certain nombre de matières plastiques ou autres matières peuvent être utilisées pour produire cette pellicule, mais dans le présent mode de réalisation, la matière plastique KaptorTR de Dupont a été choisie en raison de sa résistance supérieure aux dommages par le rayonnement. In the ideal case, the mirror 25 would be completely transparent to the beams of X-rays and electrons. Since common glass mirrors are not sufficiently transparent to low energy electrons, mirror 25 consists of a thin film of metallized plastic with an aluminum coating. This film is made by fixing a sheet of plastic material under tension on a flat circular ring. The thickness of the plastic is approximately 0.05 mm (surface density of approximately 5 mg / cm2). The thickness of the aluminum coating is on the order of the wavelength of visible light to be reflected and is therefore negligible compared to that of the plastic film. A number of plastics or other materials can be used to produce this film, but in this embodiment, Dupont's KaptorTR plastic was chosen because of its superior resistance to radiation damage.

L'invention a été décrite ci-dessus en regard d'un seul mode de réalisation. Mais cette description doit être considérée comme un exemple nullement limitatif, et l'invention doit être considérée plus largement. Par exemple, il n'est pas nécessaire que le diagramme de rayonnements à simuler soit celui d'un faisceau d'électrons ou d'un faisceau de rayons X. Il faut envisager que l'accélérateur et l'anticathode 12 de la figure peuvent être remplacés par une matière radioactive de sorte que l'appareil selon l'invention peut être utilisé avec un faisceau de rayons gamma. Il faut considérer également que la source de lumière visible 27 pourrait être remplacée par une source de lumière ultraviolette. Une grande variété de dispositifs de régularisation peuvent être -utilisés pour uniformiser l'intensité du rayonnement dans la section transversale du faisceau. The invention has been described above with reference to a single embodiment. However, this description should be considered as a non-limiting example, and the invention should be considered more broadly. For example, it is not necessary for the radiation diagram to be simulated to be that of an electron beam or an X-ray beam. It should be considered that the accelerator and the anticathode 12 of the figure can be replaced by a radioactive material so that the device according to the invention can be used with a beam of gamma rays. It should also be considered that the visible light source 27 could be replaced by an ultraviolet light source. A wide variety of regulating devices can be used to standardize the intensity of the radiation in the cross section of the beam.

Le dispositif peut également comporter une chambre à ions disposée près du filtre 20 pour mesurer l'intensité totale du rayonnement. Le miroir peut être fait de nombreux types différents de matière plastique, en fonction de leur transmission des faisceaux et de leur résistance aux dommages par le rayonnement
Son épaisseur et sa forme peuvent être modifiées en frmction du cas, bien qu'une épaisseur de l'ordre de 0,025 à 0,125 mm soit généralement préférable. Des mâchoires et autres dispositifs pour collimater le faisceau peuvent être disposés de différentes manières.
The device can also include an ion chamber disposed near the filter 20 to measure the total intensity of the radiation. The mirror can be made of many different types of plastic, depending on their transmission of the beams and their resistance to radiation damage
Its thickness and shape can be changed depending on the case, although a thickness of the order of 0.025 to 0.125 mm is generally preferable. Jaws and other devices for collimating the beam can be arranged in different ways.

Claims (6)

REVENDICATIONS 1. Appareil médical destiné à irradier un champ de traitement avec un faisceau d'électrons, appareil caractérisé en ce qu'il comporte un dispositif pour visualiser ledit champ de traitement au moyen d'un champ de lumière visible, ledit dispositif de visualisation comprenant une source de lumière visible (27)positionnée à l'extérieur du trajet dudit faisceau et un miroir (25) fixé de façon non-rétractable dans le trajet dudit faisceau et orienté de manière que la lumière visible provenant de ladite source et réfléchie par ledit miroir éclaire ledit champ de traitement (30). 1. Medical device intended to irradiate a treatment field with an electron beam, device characterized in that it comprises a device for viewing said treatment field by means of a visible light field, said display device comprising a visible light source (27) positioned outside the path of said beam and a mirror (25) fixed non-retractably in the path of said beam and oriented so that visible light coming from said source and reflected by said mirror illuminates said processing field (30). 2. Appareil selon la revendication 1, caractérisé en ce que ledit miroir est une pellicule (25) de matière plastique métallisée avec un revetement d'aluminium. 2. Apparatus according to claim 1, characterized in that said mirror is a film (25) of metallized plastic with an aluminum coating. 3. Appareil selon la revendication 2, caractérisé en ce que l'épaisseur de ladite pellicule (25) est de l'ordre de 0,025 à 0,075 mmj  3. Apparatus according to claim 2, characterized in that the thickness of said film (25) is of the order of 0.025 to 0.075 mmj 4. Appareil selon la revendication 2, caractérisé en ce que la densité de surface de ladite pellicule est de l'ordre de 5 mg/cm2. 4. Apparatus according to claim 2, characterized in that the surface density of said film is of the order of 5 mg / cm2. 5. Appareil selon la revendication 2, caractérisé en ce que ladite matière plastique a une haute résistance aux dommages par des rayonnements. 5. Apparatus according to claim 2, characterized in that said plastic material has a high resistance to damage by radiation. 6. Appareil selon la revendication 1, caractérisé en ce qu'il est également adpaté pour irradier ledit champ de traitement avec un faisceau de rayons X.  6. Apparatus according to claim 1, characterized in that it is also suitable for irradiating said treatment field with an X-ray beam.
FR8314556A 1982-09-13 1983-09-13 Thin mirror for illuminating an area for a medical electron accelerator Pending FR2551664A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US41679582A 1982-09-13 1982-09-13

Publications (1)

Publication Number Publication Date
FR2551664A1 true FR2551664A1 (en) 1985-03-15

Family

ID=23651334

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8314556A Pending FR2551664A1 (en) 1982-09-13 1983-09-13 Thin mirror for illuminating an area for a medical electron accelerator

Country Status (3)

Country Link
JP (1) JPS5964068A (en)
FR (1) FR2551664A1 (en)
GB (1) GB2127173A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999020347A1 (en) * 1997-10-16 1999-04-29 Varian Medical Systems, Inc. X-ray treatment method and apparatus
US6888919B2 (en) 2001-11-02 2005-05-03 Varian Medical Systems, Inc. Radiotherapy apparatus equipped with an articulable gantry for positioning an imaging unit
US7227925B1 (en) 2002-10-02 2007-06-05 Varian Medical Systems Technologies, Inc. Gantry mounted stereoscopic imaging system
US7412029B2 (en) 2003-06-25 2008-08-12 Varian Medical Systems Technologies, Inc. Treatment planning, simulation, and verification system
US7657304B2 (en) 2002-10-05 2010-02-02 Varian Medical Systems, Inc. Imaging device for radiation treatment applications
US7945021B2 (en) 2002-12-18 2011-05-17 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US9498167B2 (en) 2005-04-29 2016-11-22 Varian Medical Systems, Inc. System and methods for treating patients using radiation
US9630025B2 (en) 2005-07-25 2017-04-25 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US10004650B2 (en) 2005-04-29 2018-06-26 Varian Medical Systems, Inc. Dynamic patient positioning system
USRE46953E1 (en) 2007-04-20 2018-07-17 University Of Maryland, Baltimore Single-arc dose painting for precision radiation therapy
US10773101B2 (en) 2010-06-22 2020-09-15 Varian Medical Systems International Ag System and method for estimating and manipulating estimated radiation dose

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629458U (en) * 1985-07-01 1987-01-21
WO2021108375A1 (en) * 2019-11-27 2021-06-03 Intraop Medical Corporation Electron beam radiation system with advanced applicator coupling system having integrated distance detection and target illumination

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1199974A (en) * 1957-07-22 1959-12-17 Philips Nv Device for luminous indication of the space explored by a beam of chi rays
US4198565A (en) * 1976-11-26 1980-04-15 Tokyo Shibaura Electric Co., Ltd. Charged particle beam scanning apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB372592A (en) * 1931-06-16 1932-05-12 John Gunning Improvements in apparatus for automatically operating gas valves
GB647541A (en) * 1946-11-16 1950-12-13 Andre Clement Coutant Improvements relating to cameras
GB1066839A (en) * 1964-11-24 1967-04-26 Peterlite Products Ltd Mirrors
GB1313296A (en) * 1969-05-22 1973-04-11 Philips Electronic Associated X-ray apparatus
US3921001A (en) * 1972-08-21 1975-11-18 Medinova Ab Of Sweden Screening or aperture device for an x-ray apparatus
US3863073A (en) * 1973-04-26 1975-01-28 Machlett Lab Inc Automatic system for precise collimation of radiation
SE417278B (en) * 1978-04-12 1981-03-09 Philips Svenska Ab MEDICAL RADIATION EQUIPMENT
GB2054188A (en) * 1979-07-11 1981-02-11 Bratland E A Method for Making Mirrors and Mirrors Made Thereby
JPS6047562B2 (en) * 1980-04-23 1985-10-22 日産自動車株式会社 Synthetic resin mirror

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1199974A (en) * 1957-07-22 1959-12-17 Philips Nv Device for luminous indication of the space explored by a beam of chi rays
US4198565A (en) * 1976-11-26 1980-04-15 Tokyo Shibaura Electric Co., Ltd. Charged particle beam scanning apparatus

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6104778A (en) * 1997-10-16 2000-08-15 Varian Systems, Inc. X-ray treatment method and apparatus
WO1999020347A1 (en) * 1997-10-16 1999-04-29 Varian Medical Systems, Inc. X-ray treatment method and apparatus
US6888919B2 (en) 2001-11-02 2005-05-03 Varian Medical Systems, Inc. Radiotherapy apparatus equipped with an articulable gantry for positioning an imaging unit
US7227925B1 (en) 2002-10-02 2007-06-05 Varian Medical Systems Technologies, Inc. Gantry mounted stereoscopic imaging system
US7657304B2 (en) 2002-10-05 2010-02-02 Varian Medical Systems, Inc. Imaging device for radiation treatment applications
US8867703B2 (en) 2002-12-18 2014-10-21 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US9901750B2 (en) 2002-12-18 2018-02-27 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US7945021B2 (en) 2002-12-18 2011-05-17 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US8116430B1 (en) 2002-12-18 2012-02-14 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US11344748B2 (en) 2002-12-18 2022-05-31 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US9421399B2 (en) 2002-12-18 2016-08-23 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
US7831017B2 (en) 2003-06-25 2010-11-09 Varian Medical Systems Technologies, Inc. Treatment planning simulation and verification system
US8681938B2 (en) 2003-06-25 2014-03-25 Varian Medical Systems, Inc. Treatment planning simulation and verification system
US8385502B1 (en) 2003-06-25 2013-02-26 Varian Medical Systems, Inc. Treatment planning simulation and verification system
US7412029B2 (en) 2003-06-25 2008-08-12 Varian Medical Systems Technologies, Inc. Treatment planning, simulation, and verification system
US9974494B2 (en) 2005-04-29 2018-05-22 Varian Medical Systems, Inc. System and methods for treating patients using radiation
US10004650B2 (en) 2005-04-29 2018-06-26 Varian Medical Systems, Inc. Dynamic patient positioning system
US9498167B2 (en) 2005-04-29 2016-11-22 Varian Medical Systems, Inc. System and methods for treating patients using radiation
US9630025B2 (en) 2005-07-25 2017-04-25 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9687676B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9687673B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9764159B2 (en) 2005-07-25 2017-09-19 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9788783B2 (en) 2005-07-25 2017-10-17 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9687674B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9687675B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US9687678B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
US11642027B2 (en) 2005-07-25 2023-05-09 Siemens Healthineers International Ag Methods and apparatus for the planning and delivery of radiation treatments
US10595774B2 (en) 2005-07-25 2020-03-24 Varian Medical Systems International Methods and apparatus for the planning and delivery of radiation treatments
US9687677B2 (en) 2005-07-25 2017-06-27 Varian Medical Systems International Ag Methods and apparatus for the planning and delivery of radiation treatments
USRE46953E1 (en) 2007-04-20 2018-07-17 University Of Maryland, Baltimore Single-arc dose painting for precision radiation therapy
US10773101B2 (en) 2010-06-22 2020-09-15 Varian Medical Systems International Ag System and method for estimating and manipulating estimated radiation dose
US11986671B2 (en) 2010-06-22 2024-05-21 Siemens Healthineers International Ag System and method for estimating and manipulating estimated radiation dose

Also Published As

Publication number Publication date
GB2127173A (en) 1984-04-04
JPS5964068A (en) 1984-04-11
GB8322100D0 (en) 1983-09-21

Similar Documents

Publication Publication Date Title
FR2551664A1 (en) Thin mirror for illuminating an area for a medical electron accelerator
TW200808478A (en) Methods and apparatus for processing a pulsed laser beam to create apertures through microlens arrays, and products produced thereby
JPS5891422A (en) Light beam equalizer
Zhvaniya et al. Electron acceleration up to MeV level under nonlinear interaction of subterawatt femtosecond laser chirped pulses with Kr clusters
CN111948783A (en) Incident light angle continuous adjustable device and angle continuous adjusting method
Tanaka et al. Mitigation of debris from a laser plasma EUV source and from focusing optics for thin film deposition by intense EUV radiation
US5159169A (en) Laser sputtering apparatus
EP0003454B1 (en) X-ray tube comprising a device for reducing the divergence of its useful beam
Poletto et al. Double-grating monochromatic beamline with ultrafast response for FLASH2 at DESY
JPH09511835A (en) Spectrometer for X-ray beam
Reese et al. Submicron focusing of XUV radiation from a laser plasma source using a multilayer Laue lens
Pikuz et al. Easy spectrally tunable highly efficient X-ray backlighting schemes based on spherically bent crystals
Elton et al. X‐ray damage to optical components using a laser‐plasma source
EP0493249A1 (en) Process, tube and system for eliminating a stationary stray radiation grid in a radiograph
US6617600B1 (en) Radiation shield device and method
FR2683071A1 (en) BACKLIGHT DISPLAY DEVICE, ESPECIALLY BACKLIGHT LIQUID CRYSTAL DISPLAY, AND METHOD FOR MANUFACTURING A SCATTERING SHEET FOR SUCH A DEVICE.
WO2004004832A1 (en) Device for irradiating a target with a hadron-charged beam, use in hadrontherapy
GB2255483A (en) Beam-diverging multi-aperture diffraction plate
Rajeev et al. Role of prepulses in the interaction of intense, ultrashort lasers with “structured” surfaces
CN114205929B (en) Infrared optical system for heating suspended nanoparticles
CN212483957U (en) Incident light angle continuous adjustable device
CN209514200U (en) The adjustable optical trap of optical pressure forms device
US7449684B2 (en) Mass spectrometer
Bartnik et al. Creation of nanostructures on polymer surfaces irradiated with extreme ultraviolet pulses
FR2709563A1 (en) System for focusing high-energy radiation