ES2555531A1 - Solar thermal plant with combined supercritical steam generator (Machine-translation by Google Translate, not legally binding) - Google Patents

Solar thermal plant with combined supercritical steam generator (Machine-translation by Google Translate, not legally binding) Download PDF

Info

Publication number
ES2555531A1
ES2555531A1 ES201430792A ES201430792A ES2555531A1 ES 2555531 A1 ES2555531 A1 ES 2555531A1 ES 201430792 A ES201430792 A ES 201430792A ES 201430792 A ES201430792 A ES 201430792A ES 2555531 A1 ES2555531 A1 ES 2555531A1
Authority
ES
Spain
Prior art keywords
fluid
heat transfer
temperature
supercritical steam
solar thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
ES201430792A
Other languages
Spanish (es)
Other versions
ES2555531B1 (en
Inventor
Raul Navío Gilaberte
Cristina MONTERO OLÍAS
María Del Carmen Romero Delgado
Pedro GARCÍA GONZÁLEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abengoa Solar New Technologies SA
Original Assignee
Abengoa Solar New Technologies SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Solar New Technologies SA filed Critical Abengoa Solar New Technologies SA
Priority to ES201430792A priority Critical patent/ES2555531B1/en
Priority to PCT/ES2015/070398 priority patent/WO2015181416A1/en
Publication of ES2555531A1 publication Critical patent/ES2555531A1/en
Application granted granted Critical
Publication of ES2555531B1 publication Critical patent/ES2555531B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/068Devices for producing mechanical power from solar energy with solar energy concentrating means having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/10Arrangements for storing heat collected by solar heat collectors using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/063Tower concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Solar thermal plant with combined supercritical steam generator, comprising: - a receiver (3) of solar thermal concentration, - a circuit through which a first heat transfer fluid fc1 circulates, passing through the receiver (3) of solar thermal concentration - a circuit for circulating a second fluid heat carrier fc2, so that the temperature is less than fc2 fc1 temperature, - a heat exchanger (4) between both circuits - a train (7) for supercritical steam generation, with inputs for fc1, fc2 and a working fluid ft, and comprising several heat exchangers, and - a circuit corresponding to the working fluid ft, with at least one turbine (8) working with the supercritical steam generated in the supercritical steam generation train (7), and a condenser (9), with the optimum temperature ranges of fc1 and fc2, and there is an overlap between them. (Machine-translation by Google Translate, not legally binding)

Description

imagen1image 1

imagen2image2

imagen3image3

imagen4image4

imagen5image5

a) Hacia el tanque caliente de almacenamiento de FC2 donde es almacenado a Tc2 a) Towards the hot storage tank of FC2 where it is stored at Tc2

b) Hacia el tren de generación de vapor supercrítico, donde comunica energía al fluido de trabajo FT en el sobrecalentador de baja temperatura y en el recalentador de baja temperatura en paralelo, para juntarse a la salida de ambos y circular a través del evaporador y, a continuación, del economizador, reduciendo su temperatura hasta Tf2 a la salida del economizador , continuando hasta el tanque frío de almacenamiento de FC2. b) Towards the supercritical steam generation train, where energy is communicated to the FT working fluid in the low temperature superheater and in the low temperature superheater in parallel, to join at the outlet of both and circulate through the evaporator and, then from the economizer, reducing its temperature to Tf2 at the outlet of the economizer, continuing to the cold storage tank of FC2.

- -
El agua procedente del condensador es bombeada y enviada al tren de generación de vapor supercrítico Water from the condenser is pumped and sent to the supercritical steam generation train

--
El agua es precalentada mediante una serie de precalentadores, de modo que alcanza una temperatura Tp.  The water is preheated by a series of pre-heaters, so that it reaches a temperature Tp.

--
El agua circula sucesivamente por el economizador, el evaporador, el sobrecalentador de baja temperatura y el sobrecalentador de alta temperatura, para llegar a condiciones supercríticas de presión y temperatura a la salida del sobrecalentador de alta temperatura .  Water flows successively through the economizer, the evaporator, the low temperature superheater and the high temperature superheater, to reach supercritical conditions of pressure and temperature at the outlet of the high temperature superheater.

- -
El agua es enviada a la turbina de alta presión, donde realiza trabajo haciendo girar la turbina en torno a su eje. Water is sent to the high pressure turbine, where it performs work by rotating the turbine around its axis.

--
El agua sale de la turbina de alta presión y es enviada de nuevo al tren de generación de vapor supercrítico, donde circula sucesivamente a través del recalentador de baja temperatura y del recalentador de alta temperatura, obteniéndose vapor sobrecalentado.  The water leaves the high pressure turbine and is sent back to the supercritical steam generation train, where it circulates successively through the low temperature reheater and high temperature reheater, obtaining superheated steam.

--
El vapor sobrecalentado es turbinado en una segunda turbina, expandiéndose y realizando trabajo de nuevo, hasta llegar finalmente al condensador.  The superheated steam is turbinated in a second turbine, expanding and performing work again, until finally reaching the condenser.

El hecho de que cada uno de los fluidos caloportadores ceda su energía en un rango distinto de temperaturas permite alcanzar mayores temperaturas y presiones finales en el vapor, lo que se traduce en un aumento de la eficiencia del ciclo termodinámico. The fact that each of the heat transfer fluids yields its energy in a different range of temperatures allows to reach higher temperatures and final pressures in the steam, which translates into an increase in the efficiency of the thermodynamic cycle.

La utilización de los dos fluidos caloportadores dota al sistema de una mayor libertad para el diseño, debido al hecho de que ambos fluidos caloportadores pueden operar en diferentes rangos de temperaturas y son coincidentes en una parte de dichos rangos. Ello permite cierta flexibilidad para poder optimizar el sistema de almacenamiento térmico en función de los costes de cada uno de los fluidos caloportadores. The use of the two heat transfer fluids gives the system greater freedom for the design, due to the fact that both heat transfer fluids can operate in different temperature ranges and are coincident in a part of said ranges. This allows some flexibility to optimize the thermal storage system based on the costs of each of the heat transfer fluids.

El hecho de trabajar con un ciclo supercrítico permite obtener un rendimiento del ciclo varios puntos por encima del rendimiento de los ciclos subcríticos, (se incrementa del 42% a más del 48%); ello implica un incremento en la producción cercano al 15%. El hecho de incrementar el rendimiento en el ciclo permite ir a menores tamaños en los equipos empleados en la planta, es decir, que para conseguir una misma potencia térmica de planta que con un ciclo subcrítico, con el ciclo supercrítico podemos emplear menores tamaños del receptor, así como menor tamaño de campo solar y menor número de heliostatos para una potencia eléctrica dada. Esto supone un ahorro importante no solo en coste, sino también en espacio, por lo que se puede construir plantas solares en fincas más pequeñas. The fact of working with a supercritical cycle allows to obtain a cycle performance several points above the performance of subcritical cycles, (it increases from 42% to more than 48%); This implies an increase in production close to 15%. The fact of increasing the performance in the cycle allows to go to smaller sizes in the equipment used in the plant, that is, to achieve the same thermal power of the plant than with a subcritical cycle, with the supercritical cycle we can use smaller receiver sizes , as well as smaller solar field size and smaller number of heliostats for a given electrical power. This means significant savings not only in cost, but also in space, so solar plants can be built on smaller farms.

Asimismo, el hecho de tener dos circuitos con fluidos caloportadores que generan vapor otorga cierta redundancia al sistema, permitiendo el funcionamiento de la planta a carga parcial en el caso de que uno de los circuitos anteriores falle. Likewise, having two circuits with heat transfer fluids that generate steam gives the system some redundancy, allowing the operation of the plant at partial load in the event that one of the previous circuits fails.

Otras características y ventajas de la presente invención se desprenderán de la siguiente descripción detallada de una realización ilustrativa y no limitativa de su objeto en relación con las figuras que se acompañan. Other features and advantages of the present invention will be apparent from the following detailed description of an illustrative and non-limiting embodiment of its object in relation to the accompanying figures.

BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES

Fig. 1: muestra un esquema de una planta termosolar según una realización de la invención. Fig. 1: shows a diagram of a solar thermal plant according to an embodiment of the invention.

Fig. 2: muestra un esquema detallado del tren de generación de vapor supercrítico combinado de la planta termosolar de la invención. Fig. 2: shows a detailed scheme of the combined supercritical steam generation train of the thermosolar plant of the invention.

Fig. 3: muestra la evolución de las temperaturas de uno de los fluidos caloportadores de la invención, de un fluido del estado de la técnica y del fluido de trabajo FT en el ciclo de trabajo. Fig. 3: shows the evolution of the temperatures of one of the heat transfer fluids of the invention, of a state-of-the-art fluid and of the FT working fluid in the work cycle.

Las referencias de las figuras 1 y 2 corresponden a los siguientes elementos: The references in figures 1 and 2 correspond to the following elements:

1. one.
Tanque frío de almacenamiento en sales (primer fluido caloportador FC1) Cold salt storage tank (first FC1 heat transfer fluid)

2. 2.
Tanque caliente de almacenamiento en sales (primer fluido caloportador FC1) Hot salt storage tank (first heat transfer fluid FC1)

3. 3.
Receptor solar de sales fundidas (primer fluido caloportador FC1) Solar molten salt receiver (first FC1 heat transfer fluid)

4. Four.
Intercambiador de calor sales-sales (primer fluido caloportador FC1 – segundo fluido caloportador FC2) Heat exchanger sales-salts (first heat transfer fluid FC1 - second heat transfer fluid FC2)

imagen6image6

(FC2) es calentado a partir del primero en un intercambiador de calor 4. Ambos fluidos cederán su energía térmica al fluido de trabajo (FT) del sistema, que preferentemente es agua, y lo harán en un generador de vapor. Sin embargo, cada uno de los fluidos caloportadores cederá su energía en un rango distinto de temperatura, permitiendo de este modo alcanzar mayores temperaturas y presiones finales en el vapor, lo que se traduce en un aumento de la eficiencia del ciclo termodinámico. A continuación, se producirá la transformación de la energía térmica comunicada al vapor en energía mecánica, y posteriormente en energía eléctrica gracias al movimiento del eje de una turbina 8, solidario al del correspondiente generador. Estas elevadas temperaturas y presiones (supercríticas) en el vapor permiten alcanzar unos rendimientos del ciclo termodinámico Rankine mayores que los obtenidos actualmente. (FC2) is heated from the first in a heat exchanger 4. Both fluids will yield their thermal energy to the working fluid (FT) of the system, which is preferably water, and will do so in a steam generator. However, each of the heat transfer fluids will yield its energy in a different temperature range, thus allowing higher temperatures and final pressures to be reached in the steam, which translates into an increase in the efficiency of the thermodynamic cycle. Next, the transformation of the thermal energy communicated to the steam into mechanical energy will take place, and subsequently into electrical energy thanks to the movement of the axis of a turbine 8, integral to that of the corresponding generator. These high temperatures and pressures (supercritical) in the steam allow to reach a yield of the Rankine thermodynamic cycle higher than those currently obtained.

El primer fluido caloportador FC1 que circula por el receptor 3 se calienta en un determinado rango de temperaturas siendo este intervalo entre 450ºC y 700ºC, inferior al de los receptores convencionales de sales fundidas que trabajan de 290ºC a 565ºC. Este menor gradiente The first FC1 heat transfer fluid circulating through the receiver 3 is heated in a certain temperature range, this range being between 450 ° C and 700 ° C, lower than that of conventional molten salt receivers operating from 290 ° C to 565 ° C. This minor gradient

o diferencia de temperaturas en la dirección longitudinal de los tubos del receptor 3 hace que se alcance una mayor homogeneización de las temperaturas en cada uno de los paneles de receptor 3 y por tanto que las tensiones térmicas del material sean inferiores. or temperature difference in the longitudinal direction of the tubes of the receiver 3 causes a greater homogenization of the temperatures in each of the receiver panels 3 and therefore the thermal stresses of the material are lower.

Además, este primer fluido caloportador FC1 permite almacenar la energía térmica a muy alta temperatura (650 ºC - 700 ºC) debido a que presenta un elevado poder calorífico igual o superior a los 1,54 kJ/kgC a 565ºC de los fluidos del estado del arte, e igual o superior al del segundo fluido caloportador FC2 en un 20%. In addition, this first heat transfer fluid FC1 allows thermal energy to be stored at a very high temperature (650 ºC - 700 ºC) because it has a high calorific value equal to or greater than 1.54 kJ / kgC at 565ºC of state fluids. art, and equal to or greater than the second FC2 heat transfer fluid by 20%.

Por otro lado, el segundo fluido caloportador FC2 trabaja en un rango de temperaturas diferente al del primer fluido caloportador FC1, permitiendo el almacenamiento energético a (450 ºC - 565 ºC) y, por consiguiente, la optimización del almacenamiento energético. On the other hand, the second heat transfer fluid FC2 works in a different temperature range from the first heat transfer fluid FC1, allowing energy storage at (450 ºC - 565 ºC) and, consequently, the optimization of energy storage.

La utilización de ambos fluidos caloportadores dota al sistema descrito de una mayor libertad para el diseño, debido a que ambos fluidos, pudiendo operar en diferentes rangos de temperatura, son además coincidentes en una parte de dicho rango. En el caso del primer fluido caloportador FC1 de la invención, éste opera en un rango óptimo de 450ºC-700ºC, mientras que el segundo fluido caloportador FC2 de nuestra invención opera de manera óptima en un rango de temperatura de 290ºC-565ºC, coincidiendo por lo tanto en un rango de temperaturas en el que se puede operar con ambos fluidos caloportadores (450ºC565ºC). Este solapamiento nos confiere cierta flexibilidad para poder optimizar en el momento de diseño de la planta, el sistema de almacenamiento térmico en función del coste de The use of both heat transfer fluids gives the described system greater freedom for the design, because both fluids, being able to operate in different temperature ranges, are also coincident in a part of said range. In the case of the first heat transfer fluid FC1 of the invention, it operates in an optimum range of 450 ° C-700 ° C, while the second heat transfer fluid FC2 of our invention operates optimally in a temperature range of 290 ° C-565 ° C, coinciding with both in a temperature range in which both heat transfer fluids can be operated (450ºC565ºC). This overlap gives us some flexibility to optimize the thermal storage system at the time of plant design based on the cost of

cada uno de los reactivos ($/kWht), puesto que dependiendo del coste de los fluidos empleados, se puede utilizar mayor o menor cantidad de uno u otro fluido en el sistema. Teniendo en cuenta esto, y que la temperatura de almacenamiento del tanque frío de almacenamiento 1 del primer fluido caloportador FC1 y la temperatura de almacenamiento del tanque caliente de almacenamiento 6 del segundo fluido caloportador FC2 son coincidentes, podemos variar el valor de éstas dependiendo de cuál sea el fluido de mayor coste. each of the reagents ($ / kWht), since depending on the cost of the fluids used, more or less of one or another fluid can be used in the system. With this in mind, and that the storage temperature of the cold storage tank 1 of the first heat transfer fluid FC1 and the storage temperature of the hot storage tank 6 of the second heat transfer fluid FC2 are coincident, we can vary their value depending on which Be the most expensive fluid.

Para el caso, por ejemplo, en el que el primer fluido caloportador FC1 sea de un coste más elevado que el segundo fluido caloportador FC2, la diferencia de temperatura entre el tanque frío 1 y el tanque caliente 2 del fluido FC1 sería menor que la diferencia de temperatura entre el tanque frío 5 y el tanque caliente 6 del fluido FC2 (por ejemplo 565ºC para el tanque frío 1 y 700 ºC para el tanque caliente 2 del fluido FC1, frente a 250º del tanque frío 5 y 565ºC del tanque caliente 6 del fluido FC2, de manera que se utilice menos cantidad de fluido FC1 que de fluido FC2 en el sistema por ser éste más caro. Por el contrario, en el caso de que el fluido FC1 tenga un coste inferior al fluido FC2 la diferencia de temperatura entre el tanque frío 1 y el tanque caliente 2 del fluido FC1 sería mayor que la diferencia de temperatura entre el tanque frío 5 y el tanque caliente 6 del fluido FC2, usando así menos cantidad del fluido FC2 que del fluido FC1 (tanque frío 1 a 450ºC y tanque caliente 2 a 700ºC para el fluido FC1, y tanque frío 5 a 290ºC y tanque caliente 6 a 450ºC para el fluido FC2). In the case, for example, in which the first heat transfer fluid FC1 is of a higher cost than the second heat transfer fluid FC2, the temperature difference between the cold tank 1 and the hot tank 2 of the fluid FC1 would be less than the difference of temperature between the cold tank 5 and the hot tank 6 of the FC2 fluid (for example 565 ° C for the cold tank 1 and 700 ° C for the hot tank 2 of the FC1 fluid, compared to 250 ° of the cold tank 5 and 565 ° C of the hot tank 6 of the FC2 fluid, so that less amount of FC1 fluid is used than FC2 fluid in the system because it is more expensive, on the contrary, in the case that FC1 fluid has a lower cost than FC2 fluid the temperature difference between the cold tank 1 and the hot tank 2 of the FC1 fluid would be greater than the temperature difference between the cold tank 5 and the hot tank 6 of the FC2 fluid, thus using less amount of the FC2 fluid than the FC1 fluid (cold tank 1 at 450 ° Cand hot tank 2 at 700 ° C for fluid FC1, and cold tank 5 at 290 ° C and hot tank 6 at 450 ° C for fluid FC2).

La combinación de estos fluidos en el tren 7 de generación de vapor supercrítico permite finalmente trabajar con un ciclo de vapor supercrítico de muy alta eficiencia, superior al 48%. En particular, un ciclo de estas características exige unas presiones y temperaturas de trabajo superiores a lo habitual (por encima de los 240 bares, preferentemente en un rango de presión de 260 - 350 bares y en un rango de temperaturas de 620 ºC - 680 ºC), que, con la configuración típica de tren de generación de vapor con los fluidos convencionales, no resultaría óptimo desde un punto de vista de la diferencia de temperaturas a la entrada y a la salida del SGS (sistema de generación de vapor). The combination of these fluids in the supercritical steam generation train 7 allows finally working with a supercritical steam cycle of very high efficiency, greater than 48%. In particular, a cycle of these characteristics requires higher working pressures and temperatures than usual (above 240 bars, preferably in a pressure range of 260 - 350 bars and in a temperature range of 620 ºC - 680 ºC ), which, with the typical steam generation train configuration with conventional fluids, would not be optimal from a point of view of the temperature difference at the inlet and outlet of the SGS (steam generation system).

Concretamente, según podemos observar en la figura 3, la diferencia de temperatura (T1-T3) entre un fluido caloportador del estado del arte y el fluido de trabajo FT (preferentemente, agua) a la salida del economizador 70, y la diferencia de temperatura (T2-T3) entre un fluido de la invención y el agua a la salida del economizador 70, es mucho mayor para el caso del fluido del estado del arte, lo que implica que en ese caso, no se está optimizando el uso de dicho intercambiador 4, teniendo que emplear una mayor cantidad de fluido del estaSpecifically, as we can see in Figure 3, the temperature difference (T1-T3) between a heat transfer fluid of the state of the art and the working fluid FT (preferably, water) at the outlet of the economizer 70, and the temperature difference (T2-T3) between a fluid of the invention and the water at the outlet of the economizer 70, is much greater for the case of the state of the art fluid, which implies that in that case, the use of said fluid is not being optimized. exchanger 4, having to use a larger amount of fluid from this

5 5

10 10

15 fifteen

20 twenty

25 25

30 30

do del arte para alcanzar la misma temperatura de fluido de trabajo FT que en el caso de nuestra invención con uno o varios de los fluidos mencionados FC1, FC2. of the art to reach the same working fluid temperature FT as in the case of our invention with one or more of the fluids mentioned FC1, FC2.

Para que todas las ventajas anteriormente explicadas se puedan combinar, se incorporan algunos equipos clave en el funcionamiento de la planta: So that all the advantages explained above can be combined, some key equipment is incorporated in the operation of the plant:

- Un intercambiador de calor 4 entre ambos fluidos caloportadores FC1 y FC2. - A heat exchanger 4 between both heat transfer fluids FC1 and FC2.

--
Cuatro tipos de tanques de almacenamiento energético, dos tanques fríos 1, 5 y dos tanques calientes 2, 6. El almacenamiento se realiza con dos fluidos caloportadores FC1 y FC2 diferentes, presentando ambos una buena capacidad calorífica (preferentemente igual o superior a 1,54 kJ/kgC a 565ºC).  Four types of energy storage tanks, two cold tanks 1, 5 and two hot tanks 2, 6. The storage is done with two different FC1 and FC2 heat transfer fluids, both of which have a good heat capacity (preferably equal to or greater than 1.54 kJ / kgC at 565 ° C).

- -
Un tren 7 de generación de vapor supercrítico compartido (con dos fluidos caloportadores FC1 y FC2 y un fluido de trabajo FT). A shared supercritical steam generation train 7 (with two heat transfer fluids FC1 and FC2 and a working fluid FT).

El funcionamiento normal de la planta sería entonces de la siguiente manera: The normal operation of the plant would then be as follows:

El primer fluido caloportador FC1 es bombeado desde su tanque de almacenamiento frío 1 donde puede encontrarse a una temperatura Tf1 (temperatura fría del fluido FC1) de entre 450 ºC y 565 ºC hasta lo alto de la torre, donde recoge la radiación concentrada y eleva su temperatura hasta Tr (temperatura del receptor) de entre 650 ºC - 700 ºC. Posteriormente, se circula este fluido FC1 por tres caminos diferentes: uno hacia el generador de vapor supercrítico, otro hacia el intercambiador de calor 4 con el segundo fluido caloportador FC2 y finalmente, otro hacia el tanque de almacenamiento caliente 2 a muy alta temperatura Tc1 (temperatura caliente del fluido FC1) de entre 650 ºC y 700 ºC. The first heat transfer fluid FC1 is pumped from its cold storage tank 1 where it can be found at a temperature Tf1 (cold temperature of the FC1 fluid) between 450 ° C and 565 ° C to the top of the tower, where it collects the concentrated radiation and raises its temperature up to Tr (receiver temperature) between 650 ºC - 700 ºC. Subsequently, this FC1 fluid is circulated through three different paths: one towards the supercritical steam generator, another towards the heat exchanger 4 with the second heat transfer fluid FC2 and finally, another towards the hot storage tank 2 at very high temperature Tc1 ( hot fluid temperature FC1) between 650 ºC and 700 ºC.

Por otro lado, el segundo fluido caloportador FC2 alojado en su correspondiente tanque frío 5 a una Tf2 (temperatura fría del fluido FC2) de 290 ºC será bombeado para hacerlo circular por el intercambiador de calor 4 donde recogerá la energía que le ceda el primer fluido caloportador FC1, elevando su temperatura hasta el valor deseado Tc2 (temperatura caliente del fluido FC2) de entre 450 ºC - 565 ºC. A continuación, seguirá dos caminos: uno hacia el generador de vapor supercrítico y otro hacia su tanque de almacenamiento caliente 6. On the other hand, the second heat transfer fluid FC2 housed in its corresponding cold tank 5 at a Tf2 (cold temperature FC2 fluid) of 290 ºC will be pumped to circulate it through the heat exchanger 4 where it will collect the energy transferred by the first fluid Heat carrier FC1, raising its temperature to the desired value Tc2 (hot fluid temperature FC2) between 450 ºC - 565 ºC. Next, it will follow two paths: one towards the supercritical steam generator and another towards its hot storage tank 6.

De esta manera, se estará almacenando la energía necesaria para permitir continuar con la producción de electricidad después de que se haya puesto el sol. In this way, the necessary energy will be stored to allow the production of electricity to continue after the sun has set.

La configuración de planta propuesta cuenta con los siguientes elementos: The proposed plant configuration has the following elements:

-Tanque frío de almacenamiento 5 en sales (segundo fluido caloportador FC2) - Cold storage tank 5 in salts (second FC2 heat transfer fluid)

5 5

10 10

15 fifteen

20 twenty

25 25

30 30

-Tanque caliente de almacenamiento 6 en sales (segundo fluido caloportador FC2) - Hot storage tank 6 in salts (second FC2 heat transfer fluid)

-Tanque frío de almacenamiento 1 en sales (primer fluido caloportador FC1) - Cold storage tank 1 in salts (first FC1 heat transfer fluid)

-Tanque caliente de almacenamiento 2 en sales (primer fluido caloportador FC1) -Hot storage tank 2 in salts (first heat transfer fluid FC1)

-Receptor solar 3 de sales fundidas (primer fluido caloportador FC1) - Solar receiver 3 of molten salts (first heat transfer fluid FC1)

-Intercambiador de calor 4 sales-sales (primer fluido caloportador FC1 – segundo fluido caloportador FC2) - Heat exchanger 4 salts-salts (first heat transfer fluid FC1 - second heat transfer fluid FC2)

-Tren 7 de generación de vapor supercrítico combinado, sales-vapor (primer fluido caloportador FC1 – vapor; segundo fluido caloportador FC2 – vapor) -Train 7 of combined supercritical steam generation, steam-salts (first heat transfer fluid FC1 - steam; second heat transfer fluid FC2 - steam)

En una realización preferente, la configuración sería la mostrada en la figura 1. In a preferred embodiment, the configuration would be that shown in Figure 1.

En dicha figura 1 se observa que a la salida de cada uno de los tanques fríos de almacenamiento 1, 5 y a la salida de cada uno de los tanques calientes de almacenamiento 2, 6 hay una bomba 10, permitiendo estas bombas 10 el bombeo del primer fluido caloportador FC1 y del segundo fluido caloportador FC2 en sus respectivos circuitos. In said figure 1 it is observed that at the exit of each of the cold storage tanks 1, 5 and at the exit of each of the hot storage tanks 2, 6 there is a pump 10, allowing these pumps 10 to pump the first FC1 heat transfer fluid and the second FC2 heat transfer fluid in their respective circuits.

La figura 2 muestra el detalle de cómo sería el tren 7 de generación de vapor supercrítico combinado. Se describe a continuación cómo sería el funcionamiento del sistema en conjunto. Figure 2 shows the detail of what the combined supercritical steam generation train 7 would be like. It is described below how the system would work together.

En primer lugar, las sales fundidas (fluido FC1) almacenadas a una temperatura Tf1 de 550 ºC en un tanque 1, son bombeadas a lo alto de la torre donde se encuentra un receptor solar First, the molten salts (FC1 fluid) stored at a Tf1 temperature of 550 ° C in a tank 1, are pumped up the tower where a solar receiver is located

3. Dicho receptor solar 3 está constituido preferentemente por paneles formados a su vez por tubos verticales. La radiación solar es concentrada en la superficie exterior de estos tubos, comunicando la potencia necesaria para acometer el salto de temperatura deseado en el fluido FC1, alcanzando los 650 ºC (Tr) a la salida del receptor 3. Tras esto, el fluido FC1 ya caliente es circulado hacia tres equipos diferentes. Por un lado, se envía al intercambiador de calor 4, donde se enfriará hasta aproximadamente 550 ºC (Tf1), para ser reconducido después al tanque de almacenamiento frío 1. Por otro lado, se envía al tren 7 de generación de vapor supercrítico entrando en nuestra realización preferente a 650 ºC, donde comunica energía en dos de los equipos: el sobrecalentador de alta temperatura 73 y el recalentador de alta temperatura 75, enfriándose también hasta 550 ºC (Tf1) para ser reconducido igualmente al tanque de almacenamiento frío 1. Por último, el tercero de los caminos tras el receptor solar 3 es enviar parte de este fluido FC1 directamente al tanque de almacenamiento caliente 2, donde será almacenado a 650 ºC para disponer de él cuando no haya aporte 3. Said solar receiver 3 is preferably constituted by panels formed in turn by vertical tubes. The solar radiation is concentrated on the outer surface of these tubes, communicating the power necessary to undertake the desired temperature jump in the FC1 fluid, reaching 650 ºC (Tr) at the outlet of the receiver 3. After this, the FC1 fluid already Hot is circulated to three different teams. On the one hand, it is sent to the heat exchanger 4, where it will be cooled to approximately 550 ° C (Tf1), to be then redirected to the cold storage tank 1. On the other hand, it is sent to the supercritical steam generation train 7 entering our preferred embodiment at 650 ºC, where it communicates energy in two of the equipment: the high temperature superheater 73 and the high temperature superheater 75, also cooling down to 550 ºC (Tf1) to be also redirected to the cold storage tank 1. By Finally, the third of the paths behind the solar receiver 3 is to send part of this FC1 fluid directly to the hot storage tank 2, where it will be stored at 650 ºC to dispose of it when there is no contribution

13 13

imagen7image7

imagen8image8

Claims (1)

imagen1image 1 imagen2image2 imagen3image3 imagen4image4 imagen5image5
ES201430792A 2014-05-27 2014-05-27 Solar thermal plant with combined supercritical steam generator Active ES2555531B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES201430792A ES2555531B1 (en) 2014-05-27 2014-05-27 Solar thermal plant with combined supercritical steam generator
PCT/ES2015/070398 WO2015181416A1 (en) 2014-05-27 2015-05-21 Solar thermal plant including a combined supercritical steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201430792A ES2555531B1 (en) 2014-05-27 2014-05-27 Solar thermal plant with combined supercritical steam generator

Publications (2)

Publication Number Publication Date
ES2555531A1 true ES2555531A1 (en) 2016-01-04
ES2555531B1 ES2555531B1 (en) 2016-10-11

Family

ID=54698153

Family Applications (1)

Application Number Title Priority Date Filing Date
ES201430792A Active ES2555531B1 (en) 2014-05-27 2014-05-27 Solar thermal plant with combined supercritical steam generator

Country Status (2)

Country Link
ES (1) ES2555531B1 (en)
WO (1) WO2015181416A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019116082A1 (en) * 2019-06-13 2020-12-17 Rwe Power Ag Process for the reversible storage and release of thermal energy, as well as a corresponding energy storage system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907075B (en) * 2010-06-25 2014-04-09 中山大学 Multistage coupling heat accumulating type solar heat-power cogeneration system
WO2012032388A2 (en) * 2010-09-07 2012-03-15 Ormat Technologies Inc. Solar derived thermal storage system and method
WO2012050788A2 (en) * 2010-09-30 2012-04-19 Dow Global Technologies Llc Process for producing superheated steam from a concentrating solar power plant
EP2653801B1 (en) * 2012-04-19 2014-06-18 Alstom Technology Ltd Solar power system and method of operation
CN203214254U (en) * 2013-02-20 2013-09-25 深圳市爱能森科技有限公司 Fused salt and heat conducting oil heat exchanging device for solar photo-thermal power generating

Also Published As

Publication number Publication date
ES2555531B1 (en) 2016-10-11
WO2015181416A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
ES2547359T3 (en) Solar concentration plant for superheated steam production
ES2608490T3 (en) Solar thermal power plants
US9080788B2 (en) Solar power system and method of operation
ES2544467T3 (en) Solar thermal power plant with indirect evaporation and procedure to operate such a solar thermal power plant
BR112013007036B1 (en) Apparatus for producing superheated steam from a concentrating solar power plant and process for producing superheated steam from a concentrating solar power plant
ES2427835T3 (en) Apparatus for obtaining electricity from solar energy
ES2371607A1 (en) Geothermal plant with system for generating electricity and modulating power
US20180100647A1 (en) Molten salt once-through steam generator
WO2013087949A1 (en) Hybrid system for generating electricity using solar energy and biomass
ES2422955A2 (en) Method for improving thermal-cycle yield in nuclear power plants
US9228452B2 (en) System and method for auxiliary fluid circuit heating or cooling of a superheater during startup and shutdown operations
ES2440391B2 (en) METHOD FOR OPERATING AN ELECTRICAL POWER STATION WITH MULTIPLE THERMAL SOURCES AND EMPLOYEE DEVICE
ES2365286B1 (en) ECONOMIZER IN SOLAR PLANT TOWER AND METHOD OF OPERATION OF SUCH PLANT.
ES2555531A1 (en) Solar thermal plant with combined supercritical steam generator (Machine-translation by Google Translate, not legally binding)
ES2350668B1 (en) SOLAR STEAM RECEIVER OVERHEATED.
ES2522872T3 (en) Solar thermal power plant
ES2382707B1 (en) TOWER RECEIVER CONFIGURATION FOR HIGH POWER.
ES2345379B1 (en) SOLAR PLANT COMBINED AIR AND STEAM TECHNOLOGY.
JP6270139B2 (en) Heating and cooling system
KR102285676B1 (en) Direct compressor operation by organic Rankin cycle power generation using outdoor units waste heat of refrigerating and air-conditioning systems and solar energy
ES2312275B1 (en) SOLAR CONCENTRATION PLANT FOR OVERHEATED STEAM PRODUCTION.
ES2360992B1 (en) IMPROVEMENTS TO THE MAIN PATENT N. P200701577 BY: "SOLAR CONCENTRATION PLANT FOR OVERHEATED STEAM PRODUCTION".
ES2434665B2 (en) Concentrating solar thermal power plant with two fluids in the receiver and in storage
ES2565690B1 (en) Method and thermal storage system for solar steam generation plant and solar steam generation plant

Legal Events

Date Code Title Description
FG2A Definitive protection

Ref document number: 2555531

Country of ref document: ES

Kind code of ref document: B1

Effective date: 20161011