EP4347792A1 - Method for producing tumor-infiltrating t-lymphocytes (til) and their use as cellular therapeutics for the treatment of human tumors - Google Patents
Method for producing tumor-infiltrating t-lymphocytes (til) and their use as cellular therapeutics for the treatment of human tumorsInfo
- Publication number
- EP4347792A1 EP4347792A1 EP21844631.8A EP21844631A EP4347792A1 EP 4347792 A1 EP4347792 A1 EP 4347792A1 EP 21844631 A EP21844631 A EP 21844631A EP 4347792 A1 EP4347792 A1 EP 4347792A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- til
- cells
- cell
- bioreactor
- meander
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 59
- 210000001744 T-lymphocyte Anatomy 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000003814 drug Substances 0.000 title claims abstract description 8
- 230000001413 cellular effect Effects 0.000 title abstract 2
- 210000001519 tissue Anatomy 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 41
- 230000010412 perfusion Effects 0.000 claims abstract description 38
- 210000004369 blood Anatomy 0.000 claims abstract description 12
- 239000008280 blood Substances 0.000 claims abstract description 12
- 210000000481 breast Anatomy 0.000 claims abstract description 4
- 210000004185 liver Anatomy 0.000 claims abstract description 4
- 210000002307 prostate Anatomy 0.000 claims abstract description 4
- 210000004027 cell Anatomy 0.000 claims description 79
- 239000002609 medium Substances 0.000 claims description 29
- 210000004698 lymphocyte Anatomy 0.000 claims description 23
- 108010002350 Interleukin-2 Proteins 0.000 claims description 21
- 102000000588 Interleukin-2 Human genes 0.000 claims description 21
- 239000001963 growth medium Substances 0.000 claims description 16
- 239000000725 suspension Substances 0.000 claims description 16
- 102000004127 Cytokines Human genes 0.000 claims description 15
- 108090000695 Cytokines Proteins 0.000 claims description 15
- 108010065805 Interleukin-12 Proteins 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 102000013462 Interleukin-12 Human genes 0.000 claims description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 229940117681 interleukin-12 Drugs 0.000 claims description 7
- 230000001225 therapeutic effect Effects 0.000 claims description 6
- 238000002659 cell therapy Methods 0.000 claims description 5
- 239000012595 freezing medium Substances 0.000 claims description 5
- 210000002966 serum Anatomy 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- 208000015181 infectious disease Diseases 0.000 claims description 3
- 201000001441 melanoma Diseases 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 238000004062 sedimentation Methods 0.000 claims description 3
- 206010025323 Lymphomas Diseases 0.000 claims description 2
- 230000017531 blood circulation Effects 0.000 claims description 2
- 210000004204 blood vessel Anatomy 0.000 claims description 2
- 210000001185 bone marrow Anatomy 0.000 claims description 2
- 239000006285 cell suspension Substances 0.000 claims description 2
- 238000013461 design Methods 0.000 claims description 2
- 230000000222 hyperoxic effect Effects 0.000 claims description 2
- 239000013049 sediment Substances 0.000 claims description 2
- 102000009027 Albumins Human genes 0.000 claims 1
- 108010088751 Albumins Proteins 0.000 claims 1
- 208000032612 Glial tumor Diseases 0.000 claims 1
- 206010018338 Glioma Diseases 0.000 claims 1
- 230000002490 cerebral effect Effects 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- 230000002496 gastric effect Effects 0.000 claims 1
- 210000002429 large intestine Anatomy 0.000 claims 1
- 210000000822 natural killer cell Anatomy 0.000 claims 1
- 230000002611 ovarian Effects 0.000 claims 1
- 230000002685 pulmonary effect Effects 0.000 claims 1
- 210000002865 immune cell Anatomy 0.000 abstract description 13
- 201000011510 cancer Diseases 0.000 abstract description 9
- 210000004072 lung Anatomy 0.000 abstract description 4
- 210000004556 brain Anatomy 0.000 abstract description 3
- 210000001072 colon Anatomy 0.000 abstract description 3
- 210000003563 lymphoid tissue Anatomy 0.000 abstract description 3
- 210000002784 stomach Anatomy 0.000 abstract description 3
- 230000003213 activating effect Effects 0.000 abstract description 2
- 210000000988 bone and bone Anatomy 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 abstract description 2
- 210000001672 ovary Anatomy 0.000 abstract description 2
- 210000000496 pancreas Anatomy 0.000 abstract description 2
- 210000000664 rectum Anatomy 0.000 abstract description 2
- 210000003491 skin Anatomy 0.000 abstract description 2
- 230000001926 lymphatic effect Effects 0.000 abstract 1
- 230000006510 metastatic growth Effects 0.000 abstract 1
- 230000001902 propagating effect Effects 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 25
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 20
- 102000003812 Interleukin-15 Human genes 0.000 description 12
- 108090000172 Interleukin-15 Proteins 0.000 description 12
- 102100030704 Interleukin-21 Human genes 0.000 description 11
- 108010074108 interleukin-21 Proteins 0.000 description 11
- 230000004936 stimulating effect Effects 0.000 description 10
- 206010027476 Metastases Diseases 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 238000012258 culturing Methods 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000001802 infusion Methods 0.000 description 6
- 230000035755 proliferation Effects 0.000 description 6
- 102000008100 Human Serum Albumin Human genes 0.000 description 5
- 108091006905 Human Serum Albumin Proteins 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 201000005202 lung cancer Diseases 0.000 description 4
- 208000020816 lung neoplasm Diseases 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- 239000006143 cell culture medium Substances 0.000 description 3
- 238000012364 cultivation method Methods 0.000 description 3
- 239000012737 fresh medium Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 208000035473 Communicable disease Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920002873 Polyethylenimine Polymers 0.000 description 2
- 101150086694 SLC22A3 gene Proteins 0.000 description 2
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 2
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 230000004940 costimulation Effects 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 2
- 230000001146 hypoxic effect Effects 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 210000004880 lymph fluid Anatomy 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 230000009469 supplementation Effects 0.000 description 2
- 231100000732 tissue residue Toxicity 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 description 1
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 102100039879 Interleukin-19 Human genes 0.000 description 1
- 108050009288 Interleukin-19 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 102000000704 Interleukin-7 Human genes 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 239000013255 MILs Substances 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 description 1
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001270 agonistic effect Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000011072 cell harvest Methods 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 210000004405 cytokine-induced killer cell Anatomy 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 210000004696 endometrium Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- KAQKFAOMNZTLHT-VVUHWYTRSA-N epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 1
- 229960001123 epoprostenol Drugs 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 229940076144 interleukin-10 Drugs 0.000 description 1
- 229940100994 interleukin-7 Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 229940126602 investigational medicinal product Drugs 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4611—T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
- C12N5/0638—Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/10—Perfusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2500/00—Specific components of cell culture medium
- C12N2500/02—Atmosphere, e.g. low oxygen conditions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2302—Interleukin-2 (IL-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2312—Interleukin-12 (IL-12)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/50—Cell markers; Cell surface determinants
- C12N2501/599—Cell markers; Cell surface determinants with CD designations not provided for elsewhere
Definitions
- TIL tumor-infiltrated T-lymphocytes
- the invention relates to a method for isolating, activating and multiplying immune cells, in particular tumor-infiltrated autologous T lymphocytes (TIL) from primary tumor tissue, metastases, lymphatic tissue, but also T cells from other tissues (e.g. blood, lymph fluid) in a meander perfusion bioreactor and the manufacture of immune cell therapeutics therefrom to combat tumors of the pancreas, lung, liver, prostate, breast, ovary, stomach, colon, rectum, bone, brain, skin and other malignant tumors.
- TIL tumor-infiltrated autologous T lymphocytes
- AIMP Advanced Investigational Medicinal Products
- interleukin 19 with the Anti CD 3 antibody.
- interleukin 21 with the antibody 4-1 BBL for an in vitro amplification method for efficient and highly cytotoxic natural killer (NK) cells is known from the prior art.
- Ig-4-1BBL Meseck M, Woo SL, Chen SH. demonstrate that systemic delivery of Ig-4-1BBL can generate a better antitumor response than local gene delivery. Ig-4-1BBL had equivalent biological functions compared to the agonistic anti-4-1BB antibody. Thus, soluble 4-1 BBL dimmer can be developed as a promising agent for human cancer therapy.
- all cell cultivation methods known from the prior art have a supply of oxygen to the cells in the medium from a supernatant or overflowing overlay atmosphere or from a supernatant and below overlay and underlay atmosphere, with the underlay atmosphere being supplied by the supernatant medium with contained therein cells releases additional oxygen to the supernatant medium by means of an oxygen-permeable membrane.
- a device or possibility integrated into the cultivation process that ensures the growing oxygen requirement of the proliferating immune cells during a cultivation run is not provided for in the cultivation process described and is also not feasible (e.g. GRex vessels; Aastrom Vericell system).
- WO 2015 189356 A1 relates to a composition for expanding lymphocytes, comprising at least two types of cytokines selected from interleukin 2 (IL-2), interleukin 15 (IL-15) and interleukin 21 (IL-21). It also relates to a method for producing a population of clinically relevant lymphocytes, comprising the steps of: obtaining a body sample from a mammal, in particular a tissue sample or body fluid sample, comprising at least one lymphocyte and optionally separating the cells in the body sample, culturing the body sample in vitro to to expand and/or stimulate lymphocytes in the sample, wherein the culturing comprises using IL-2, IL-15 and/or IL-21 and optionally determining the presence of clinically relevant lymphocytes in the cultured sample.
- IL-2 interleukin 2
- IL-15 interleukin 15
- IL-21 interleukin 21
- the present invention also relates to immunotherapy and the population of clinically relevant lymphocytes.
- the body sample is selected from peripheral blood of a mammal, in particular a human is selected with a tumor disease or a mammal at risk of developing a tumor disease or with an infectious disease or at risk of developing an infectious disease or with an autoimmune disease or at risk of Development of an autoimmune disease.
- WO 2015 189357 A1 describes a composition for expanding lymphocytes, comprising at least two types of cytokines selected from interleukin 2 (IL-2), interleukin 15 (IL-15) and interleukin 21 (IL-21). It also relates to a method for producing a population of clinically relevant lymphocytes, comprising the steps of: obtaining a body sample from a mammal, in particular a tissue sample or body fluid sample, comprising at least one lymphocyte and optionally separating the cells in the body sample, culturing the body sample in vitro to expand and/or stimulate lymphocytes in the sample, the culturing involving the use of IL-2, IL-15 and/or IL -21 and optionally determining the presence of clinically relevant lymphocytes in the cultured sample.
- the present invention also relates to immunotherapy and the population of clinically relevant lymphocytes
- WO 2020025706 A1 describes a method for producing a T cell product containing tumor-overreactive immune cells (TURICs) and a composition containing at least one T cell product containing TURICs for use in treating a cancer patient.
- the method comprises the steps of a) providing a body sample containing T cells from a patient; b) optionally isolating the T cells from the body sample; c) stimulating the T cells in vitro in the presence of a cytokine cocktail of the cytokines interleukin 2 (IL-2), interleukin 15 (IL-15) and interleukin 21 (IL-21) and a stimulating peptide or group of stimulating peptides ; d) determining a reactivity factor in the T cell sample, the reactivity factor being indicative of the presence of T cells that target the stimulatory peptide or at least one peptide from the group of stimulatory peptides; e) if the reactivity factor is positive, identifying the T cell sample as a tumor reactive
- WO 2020 198031 A1 discloses a method and the production and use of lung cancer-specific marrow-infiltrating lymphocytes ("MILs").
- the method comprises the steps: a. culturing a bone marrow sample obtained from the lung cancer patient with an anti-CD3 antibody and an anti-CD28 antibody in a hypoxic environment to produce hypoxic activated marrow-infiltrating lymphocytes; b. culturing the hypoxically activated marrow-infiltrating lymphocytes in a normoxic environment to produce the therapeutically activated marrow-infiltrating lymphocytes; and (c) administering the therapeutically activated marrow-infiltrating lymphocytes to the subject with lung cancer.
- the invention according to EP 3730608 A1 relates to a method of treating a patient with cancer, the method comprising administering expanded tumor-infiltrating lymphocytes (TILs), comprising: a) obtaining a first population of TILs from a tumor derived from a patient was resected by processing a tumor sample obtained from the patient into multiple tumor fragments; b) adding the tumor fragments into a closed system; c) performing a first expansion by culturing the first population of TILs in a cell culture medium comprising IL-2 to produce a second population of TILs, the first expansion being performed in a closed container providing a first gas-permeable surface, wherein the first expansion is performed for about 3 to 14 days to obtain the second population of TILs, wherein the second population of TILs is at least 50-fold larger than the first population of TILs, and wherein the transition from step (b) to step (c) takes place without opening the system; d) performing a second expansion by supplementing the cell culture
- the number of TILs sufficient to administer a therapeutically effective dosage in step (h) is about 1 c 10 L 9 to about 9 c 10 L 10.
- the pharmaceutical composition is used for the manufacture of a medicament for the treatment of cancer, which cancer is selected from the group consisting of melanoma (including metastatic melanoma), ovarian cancer, cervical cancer, non-small cell lung cancer (NSCLC), lung cancer, bladder cancer, breast cancer, human cancer papillomavirus, head and neck cancer (including head and neck squamous cell carcinoma (HNSCC)), kidney cancer and renal cell carcinoma.
- cancer is selected from the group consisting of melanoma (including metastatic melanoma), ovarian cancer, cervical cancer, non-small cell lung cancer (NSCLC), lung cancer, bladder cancer, breast cancer, human cancer papillomavirus, head and neck cancer (including head and neck squamous cell carcinoma (HNSCC)), kidney cancer and renal cell carcinoma.
- WO 2020231 058 A1 relates to activated lymphocytes comprising cytokine-induced killer cells in which CD8 + CD56 + NKG2D + cells are present in a proportion of 20% or more and a production method therefor and in particular to activated lymphocytes which cytokine-induced Killing includes cells which have high tumor cell-killing ability and growth rates and are almost free from side effects because they do not require the combined administration of interleukin-2 and a manufacturing method thereof.
- EP 3565888 A1 discloses a method for expanding tumor-infiltrating lymphocytes as a two-stage/three-stage method using the cytokine IL 2 with and anti-CD3 (Okt3)/anti-CD28 antibodies.
- the cell culture medium contains IL-2, OKT-3 (anti-CD3) antibody, peripheral blood mononuclear cells (PBMCs) and optionally the TNFRSF agonist such as I-4bb and a second TNFRSF agonist.
- PBMCs peripheral blood mononucle
- the object of the invention is to develop a method for cultivating cells, in particular tumor-infiltrated T-lymphocytes (TIL) and other T-cells from human lymphoid tissues in a cultivation system with meander perfusion bioreactors, with which existing problems such as low standardization and reproducibility, difficult processes for the mass production of these cells, further complex and inconvenient conditions in general clinical use as well as high production costs, which exist in the conventional in vitro culture methods, are radically solved.
- TIL tumor-infiltrated T-lymphocytes
- the cells form a largely stationary cell layer with close and at the same time alternating contact between the cells for good proliferation, in which they touch, but slight movements also occur, with TIL cell counts in the sedimented layer at 0.1 to 2 x 10 6 TIL/cm 2 , preferably 0.5 to 1 x 10 6 TIL/cm 2 for steady growth,
- the medium consists of a conventional basic medium supplemented with AB human serum, cytokines, antibodies and irradiated and disintegrated human feeder cells, the cytokines consisting of interleukin 12 alone or of a mixture of interleukin 2 and interleukin 12 or of a mixture of IL12 , IL15 and all mixtures additionally contain the antibody 4-1 BB,
- the new method enables the production of multiple 10 L 9 to multiple 10 L 10 immune cells as ATMP in a completely closed cultivation process.
- a single-use perfusion bioreactor is initially installed and operated in the sterile room of our GMP breeder and monitored by a control unit: The supply of medium and gases is regulated; pH value, pO2 concentration and temperature are continuously measured in the medium by sensors and kept constant. As the amount of TIL in the bioreactor vessel increases, the supply of medium is automatically increased via an algorithm.
- TIL grow in a standard medium that is supplemented with human serum, IL2, Oct3 and irradiated feeder cells and/or also with irradiated and then ultrasonically disintegrated feeder cells from the tumor tissue pieces in 7 to 14 days and multiply continuously . This way 4 to 10 x 10 L 9 TIL can be grown.
- the medium is circulated at a low flow rate over the sedimented TIL, a defined portion of the medium is increasingly replaced by fresh medium, depending on the glucose consumption. This is automatically controlled by an algorithm in the Control Unit.
- the TIL close and at the same time alternating contact between the cells is necessary for good proliferation during the entire expansion period.
- a proliferation of the TIL presupposes that the corresponding cells form a largely resting cell layer after sedimentation, in which they touch, but slight movements also occur, with cell counts of 0.1 to 2 ⁇ 10 6 TIL in the sedimented layer of the TIL / cm 2 , preferably 0.5 to 1x 10 6 TIL / cm 2 occur and a steady increase in TIL takes place.
- the amount of TIL harvested from the first cultivation run can be split and used as a working cell bank for the parallel colonization of 4 to 8 bioreactors 150MM . With these bioreactor runs, 10 L 10 TIL can be generated several times.
- a meander perfusion bioreactor 30MM with overlay and underlay chamber is used for the cultivation of TILs. If the TIL obtained from an expansion run in a 30MM bioreactor is to be increased further, this is possible in the following way: A 150 MM bioreactor is set up ready for operation in the GMP Breeder and a 30MM bioreactor is also placed on top of it. The 30MM bioreactor is connected to the 150MM bioreactor underneath via an initially closed hose connection.
- the TIL in the 30MM bioreactor have increased to the usual amount and the exponential growth levels off, the TIL are brought into suspension by shaking them briefly, the hose connection to the 150MM bioreactor is opened, the TIL suspension is discharged through the outlet nozzle with sieve mesh and the connecting hose into the bioreactor vessel 150MM transferred. The supply of gases, automatically adjusted medium supply as well as control and documentation of the cultivation process are continued. After 3 to 7 days of expansion in the 150MM bioreactor, 4 x 10 L 9 to 1 x 10 L 10 TIL can be harvested, which are then suitable for further expansion runs.
- the directed laminar overflow of the sedimented TIL with medium, with homogeneous concentrations of glucose and lactate being maintained over the entire expansion period, and the stable oxygen partial pressure in the medium ensure high reproducibility of the TIL produced by the methods described above.
- certain subpopulations can be preferentially increased with the perfusion technology.
- the proportions of some sub-populations of the expanded TIL can be influenced by varying the concentrations of IL2, Oct3 and IL12 as well as the duration, chronological sequence and subsequent washing out of these additives by supplying fresh medium without these supplements. So e.g. For example, the proportion of CD8+TIL can be significantly increased by short exposure to IL12.
- the supplementation with small amounts of polyethylene glycol or polyethylene imine in the later course of the expansion phase in the bioreactor leads to qualitatively and quantitatively improved expression of trafficking receptors in the harvested TIL.
- an enriched amount of neoantigen-primed TIL can be generated that reach the tumor/tumor metastases.
- the immune cells obtained with the new cultivation method offer further advantages in the production of ATMP to fight cancer compared to the previously known methods in that the method for the production of cell therapeutics (approved by the responsible authorities for the parallel cultivation of cells from different Patients in the same clean room because the bioreactors, which are closed anyway, are each also operated in the GMP Breeder, which is a very effective sterile bench, thereby preventing cross-contamination between patient samples.
- This cultivation method is also of particular importance due to its modular design as a tabletop device.
- the production of patient-specific TIL (or other immune cell or stem cell therapeutics) is in accordance equipped clinical research facilities and facilitates the cultivation of cells close to the patient under GMP conditions.
- the cultivation and isolation of sufficient amounts of TIL, which have a cytotoxic effect on the mutated tumor cells, is reproducible in a controlled process and routine production for use in a cell therapy is feasible.
- the method is designed as a two-stage cultivation method for the ex-vivo isolation, activation and propagation of TIL from tissue parts of tumors, metastases and other tissues, with the cells being transplanted from comminuted tissue parts into the medium located in the perfusion bioreactor vessel begin to grow. After a certain density of mature TIL has been reached, it is specifically activated with anti-IL2 for a further short period of time and then expanded further in medium without anti-IL2.
- TIL from an initial cultivation run in a perfusion bioreactor is initiated when the bioreactor has reached full growth, as evidenced by the leveling off of the previously exponential increase in glucose in the culture medium.
- the bioreactor is briefly shaken.
- the TIL suspension is transferred through the sieve port of the bioreactor via a sterile connected tube into a 200 ml blood bag or 100 ml blood bag.
- the blood bag is separated from the bioreactor and the number of TIL in the blood bag is determined in an aliquot.
- 4 to 10 x 10 L 9 TIL can be expected from a 150MM perfusion bioreactor.
- the suspension in the blood bag from the first cultivation run is used as the working cell bank. Volume fractions each containing 0.75 x 10 L of 9 TIL are withdrawn. One or more of the partial suspensions are immediately transferred to a 150MM bioreactor and immediately further expanded there in further cultivation runs in order to have a first dose of TIL available for the patient as early as possible. The remaining volume fractions from the first TIL harvest are stored cryopreserved in suitable cryo-bags with the addition of DMSO and then multiplied in a second cultivation step in 150MM bioreactors if signs of the tumor disease are still detected after the first TIL treatment and e.g. B. a higher dosage is considered medically necessary or recurrences or metastases make this necessary.
- TIL ATMP The second expansion of a patient-specific TIL ATMP takes place in a standard medium supplemented with IL2, IL12 and 4-1BB-AB. Yields of TIL are usually similar to those in the first proliferation run.
- the TIL suspensions harvested in the second cultivation run are processed as follows: A 150MM bioreactor contains a TIL suspension with a volume of 50 ml. The suspension is transferred through the sieve port into a blood bag with a volume of 100 ml and at 2° to 8° C Stored motionless for 3 hours in such a way that the TIL in the bag can settle opposite the two hose connections of the bag. The medium supernatant is siphoned off sterilely from the blood bag leaving a residual volume of about 20 ml.
- the TIL are then resuspended in 80 ml of 0.9% NaCl solution, filled into centrifuge tubes (50 ml), centrifuged and then resuspended again in a total of 90 ml of 0.9% NaCl solution containing 2% human albumin and Contains 10% DMSO.
- 10 ml of the suspension are taken, distributed in cryotubes and subjected to the necessary analyses. The cell count is determined in samples taken (10 ml in total) and FACS analyzes are carried out.
- the remaining 80 ml of TIL suspension should contain 3 to 8 x 10 L 9 TIL.
- the suspension is divided into additional 100 ml blood bags so that each bag contains 2.5 x 10 L 9 TIL in a 0.9% NaCl solution with 2% human albumin.
- the ex vivo multiplied TIL can be filtered from the tissue residues from a fully grown bioreactor 150MM, harvested, washed, centrifuged, resuspended in NaCl solution with human albumin as defined portions in infusion bags and under controlled transport conditions within fewer hours to the patient transported there, brought to room temperature and infused into the patient to treat one of the tumor diseases mentioned above (cancer of the pancreas, lungs, endometrium, breast, colon, liver, brain, prostate, stomach, melanoma, advanced stage lymphomas) for which no other therapy is known.
- cancer of the pancreas, lungs, endometrium, breast, colon, liver, brain, prostate, stomach, melanoma, advanced stage lymphomas for which no other therapy is known.
- the tumor-infiltrated lymphocytes (TIL) or T-cells of other origin are cultivated as a pharmaceutical composition as a cell therapeutic, the cell therapeutic being cultivated for the treatment of or a combination thereof.
- cryopreserved vials are thawed in such a way that, in a second expansion stage, therapeutically useful amounts of TIL are produced on schedule.
- the TIL are resuspended in a suitable culture medium.
- the TIL suspension (50 to 100 million vital cells) is transferred to another meander bioreactor that is ready for operation.
- This second process step for the further expansion of TIL is carried out in a meander bioreactor, which is similar to the meander bioreactor described above, but which has a larger colonization area.
- Freshly supplemented culture medium is used for further propagation. After 12 to 20 days of expansion, more than 500 million TIL regularly grow in the meander perfusion bioreactor.
- the TIL are harvested, washed and resuspended in NaCl solution with human albumin.
- the TIL suspension is filled into an infusion bag. Viability and cell number are determined on the day of cell harvest and further analyzed according to the specifications of the pharmacopoeia sterility, marker profile, paracrine production of the cells.
- the TIL suspension is kept at room temperature and immediately transported to the clinical partner. The TIL must be applied after 12 to 20 hours at the latest.
- TIL tissue-derived neuropeptide
- a maximum of 100 ml of NaCl solution with human albumin are used.
- FIG. 1 shows a schematic sectional view of the meander bioreactor
- FIG. 2 shows a schematic plan view of the meander bioreactor in which the method according to example 1 is carried out and
- TIL or other T-cells are parts of tissue that occur, for example, during the surgical removal of solid organ tumors or their metastases or their immediately surrounding tissue or are removed for this purpose.
- a tissue volume of about 1 ml is usually sufficient as starting material.
- the tissue samples are placed in a Transport vessel spent with medium. The vessel is kept sealed at room temperature and transported from the tissue removal site to the clean room area for the production of the immune cell preparations.
- the pieces of OP tissue are comminuted in a clean room under an LFB into pieces of 1 to 2 mm3 in size and, in the first stage, transferred to a meander perfusion bioreactor in accordance with DE102018000561.6.
- the shredded pieces of tissue are evenly distributed in the meander perfusion bioreactor and cultivated in the perfusion mode.
- the meander bioreactor is connected ready for operation in a GMP breeder and is continuously monitored by the control unit, largely automatically controlled and documented.
- the meander perfusion bioreactor consists of a rectangular bioreactor vessel 1 made of preferably clear polymer material, which is sealed with a cover 2 in a sterile manner.
- the bioreactor vessel 1 is divided into three chambers 3, 4, 5 arranged one above the other, with the lowest chamber 3 as an underlay chamber, the chamber 4 arranged above the underlay chamber 3 as a meander perfusion chamber and the one above the meander perfusion Chamber 4 arranged chamber 5 are designed as an overlay chamber.
- the underlay chamber 3 and the meander perfusion chamber 4 are separated from one another by a perforated base plate 6 with a film 7 which is tightly fastened thereon and is permeable to oxygen.
- the underlay chamber 3 has inlets and outlets 9, 10 which allow gases to flow through, in particular mixtures of air and oxygen or nitrogen and oxygen, in which the proportion of oxygen is regulated.
- the oxygen diffuses preferentially to nitrogen through the gas-permeable film 7, which is tightly attached to the perforated base plate 6 of the meander perfusion chamber 4.
- controlled amounts of oxygen enter the culture medium during the expansion of the cells both from the overlay and from the underlay chamber (through diffusion).
- the meander perfusion chamber 4 is provided with inlets and outlets for culture media 11, 12, and there are also inlets and outlets 13,14 for the overlay atmosphere and an outlet connector 15 in the overlay chamber 5.
- a screen fabric 16 is arranged on the outlet socket 15 inside the overlay chamber 5 in front of the outlet.
- the overflow is adjustable in height.
- the meander perfusion chamber 4 consists of the base plate 6) with strip-shaped partitions 8 arranged on the upper side 8, dividing the base plate 6 and forcing a meandering flow through the meander perfusion chamber 4 with gases and medium, with the distance A of the partitions 8 from each other as well as from the side and end walls of the meander perfusion chamber 4 is chosen such that an averaged laminar overflow with a Froude number ⁇ 0.005 forms in the stream thread, in the channel formed by the partition walls 8 .
- the number of cells increases as the number of cells (TIL or other cells) multiplies, the supply of fresh medium is continuously increased, with this being automatically controlled by a corresponding algorithm.
- the bottom flow remains close to a Froude number of 0, which prevents the cells from being stirred up.
- the flow conditions described prevent cell stress and ensure a homogeneous supply of nutrients over the entire cell layer growing at the bottom of the channel.
- the overlay chamber (5) has inlets and outlets 13,14 for the overflow of gases.
- the overlay chamber is flown through with the same gas/gas mixture as the underlay chamber 5), whereby the cell is supplied with oxygen either hyperoxically up to 90% O2), normoxically (21% O2) or hypoxically (up to 2% O2), depending on the cell type will
- the TIL multiplied and separated in this first step are centrifuged, resuspended in freezing medium and aliquoted (around 50 million TIL per vial). The samples are stored in the gas phase over liquid nitrogen.
- TIL tumor-infiltrating autologous T lymphocytes
- the culture medium according to the invention leads to rapid growth of the cells.
- the cells that are particularly preferably expanded are those that have specific cytotoxicity compared to the tumor cells from which or from their environment they are obtained
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Hematology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Mycology (AREA)
- Oncology (AREA)
- Sustainable Development (AREA)
- Developmental Biology & Embryology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
The invention relates to a method for isolating, activating and propagating immune cells, more particularly tumor-infiltrating autologous T-lymphocytes (TIL) from primary tumor tissue, metastatic growths, lymphatic tissue but also T cells from other tissues (e.g., blood, lymphatic fluid) in a meander perfusion bioreactor and to the production of immune cellular therapeutics therefrom for controlling tumors of the pancreas, lung, liver, prostate, breast, ovaries, stomach, colon, rectum, bones, brain, skin and other malignant tumors.
Description
Verfahren zur Herstellung von Tumor-infiltrierten T-Lymphozyten (TIL) und deren Verwendung als Zell-Therapeutika für die Behandlung humaner Tumoren Process for the production of tumor-infiltrated T-lymphocytes (TIL) and their use as cell therapeutics for the treatment of human tumors
Die Erfindung betrifft ein Verfahren zur Isolierung, Aktivierung und Vermehrung von Immunzellen, insbesondere von tumorinfiltrierten autologen T- Lymphozyten (TIL) aus primären Tumorgewebe, Metastasen, Lymphgewebe, aber auch T-Zellen aus anderen Geweben (z. B. Blut, Lymphflüssigkeit) in einem Mäander-Perfusions- Bioreaktor und die Herstellung von Immunzell-Therapeutika daraus zur Bekämpfung von Tumoren der Bauchspeicheldrüse, Lunge, Leber, Prostata, Brust, des Eierstocks, Magens, Dickdarms, Rektums, Knochens, Hirns, der Haut und anderer maligner Tumore. The invention relates to a method for isolating, activating and multiplying immune cells, in particular tumor-infiltrated autologous T lymphocytes (TIL) from primary tumor tissue, metastases, lymphatic tissue, but also T cells from other tissues (e.g. blood, lymph fluid) in a meander perfusion bioreactor and the manufacture of immune cell therapeutics therefrom to combat tumors of the pancreas, lung, liver, prostate, breast, ovary, stomach, colon, rectum, bone, brain, skin and other malignant tumors.
Aus dem Stand der Technik sind für das Kultivieren von Lymphozyten und die Herstellung von Immunzell-Therapeuka daraus als „Advanced Investigational Medicinal Products“ (AIMP) für die Behandlung von Krebskrankheiten die Verwendungen folgender Interleukine zusammen mit folgenden Antikörpern, Wachstumsfaktoren mit Coating Produkte, wie Plasmaexpander Gelatine und Supplemente, wie Polyethylenimin; Polyethylenglycol, Prostacyclin Komplement- Substanzen wie C1 bis C9 bekannt: From the prior art, for the cultivation of lymphocytes and the production of immune cell therapies from them as "Advanced Investigational Medicinal Products" (AIMP) for the treatment of cancer diseases, the use of the following interleukins together with the following antibodies, growth factors with coating products, such as plasma expanders gelatin and supplements such as polyethylenimine; Polyethylene glycol, prostacyclin complement substances known as C1 to C9:
> Interleukin 2 > Interleukin 2
• mit dem Antikörper Anti CD 3 • with the Anti CD 3 antibody
• mit dem Antikörper Anti CD 3 und Anti CD 16, • with the antibodies anti CD 3 and anti CD 16,
• mit dem Antikörper Anti CD 3 und Anti CD 28, • with the antibodies anti CD 3 and anti CD 28,
• mit dem Antikörper Anti CD 16, • with the antibody anti CD 16,
• mit dem Antikörper Anti CD 28, • with the anti-CD 28 antibody,
• mit dem Antikörper Anti CD 28 und Anti CD 56, • with the antibodies anti CD 28 and anti CD 56,
• in Verbindung mit Interleukin 7 und Interleukin 17, • in connection with interleukin 7 and interleukin 17,
• in Verbindung mit Interleukin 12 und dem Antikörper CD 3, • in connection with interleukin 12 and the antibody CD 3,
> Interleukin 1a in Verbindung mit Interleukin 15 und dem Antikörper Anti CD 28,> Interleukin 1a in combination with Interleukin 15 and the Anti CD 28 antibody,
> Interleukin 10 mit dem Antikörper Anti CD 8, > Interleukin 10 with the antibody Anti CD 8,
> Interleukin 21 mit dem Antikörper Anti CD 56, > Interleukin 21 with the antibody anti CD 56,
> Interleukin 19 mit dem Antikörper Anti CD 3.
Außerdem ist aus dem Stand der Technik der Einsatz von Interleukin 21 mit dem Antikörper 4-1 BBL für ein In-vitro-Amplifikationsverfahren für effiziente und stark cytotoxische natürliche Killerzellen (NK) bekannt. > Interleukin 19 with the Anti CD 3 antibody. In addition, the use of interleukin 21 with the antibody 4-1 BBL for an in vitro amplification method for efficient and highly cytotoxic natural killer (NK) cells is known from the prior art.
Weiterhin werden im Stand der Technik (J. Immunol. 2004; 172: 4779) Versuchsergebnisse diskutiert, welche Auswirkungen ein kombinierter IL-12- Gentransfer mit 4-1BB-Costimulation auf den kooperativen Anti-Tumor-Effekt gegen einen Modelltumor (Lungenmetastase-Modell) hat. Es wird IL-12-Gentransfer mit 4- 1BB-Costimulation kombiniert, um einen bereits erwähnten kooperativen Anti-Tumor- Effekt gegen diesen Modelltumor zu untersuchen. Es wurde angenommen, dass die angeborene Immunantwort, die von IL-12-aktivierten natürlichen Killerzellen (NK- Zellen) vermittelt wird, die Aktivierung des Immunsystems auslöst und zur Aktivierung von T-Zellen führt, während die 4-1BB-Costimulation die Funktion von Tumorspezifischen T-Zellen verbessert. Furthermore, experimental results are discussed in the prior art (J. Immunol. 2004; 172: 4779), which effects a combined IL-12 gene transfer with 4-1BB co-stimulation has on the cooperative anti-tumor effect against a model tumor (lung metastasis model ) Has. IL-12 gene transfer is combined with 4-1BB costimulation to investigate an already mentioned cooperative anti-tumor effect against this model tumor. It has been hypothesized that the innate immune response mediated by IL-12-activated natural killer (NK) cells triggers activation of the immune system and leads to activation of T cells, while 4-1BB costimulation enhances the function of Improved tumor-specific T cells.
Im Gegensatz dazu sind weder der IL-12-Gentransfer noch die Verabreichung von Anti-4-1BB-Antikörpern jeweils allein effektiv. Die Kombinationstherapie verzögerte das Wachstum von subkutan inokulierten Tumoren signifikant und 50% der tumortragenden Mäuse überlebten mit vollständiger Tumorregression. In contrast, neither IL-12 gene transfer nor administration of anti-4-1BB antibodies are effective alone. The combination therapy significantly delayed the growth of subcutaneously inoculated tumors and 50% of the tumor-bearing mice survived with complete tumor regression.
In Gene Ther. 2005 Oct; 12(20): 1526-33 legen Xu DP, Sauter BV, Huang TG,In Gene Ther. 2005 Oct; 12(20): 1526-33 put Xu DP, Sauter BV, Huang TG,
Meseck M, Woo SL, Chen SH. dar, dass die systemische Abgabe von lg-4-1BBL eine bessere Antitumorantwort als die lokale Genabgabe erzeugen kann. lg-4-1BBL hatte im Vergleich zu dem agonistischen Anti-4-1BB-Antikörper äquivalente biologische Funktionen. So kann löslicher 4-1 BBL-Dimmer als vielversprechendes Mittel für die Krebstherapie beim Menschen entwickelt werden. Meseck M, Woo SL, Chen SH. demonstrate that systemic delivery of Ig-4-1BBL can generate a better antitumor response than local gene delivery. Ig-4-1BBL had equivalent biological functions compared to the agonistic anti-4-1BB antibody. Thus, soluble 4-1 BBL dimmer can be developed as a promising agent for human cancer therapy.
Hier werden nur die Wirkungen der Therapie mit den obenstehenden Kombinationen auf Mäusekarzinome diskutiert und kein Verfahren, insbesondere kein Kulturmedium zur Isolierung und Vermehrung von Zellen aus Gewebeteilen von Tumoren, Metastasen und anderen Geweben beschrieben. Only the effects of therapy with the above combinations on mouse carcinomas are discussed here and no method, in particular no culture medium, for isolating and multiplying cells from tissue parts of tumors, metastases and other tissues is described.
Des Weiteren haben alle aus dem Stand der Technik bekannten Kultivierungsverfahren von Zellen eine Versorgung der in Medium befindlichen Zellen mit Sauerstoff aus überstehender oder überströmender Overlay- Atmosphäre oder aber aus überstehender und unterstehender Overlay- und Underlay-Atmosphäre, wobei die Underlay-Atmosphäre vom überstehenden Medium mit darin enthaltenen
Zellen mittels einer Sauerstoff-durchlässigen Membran zusätzlich Sauerstoff an das überstehende Medium abgibt. Eine in die Kultivierungs-Verfahren integrierte Vorrichtung oder Möglichkeit, die den wachsenden Sauerstoff-Bedarf der sich vermehrenden Immun-Zellen während eines Kultivierungslaufes geregelt sicherstellt, ist in den beschriebenen Kultivierungsverfahren nicht vorgesehen und auch nicht machbar (z. B. GRex-Gefäße; Aastrom Vericell-System). Furthermore, all cell cultivation methods known from the prior art have a supply of oxygen to the cells in the medium from a supernatant or overflowing overlay atmosphere or from a supernatant and below overlay and underlay atmosphere, with the underlay atmosphere being supplied by the supernatant medium with contained therein cells releases additional oxygen to the supernatant medium by means of an oxygen-permeable membrane. A device or possibility integrated into the cultivation process that ensures the growing oxygen requirement of the proliferating immune cells during a cultivation run is not provided for in the cultivation process described and is also not feasible (e.g. GRex vessels; Aastrom Vericell system).
Es ist auch nicht bekannt, ob der positive Effekt durch die kombinierte Anwendung im Mausmodell beim Menschen in gleicher Weise entsteht. Die im Mausmodell gefundene Wirkungen werden sehr oft im Menschen nicht gefunden. It is also not known whether the positive effect of the combined use in the mouse model arises in humans in the same way. The effects found in the mouse model are very often not found in humans.
Die WO 2015 189356 A1 betrifft eine Zusammensetzung zum Expandieren von Lymphozyten, umfassend mindestens zwei Arten von Zytokinen, ausgewählt aus Interleukin 2 (IL-2), Interleukin 15 (IL-15) und Interleukin 21 (IL-21). Sie betrifft ferner ein Verfahren zum Herstellen einer Population klinisch relevanter Lymphozyten, umfassend die Schritte: Erhalten einer Körperprobe von einem Säugetier, insbesondere einer Gewebeprobe oder Körperflüssigkeitsprobe, umfassend mindestens einen Lymphozyten und gegebenenfalls Trennen der Zellen im Körper Probe, Kultivieren der Körperprobe in vitro, um Lymphozyten in der Probe zu expandieren und / oder zu stimulieren, wobei das Kultivieren die Verwendung von IL- 2, IL-15 und / oder IL-21 und gegebenenfalls das Bestimmen des Vorhandenseins klinisch relevanter Lymphozyten in den kultivierten umfasst Stichprobe. Die vorliegende Erfindung betrifft auch eine Immuntherapie und die Population klinisch relevanter Lymphozyten. Die Körperprobe wird aus peripherem Blut eines Säugetiers ausgewählt, wobei insbesondere ein Mensch ausgewählt mit einer Tumorerkrankung wird oder ein Säugetier mit dem Risiko der Entwicklung einer Tumorerkrankung oder mit einer Infektionskrankheit oder mit dem Risiko der Entwicklung einer Infektionskrankheit oder mit einer Autoimmunerkrankung oder mit dem Risiko der Entwicklung einer Autoimmunerkrankung. WO 2015 189356 A1 relates to a composition for expanding lymphocytes, comprising at least two types of cytokines selected from interleukin 2 (IL-2), interleukin 15 (IL-15) and interleukin 21 (IL-21). It also relates to a method for producing a population of clinically relevant lymphocytes, comprising the steps of: obtaining a body sample from a mammal, in particular a tissue sample or body fluid sample, comprising at least one lymphocyte and optionally separating the cells in the body sample, culturing the body sample in vitro to to expand and/or stimulate lymphocytes in the sample, wherein the culturing comprises using IL-2, IL-15 and/or IL-21 and optionally determining the presence of clinically relevant lymphocytes in the cultured sample. The present invention also relates to immunotherapy and the population of clinically relevant lymphocytes. The body sample is selected from peripheral blood of a mammal, in particular a human is selected with a tumor disease or a mammal at risk of developing a tumor disease or with an infectious disease or at risk of developing an infectious disease or with an autoimmune disease or at risk of Development of an autoimmune disease.
In der WO 2015 189357 A1 wird eine Zusammensetzung zum Expandieren von Lymphozyten beschrieben, umfassend mindestens zwei Arten von Zytokinen, ausgewählt aus Interleukin 2 (IL-2), Interleukin 15 (IL-15) und Interleukin 21 (IL-21). Sie betrifft ferner ein Verfahren zum Herstellen einer Population klinisch relevanter Lymphozyten, umfassend die Schritte: Erhalten einer Körperprobe von einem Säugetier, insbesondere einer Gewebeprobe oder Körperflüssigkeitsprobe,
umfassend mindestens einen Lymphozyten und gegebenenfalls Trennen der Zellen in Körper-Probe, Kultivieren der Körperprobe in vitro, um Lymphozyten in der Probe zu expandieren und / oder zu stimulieren, wobei das Kultivieren die Verwendung von IL-2, IL-15 und / oder IL-21 und gegebenenfalls das Bestimmen des Vorhandenseins klinisch relevanter Lymphozyten in der kultivierten Probe umfasst . Die vorliegende Erfindung betrifft auch eine Immuntherapie und die Population klinisch relevanter Lymphozyten WO 2015 189357 A1 describes a composition for expanding lymphocytes, comprising at least two types of cytokines selected from interleukin 2 (IL-2), interleukin 15 (IL-15) and interleukin 21 (IL-21). It also relates to a method for producing a population of clinically relevant lymphocytes, comprising the steps of: obtaining a body sample from a mammal, in particular a tissue sample or body fluid sample, comprising at least one lymphocyte and optionally separating the cells in the body sample, culturing the body sample in vitro to expand and/or stimulate lymphocytes in the sample, the culturing involving the use of IL-2, IL-15 and/or IL -21 and optionally determining the presence of clinically relevant lymphocytes in the cultured sample. The present invention also relates to immunotherapy and the population of clinically relevant lymphocytes
In der WO 2020025706 A1 wird ein Verfahren zur Herstellung eines T-Zell-Produkts beschrieben, das tumorüberreaktive Immunzellen (TURICs) enthält, und eine Zusammensetzung, die mindestens ein T-Zell-Produkt mit TURICs enthält, zur Verwendung bei der Behandlung eines Krebspatienten. Das Verfahren umfasst die Schritte a) Bereitstellen einer Körperprobe, die T-Zellen eines Patienten enthält; b) gegebenenfalls Isolieren der T-Zellen aus der Körperprobe; c) Stimulieren der T-Zellen in vitro in Gegenwart eines Cytokin-Cocktails der Cytokine Interleukin 2 (IL-2), Interleukin 15 (IL-15) und Interleukin 21 (IL-21) und eines stimulierenden Peptids oder einer Gruppe von stimulierenden Peptiden; d) Bestimmen eines Reaktivitätsfaktors in der T-Zell-Probe, wobei der Reaktivitätsfaktor das Vorhandensein von T-Zellen anzeigt, die auf das stimulierende Peptid oder mindestens ein Peptid der Gruppe von stimulierenden Peptiden abzielen; e) falls der Reaktivitätsfaktor positiv ist, Identifizierung der T-Zell-Probe als tumorreaktive T-Zell-Probe; ansonsten Identifizieren der T-Zell-Probe als nicht reaktive T-Zell-Probe; f) Kultivieren der nicht reaktiven Probe in vitro in Gegenwart des Cytokin-Cocktails von IL-2, IL-15 und IL-21 und entweder einer von autologen Tumorzellen oder des stimulierenden Peptids oder der Gruppe von stimulierenden Peptiden, g) gegebenenfalls Stimulieren des T-Zell-Produkts in vitro in Gegenwart des Cytokin- Cocktails von IL-2, IL-15 und IL-21 und des stimulierenden Peptids oder der Gruppe von stimulierenden Peptiden; h) Bestimmen des Reaktivitätsfaktors im T-Zell-Produkt; und i) falls der Reaktivitätsfaktor positiv ist, wird das T-Zellprodukt als TURIC enthaltendes T-Zellprodukt ausgewählt.
Die WO 2020 198031 A1 offenbart ein Verfahren und die Herstellung sowie die Verwendung von lungenkrebsspezifischen Mark-infiltrierenden Lymphozyten ("MILs") Das Verfahren umfasst die Schritte: a. Kultivieren einer Knochenmarkprobe, die von dem Patienten mit Lungenkrebs erhalten wurde, mit einem Anti-CD3-Antikörper und einem Anti-CD28 Antikörper in einer hypoxischen Umgebung zur Herstellung von hypoxisch aktivierten Mark-infiltrierenden Lymphozyten; b. Kultivieren der hypoxisch aktivierten Mark-infiltrierenden Lymphozyten in einer normoxischen Umgebung, um die therapeutisch aktivierten Mark- infiltrierenden Lymphozyten zu produzieren; und (c) Verabreichen der therapeutisch aktivierten Mark-infiltrierenden Lymphozyten an das Subjekt mit Lungenkrebs. WO 2020025706 A1 describes a method for producing a T cell product containing tumor-overreactive immune cells (TURICs) and a composition containing at least one T cell product containing TURICs for use in treating a cancer patient. The method comprises the steps of a) providing a body sample containing T cells from a patient; b) optionally isolating the T cells from the body sample; c) stimulating the T cells in vitro in the presence of a cytokine cocktail of the cytokines interleukin 2 (IL-2), interleukin 15 (IL-15) and interleukin 21 (IL-21) and a stimulating peptide or group of stimulating peptides ; d) determining a reactivity factor in the T cell sample, the reactivity factor being indicative of the presence of T cells that target the stimulatory peptide or at least one peptide from the group of stimulatory peptides; e) if the reactivity factor is positive, identifying the T cell sample as a tumor reactive T cell sample; otherwise identifying the T cell sample as a non-reactive T cell sample; f) culturing the non-reactive sample in vitro in the presence of the cytokine cocktail of IL-2, IL-15 and IL-21 and either one of autologous tumor cells or the stimulating peptide or group of stimulating peptides, g) optionally stimulating the T - cell product in vitro in the presence of the cytokine cocktail of IL-2, IL-15 and IL-21 and the stimulating peptide or group of stimulating peptides; h) determining the reactivity factor in the T cell product; and i) if the reactivity factor is positive, the T cell product is selected as a TURIC-containing T cell product. WO 2020 198031 A1 discloses a method and the production and use of lung cancer-specific marrow-infiltrating lymphocytes ("MILs"). The method comprises the steps: a. culturing a bone marrow sample obtained from the lung cancer patient with an anti-CD3 antibody and an anti-CD28 antibody in a hypoxic environment to produce hypoxic activated marrow-infiltrating lymphocytes; b. culturing the hypoxically activated marrow-infiltrating lymphocytes in a normoxic environment to produce the therapeutically activated marrow-infiltrating lymphocytes; and (c) administering the therapeutically activated marrow-infiltrating lymphocytes to the subject with lung cancer.
Die Erfindung gemäß EP 3730608 A1 betrifft ein Verfahren zur Behandlung eines Patienten mit Krebs, wobei das Verfahren das Verabreichen von expandierten Tumor-infiltrierenden Lymphozyten (TILs) umfasst, umfassend: a) Erhalten einer ersten Population von TILs von einem Tumor, der von einem Patienten reseziert wurde, durch Verarbeiten einer von dem Patienten erhaltenen Tumorprobe zu mehreren Tumoren Fragmente; b) Hinzufügen der Tumorfragmente in ein geschlossenes System; c) Durchführen einer ersten Expansion durch Kultivieren der ersten Population von TILs in einem Zellkulturmedium, das IL-2 umfasst, um eine zweite Population von TILs zu erzeugen, wobei die erste Expansion in einem geschlossenen Behälter durchgeführt wird, der eine erste gasdurchlässige Oberfläche bereitstellt, wobei die erste Expansion für ungefähr 3 bis 14 Tage durchgeführt wird, um die zweite Population von TILs zu erhalten, wobei die zweite Population von TILs mindestens 50-fach größer ist als die erste Population von TILs, und wobei der Übergang von Schritt (b ) zu Schritt (c) erfolgt ohne Öffnen des Systems; d) Durchführen einer zweiten Expansion durch Ergänzen des Zellkulturmediums der zweiten Population von TILs mit zusätzlichen IL-2-, OKT-3- und Antigen präsentierenden Zellen (APCs), um eine dritte Population von TILs zu erzeugen, wobei die zweite Expansion durchgeführt ist für ungefähr 7 bis 14 Tage, um die dritte
Population von TILs zu erhalten, wobei die dritte Population von TILs eine therapeutische Population von TILs ist, die eine erhöhte Subpopulation von Effektor- T-Zellen und / oder zentralen Gedächtnis-T-Zellen im Vergleich zur zweiten Population von TILs umfasst wobei die zweite Expansion in einem geschlossenen Behälter durchgeführt wird, der eine zweite gasdurchlässige Oberfläche bereitstellt, und wobei der Übergang von Schritt (c) zu Schritt (d) erfolgt, ohne das System zu öffnen; e) Ernten der therapeutischen Population von TILs, die aus Schritt (d) erhalten wurden, wobei der Übergang von Schritt (d) zu Schritt (e) erfolgt, ohne das System zu öffnen; und f) Übertragen der geernteten TIL-Population von Schritt (e) in einen Infusionsbeutel, wobei die Übertragung von Schritt (e) nach (f) erfolgt, ohne das System zu öffnen; g) Kryokonservieren des Infusionsbeutels, der die geerntete TIL-Population aus Schritt (f) umfasst, unter Verwendung eines Kryokonservierungsverfahrens; und h) Population von TILs aus dem Infusionsbeutel in Schritt (g) an das SubjektThe invention according to EP 3730608 A1 relates to a method of treating a patient with cancer, the method comprising administering expanded tumor-infiltrating lymphocytes (TILs), comprising: a) obtaining a first population of TILs from a tumor derived from a patient was resected by processing a tumor sample obtained from the patient into multiple tumor fragments; b) adding the tumor fragments into a closed system; c) performing a first expansion by culturing the first population of TILs in a cell culture medium comprising IL-2 to produce a second population of TILs, the first expansion being performed in a closed container providing a first gas-permeable surface, wherein the first expansion is performed for about 3 to 14 days to obtain the second population of TILs, wherein the second population of TILs is at least 50-fold larger than the first population of TILs, and wherein the transition from step (b) to step (c) takes place without opening the system; d) performing a second expansion by supplementing the cell culture medium of the second population of TILs with additional IL-2, OKT-3 and antigen presenting cells (APCs) to create a third population of TILs, the second expansion being performed for about 7 to 14 days to the third population of TILs, wherein the third population of TILs is a therapeutic population of TILs comprising an increased subpopulation of effector T cells and/or central memory T cells compared to the second population of TILs, wherein the second expansion is carried out in a closed container providing a second gas permeable surface and wherein the transition from step (c) to step (d) occurs without opening the system; e) harvesting the therapeutic population of TILs obtained from step (d), transitioning from step (d) to step (e) without opening the system; and f) transferring the harvested TIL population of step (e) into an infusion bag, wherein the transferring from step (e) to (f) occurs without opening the system; g) cryopreserving the infusion bag comprising the harvested TIL population of step (f) using a cryopreservation method; and h) population of TILs from the infusion bag in step (g) to the subject
Die Anzahl von TILs, die zur Verabreichung einer therapeutisch wirksamen Dosierung in Schritt (h) ausreichen, beträgt etwa 1 c 10L9 bis etwa 9 c 10L10. The number of TILs sufficient to administer a therapeutically effective dosage in step (h) is about 1 c 10 L 9 to about 9 c 10 L 10.
Die pharmazeutische Zusammensetzung wird zur Herstellung eines Medikamentes zur Behandlung von Krebs eingesetzt, wobei der Krebs aus der Gruppe bestehend aus Melanom (einschließlich metastasiertem Melanom), Eierstockkrebs, Gebärmutterhalskrebs, nicht-kleinzelligem Lungenkrebs (NSCLC), Lungenkrebs, Blasenkrebs, Brustkrebs, Krebs durch humanes Papillomavirus, Kopf- und Halskrebs (einschließlich Kopf-Hals-Plattenepithelkarzinom (HNSCC)), Nierenkrebs und Nierenzellkarzinom. The pharmaceutical composition is used for the manufacture of a medicament for the treatment of cancer, which cancer is selected from the group consisting of melanoma (including metastatic melanoma), ovarian cancer, cervical cancer, non-small cell lung cancer (NSCLC), lung cancer, bladder cancer, breast cancer, human cancer papillomavirus, head and neck cancer (including head and neck squamous cell carcinoma (HNSCC)), kidney cancer and renal cell carcinoma.
Die WO 2020231 058 A1 betrifft aktivierte Lymphozyten, die Cytokin-induzierte Killerzellen umfassen, in denen CD8 + CD56 + NKG2D + -Zellen in einem Anteil von 20% oder mehr vorhanden sind, und ein Herstellungsverfahren dafür und insbesondere aktivierte Lymphozyten, die Cytokin-induzierte Abtötung umfassen Zellen, die eine hohe Fähigkeit zur Abtötung von Tumorzellen und Wachstumsraten aufweisen und nahezu frei von Nebenwirkungen sind, da sie nicht die kombinierte Verabreichung von lnterleukin-2 und ein Herstellungsverfahren dafür erfordern.
Die EP 3565888 A1 offenbart ein Verfahren zur Expansion von tumorinfiltrierenden Lymphozyten als zweistufiges/dreistufiges Verfahren mit dem Cytokin IL 2 mit und Anti-CD3 (Okt3) / Anti-CD28-Antikörpern. Das Zellkulturmedium enthält IL-2, OKT-3 (Anti-CD3) -Antikörper, periphere mononukleäre Blutzellen (PBMCs) und gegebenenfalls den TNFRSF-Agonisten, wie l-4bb und einen zweiten TNFRSF- Agonisten. WO 2020231 058 A1 relates to activated lymphocytes comprising cytokine-induced killer cells in which CD8 + CD56 + NKG2D + cells are present in a proportion of 20% or more and a production method therefor and in particular to activated lymphocytes which cytokine-induced Killing includes cells which have high tumor cell-killing ability and growth rates and are almost free from side effects because they do not require the combined administration of interleukin-2 and a manufacturing method thereof. EP 3565888 A1 discloses a method for expanding tumor-infiltrating lymphocytes as a two-stage/three-stage method using the cytokine IL 2 with and anti-CD3 (Okt3)/anti-CD28 antibodies. The cell culture medium contains IL-2, OKT-3 (anti-CD3) antibody, peripheral blood mononuclear cells (PBMCs) and optionally the TNFRSF agonist such as I-4bb and a second TNFRSF agonist.
Die im Stand der Technik beschriebenen Kulturmedien sind auch durchweg sehr teuer. Das erschwert die Durchführung statistisch aussagefähiger klinischer Studien und steht einer allgemeinen Anwendung einer Therapie mit Immunzellen im Wege.The culture media described in the prior art are also all very expensive. This makes it difficult to conduct statistically meaningful clinical studies and stands in the way of a general application of therapy with immune cells.
Aufgabe der Erfindung ist es, ein Verfahren zur Kultivierung von Zellen, insbesondere von tumorinfiltrierten T- Lymphozyten (TIL) und weiteren T-Zellen aus humanen lymphatischen Geweben in einem Kultivierungs-System mit Mäander- Perfusions-Bioreaktoren zu entwickeln, mit dem bestehende Probleme wie geringe Standardisierung und Reproduzierbarkeit, schwierige Prozesse zur massenhaften Gewinnung dieser Zellen, weiter aufwändige und unbequeme Bedingungen bei allgemeiner klinischer Anwendung sowie hohe Herstellungs-Kosten, die bei den herkömmlichen In-vitro-Kulturverfahren existieren, radikal gelöst werden. The object of the invention is to develop a method for cultivating cells, in particular tumor-infiltrated T-lymphocytes (TIL) and other T-cells from human lymphoid tissues in a cultivation system with meander perfusion bioreactors, with which existing problems such as low standardization and reproducibility, difficult processes for the mass production of these cells, further complex and inconvenient conditions in general clinical use as well as high production costs, which exist in the conventional in vitro culture methods, are radically solved.
Überraschender Weise wurde gefunden, dass die Aufgabe der Erfindung durch ein Verfahren gelöst wird, bei dem Surprisingly, it was found that the object of the invention is achieved by a method in which
• eine definierte Zahl von zerkleinerten Gewebestücken aus einem Patienten individuellen Tumor in einen Mäander- Perfusions- Bioreaktor eingebracht und gleichmäßig verteilt wird, • a defined number of comminuted pieces of tissue from a patient's individual tumor are introduced into a meander perfusion bioreactor and distributed evenly,
• die aus den Gewebestücke auswachsende Zellen, insbesondere turmorinfiltrierte T-Lymphozyten am Boden des Gerinnes sedimentieren,• the cells growing out of the tissue pieces, in particular tumour-infiltrated T-lymphocytes, sediment at the bottom of the clot,
• die Zellen nach dem Sedimentieren eine weitgehend ruhende Zellschicht mit einem engen und zugleich wechselnden Kontakt der Zellen untereinander für eine gute Vermehrung bilden, in der sie sich berühren, aber auch leichte Bewegungen auftreten, wobei TIL Zellzahlen in der sedimentierten Schicht bei 0,1 bis 2 x 106 TIL/cm2, vorzugsweise 0,5 bis 1x 106 TIL/cm2 für eine stetige Vermehrung liegen, • After sedimentation, the cells form a largely stationary cell layer with close and at the same time alternating contact between the cells for good proliferation, in which they touch, but slight movements also occur, with TIL cell counts in the sedimented layer at 0.1 to 2 x 10 6 TIL/cm 2 , preferably 0.5 to 1 x 10 6 TIL/cm 2 for steady growth,
• eine mäanderförmige Führung des Medium-Flusses durch ein Gerinne eines Perfusions-Bioreaktors mit einer Oberströmung gemäß einer Froudschen Zahl <0,005, vorzugsweise < 0,002 und einer Bodenströmung gemäß einer
Froudschen Zahl von 0 oder nahe 0 erfolgt, wobei das Medium in einer gerichteten laminaren Strömung über die sedimentierten TIL fließt, ähnlich dem Blutfluss in natürlichen Blutgefäßen und dabei keinen Zellstress verursacht, • a meandering guidance of the medium flow through a channel of a perfusion bioreactor with an overflow according to a Froud number <0.005, preferably <0.002 and a bottom flow according to a Froud number of 0 or close to 0 occurs, whereby the medium flows in a directed laminar flow over the sedimented TIL, similar to the blood flow in natural blood vessels and does not cause cell stress,
• das Medium aus einem übliche Basismedium besteht, das mit AB Humanserum, Cytokinen, Antikörpern und irradiierten und desintegrierten humanen Feederzellen supplementiert ist, wobei die Cytokine aus Interleukin 12 allein oder aus einem Gemisch aus Interleukin 2 und Interleukin 12 bestehen oder aus einem Gemisch von IL12, IL15 und alle Gemische zusätzlich den Antikörper 4-1 BB enthalten, • the medium consists of a conventional basic medium supplemented with AB human serum, cytokines, antibodies and irradiated and disintegrated human feeder cells, the cytokines consisting of interleukin 12 alone or of a mixture of interleukin 2 and interleukin 12 or of a mixture of IL12 , IL15 and all mixtures additionally contain the antibody 4-1 BB,
• die Gewebestücke und die daraus auswachsenden Zellen in den Bioreaktorgefäßen aus der Underlay-Kammer und der Overlay-Kammer gleichzeitig hyperoxisch oder normoxisch mit Sauerstoff versorgt werden.• the pieces of tissue and the cells growing from them in the bioreactor vessels from the underlay chamber and the overlay chamber are simultaneously supplied with oxygen in a hyperoxic or normoxic manner.
Die oben genannten Kombinationen sind erforderlich, um in der Anfangsphase eine spezifische Proliferation mutierter TIL, aber auch mutierter T-Zellen aus anderen Geweben (z. B. Blut, Lymphflüssigkeit) dergestalt zu bewirken, dass von Neoantigenen des Tumors geprimte Zellen vermehrt werden, wobei in der späteren Phase der Proliferation die Teilungsfähigkeit der TIL erheblich länger erhalten bleibt (und dadurch nennenswert höhere Ausbeuten erzielt werden) im Vergleich zu den gleichen TIL, die in statischer Kultur oder in turbulent strömendem Medium kultiviert werden. The above combinations are required in order to cause a specific proliferation of mutated TIL, but also mutated T cells from other tissues (e.g. blood, lymph fluid) in the initial phase in such a way that cells primed by neoantigens of the tumor are increased, with in the later phase of proliferation, the ability of the TIL to divide is preserved considerably longer (and thus significantly higher yields are achieved) compared to the same TIL cultivated in static culture or in turbulent flow medium.
Das neuartige Verfahren ermöglicht die Herstellung von mehrfach 10L9 bis mehrfach 10L 10 Immunzellen als ATMP in einem völlig geschlossenen Kultivierungsverfahren. Dazu wird anfangs ein single use Perfusions-Bioreaktor im Sterilraum unseres GMP Breeders installiert und betrieben und mittels einer Control Unit überwacht: Die Versorgung mit Medium und Gasen erfolgt geregelt; pH-Wert, p02-Konzentration und Temperatur werden im Medium von Sensoren kontinuierlich gemessen und konstant gehalten. Mit zunehmender TIL-Menge im Bioreaktor-Gefäß wird die Zufuhr von Medium über einen Algorythmus automatisch erhöht. The new method enables the production of multiple 10 L 9 to multiple 10 L 10 immune cells as ATMP in a completely closed cultivation process. For this purpose, a single-use perfusion bioreactor is initially installed and operated in the sterile room of our GMP breeder and monitored by a control unit: The supply of medium and gases is regulated; pH value, pO2 concentration and temperature are continuously measured in the medium by sensors and kept constant. As the amount of TIL in the bioreactor vessel increases, the supply of medium is automatically increased via an algorithm.
Wenn ausreichend Tumorgewebe vorhanden ist, wird ein Bioreaktor 150MM benutzt. Die Immunzellen enthaltenden, zerkleinerten Gewebestücke werden im Sterilraum des GMP Breeders in den betriebsbereit angeschlossenen single use Bioreaktor eingebracht. Die etwa 1 mm3 großen Tumorgewebestücke werden gleichmäßig im
Medium der Overlay-Kammer verteilt. Im Bioreaktorgefäß wachsen TIL in einem Standard-Medium, das mit Humanserum, IL2, Oct3 und irradiierten Feederzellen und/oder auch mit irradiierten und dann mit Ultraschall desintegrierten Feederzellen supplementiert ist, aus den Tumorgewebe-Stücken in 7 bis 14 Tagen fortlaufend aus und vermehren sich. Auf diese Weise können 4 bis 10 x 10L9 TIL gezüchtet werden. Während der Kultivierung wird das Medium mit geringer Flussrate über die sedimentierten TIL zirkulierend umgepumpt, ein definierter Anteil des Mediums wird, abhängig vom Glucose-Verbrauch, zunehmend durch Frischmedium ersetzt. Dies wird automatisch von einem Algorythmus der Control Unit gesteuert. Bei den TIL ist während der gesamten Expansionsdauer ein enger und zugleich wechselnder Kontakt der Zellen untereinander für eine gute Vermehrung notwendig. Eine Proliferation der TIL setzt voraus, dass die entsprechenden Zellen nach dem Sedimentieren eine weitgehend ruhende Zellschicht bilden, in der sie sich berühren, aber auch leichte Bewegungen auftreten, wobei in der sedimentierten Schicht der TIL Zellzahlen von 0,1 bis 2 x 106 TIL/cm2, vorzugsweise 0,5 bis 1x 106 TIL/cm2 auftreten und eine stetige Vermehrung der TIL stattfindet. If sufficient tumor tissue is available, a 150MM bioreactor is used. The shredded pieces of tissue containing immune cells are placed in the sterile room of the GMP Breeder in the single-use bioreactor, which is connected and ready for operation. The approximately 1 mm 3 large pieces of tumor tissue are evenly distributed in the Medium of the overlay chamber distributed. In the bioreactor vessel, TIL grow in a standard medium that is supplemented with human serum, IL2, Oct3 and irradiated feeder cells and/or also with irradiated and then ultrasonically disintegrated feeder cells from the tumor tissue pieces in 7 to 14 days and multiply continuously . This way 4 to 10 x 10 L 9 TIL can be grown. During the cultivation, the medium is circulated at a low flow rate over the sedimented TIL, a defined portion of the medium is increasingly replaced by fresh medium, depending on the glucose consumption. This is automatically controlled by an algorithm in the Control Unit. In the case of the TIL, close and at the same time alternating contact between the cells is necessary for good proliferation during the entire expansion period. A proliferation of the TIL presupposes that the corresponding cells form a largely resting cell layer after sedimentation, in which they touch, but slight movements also occur, with cell counts of 0.1 to 2×10 6 TIL in the sedimented layer of the TIL / cm 2 , preferably 0.5 to 1x 10 6 TIL / cm 2 occur and a steady increase in TIL takes place.
Wenn für die Behandlung eines Patienten mehrfach größere Mengen an TILs verabreicht werden sollen, dies auch in zeitlichem Abstand, kann die aus dem ersten Kultivierungslauf geerntete Menge an TIL gesplittet werden und als Arbeits-Zellbank für die parallele Besiedlung von 4 bis 8 Bioreaktoren 150MM benutzt werden. Mit diesen Bioreaktorläufen lassen sich mehrfach 10L10 TIL erzeugen. If larger amounts of TILs are to be administered several times for the treatment of a patient, also at intervals, the amount of TIL harvested from the first cultivation run can be split and used as a working cell bank for the parallel colonization of 4 to 8 bioreactors 150MM . With these bioreactor runs, 10 L 10 TIL can be generated several times.
Für die Kultivierung von TILs wird dann, wenn nur eine geringe Menge an Tumor- Gewebe zur Verfügung steht (z. B. aus Biopsien), ein Mäander-Perfusions-Bioreaktor 30MM mit Overlay- und Underlay-Kammer verwendet. Wenn die aus einem Expansionslauf in einem Bioreaktor 30MM gewonnenen TIL weiter vermehrt werden sollen, so ist das auf folgende Weise möglich: Im GMP Breeder wird ein Bioreaktor 150 MM betriebsbereit aufgestellt und auf diesem stehend ebenfalls ein Bioreaktor 30MM. Der Bioreaktor 30MM wird über eine zunächst verschlossene Schlauchverbindung mit dem darunter angeordneten Bioreaktor 150MM fest verbunden. Sobald im Bioreaktor 30MM die TIL sich zu üblicher Menge vermehrt haben und das exponentielle Wachstum abflacht, werden die TIL durch kurzes Schütteln in Suspension gebracht, die Schlauchverbindung zum Bioreaktor 150MM wird geöffnet, die TIL-Suspension wird durch den mit Siebgewebe versehenen Auslassstutzen und den Verbindungsschlauch in das Bioreaktorgefäß 150MM
überführt. Die Versorgung mit Gasen, automatisch angepasste Medium-Zufuhr sowie Steuerung und Dokumentation des Kultivierungs-Prozesses werden fortgeführt. Nach 3 bis 7 Tagen Expansion im Bioreaktor 150MM können so 4 x 10L9 bis 1 x 10L10 TIL geerntet werden, die dann für weitere Expansionsläufe geeignet sind. If only a small amount of tumor tissue is available (e.g. from biopsies), a meander perfusion bioreactor 30MM with overlay and underlay chamber is used for the cultivation of TILs. If the TIL obtained from an expansion run in a 30MM bioreactor is to be increased further, this is possible in the following way: A 150 MM bioreactor is set up ready for operation in the GMP Breeder and a 30MM bioreactor is also placed on top of it. The 30MM bioreactor is connected to the 150MM bioreactor underneath via an initially closed hose connection. As soon as the TIL in the 30MM bioreactor have increased to the usual amount and the exponential growth levels off, the TIL are brought into suspension by shaking them briefly, the hose connection to the 150MM bioreactor is opened, the TIL suspension is discharged through the outlet nozzle with sieve mesh and the connecting hose into the bioreactor vessel 150MM transferred. The supply of gases, automatically adjusted medium supply as well as control and documentation of the cultivation process are continued. After 3 to 7 days of expansion in the 150MM bioreactor, 4 x 10 L 9 to 1 x 10 L 10 TIL can be harvested, which are then suitable for further expansion runs.
Die gerichtete laminare Überströmung der sedimentierten TIL mit Medium, wobei über die gesamte Expansionsdauer homogene Konzentrationen an Glukose und Laktat eingehalten werden, sowie der stabile Sauerstoff-Partialdruck im Medium sorgen für hohe Reproduzierbarkeit der nach den vorstehend beschriebenen Verfahren hergestellten TIL. Darüber hinaus hat sich ergeben, dass mit der Perfusions-Technologie bestimmte Subpopulationen bevorzugt vermehrt werden können. Durch Variation der Konzentrationen an IL2, Oct3 und IL12 sowie Dauer, zeitliche Abfolge und anschließendes Auswaschen dieser Zusätze durch Zufuhr von Frischmedium ohne diese Supplemente können die Anteile einiger Sub-Populationen der expandierten TIL beeinflusst werden. So kann z. B. durch kurze Einwirkdauer von IL12 der Anteil an CD8+TIL erheblich erhöht werden. Weiter führt die Supplementierung mit geringen Mengen an Polyethylenglycol oder Polyethylenimin im späteren Verlauf der Expansions-Phase im Bioreaktor zu qualitativ und quantitativ verbesserter Ausprägung von Traffiking-Rezeptoren bei den geernteten TIL. Mit der vorstehend beschriebenen Supplementierung kann eine angereicherte Menge an Neoantigen-geprimten TIL erzeugt werden, die in den Tumor/die Tumor-Metastasen gelangen. The directed laminar overflow of the sedimented TIL with medium, with homogeneous concentrations of glucose and lactate being maintained over the entire expansion period, and the stable oxygen partial pressure in the medium ensure high reproducibility of the TIL produced by the methods described above. In addition, it has been shown that certain subpopulations can be preferentially increased with the perfusion technology. The proportions of some sub-populations of the expanded TIL can be influenced by varying the concentrations of IL2, Oct3 and IL12 as well as the duration, chronological sequence and subsequent washing out of these additives by supplying fresh medium without these supplements. So e.g. For example, the proportion of CD8+TIL can be significantly increased by short exposure to IL12. Furthermore, the supplementation with small amounts of polyethylene glycol or polyethylene imine in the later course of the expansion phase in the bioreactor leads to qualitatively and quantitatively improved expression of trafficking receptors in the harvested TIL. With the supplementation described above, an enriched amount of neoantigen-primed TIL can be generated that reach the tumor/tumor metastases.
Die mit den neuartigen Kultivierungsverfahren gewonnenen Immun-Zellen bieten weitere Vorteile bei der Herstellung von ATMP zur Krebsbekämpfung gegenüber den bisher bekannten Verfahren dadurch, dass das Verfahren für die Herstellung von Zell-Therapeutika (von den zuständigen Behörden zugelassen ist für die parallele Kultivierung von Zellen verschiedener Patienten im selben Reinraum, weil die ohnehin geschlossenen Bioreaktoren jeweils zusätzlich im GMP Breeder betrieben werden, der eine sehr wirksame Sterilbank ist. Kreuzkontaminationen zwischen den Patienten-Proben werden dadurch verhindert. The immune cells obtained with the new cultivation method offer further advantages in the production of ATMP to fight cancer compared to the previously known methods in that the method for the production of cell therapeutics (approved by the responsible authorities for the parallel cultivation of cells from different Patients in the same clean room because the bioreactors, which are closed anyway, are each also operated in the GMP Breeder, which is a very effective sterile bench, thereby preventing cross-contamination between patient samples.
Besondere Bedeutung besitzt dieses Kultivierungsverfahren auch durch seinen modularen Aufbau als Tischgerät. Die Herstellung von Patienten-individuellen TIL (oder anderen Immunzell- oder Stammzell-Therapeutika) ist in entsprechend
ausgerüsteten klinischen Forschungseinrichtungen möglich und erleichtert die Kultivierung von Zellen Patienten-nah unter GMP-Bedingungen. This cultivation method is also of particular importance due to its modular design as a tabletop device. The production of patient-specific TIL (or other immune cell or stem cell therapeutics) is in accordance equipped clinical research facilities and facilitates the cultivation of cells close to the patient under GMP conditions.
Durch das erfindungsgenmäße Verfahren ist die Züchtung und Isolierung von ausreichenden Mengen an zytotoxisch gegen die mutierten Tumorzellen wirkenden TIL in einem kontrollierten Prozess reproduzierbar möglich und eine routinemäßige Produktion für den Einsatz in einer Zelltherapie machbar. With the method according to the invention, the cultivation and isolation of sufficient amounts of TIL, which have a cytotoxic effect on the mutated tumor cells, is reproducible in a controlled process and routine production for use in a cell therapy is feasible.
Das Verfahren ist als ein zweistufiges Kultivierungs-Verfahren für die ex-vivo Isolierung, Aktivierung und Vermehrung von TIL aus Gewebeteilen von Tumoren, Metastasen und anderen Geweben ausgelegt, wobei die Zellen in einer zeitlich begrenzten kurzen Anfangs-Phase des Verfahrens aus zerkleinerten Gewebeteilen in das im Perfusions-Bioreaktorgefäß befindliche Medium auszuwachsen beginnen. Nach Erreichen einer bestimmten Dichte an ausgewachsenen TIL wird über einen weiteren kurzen Zeitraum spezifisch aktiviert mit Anti-IL2 und danach weiter expandiert in Medium ohne Anti-IL2. The method is designed as a two-stage cultivation method for the ex-vivo isolation, activation and propagation of TIL from tissue parts of tumors, metastases and other tissues, with the cells being transplanted from comminuted tissue parts into the medium located in the perfusion bioreactor vessel begin to grow. After a certain density of mature TIL has been reached, it is specifically activated with anti-IL2 for a further short period of time and then expanded further in medium without anti-IL2.
Die Ernte der TIL aus einem ersten Kultivierungslauf in einem Perfusions-Bioreaktor wird eingeleitet, wenn der Bioreaktor vollgewachsen ist, erkennbar am Abflachen des zuvor exponentiellen Glukose-Anstiegs im Kulturmedium. Für die GMP-konforme TIL-Ernte wird der Bioreaktor kurz geschüttelt. Die TIL-Suspension wird durch den Sieb-Stutzen des Bioreaktors über einen steril verbundenen Schlauch in einen 200 ml Blutbeutel oder 100 ml Blutbeutel transferiert. Der Blutbeutel wird vom Bioreaktor getrennt, in einem Aliquot wird die Zahl an TIL im Blutbeutel bestimmt. Zu erwarten sind aus einem Perfusions-Bioreaktor 150MM je nach T umorgewebe 4 bis 10 x 10L9 TIL. Harvest of the TIL from an initial cultivation run in a perfusion bioreactor is initiated when the bioreactor has reached full growth, as evidenced by the leveling off of the previously exponential increase in glucose in the culture medium. For the GMP-compliant TIL harvest, the bioreactor is briefly shaken. The TIL suspension is transferred through the sieve port of the bioreactor via a sterile connected tube into a 200 ml blood bag or 100 ml blood bag. The blood bag is separated from the bioreactor and the number of TIL in the blood bag is determined in an aliquot. Depending on the tumor tissue, 4 to 10 x 10 L 9 TIL can be expected from a 150MM perfusion bioreactor.
Die Suspension im Blutbeutel aus dem ersten Kultivierungslauf wird als Arbeitszellbank benutzt. Volumenanteile, die jeweils 0,75 x 10L9 TIL enthalten, werden entnommen. Eine oder mehrere der Teil-Suspensionen werden sofort in einen Bioreaktor 150MM überführt und dort sofort in weiteren Kultivierungsläufen weiter expandiert, um möglichst früh eine Erstdosis an TIL für den Patienten verfügbar zu haben. Die restlichen Volumenanteile aus der ersten TIL-Ernte werden in geeigneten Kryo-Beuteln mit Zusatz von DMSO kryokonserviert gelagert und dann in einem zweiten Kultivierungsschritt in Bioreaktoren 150MM vermehrt, wenn nach der erste TIL-Behandlung noch Zeichen der Tumorkrankheit festgestellt werden und
z. B. eine höhere Dosierung medizinisch für notwendig gehalten wird oder Rezidive oder Metastasen das notwendig machen. The suspension in the blood bag from the first cultivation run is used as the working cell bank. Volume fractions each containing 0.75 x 10 L of 9 TIL are withdrawn. One or more of the partial suspensions are immediately transferred to a 150MM bioreactor and immediately further expanded there in further cultivation runs in order to have a first dose of TIL available for the patient as early as possible. The remaining volume fractions from the first TIL harvest are stored cryopreserved in suitable cryo-bags with the addition of DMSO and then multiplied in a second cultivation step in 150MM bioreactors if signs of the tumor disease are still detected after the first TIL treatment and e.g. B. a higher dosage is considered medically necessary or recurrences or metastases make this necessary.
Die zweite Expansion eines Patienten-individuellen TIL ATMP erfolgt in einem Standardmedium, das mit IL2, IL12 und 4-1BB-AB supplementiert ist. Die Ausbeuten an TIL sind in der Regel denen im ersten Proliferationslauf ähnlich. The second expansion of a patient-specific TIL ATMP takes place in a standard medium supplemented with IL2, IL12 and 4-1BB-AB. Yields of TIL are usually similar to those in the first proliferation run.
Die im zweiten Kultivierungslauf jeweils geernteten TIL-Suspensionen werden wie folgt aufgearbeitet: Ein Bioreaktor 150MM enthält eine TIL-Suspension mit einem Volumen von 50 ml. Die Suspension wird durch den Siebstutzen in einen Blutbeutel mit 100 ml Volumen überführt und bei 2° bis 8°C 3 Stunden lang unbewegt so gelagert, dass die TIL im Beutel gegenüber den beiden Schlauchanschlüssen des Beutels sedimentieren können. Der Medium-Überstand wird steril bis auf ein Restvolumen von etwa 20 ml aus dem Blutbeutel abgehebert. Die TIL werden sodann in 80 ml 0,9%iger NaCI-Lösung re-suspendiert, in Zentrifugenröhrchen (50 ml) eingefüllt, zentrifugiert und danach erneut resuspendiert in insgesamt 90 ml 0,9%iger NaCI-Lösung, die 2% Humanalbumin und 10% DMSO enthält. Für die Zellzählung und die Analysen für die Freigabe des ATMP werden 10 ml der Suspension entnommen, in Kryoröhrchen verteilt und den notwendigen Analysen unterzogen. In entnommenen Proben (insgesamt 10 ml) werden die Zellzahl bestimmt und FACS-Analysen durchgeführt. In den verbleibenden 80 ml TIL- Suspension sollten 3 bis 8 x 10L9 TIL enthalten sein. Die Suspension wird so in weitere 100 ml-Blutbeutel verteilt, dass jeder Beutel 2,5 x 10L9 TIL in einer 0,9%igenNaCI-Lösung mit 2% Humanalbumin enthält. Wenn die Freigabe derTIL- AIMP-Beutel auf Basis der Pharmakopoe-Vorgaben erfolgt ist, werden die Präparate unter den bekannten Bedingungen und innerhalb der bekannten Fristen an den behandelnden Arzt des Patienten transportiert und übergeben. Die Zellsuspension muss innerhalb von 6 bis maximal 20 Stunden für die Infusion verwendet werden. Wenn ein Infusionsbeutel Zimmertemperatur hat, erfolgt die venöse Infusion in den Patienten. Die Dosis wird vom behandelnden Arzt festgelegt. The TIL suspensions harvested in the second cultivation run are processed as follows: A 150MM bioreactor contains a TIL suspension with a volume of 50 ml. The suspension is transferred through the sieve port into a blood bag with a volume of 100 ml and at 2° to 8° C Stored motionless for 3 hours in such a way that the TIL in the bag can settle opposite the two hose connections of the bag. The medium supernatant is siphoned off sterilely from the blood bag leaving a residual volume of about 20 ml. The TIL are then resuspended in 80 ml of 0.9% NaCl solution, filled into centrifuge tubes (50 ml), centrifuged and then resuspended again in a total of 90 ml of 0.9% NaCl solution containing 2% human albumin and Contains 10% DMSO. For the cell count and the analyzes for the release of the ATMP, 10 ml of the suspension are taken, distributed in cryotubes and subjected to the necessary analyses. The cell count is determined in samples taken (10 ml in total) and FACS analyzes are carried out. The remaining 80 ml of TIL suspension should contain 3 to 8 x 10 L 9 TIL. The suspension is divided into additional 100 ml blood bags so that each bag contains 2.5 x 10 L 9 TIL in a 0.9% NaCl solution with 2% human albumin. Once the TIL-AIMP bags have been released on the basis of the pharmacopoeia specifications, the preparations are transported and handed over to the doctor treating the patient under the known conditions and within the known deadlines. The cell suspension must be used for infusion within 6 to a maximum of 20 hours. When an IV bag is at room temperature, it is infused into the patient by vein. The dose is determined by the attending physician.
In einer Auslegung des erfinderischen Verfahrens können die ex vivo vermehrten TIL aus einem vollgewachsenen Bioreaktor 150MM von den Geweberesten abfiltriert, geerntet, gewaschen, zentrifugiert, re-suspendiert in NaCI Lösung mit Human- Albumin als definierte Portionen in Infusionsbeutel abgefüllt werden und unter kontrollierten Transportbedingungen innerhalb weniger Stunden zum Patienten
transportiert werden, dort auf Zimmertemperatur gebracht und dem Patienten infundiert werden zur Behandlung einer der einleitend genannten Tumorkranheiten (Krebs der Bauchspeicheldrüse, der Lunge, des Endometriums, der Brust, des Dickdarms, der Leber, des Gehirns, der Prostata, des Magens, Melanome, Lymphome in fortgeschrittenem Stadium), für die keine andere Therapie mehr bekannt ist. In one interpretation of the inventive method, the ex vivo multiplied TIL can be filtered from the tissue residues from a fully grown bioreactor 150MM, harvested, washed, centrifuged, resuspended in NaCl solution with human albumin as defined portions in infusion bags and under controlled transport conditions within fewer hours to the patient transported there, brought to room temperature and infused into the patient to treat one of the tumor diseases mentioned above (cancer of the pancreas, lungs, endometrium, breast, colon, liver, brain, prostate, stomach, melanoma, advanced stage lymphomas) for which no other therapy is known.
In einer weiteren Auslegung der Erfindung werden die tumorinfiltrierten Lymphozyten (TIL) oder T-Zellen anderer Herkunft als pharmazeutische Zusammensetzung als Zelltherapeutikum kultiviert, wobei das Zelltherapeutikum zur Behandlung von oder eine Kombination davon kultiviert wird. In a further embodiment of the invention, the tumor-infiltrated lymphocytes (TIL) or T-cells of other origin are cultivated as a pharmaceutical composition as a cell therapeutic, the cell therapeutic being cultivated for the treatment of or a combination thereof.
Für klinische Anwendungen werden kryokonservierte Vials zeitlich so aufgetaut, dass in einer zweiten Expansionsstufe therapeutisch sinnvolle Mengen an TIL termingerecht produziert werden. Dazu werden nach Auswaschen vom Einfriermedium die TIL erneut in geeignetem Kulturmedium suspendiert. Die TIL- Suspension (50 bis 100 Mio. vitale Zellen) wird in einen weiteren betriebsbereit installierten Mäander- Bioreaktor transferiert. Diese zweite Prozessstufe zur weiteren Expansion von TIL wird in einem Mäander-Bioreaktor durchgeführt, der dem vorstehend beschriebenen Mäander-Bioreaktor gleicht, der aber eine größere Besiedlungsfläche besitzt. Für die weitere Vermehrung wird frisch supplementiertes Kulturmedium verwendet. Nach 12 bis 20 Tagen Expansionsdauer wachsen im Mäander- Perfusions- Bioreaktor regelmäßig mehr als 500 Mio. TIL hoch. Die TIL werden geerntet, gewaschen und in NaCI Lösung mit Human-Albumin resuspendiert. Die TIL-Suspension wird in einen Infusionsbeutel abgefüllt. Viablilität und Zellzahl werden am Tag der Zellernte bestimmt und weiter nach Vorgabe der Pharmakopoe Sterilität, Markerprofil, Parakrine Produktion der Zellen analysiert. Die TIL- Suspension wird bei Raumtemperatur gehalten und sofort zum klinischen Partner transportiert. Die Applikation der TIL muss spätestens nach 12 bis 20 Stunden erfolgen. For clinical applications, cryopreserved vials are thawed in such a way that, in a second expansion stage, therapeutically useful amounts of TIL are produced on schedule. For this purpose, after washing out the freezing medium, the TIL are resuspended in a suitable culture medium. The TIL suspension (50 to 100 million vital cells) is transferred to another meander bioreactor that is ready for operation. This second process step for the further expansion of TIL is carried out in a meander bioreactor, which is similar to the meander bioreactor described above, but which has a larger colonization area. Freshly supplemented culture medium is used for further propagation. After 12 to 20 days of expansion, more than 500 million TIL regularly grow in the meander perfusion bioreactor. The TIL are harvested, washed and resuspended in NaCl solution with human albumin. The TIL suspension is filled into an infusion bag. Viability and cell number are determined on the day of cell harvest and further analyzed according to the specifications of the pharmacopoeia sterility, marker profile, paracrine production of the cells. The TIL suspension is kept at room temperature and immediately transported to the clinical partner. The TIL must be applied after 12 to 20 hours at the latest.
Überschüssige Mengen an TIL werden kryokonserviert. Sie stehen für später notwendige werdende Herstellung von weiteren Dosen an TIL zur Verfügung, Für 500 Mio. TIL werden max.100 ml NaCI- Lösung mit Human-Albumin eingesetzt. Excess amounts of TIL are cryopreserved. They are available for the production of further doses of TIL that will be necessary later. For 500 million TIL, a maximum of 100 ml of NaCl solution with human albumin are used.
Die Erfindung wird anhand eines Beispiels zur Isolierung und Vermehrung von TIL in einem Mäander- Perfusions- Bioreaktor näher erläutert,
wobei in der Fig. 1 eine schematische Schnittdarstellung des Mäander- Bioreaktors und die Fig. 2 eine schematische Draufsicht auf den Mäander- Bioreaktor zeigen, in dem das Verfahren gemäß des Beispiels 1 durchgeführt wird und The invention is explained in more detail using an example for the isolation and propagation of TIL in a meander perfusion bioreactor, 1 shows a schematic sectional view of the meander bioreactor and FIG. 2 shows a schematic plan view of the meander bioreactor in which the method according to example 1 is carried out and
1 Bioreaktorgefäß 1 bioreactor vessel
2 Deckel 2 lids
3 Unterlay- Kammer 3 Unterlay chamber
4 Mäander- Perfusions- Kammer 4 meander perfusion chamber
5 Overlay- Kammer 5 overlay chamber
6 Bodenplatte 6 bottom plate
7 Folie 7 slide
8 Trennwand 8 partition
9 Zuführung Unterlay- Atmosphäre 9 Infeed underlay atmosphere
10 Abführung Unterlay- Atmosphäre 10 Underlay atmosphere discharge
11 Zuführung Kulturmedium 11 Feed culture medium
12 Abführung Kulturmedium 12 drainage of culture medium
13 Zuführung Overlay- Atmosphäre 13 Overlay atmosphere feed
14 Abführung Overlay- Atmosphäre 14 Dissipation overlay atmosphere
15 Auslaufstutzen 15 outlet spouts
16 Siebgewebe 16 mesh
17 Überlauf für Zellbrühe bedeuten. 17 mean overflow for cell broth.
Beispiel 1 : Example 1 :
Ausgangsmaterial für die Herstellung von TIL oder anderer T-Zellen sind Gewebeanteile, die z.B. bei der operativen Entfernung solider Organtumore oder ihrer Metastasen oder ihres unmittelbar umgebenden Gewebes anfallen oder für diesen Zweck entnommen werden. Eine Gewebemenge mit etwa 1 ml Volumen ist in der Regel ausreichend als Ausgangsmaterial. Die Gewebeproben werden in ein
Transportgefäß mit Medium verbracht. Das Gefäß wird verschlossen bei Raumtemperatur gehalten und vom Ort der Gewebeentnahme in den Reinraumbereich für die Herstellung der Immunzell-Präparate transportiert. Die OP- Gewebestücke werden in einem Reinraum unter einer LFB in Stücke von 1 bis 2 mm3 Größe zerkleinert und in der ersten Stufe in einen Mäander- Perfusions- Bioreaktor gemäß DE102018000561.6 transferiert. Die zerkleinerten Gewebestücke werden im Mäander-Perfusions- Bioreaktor gleichmäßig verteilt und im Perfusionsbetrieb kultiviert. Der Mäander Bioreaktor ist in einem GMP Breeder betriebsbereit angeschlossen und wird von der Control Unit kontinuierlich überwacht, weitgehend automatisch gesteuert und dokumentiert. Starting material for the production of TIL or other T-cells are parts of tissue that occur, for example, during the surgical removal of solid organ tumors or their metastases or their immediately surrounding tissue or are removed for this purpose. A tissue volume of about 1 ml is usually sufficient as starting material. The tissue samples are placed in a Transport vessel spent with medium. The vessel is kept sealed at room temperature and transported from the tissue removal site to the clean room area for the production of the immune cell preparations. The pieces of OP tissue are comminuted in a clean room under an LFB into pieces of 1 to 2 mm3 in size and, in the first stage, transferred to a meander perfusion bioreactor in accordance with DE102018000561.6. The shredded pieces of tissue are evenly distributed in the meander perfusion bioreactor and cultivated in the perfusion mode. The meander bioreactor is connected ready for operation in a GMP breeder and is continuously monitored by the control unit, largely automatically controlled and documented.
Der Mäander- Perfusions- Bioreaktor besteht aus einem rechteckigen Bioreaktorgefäß 1 aus vorzugsweise klarem Polymermaterial, das mit einem Deckel 2 steril verschlossen ist. Das Bioreaktorgefäß 1 ist in drei übereinander angeordneten Kammern 3, 4, 5 unterteilt, wobei die unterste Kammer 3 als Underlay-Kammer, die über der Underlay-Kammer 3 angeordnete Kammer 4 als Mäander- Perfusions- Kammer und die über der Mäander- Perfusions- Kammer 4 angeordnete Kammer 5 als Overlay-Kammer ausgebildet sind. The meander perfusion bioreactor consists of a rectangular bioreactor vessel 1 made of preferably clear polymer material, which is sealed with a cover 2 in a sterile manner. The bioreactor vessel 1 is divided into three chambers 3, 4, 5 arranged one above the other, with the lowest chamber 3 as an underlay chamber, the chamber 4 arranged above the underlay chamber 3 as a meander perfusion chamber and the one above the meander perfusion Chamber 4 arranged chamber 5 are designed as an overlay chamber.
Die Underlay- Kammer 3 und die Mäander- Perfusions- Kammer 4 sind durch eine gelochte Bodenplatte 6 mit einer darauf dicht befestigten und für Sauerstoff permeablen Folie 7 voneinander getrennt. An der Underlay-Kammer 3 sind Zu- und Abführungen vorhanden 9, 10, die eine Durchströmung mit Gasen, insbesondere mit Gemischen aus Luft und Sauerstoff oder mit Stickstoff und Sauerstoff ermöglichen, in denen der Anteil an Sauerstoff geregelt ist. Der Sauerstoff diffundiert bevorzugt gegenüber Stickstoff durch die Gas-permeable Folie 7, die dicht auf der gelochten Bodenplatte 6 der Mäander- Perfusions- Kammer 4 befestigt ist. Bei der Durchströmung der Mäander- Perfusions- Kammer 4 gelangen während der Expansion der Zellen sowohl aus dem Overlay- als auch aus der Underlay- Kammer (durch Diffusion) geregelte Mengen an Sauerstoff in das Kulturmedium. The underlay chamber 3 and the meander perfusion chamber 4 are separated from one another by a perforated base plate 6 with a film 7 which is tightly fastened thereon and is permeable to oxygen. The underlay chamber 3 has inlets and outlets 9, 10 which allow gases to flow through, in particular mixtures of air and oxygen or nitrogen and oxygen, in which the proportion of oxygen is regulated. The oxygen diffuses preferentially to nitrogen through the gas-permeable film 7, which is tightly attached to the perforated base plate 6 of the meander perfusion chamber 4. During the flow through the meander perfusion chamber 4, controlled amounts of oxygen enter the culture medium during the expansion of the cells both from the overlay and from the underlay chamber (through diffusion).
Die Mäander- Perfusions- Kammer 4 ist mit Zu- und Abführungen für Kulturmedien 11, 12 versehen, ebenso sind in der Overlay- Kammer 5 Zu- und Abführung 13,14 für die Overlay- Atmosphäre sowie ein Auslassstutzen 15 vorhanden. Am Auslassstutzen 15 ist im Innern der Overlay Kammer 5 vor dem Auslauf ein Siebgewebe 16 angeordnet. An der Abführung 12 der Mäander- Perfusions- Kammer
4 ist weiter ein Überlauf 17 für die Abführung der verbrauchten Zellbrühe vorhanden. Der Überlauf ist in seiner Höhe verstellbar. The meander perfusion chamber 4 is provided with inlets and outlets for culture media 11, 12, and there are also inlets and outlets 13,14 for the overlay atmosphere and an outlet connector 15 in the overlay chamber 5. A screen fabric 16 is arranged on the outlet socket 15 inside the overlay chamber 5 in front of the outlet. At the outlet 12 of the meander perfusion chamber 4 there is also an overflow 17 for discharging the used cell fluid. The overflow is adjustable in height.
Die Mäander- Perfusions- Kammer 4 besteht aus der Bodenplatte 6) mit auf der Oberseite 8 angeordneten streifenförmigen, die Bodenplatte 6 unterteilenden und eine mäanderförmigen Durchströmung der Mäander- Perfusions-Kammer 4 mit Gasen und Medium erzwingenden Trennwände 8, wobei der Abstand A der Trennwände 8 voneinander sowie von den Seiten- und Stirnwänden der Mäander- Perfusions- Kammer 4 so gewählt ist, dass sich in dem Stromfaden, in dem durch die Trennwände 8 gebildeten Gerinne, eine gemittelte laminare Oberströmung mit einer Froudezahl < 0,005 bildet. Mit zunehmender Zellzahl im Verlauf der Vermehrung der Zellmenge (TIL oder andere Zellen) wird die Zufuhr von frischem Medium kontinuierlich erhöht, wobei dies durch einen entsprechenden Algorithmus automatisch gesteuert wird. Die Bodenströmung verbleibt dabei nahe einer Froudezahl 0, wodurch eine Aufwirbelung der Zellen vermieden wird. Die beschriebenen Strömungsverhältnisse verhindern Zellstress und sorgen für eine homogene Versorgung mit Nährstoffen über die gesamte am Boden des Gerinnes aufwachsende Zellschicht. The meander perfusion chamber 4 consists of the base plate 6) with strip-shaped partitions 8 arranged on the upper side 8, dividing the base plate 6 and forcing a meandering flow through the meander perfusion chamber 4 with gases and medium, with the distance A of the partitions 8 from each other as well as from the side and end walls of the meander perfusion chamber 4 is chosen such that an averaged laminar overflow with a Froude number <0.005 forms in the stream thread, in the channel formed by the partition walls 8 . As the number of cells increases as the number of cells (TIL or other cells) multiplies, the supply of fresh medium is continuously increased, with this being automatically controlled by a corresponding algorithm. The bottom flow remains close to a Froude number of 0, which prevents the cells from being stirred up. The flow conditions described prevent cell stress and ensure a homogeneous supply of nutrients over the entire cell layer growing at the bottom of the channel.
Die Overlay-Kammer (5) besitzt Zu- und Abführungen 13,14 für die Überströmung mit Gasen. Die Overlay-Kammer wird jeweils mit dem gleichen Gas/Gasgemisch durchströmt wie die Underlay-Kammer 5) wobei die Zelle je nach Zelltyp hyperoxisch bis 90% O2), normoxisch (21% O2) oder hypoxisch (bis 2% O2) mit Sauerstoff versorgt werden The overlay chamber (5) has inlets and outlets 13,14 for the overflow of gases. The overlay chamber is flown through with the same gas/gas mixture as the underlay chamber 5), whereby the cell is supplied with oxygen either hyperoxically up to 90% O2), normoxically (21% O2) or hypoxically (up to 2% O2), depending on the cell type will
In einem Kultivierungslauf wachsen üblicherweise 7 bis 14 Tage lang Zellen aus den Gewebestücken aus, die ausgewachsenen Zellen vermehren sich gleichzeitig. So können TIL in größerer Menge aus Tumorgewebe hergestellt werden. Aber auch TINK und weitere Zellen lassen sich so aus Geweben gewinnen. Wenn der Glukoseverbrauch im Bioreaktor pro Tag 100 bis 300 mg erreicht, werden die TIL über den mit Siebgewebe 16 versehenen Auslassstutzen 15 des Bioreaktorgefäßes 1 als Filtrat von den Geweberesten abgetrennt. In a cultivation run, cells usually grow out of the tissue pieces for 7 to 14 days, and the mature cells multiply at the same time. In this way, TIL can be produced in larger quantities from tumor tissue. But TINK and other cells can also be obtained from tissues in this way. When the glucose consumption in the bioreactor reaches 100 to 300 mg per day, the TIL are separated from the tissue residues as filtrate via the outlet nozzle 15 of the bioreactor vessel 1 provided with sieve fabric 16 .
Ab der Verbringung der Gewebstücke in der ersten Stufe in das Bioreaktorgefäß 1 verläuft der gesamte Prozess bis zur Abfüllung aktivierter und expandierter Zellen in einem völlig geschlossenen Gefäßsystem. Kultiviert wird in geeignetem Medium, das mit einem spezifischen Gemisch aus AB Humanserum, Cytokinen, Antikörpern und
irradiierten humanen Feederzellen zeitweilig supplementiert ist, wobei Cytokine in Form des Interleukin 12 oder aus einem Gemisch aus Interleukin 2 und Interleukin 12 und die Antikörper in Form des Antikörper 4-1 bb eingesetzt werden. Schnellere Vermehrung und Aktivierungen gelingen fallweise durch Supplemente, die auf den Oberflächen des Bioreaktorgerinnes fixiert sind. Im Fall von TIL und anderen Immunzellen werden die in dieser ersten Stufe vermehrten und separierten TIL zentrifugiert, in Einfriermedium resuspendiert und aliquotiert (rund 50 Mio. TIL pro Vial). Die Proben werden in der Gasphase über flüssigem Stickstoff gelagert. From the transfer of the tissue pieces into the bioreactor vessel 1 in the first stage, the entire process up to the filling of activated and expanded cells takes place in a completely closed vessel system. Is cultivated in a suitable medium with a specific mixture of AB human serum, cytokines, antibodies and Irradiated human feeder cells is temporarily supplemented, with cytokines in the form of interleukin 12 or a mixture of interleukin 2 and interleukin 12 and the antibodies in the form of antibody 4-1 bb being used. In some cases, faster propagation and activation can be achieved with supplements that are fixed to the surfaces of the bioreactor channel. In the case of TIL and other immune cells, the TIL multiplied and separated in this first step are centrifuged, resuspended in freezing medium and aliquoted (around 50 million TIL per vial). The samples are stored in the gas phase over liquid nitrogen.
Mit dem erfindungsgemäßen Verfahren für die Isolierung und Vermehrung von Zellen aus Gewebeteilen von Tumoren, Metastasen und anderen Geweben gelingt es, in einem einzigen geschlossenen Verfahrensschritt aus kleingeschnittenen Gewebestücken, aus autologen Gewebestücken bestimmte Zellen sowohl in das im Bioreaktor befindliche Kulturmedium auswachsen zu lassen als auch die Zellen gleichzeitig zu aktivieren, zu vermehren und dann von Geweberesten abzutrennen. Insbesondere können auf diese Weise tumorinfiltrierende autologe T- Lymphozyten (TIL) aus Tumorgewebe, Metastasengewebe, deren Umgebungsgewebe und aus Lymphknoten, die von Tumorzellen befallenen sind, gewonnen werden. Das erfindungsgemäße Kulturmedium führt unter den Strömungs- und Begasungs- Bedingungen im Gerinne eines Perfusions-Bioreaktors zu schnellem Wachstum der Zellen. Im Fall von TIL werden dabei besonders die Zellen bevorzugt expandiert, die spezifische Zytotoxizität gegenüber den Tumorzellen besitzen, aus denen oder deren Umgebung sie gewonnen werden
With the method according to the invention for the isolation and propagation of cells from tissue parts of tumors, metastases and other tissues, it is possible in a single closed process step to grow certain cells from small pieces of tissue, from autologous pieces of tissue, both in the culture medium located in the bioreactor and Simultaneously activate cells, multiply them and then separate them from tissue debris. In particular, tumor-infiltrating autologous T lymphocytes (TIL) can be obtained in this way from tumor tissue, metastasis tissue, their surrounding tissue and from lymph nodes which are affected by tumor cells. Under the flow and gassing conditions in the channel of a perfusion bioreactor, the culture medium according to the invention leads to rapid growth of the cells. In the case of TIL, the cells that are particularly preferably expanded are those that have specific cytotoxicity compared to the tumor cells from which or from their environment they are obtained
Claims
1. Verfahren für die ex- vivo Gewinnung von TIL und anderen T-Zellen und Verwendung als Patienten-individuelle Zelltherapeutika zur Bekämpfung von Tumoren, bei dem die Zellen in einer ersten Stufe des Verfahrens aus zerkleinerten Gewebeteilen in ein geschlossenes Mäander- Perfusions- Bioreaktorgefäß verbracht werden, in das in einen Perfusions- Mäander- Bioreaktor befindliche Kulturmedium auswachsen, gleichzeitig aktiviert und vermehrt und nach Erreichen einer bestimmten Dichte an ausgewachsenen und expandierten Zellen von den Gewebeteilen separiert, in reiner Form geerntet, die so separierten Zellen zentrifugiert, in Einfriermedium in Vials resuspendiert, aliquotiert und kryokonserviert werden und in einer zweiten Stufe die kryokonservierten Vials aufgetaut, das Einfriermedium ausgewaschen wird, und die Zellen erneut in geeignetem Kulturmedium suspendiert und in einen weiteren betriebsbereiten installierten Mäander- Perfusions-Bioreaktor mit einer gleichen oder größeren Besiedlungsfläche im Verhältnis von 5 zu 1 gegenüber dem Mäander- Perfusions- Bioreaktor der ersten Stufe transferiert werden, wobei in den Bioreaktorgefäßen der ersten und zweiten Stufe in den Bioreaktorgefäßen das Kulturmedium gerichtet mit Sauerstoff perfundiert und das Kulturmedium mit einem Gemisch aus AB Humanserum, Cytokinen und Antikörpern supplementiert wird, dadurch gekennzeichnet, dass 1. A method for the ex-vivo production of TIL and other T cells and use as patient-specific cell therapeutics for combating tumors, in which the cells are placed in a first stage of the method from comminuted tissue parts in a closed meander perfusion bioreactor vessel are grown in the culture medium located in a perfusion meander bioreactor, activated and multiplied at the same time and separated from the tissue parts after a certain density of fully grown and expanded cells has been reached, harvested in a pure form, the cells separated in this way are centrifuged, in freezing medium in vials be resuspended, aliquoted and cryopreserved and, in a second stage, the cryopreserved vials are thawed, the freezing medium is washed out, and the cells are resuspended in a suitable culture medium and transferred to another ready-to-operate meander perfusion bioreactor with the same or larger colonization area che are transferred in a ratio of 5 to 1 compared to the meander perfusion bioreactor of the first stage, with the culture medium being perfused in a directed manner with oxygen in the bioreactor vessels of the first and second stages in the bioreactor vessels and the culture medium containing a mixture of AB human serum, cytokines and Antibodies is supplemented, characterized in that
• eine definierte Zahl von zerkleinerten Gewebestücken aus einem Patienten-individuellen Tumor in einen Mäander- Perfusions- Bioreaktor eingebracht und gleichmäßig verteilt wird, • a defined number of comminuted pieces of tissue from a patient-specific tumor are introduced into a meander perfusion bioreactor and distributed evenly,
• die aus den Gewebestücke auswachsende Zellen am Boden des Gerinnes des Mäander- Perfusions- Bioreaktor sedimentieren, • the cells growing out of the pieces of tissue sediment at the bottom of the channel of the meander perfusion bioreactor,
• die Zellen nach dem Sedimentieren eine weitgehend ruhende Zellschicht bilden, in der sie sich berühren, aber auch leichte Bewegungen auftreten, wobei TIL Zellzahlen in der sedimentierten Schicht bei 0,1 bis 2 x 106 TIL/cm2, vorzugsweise 0,5 bis 1x 106 TIL/cm2 für eine stetige Vermehrung liegen
• eine mäanderförmige Führung des Medium-Flusses durch ein Gerinne eines Perfusions-Bioreaktors mit einer Oberströmung gemäß einer Froudschen Zahl <0,005, vorzugsweise < 0,002 und einer Bodenströmung gemäß einer Froudschen Zahl von 0 oder nahe 0 erfolgt, wobei das Medium in einer gerichteten laminaren Strömung über die sedimentierten TIL fließt, ähnlich dem Blutfluss in natürlichen Blutgefäßen und dabei keinen Zellstress verursacht, • After sedimentation, the cells form a largely stationary cell layer in which they touch, but slight movements also occur, with TIL cell counts in the sedimented layer being 0.1 to 2×10 6 TIL/cm 2 , preferably 0.5 to 1x 10 6 TIL/cm 2 for steady multiplication • meandering guidance of the medium flow through a channel of a perfusion bioreactor with an overflow according to a Froud number <0.005, preferably <0.002 and a bottom flow according to a Froud number of 0 or close to 0, the medium in a directed laminar flow flows over the sedimented TIL, similar to the blood flow in natural blood vessels and does not cause cell stress,
• das Kulturmedium Cytokine und Antikörper enthalten, wobei die Cytokine in der Form des Interleukin 12 oder aus einem Gemisch aus Interleukin 2 und Interleukin 12 und die Antikörper in der Form des Antikörper 4-1 bb bestehen und • the culture medium contains cytokines and antibodies, the cytokines being in the form of interleukin 12 or a mixture of interleukin 2 and interleukin 12 and the antibodies being in the form of antibody 4-1 bb and
• die Zellen eine hyperoxische oder auch normoxische Versorgung mit supplementiertem Medium und Sauerstoff in Abhängigkeit von der hochgewachsenen Menge an TIL oder anderen T-Zellen durch eine automatisch gesteuerte Zufuhr erhalten. • The cells receive a hyperoxic or normoxic supply of supplemented medium and oxygen depending on the increased amount of TIL or other T cells through an automatically controlled supply.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Zellen als tumorinfiltrierte Lymphozyten (TIL) oder tumorinfiltrierte NK-Zellen (TINK), oder weitere Zellarten im Mäander-Perfusions- Bioreaktor in entsprechend supplementierten Medien kultiviert werden. 2. The method according to claim 1, characterized in that the cells are cultivated as tumor-infiltrated lymphocytes (TIL) or tumor-infiltrated NK cells (TINK), or other cell types in the meander perfusion bioreactor in appropriately supplemented media.
3. Verfahren nach Anspruch 1 - 2, dadurch gekennzeichnet, dass 3. The method according to claim 1 - 2, characterized in that
• die kryokonservierten Vials für die weitere Expansion aufgetaut werden,• the cryopreserved vials are thawed for further expansion,
• das Einfriermedium durch Zentrifugieren und Resuspendieren der Zellen in einem frisch supplementierten Medium aus einem Gemisch aus AB Humanserum, Cytokinen und Antikörpern ausgewaschen wird. • the freezing medium is washed out by centrifuging and resuspending the cells in freshly supplemented medium containing a mixture of AB human serum, cytokines and antibodies.
• diese Zell-Suspension in einer zweiten Stufe in einen oder mehreren Mäander-Perfusions-Bioreaktor gleicher Bauart wie in der ersten Stufe, aber mit größerer Besiedlungsfläche transferiert, oder gesplittet wird und • This cell suspension is transferred or split in a second stage into one or more meander perfusion bioreactors of the same design as in the first stage, but with a larger colonization area and
• die TIL in den Bioreaktoren über 12 bis 20 Tage expandiert nach der Kultivierung geerntet, gewaschen in NaCI Lösung und zentrifugiert,
• die Zellen in einer Lösung resuspendiert, die 0,9% NaCI, 2%• the TIL in the bioreactors expands over 12 to 20 days after the cultivation is harvested, washed in NaCl solution and centrifuged, • resuspended the cells in a solution containing 0.9% NaCl, 2%
Albumin und 10% DMSO enthält, und diese Suspension in definierte Portionen in 100 ml Kryobeutel nach einem üblichen Abkühlungsprozess abgefüllt und über Stickstoff gelagert, und Contains albumin and 10% DMSO, and this suspension is filled into defined portions in 100 ml cryobags after a conventional cooling process and stored over nitrogen, and
• die so aufbewahrten TIL-Suspensionen abgerufen, aufgetaut und in geeigneten Dosen dem Patienten verabreicht werden. • the TIL suspensions thus stored are retrieved, thawed and dosed appropriately to the patient.
4. Verfahren zur Herstellung eines Zelltherapeutikum nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass das Zelltherapeutikum aus tumorinfiltrierten Lymphozyten (TIL), als pharmazeutische Zusammensetzung zur Verwendung als Zelltherapeutikum zur Behandlung von Tumoren und Infektionen 4. Process for the production of a cell therapy according to claims 1 to 3, characterized in that the cell therapy consists of tumor-infiltrated lymphocytes (TIL), as a pharmaceutical composition for use as a cell therapy for the treatment of tumors and infections
5. Verfahren zur Herstellung eines Zelltherapeutikum nach Anspruch 1 bis 4 dadurch gekennzeichnet, dass das Zelltherapeutikum zur Behandlung von Bauchspeicheldrüsen-, Lungen-, Eierstock-, Brust-, Dickdarm-, Knochenmark-, Leber-, Hirn-, Prostata-, Magen-, Rektum-, Blut-, Gliome, Melanome, Lymphome oder eine Kombination davon eingesetzt wird.
5. A method for the production of a cell therapeutic according to claim 1 to 4, characterized in that the cell therapeutic for the treatment of pancreatic, pulmonary, ovarian, breast, large intestine, bone marrow, liver, cerebral, prostate, gastric , rectal, blood, glioma, melanoma, lymphoma, or a combination thereof.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021002748.5A DE102021002748A1 (en) | 2021-05-27 | 2021-05-27 | Process for the production of tumor-infiltrated T-lymphocytes (TIL) and their use as cell therapeutics for the treatment of human tumors |
PCT/DE2021/000194 WO2022247975A1 (en) | 2021-05-27 | 2021-12-08 | Method for producing tumor-infiltrating t-lymphocytes (til) and their use as cellular therapeutics for the treatment of human tumors |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4347792A1 true EP4347792A1 (en) | 2024-04-10 |
Family
ID=79730333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21844631.8A Pending EP4347792A1 (en) | 2021-05-27 | 2021-12-08 | Method for producing tumor-infiltrating t-lymphocytes (til) and their use as cellular therapeutics for the treatment of human tumors |
Country Status (9)
Country | Link |
---|---|
US (1) | US20230295566A1 (en) |
EP (1) | EP4347792A1 (en) |
JP (1) | JP2024519691A (en) |
KR (1) | KR20240011756A (en) |
AU (1) | AU2021447912A1 (en) |
BR (1) | BR112023023710A2 (en) |
CA (1) | CA3218528A1 (en) |
DE (1) | DE102021002748A1 (en) |
WO (1) | WO2022247975A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023219873A1 (en) * | 2022-05-10 | 2023-11-16 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Methods of culturing tumor infiltrating lymphocytes |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2016016251A (en) | 2014-06-11 | 2017-07-11 | Polybiocept Ab | Expansion of lymphocytes with a cytokine composition for active cellular immunotherapy. |
TW201837168A (en) | 2017-01-06 | 2018-10-16 | 美商艾歐凡斯生物治療公司 | Expansion of tumor infiltrating lymphocytes (TILS) with tumor necrosis factor receptor superfamily (TNFRSF) agonists and therapeutic combinations of TILS and TNFRSF agonists |
JOP20190224A1 (en) | 2017-03-29 | 2019-09-26 | Iovance Biotherapeutics Inc | Processes for production of tumor infiltrating lymphocytes and uses of same in immunotherapy |
DE102018000561B4 (en) | 2018-01-24 | 2019-11-07 | Zellwerk Gmbh | Meander bioreactor and method for the isolation and propagation of cells from tissue parts of tumors, metastases and other tissues |
CN112771155A (en) | 2018-07-31 | 2021-05-07 | 保利比奥斯博特有限责任公司 | Preparation and selection of tumor-hyperreactive immune cells (TURIC) |
DE202018004857U1 (en) * | 2018-10-20 | 2019-01-14 | Zellwerk Gmbh | Meander perfusion bioreactor for the differentiation, activation, stimulation and separation of cells |
WO2020177789A1 (en) * | 2019-03-06 | 2020-09-10 | Zellwerk Gmbh | Cell culture support for bioreactors |
US20220168350A1 (en) | 2019-03-22 | 2022-06-02 | Windmil Therapeutics, Inc. | Lung Cancer Specific Marrow Infiltrating Lymphocytes and Uses Thereof |
KR102137954B1 (en) | 2019-05-16 | 2020-07-27 | (주)녹십자셀 | Activated lymphocyte including cytokine induced killer cell and preparing method thereof |
-
2021
- 2021-05-27 DE DE102021002748.5A patent/DE102021002748A1/en active Pending
- 2021-12-08 EP EP21844631.8A patent/EP4347792A1/en active Pending
- 2021-12-08 CA CA3218528A patent/CA3218528A1/en active Pending
- 2021-12-08 KR KR1020237043782A patent/KR20240011756A/en active Search and Examination
- 2021-12-08 JP JP2023565894A patent/JP2024519691A/en active Pending
- 2021-12-08 BR BR112023023710A patent/BR112023023710A2/en unknown
- 2021-12-08 WO PCT/DE2021/000194 patent/WO2022247975A1/en active Application Filing
- 2021-12-08 AU AU2021447912A patent/AU2021447912A1/en active Pending
- 2021-12-18 US US18/041,487 patent/US20230295566A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE102021002748A1 (en) | 2022-12-01 |
WO2022247975A1 (en) | 2022-12-01 |
US20230295566A1 (en) | 2023-09-21 |
AU2021447912A1 (en) | 2024-01-04 |
CA3218528A1 (en) | 2022-12-01 |
KR20240011756A (en) | 2024-01-26 |
BR112023023710A2 (en) | 2024-01-30 |
JP2024519691A (en) | 2024-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69834257T2 (en) | NATURAL KILLER CELL LINES AND METHOD FOR THEIR USE | |
KR101644984B1 (en) | Method For Producing Natural Killer Cells, Natural Killer Cells Produced Thereby, And Composition For Treating Cancers And Infectious Diseases Containing The Same | |
DE69713336T2 (en) | Process for the production of activated labeled tumor-specific T cells and their use in the treatment of tumors | |
DE102018000561B4 (en) | Meander bioreactor and method for the isolation and propagation of cells from tissue parts of tumors, metastases and other tissues | |
DE69232682T2 (en) | METHOD FOR SELECTIVELY PROPAGING CD34 POSITIVE CELLS | |
CN105992590A (en) | Cancer-targeted il-12 immunotherapy | |
DE69734989T2 (en) | ANTIGEN PRESENTING CELLS, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS CELLULAR VACCINES | |
DE60218173T2 (en) | Immunotherapy for cancer | |
Zahid et al. | Can we prevent or treat graft-versus-host disease with cellular-therapy? | |
EP4347792A1 (en) | Method for producing tumor-infiltrating t-lymphocytes (til) and their use as cellular therapeutics for the treatment of human tumors | |
JP2010220479A (en) | Method for culturing nk cell and use of the same | |
EP2543719B1 (en) | Meander bioreactor and method for dynamic expansion, differentiation and harvest of hematopoietic cells | |
Fauerholdt et al. | Cultivation of leukemic human bone marrow cells in diffusion chambers implanted into normal and irradiated mice | |
WO2020078498A1 (en) | Meandering perfusion bioreactor for the differentiation, activation, stimulation and separation of cells | |
DE68928634T2 (en) | Process for the production of activated killer monocytes and process for checking their tumoricidal activity | |
DE69429657T2 (en) | USE OF MODIFIED TALL-104 CELLS FOR TREATING CANCER AND VIRAL DISEASES | |
DE60016567T2 (en) | MACROPHAGE-BASED COMPOSITION WITH ANTI-INFECTIOUS AND HEMATOPOIETIC PROPERTIES AND THEIR METHOD OF PREPARATION | |
Decker et al. | Liver‐associated macrophage precursors as natural cytotoxic effectors against Candida albicans and Yac‐1 cells | |
Audran et al. | Interactions between human macrophages and tumor cells in three-dimensional cultures | |
EP1571204B1 (en) | Leukocyte stimulation matrix | |
DE202018000370U1 (en) | Meander bioreactor for the isolation and propagation of cells from tissue sections of tumors, metastases and other tissues | |
DE69620602T2 (en) | TISSUE LOADING SYSTEM FOR IMPLANTABLE BIOLOGICAL DEVICES | |
AU2022218162A1 (en) | Formulations and processes for car t cell drug products | |
von Melchner et al. | The influence of T lymphocytes and their products on hemopoietic precursor cell regeneration in spleen organ cultures | |
CN116718774A (en) | Kit for in-vitro diagnosis of tumor and application method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230214 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |