EP3797408B1 - Device, method, and control module for monitoring a two-wire line - Google Patents

Device, method, and control module for monitoring a two-wire line Download PDF

Info

Publication number
EP3797408B1
EP3797408B1 EP19726948.3A EP19726948A EP3797408B1 EP 3797408 B1 EP3797408 B1 EP 3797408B1 EP 19726948 A EP19726948 A EP 19726948A EP 3797408 B1 EP3797408 B1 EP 3797408B1
Authority
EP
European Patent Office
Prior art keywords
wire line
period
voltage curve
voltage
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19726948.3A
Other languages
German (de)
French (fr)
Other versions
EP3797408A1 (en
Inventor
Daniel Penning
Jörn Katzorke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minimax GmbH and Co KG
Original Assignee
Minimax GmbH and Co KG
Preussag AG Minimax
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minimax GmbH and Co KG, Preussag AG Minimax filed Critical Minimax GmbH and Co KG
Publication of EP3797408A1 publication Critical patent/EP3797408A1/en
Application granted granted Critical
Publication of EP3797408B1 publication Critical patent/EP3797408B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/02Monitoring continuously signalling or alarm systems
    • G08B29/06Monitoring of the line circuits, e.g. signalling of line faults
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch

Definitions

  • the present invention relates to a device for monitoring a two-wire line, in particular a two-wire line of a fire protection system, and an associated method and an associated control module.
  • fire protection systems for example for fire detection and alarm generation, must be certified and, in particular, the compatibility of system components must be assessed.
  • the resistance of a two-wire line to which devices such as alarm devices and/or triggering devices are connected does not exceed a certain value in order to be able to provide sufficient current or voltage in the event of a trigger and not to jeopardize the triggering.
  • a series resistance R L in the longitudinal direction of the line and a parallel resistance Rs between the two lines can be described. If the series resistance R L is too high, the voltage applied between the lines is not sufficient to trigger devices such as valves. At the same time, it must be ensured that the parallel resistance Rs does not become too small, which would correspond to the case of a short circuit between the two lines.
  • EP 2 804 163 for example relates to a method for measuring a line resistance RL and thus for determining faults in control lines in such a hazard warning and control system.
  • the system is not able to determine not only a series resistance of the line but also a parallel resistance between the two lines. In other words, the system only allows you to determine one of the two interesting resistance values or a total value resulting from both values.
  • EP 2 916 303 A1 proposes a control device and a control method for a fire alarm system, the control device and the control method being able to monitor an on-line impedance or an inter-wire impedance of field wires.
  • the device is connected to a line with a capacitive element terminated at a far end of the line.
  • EP 3 062 299 A1 provides an apparatus and method for detecting and adapting to end of line resistance in a NAC of a control panel or power amplifier of, for example, an alarm system and for locating ground faults in the alarm system.
  • the apparatus may include a notification device circuit, the notification device circuit including first and second analog input ports, the notification device circuit including first and second external output ports, and the notification device circuit including an end-of-line resistor.
  • Current can be passed through the notification device circuit via the first and second analog input ports, and voltage can be measured at each of the first and second external output ports.
  • the measured voltage can have a value of end-of-line resistance or a condition of the notification device circuit that is open, shorted, faulty, or normal.
  • the object is achieved according to the invention by a device for monitoring a two-wire line.
  • the two-wire line is in particular a two-wire line of a fire protection system.
  • the device comprises a passive terminating component for terminating the two-wire line, with the passive terminating component having a chargeable energy store, a constant current source for providing a measuring current to the passive terminating component, a voltage detection unit for detecting a voltage curve at output terminals of the two-wire line, a control unit for controlling the constant current source and for Evaluating the detected voltage curve, the control unit being set up to separately determine a series resistance and a parallel resistance of the two-wire line.
  • the control unit makes it possible to charge the chargeable energy store by means of the constant current source.
  • the recorded voltage curve which is evaluated both during and after the operation of the constant current source, for example, enables both the series resistance and the parallel resistance of the two-wire line to be determined in a simple manner, since the voltage curve depends on these resistances due to fundamental laws.
  • the chargeable energy store While the measuring current is being provided, the chargeable energy store is being charged, resulting in an increasing voltage. If the measuring current is not provided, the parallel resistance of the two-wire line will form a closed circuit together with the terminating component and lead to the chargeable energy storage device self-discharging.
  • the passive terminating component is arranged at an end of the two-wire line that is remote from a fire alarm and/or extinguishing control panel.
  • the arrangement at the end makes it possible, in particular, for the complete longitudinal component of the line resistance to be detectable between the output terminals.
  • the chargeable energy store of the passive terminating component is designed as a capacitor that can be arranged between the two wires of the two-wire line.
  • a capacitor is a particularly simple and effective form of chargeable energy storage.
  • Other chargeable energy stores, for example accumulators, are also conceivable in other embodiments.
  • all chargeable energy storage devices that have a differential equation for the charging and discharging process that is equivalent to the capacitor can preferably be used for the method.
  • the capacitor has a capacitance which is above 0.1 ⁇ F, in particular above 1 ⁇ F and particularly preferably in the range from 1 ⁇ F to 10 ⁇ F. With a capacitance in the preferred range, it is ensured that the charging effected by the measuring current and a self-discharge of the capacitor can take place in a temporal order of magnitude that is sufficient for an effective determination of the line resistances in accordance with EN54 Part 13.
  • control unit is set up to change the voltage profile in response to a change in the measurement current provided evaluate.
  • the constant current source is switched on and switched off, there are jumps in the recorded voltage profile.
  • the jumps directly indicate a line resistance. Consequently, the accuracy of the determination initially depends only on the accuracy of the discrete measured values of the voltage profile directly after switching on and off.
  • control unit is set up to charge the chargeable energy store during a predetermined first time period by controlling the constant current source and to evaluate self-discharge of the chargeable energy store during a subsequent second time period after the constant current source has been switched off.
  • a voltage of the chargeable energy store is preferably also evaluated during the first time period.
  • the predetermined first time period is 0.5 ms, for example.
  • the predetermined second period of time directly follows the predetermined first period of time and is also 0.5 ms, for example.
  • control unit is set up to determine the series resistance and the parallel resistance of the two-wire line from the time curve of the voltage during the first and second period.
  • the second period can also have a different duration than the first period.
  • the predetermined second period of time is preferably followed by a predetermined third period of time before another measurement, beginning with the first period of time, takes place.
  • the chargeable energy store is preferably completely discharged, so that the renewed determination of the line resistances begins with a voltage of 0 V.
  • the constant current source is preferably also switched off during the third time period.
  • the chargeable energy store is preferably discharged during the third time period via a discharge resistor that can be switched on, for example.
  • control unit is set up to determine the series resistance of the two-wire line based on a voltage change when the constant current source is switched on and/or switched off. This simple Determination also requires high accuracy and resolution of the recorded measured value over time.
  • control unit is set up to determine the parallel resistance and the series resistance of the two-wire line based on two successive approximations of the voltage profile during the first and second period.
  • the second period of time and, based on this, the first period of time are to be evaluated first.
  • control unit is set up to use discrete values of the recorded voltage profile, in particular by means of the least squares method, to calculate constants of two linear equations of the voltage in the first order of a time-dependent variable during the first and second period to approximate.
  • Both linear equations thus lead to two parameters each, one constant and one dependent on time in the first order.
  • a graph of the linear equations corresponds to a straight line in each case, with the two parameters then specifying the ordinate intercept and the slope of the straight line.
  • the time-dependent variable may be a linear function of time, i.e., for example, directly time, or, preferably, an exponential functional function of time.
  • the exponential dependence on time corresponds to the exponential course of charging and discharging, in particular of capacitors.
  • the series resistance and the parallel resistance can then be derived with high accuracy from the two parameters obtained for each equation.
  • control unit is designed to monitor a number of two-wire lines. This simplifies the overall structure of the device in that a number of control units for monitoring a number of two-wire lines, for example for fire protection systems which regularly include a larger number of two-wire lines, are not required.
  • the constant current source can be set up, and several of the two-wire lines with one to supply constant current. Of course, combinations of several control units and/or constant current sources are also conceivable for monitoring.
  • the object mentioned at the outset is achieved by a method for monitoring a two-wire line.
  • the two-wire line is in particular a two-wire line of a fire protection system.
  • the method includes: providing a measurement current to a passive terminating component for terminating the two-wire line, the passive terminating component having a chargeable energy store, detecting a voltage curve at output terminals of the two-wire line, and evaluating the detected voltage curve to determine a series resistance and a parallel resistance of the two-wire line to determine.
  • the method according to the invention makes it possible to obtain the same advantages as can be achieved with the device according to the invention for monitoring a two-wire line. Furthermore, all of the configurations of the device described as being preferred can be combined in an analogous manner with the method according to the invention.
  • the measurement current is provided in a first period for charging the chargeable energy store and is not provided in a subsequent second period, with a voltage profile at output terminals being recorded and evaluated during the first period and the second period.
  • the parallel resistance and the series resistance of the two-wire line are determined using two successive approximations of the voltage profile during the first and second period.
  • discrete values of the sensed voltage waveform are used to determine the shunt resistance and series resistance from approximate constants of two linear equations of first order voltage of a time dependent variable during the first and second periods.
  • the object mentioned at the outset is achieved by a control module of a fire alarm and/or extinguishing control center for monitoring a two-wire line of a fire protection system, the control module being set up to carry out the method according to the invention.
  • the object mentioned at the outset is achieved by using a capacitor as a passive terminating component for terminating a two-wire line of a fire protection system.
  • FIG. 1 shows a schematic and exemplary first example of a device 1 according to the invention for monitoring a two-wire line 2.
  • the two-wire line 2 is connected at two output terminals 4, 6, for example, to a control panel 100 of a fire protection system, such as a fire alarm and/or extinguishing control panel. It is important to ensure that the resistances occurring across the line are within the permissible range, so that, for example, in the event of a trip there is sufficient voltage dropping or being present.
  • a termination component 10 with reverse polarity protection configured as a diode 52 and a consumer represented as a resistor 54 is typically provided at a termination 8 of the two-wire line. This avoids a short circuit via the two-wire line and simultaneously creates the possibility of monitoring with a current flowing through the terminating component 10 . In particular, due to the reverse polarity protection, a monitoring current never goes through the terminating component 10.
  • the two-wire line to which several participants such as detectors, alarm devices, etc. are connected, can be modeled as a combination of series resistance R L and parallel resistance Rs.
  • One aim of the present invention is to be able to determine or monitor the series resistance R L and the parallel resistance Rs separately.
  • the invention proposes a particularly simple passive terminating component 10 which is connected to the termination 8 of the two-wire line 2 .
  • the conventional terminating component 50 which only determines the overall line resistance, it is therefore possible to determine R L and Rs separately.
  • the termination component 10 has a chargeable energy store 12, which is designed as a capacitor with a capacitance C in the example shown. Furthermore, the passive terminating component 10 does not show any temperature dependence of the determination, so that the capacitance C can be determined automatically, which is why no configuration/calibration of the terminating component 10 is necessary.
  • the parallel resistance Rs and the series resistance R L together with the capacitance C are now determined by a control unit 40 using a voltage profile U(t), the function of which is referred to in FIG 2 is described.
  • a constant current source 20 is arranged between the output terminals 4, 6 in order to provide a constant but preferably adjustable measurement current I1 via the chargeable energy store 12 of the passive termination component 10.
  • a voltage detection unit 30 for detecting a voltage curve U(t) between the output terminals 4, 6 is also provided.
  • the control unit 40 is set up to control the constant current source 20 and to evaluate the voltage curve U(t) detected by the voltage detection unit 30 .
  • the control unit 40 enables the series resistance R L and the parallel resistance Rs of the two-wire line 2 to be determined in a skilful manner, as will be explained below.
  • control unit 40 should therefore be able to make a reliable statement as to whether the line resistances R L , Rs that are present allow a sufficient voltage at the load in the event of activation.
  • the control unit 40 is either designed as a separate module, for example within the fire alarm and/or extinguishing control panel 100 , or can be designed as an integral part of the fire alarm and/or extinguishing control panel 100 .
  • all of the components of the device 1 provided on the control panel side for monitoring a two-wire line are in the form of a monitoring module that is 1 shown with dashed lines.
  • a further control unit 45 of the fire alarm and/or extinguishing control center 100 will take over the additional functions for fire monitoring and/or extinguishing control.
  • the voltage curve U(t) at the module terminals 4, 6 is measured continuously.
  • the chargeable energy store 12 is initially charged with the current I1 via the constant current source 20 for a specific period of time T1.
  • the constant current source 20 is then switched off and the self-discharge of the capacitance C via the parallel resistance Rs is observed over a period of time T2.
  • the chargeable energy store 12 is completely discharged via a discharge resistor of a discharge unit 60 during a subsequent time period T3.
  • FIG. 3 schematically shows a diagram 300 in which the recorded voltage U(t) is shown over time.
  • the subdivision into the periods T1, T2 and T3 has been made and four different voltage curves 310, 312, 320, 322 for two different values of the series resistance R L and two different values of the parallel resistance Rs were recorded.
  • these four voltage curves 310, 312, 320, 322 coincide with two voltage curves 314, 324, since the time behavior of the self-discharge is independent of the series resistance R L .
  • the switch-on and switch-off moments of the constant current source 20 are particularly interesting and important for the calculation.
  • the line resistance can be determined directly from the jumps 330, 340 that can be seen in the voltage profile U1.
  • the time behavior of the self-discharge is only characterized by a time constant that depends on the capacitance C and the parallel resistance Rs.
  • the forced discharge during the third period T3 is not considered.
  • the discharge time only has to be long enough for the chargeable energy store 12 to be completely discharged at the start of the next measurement.
  • the above explained and in 2 The 3-part measurement curve outlined is preferably repeated periodically to determine the resistance values. Discrete voltage values are available for each measurement, which can be divided into charging and self-discharging processes.
  • An advantage of the solution according to the invention lies in the short time required for detecting a fault, which is in the range of a few milliseconds.
  • the voltage profile U(t) is subsequently divided into corresponding measurement value profiles U1, U2 and U3 for further processing in the time periods T1, T2 and T3.
  • measured value vectors U1 and U2 are available from the voltage detection unit 30, which are detected during the time periods T1 and T2.
  • the aim of the following calculations is to determine the parameters R L and Ps and, incidentally, C from U1 and U2 as precisely as possible.
  • the control unit 40 preferably first determines these constants before determining the remaining unknowns in a separate subsequent step using equation (2).
  • Equations (2) and (3) define the course of the voltage values over time, with the parameters that best simulate the course of the curve being determined via an estimation or approximation.
  • the least squares method is used for this, with which N observed measured values are reduced to a
  • the least squares method first adds the squares of the individual measurement errors ⁇ i to a sum Q that depends on the two parameters ⁇ and ⁇ . Subsequent minimization of this sum leads to the best estimates ⁇ ⁇ for the parameters ⁇ and ⁇ .
  • Equation (3) is first used for the self-discharge process during the time period T2, since this is only influenced by two of the three parameters.
  • This equation does not depend linearly but exponentially on the time t.
  • the equation is therefore exponential and therefore not linear and must be logarithmized on both sides in the first order of the time t in order to convert it into a linear equation.
  • Equation (4) shows the now linear form with respect to t. This means that all recorded voltages U2 are first logarithmized. The least squares approach can then be applied to these values in a simple manner, see equation (4).
  • this exponential curve In contrast to the discharge curve, this exponential curve also has an offset. It cannot therefore be calculated directly using the least squares approach.
  • the time durations T1, T2 and T3 can be, for example, in the range of fractions of a millisecond, in particular 0.1-1 ms, and particularly preferably 0.5 ms, or a few milliseconds. Due to the short measurement duration, an appropriately high rate of repetition of the measurement is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire Alarms (AREA)

Description

Die vorliegende Erfindung betrifft eine Einrichtung zur Überwachung einer Zweidrahtleitung, insbesondere einer Zweidrahtleitung eines Brandschutzsystems sowie ein zugehöriges Verfahren und ein zugehöriges Steuermodul.The present invention relates to a device for monitoring a two-wire line, in particular a two-wire line of a fire protection system, and an associated method and an associated control module.

Entsprechend dem Standard EN54 Teil 13 müssen Brandschutzsysteme, beispielsweise zur Branderkennung und Alarmerzeugung, zertifiziert sein und insbesondere die Kompatibilität von Systemkomponenten beurteilt werden. Hierzu ist es beispielsweise notwendig, dass ein Widerstand einer Zweidrahtleitung, an die Teilnehmer wie beispielsweise Alarmgeber und/oder Auslöseeinrichtungen angeschlossen ist, nicht über einem bestimmten Wert liegt, um im Auslösefall hinreichend Strom bzw. Spannung bereitstellen zu können und die Auslösung nicht zu gefährden. Insbesondere lässt sich bei Zweidrahtleitungen ein Längswiderstand RL in Längsrichtung der Leitung sowie ein Parallelwiderstand Rs zwischen den zwei Leitungen beschreiben. Ein zu hoher Längswiderstand RL führt dazu, dass die zwischen den Leitungen angelegte Spannung nicht ausreicht um Teilnehmer, beispielsweise Ventile, auszulösen. Gleichzeitig muss sichergestellt sein, dass der Parallelwiderstand Rs nicht zu klein wird, was dem Fall eines Kurzschlusses der zwei Leitungen entsprechen würde.According to the EN54 Part 13 standard, fire protection systems, for example for fire detection and alarm generation, must be certified and, in particular, the compatibility of system components must be assessed. For this purpose, it is necessary, for example, that the resistance of a two-wire line to which devices such as alarm devices and/or triggering devices are connected does not exceed a certain value in order to be able to provide sufficient current or voltage in the event of a trigger and not to jeopardize the triggering. In particular, in the case of two-wire lines, a series resistance R L in the longitudinal direction of the line and a parallel resistance Rs between the two lines can be described. If the series resistance R L is too high, the voltage applied between the lines is not sufficient to trigger devices such as valves. At the same time, it must be ensured that the parallel resistance Rs does not become too small, which would correspond to the case of a short circuit between the two lines.

Gemäß dem Stand der Technik sind mehrere Möglichkeiten bekannt, Störungen auf Steuerleitungen in Gefahrenmelder- und Steuerungssystemen, beispielsweise in Brandschutzsystemen, zu erkennen.According to the prior art, several possibilities are known for detecting faults on control lines in alarm and control systems, for example in fire protection systems.

EP 2 804 163 beispielsweise betrifft Verfahren zur Messung eines Leitungswiderstandes RL und somit zur Bestimmung von Störungen von Steuerleitungen in einem solchen Gefahrenmelder- und Steuerungssystem. Das System ist aber nicht in der Lage, neben einem Längswiderstand der Leitung auch einen Parallelwiderstand zwischen den zwei Leitungen zu bestimmen. Anders ausgedrückt, das System ermöglicht lediglich einen der beiden interessanten Widerstandswerte bzw. einen aus beiden Werten resultierenden Gesamtwert zu bestimmen. EP 2 804 163 for example relates to a method for measuring a line resistance RL and thus for determining faults in control lines in such a hazard warning and control system. However, the system is not able to determine not only a series resistance of the line but also a parallel resistance between the two lines. In other words, the system only allows you to determine one of the two interesting resistance values or a total value resulting from both values.

Weitere aus dem Stand der Technik bekannte Lösungen finden sich unter anderem in EP 2 232 455 , EP 2 093 737 , EP 1 816 619 , DE 2 038 795 , DE 30 36 029 .Other solutions known from the prior art can be found, among others, in EP 2 232 455 , EP 2 093 737 , EP 1 816 619 , DE 2 038 795 , DE 30 36 029 .

EP 2 916 303 A1 schlägt eine Steuervorrichtung und ein Steuerverfahren für ein Brandmeldesystem vor, wobei die Steuervorrichtung und das Steuerverfahren in der Lage sind, eine Online-Impedanz oder eine Inter-Wire-Impedanz von Felddrähten zu überwachen. Das Gerät ist mit einer Leitung verbunden, wobei ein kapazitives Element an einem entfernten Ende der Leitung endverbunden ist. Das Verfahren umfasst: Abtasten von mindestens drei Ausgangsspannungen (V1, V2, V3) der Überwachungsstromversorgung zu mindestens drei verschiedenen Zeitpunkten (t1, t2, t3), wobei die mindestens drei Zeitpunkte sind alle, bevor das kapazitive Element die Sättigung erreicht, und die Zeitpunkte umfassen mindestens drei Zeitpunkte, die erfüllen: t2 = nt1, t3 = (2n - 1)t1, wobei n eine ganze Zahl größer als 1 ist; und basierend auf den mindestens drei Ausgangsspannungen (V1, V2, V3) Berechnen einer Online-Impedanz (R c) oder einer Inter-Wire-Impedanz (Rs) der Leitung. EP 2 916 303 A1 proposes a control device and a control method for a fire alarm system, the control device and the control method being able to monitor an on-line impedance or an inter-wire impedance of field wires. The device is connected to a line with a capacitive element terminated at a far end of the line. The method comprises: sampling at least three output voltages (V 1 , V 2 , V 3 ) of the monitoring power supply at at least three different times (t 1 , t 2 , t 3 ), the at least three times being all before the capacitive element dies reaches saturation, and the time points include at least three time points that satisfy: t 2 = nt 1 , t 3 = (2n - 1)t 1 , where n is an integer greater than 1; and based on the at least three output voltages (V 1 , V 2 , V 3 ) calculating an on-line impedance (R c ) or an inter-wire impedance (Rs) of the line.

EP 3 062 299 A1 stellt eine Vorrichtung und ein Verfahren zur Erkennung und Anpassung an einen Leitungsendwiderstand in einem NAC einer Steuertafel oder eines Leistungsverstärkers von beispielsweise einer Alarmanlage und zur Erdschlusslokalisierung in der Alarmanlage bereit. Die Vorrichtung kann eine Benachrichtigungsgeräteschaltung enthalten, wobei die Benachrichtigungsgeräteschaltung einen ersten und einen zweiten analogen Eingangsanschluss enthält, wobei die Benachrichtigungsgeräteschaltung einen ersten und einen zweiten externen Ausgangsanschluss enthält und wobei die Benachrichtigungsgeräteschaltung einen Leitungsende-Widerstand enthält. Über die ersten und zweiten analogen Eingangsanschlüsse kann Strom durch die Benachrichtigungsgeräteschaltung geleitet werden, und die Spannung kann an jedem der ersten und zweiten externen Ausgangsanschlüsse gemessen werden. Die gemessene Spannung kann einen Wert des Leitungsende-Widerstands oder einen Zustand des Benachrichtigungsgerätekreises anzeigen, der offen, kurzgeschlossen, erdschlussbehaftet oder normal ist. EP 3 062 299 A1 provides an apparatus and method for detecting and adapting to end of line resistance in a NAC of a control panel or power amplifier of, for example, an alarm system and for locating ground faults in the alarm system. The apparatus may include a notification device circuit, the notification device circuit including first and second analog input ports, the notification device circuit including first and second external output ports, and the notification device circuit including an end-of-line resistor. Current can be passed through the notification device circuit via the first and second analog input ports, and voltage can be measured at each of the first and second external output ports. The measured voltage can have a value of end-of-line resistance or a condition of the notification device circuit that is open, shorted, faulty, or normal.

Allen bekannten Systemen ist gemein, dass sie entweder komplexe, aktive Abschlusskomponenten erfordern, oder aber nicht zwischen Längs- und Parallelwiderstand differenzieren können und lediglich eine Kombination aus Längs- und Parallelwiderstand detektieren. Passive Abschlusskomponenten unterliegen gegebenenfalls weiterhin Temperatureinflüssen durch Halbleiter-Bauelemente. Während die aktive Abschlusskomponente den Vorteil hat, dass sie selbst eine Überwachung der Zweidrahtleitungen vornimmt, so ist die Komponente selbst und deren Wartung allerdings sehr aufwendig. Vor diesem Hintergrund war es eine Aufgabe der vorliegenden Erfindung, eine Einrichtung zur Überwachung einer Zweidrahtleitung, insbesondere einer Zweidrahtleitung eines Brandschutzsystems, so wie ein Verfahren zur Überwachung einer solchen Zweidrahtleitung und ein zugehöriges Steuermodul bereitzustellen, die die aus dem Stand der Technik bekannten Nachteile zumindest teilweise vermeidet.What all known systems have in common is that they either require complex, active termination components or cannot differentiate between series and parallel resistance and only detect a combination of series and parallel resistance. Passive terminating components may also be subject to temperature influences from semiconductor components. While the active terminating component has the advantage that it monitors the two-wire lines itself, the component itself and its maintenance is very expensive. Against this background, it was an object of the present invention to provide a device for monitoring a two-wire line, in particular a two-wire line of a fire protection system, as well as a method for monitoring such a two-wire line and an associated control module, which at least partially have the disadvantages known from the prior art avoids.

In einem ersten Aspekt wird die Aufgabe erfindungsgemäß durch eine Einrichtung zur Überwachung einer Zweidrahtleitung gelöst. Die Zweidrahtleitung ist insbesondere eine Zweidrahtleitung eines Brandschutzsystems. Die Einrichtung umfasst eine passive Abschlusskomponente zum Abschluss der Zweidrahtleitung, wobei die passive Abschlusskomponente einen ladbaren Energiespeicher aufweist, eine Konstantstromquelle zum Bereitstellen eines Messstroms zu der passiven Abschlusskomponente, eine Spannungserfassungseinheit zum Erfassen eines Spannungsverlaufes an Ausgangsklemmen der Zweidrahtleitung, eine Steuereinheit zum Ansteuern der Konstantstromquelle und zum Auswerten des erfassten Spannungsverlaufes, wobei die Steuereinheit dazu eingerichtet ist, einen Längswiderstand und einen Parallelwiderstand der Zweidrahtleitung separat zu bestimmen.In a first aspect, the object is achieved according to the invention by a device for monitoring a two-wire line. The two-wire line is in particular a two-wire line of a fire protection system. The device comprises a passive terminating component for terminating the two-wire line, with the passive terminating component having a chargeable energy store, a constant current source for providing a measuring current to the passive terminating component, a voltage detection unit for detecting a voltage curve at output terminals of the two-wire line, a control unit for controlling the constant current source and for Evaluating the detected voltage curve, the control unit being set up to separately determine a series resistance and a parallel resistance of the two-wire line.

Indem die passive Abschlusskomponente erfindungsgemäß einen ladbaren Energiespeicher aufweist, ist es durch die Steuereinheit möglich, mittels der Konstantstromquelle den ladbaren Energiespeicher zu laden. Der erfasste Spannungsverlauf, der beispielsweise sowohl während als auch im Anschluss an das Betreiben der Konstantstromquelle ausgewertet wird, ermöglicht in einfacher Weise sowohl eine Bestimmung des Längswiderstandes als auch des Parallelwiderstandes der Zweidrahtleitung, da der Verlauf der Spannung durch grundlegende Gesetzmäßigkeiten von ebendiesen Widerständen abhängt.Since the passive terminating component according to the invention has a chargeable energy store, the control unit makes it possible to charge the chargeable energy store by means of the constant current source. The recorded voltage curve, which is evaluated both during and after the operation of the constant current source, for example, enables both the series resistance and the parallel resistance of the two-wire line to be determined in a simple manner, since the voltage curve depends on these resistances due to fundamental laws.

Während der Messstrom bereitgestellt wird, wird der ladbare Energiespeicher geladen, so dass sich eine ansteigende Spannung einstellt. Ohne Bereitstellung des Messstromes wird der Parallelwiderstand der Zweidrahtleitung zusammen mit der Abschlusskomponente einen geschlossenen Stromkreis bilden und zu einer Selbstentladung des ladbaren Energiespeichers führen.While the measuring current is being provided, the chargeable energy store is being charged, resulting in an increasing voltage. If the measuring current is not provided, the parallel resistance of the two-wire line will form a closed circuit together with the terminating component and lead to the chargeable energy storage device self-discharging.

Insbesondere fällt während einer Zeit, in der die Konstantstromquelle nicht betrieben wird, keine Spannung über dem Längswiderstand ab, so dass der Spannungsverlauf ausschließlich für den Parallelwiderstand indikativ ist. So lässt sich anhand der Spannungsverläufe, die während der Bereitstellung des Messstroms und während einer Zeit, zu der kein Messstrom bereitgestellt wird, erfasst werden, sowohl auf den Parallelwiderstand als auch auf den Längswiderstand schließen.In particular, no voltage drops across the series resistance during a time in which the constant current source is not being operated, so that the voltage curve is exclusively indicative of the parallel resistance. Thus, both the parallel resistance and the series resistance can be inferred from the voltage curves, which are recorded while the measurement current is being provided and during a time when no measurement current is being provided.

Es ist besonders bevorzugt, dass die passive Abschlusskomponente an einem Ende der Zweidrahtleitung, das sich von einer Brandmelder- und/oder Löschsteuerzentrale entfernt befindet, angeordnet ist. Die Anordnung an dem Ende ermöglicht, dass insbesondere der komplette Längsanteil des Leitungswiderstandes zwischen den Ausgangsklemmen detektierbar ist.It is particularly preferred that the passive terminating component is arranged at an end of the two-wire line that is remote from a fire alarm and/or extinguishing control panel. The arrangement at the end makes it possible, in particular, for the complete longitudinal component of the line resistance to be detectable between the output terminals.

In einer bevorzugten Ausführungsform ist der ladbare Energiespeicher der passiven Abschlusskomponente als zwischen den beiden Drähten der Zweidrahtleitung anordenbarer Kondensator ausgestaltet. Ein Kondensator ist eine besonders einfache und effektive Form einen ladbaren Energiespeicher. In anderen Ausführungsformen sind auch andere ladbare Energiespeicher, beispielsweise Akkumulatoren, denkbar. Grundsätzlich sind vorzugsweise sämtliche ladbare Energiespeicher für das Verfahren einsetzbar, die eine zum Kondensator äquivalente Differentialgleichung für den Lade- und Entladevorgang aufweisen.In a preferred embodiment, the chargeable energy store of the passive terminating component is designed as a capacitor that can be arranged between the two wires of the two-wire line. A capacitor is a particularly simple and effective form of chargeable energy storage. Other chargeable energy stores, for example accumulators, are also conceivable in other embodiments. In principle, all chargeable energy storage devices that have a differential equation for the charging and discharging process that is equivalent to the capacitor can preferably be used for the method.

In einer bevorzugten Ausführungsform weist der Kondensator eine Kapazität auf, die über 0,1 µF, insbesondere über 1 µF und besonders bevorzugt im Bereich von 1 µF bis 10 µF liegt. Mit einer Kapazität in dem bevorzugten Bereich ist sichergestellt, dass die durch den Messstrom erfolgte Aufladung sowie eine Selbstentladung des Kondensators in einer zeitlichen Größenordnung erfolgen kann, die einer effektiven Bestimmung der Leitungswiderstände gemäß EN54 Teil 13 genügen.In a preferred embodiment, the capacitor has a capacitance which is above 0.1 μF, in particular above 1 μF and particularly preferably in the range from 1 μF to 10 μF. With a capacitance in the preferred range, it is ensured that the charging effected by the measuring current and a self-discharge of the capacitor can take place in a temporal order of magnitude that is sufficient for an effective determination of the line resistances in accordance with EN54 Part 13.

In einer bevorzugten Ausführungsform ist die Steuereinheit dazu eingerichtet, den Spannungsverlauf in Reaktion auf eine Änderung des bereitgestellten Messstromes auszuwerten. So kommt es insbesondere bei einem Einschalten und bei einem Ausschalten der Konstantstromquelle zu Sprüngen in dem erfassten Spannungsverlauf. Die Sprünge lassen direkt auf einen Leitungswiderstand schließen. Die Genauigkeit der Bestimmung hängt folglich zunächst nur von der Genauigkeit der diskreten Messwerte des Spannungsverlaufes direkt nach dem Einschalten und dem Ausschalten ab.In a preferred embodiment, the control unit is set up to change the voltage profile in response to a change in the measurement current provided evaluate. In particular, when the constant current source is switched on and switched off, there are jumps in the recorded voltage profile. The jumps directly indicate a line resistance. Consequently, the accuracy of the determination initially depends only on the accuracy of the discrete measured values of the voltage profile directly after switching on and off.

In einer bevorzugten Ausführungsform ist die Steuereinheit dazu eingerichtet, den ladbaren Energiespeicher während eines vorbestimmten ersten Zeitraumes durch Ansteuerung der Konstantstromquelle zu laden und eine Selbstentladung des ladbaren Energiespeichers während eines sich daran anschließenden zweiten Zeitraumes nach Abschalten der Konstantstromquelle auszuwerten. Vorzugsweise wird eine Spannung des ladbaren Energiespeichers auch während des ersten Zeitraumes ausgewertet. Der vorbestimmte erste Zeitraum beträgt beispielsweise 0,5 ms. Vorzugsweise schließt sich der vorbestimmte zweite Zeitraum direkt an den vorbestimmten ersten Zeitraum an und beträgt beispielsweise ebenfalls 0,5 ms. Diese beispielhaften Werte haben sich als besonders praktikabel herausgestellt, natürlich sind auch andere Dauern des ersten bzw. zweiten Zeitraums vorstellbar, insbesondere können auch die beiden Zeiträume verschieden sein.In a preferred embodiment, the control unit is set up to charge the chargeable energy store during a predetermined first time period by controlling the constant current source and to evaluate self-discharge of the chargeable energy store during a subsequent second time period after the constant current source has been switched off. A voltage of the chargeable energy store is preferably also evaluated during the first time period. The predetermined first time period is 0.5 ms, for example. Preferably, the predetermined second period of time directly follows the predetermined first period of time and is also 0.5 ms, for example. These exemplary values have proven to be particularly practicable, of course, other durations of the first or second time period are also conceivable, in particular the two time periods can also be different.

In einer bevorzugten Ausführungsform ist die Steuereinheit dazu eingerichtet, aus dem zeitlichen Verlauf der Spannung während des ersten und zweiten Zeitraumes den Längswiderstand und den Parallelwiderstand der Zweidrahtleitung zu bestimmen. Je nach Anwendung sind natürlich auch längere oder kürzere Zeiträume möglich und ebenso kann auch der zweite Zeitraum eine von dem ersten Zeitraum unterschiedliche Dauer haben.In a preferred embodiment, the control unit is set up to determine the series resistance and the parallel resistance of the two-wire line from the time curve of the voltage during the first and second period. Depending on the application, longer or shorter periods of time are of course also possible, and the second period can also have a different duration than the first period.

Vorzugsweise schließt sich an den vorbestimmten zweiten Zeitraum ein vorbestimmter dritter Zeitraum an, bevor ein erneutes Messen, beginnend mit dem ersten Zeitraum, erfolgt. Während des dritten Zeitraumes wird der ladbare Energiespeicher vorzugsweise vollständig entladen, so dass die erneute Bestimmung der Leitungswiderstände mit einer Spannung von 0 V beginnt. Demnach ist die Konstantstromquelle während des dritten Zeitraumes vorzugsweise ebenfalls abgeschaltet.The predetermined second period of time is preferably followed by a predetermined third period of time before another measurement, beginning with the first period of time, takes place. During the third period of time, the chargeable energy store is preferably completely discharged, so that the renewed determination of the line resistances begins with a voltage of 0 V. Accordingly, the constant current source is preferably also switched off during the third time period.

Vorzugsweise wird der ladbare Energiespeicher hierfür während des dritten Zeitraumes über einen beispielsweise zuschaltbaren Entladewiderstand entladen.For this purpose, the chargeable energy store is preferably discharged during the third time period via a discharge resistor that can be switched on, for example.

In einer bevorzugten Ausführungsform ist die Steuereinheit dazu eingerichtet, den Längswiderstand der Zweidrahtleitung anhand einer Spannungsänderung beim Einschalten und/oder Abschalten der Konstantstromquelle zu bestimmen. Diese einfache Bestimmung erfordert eine auch zeitlich hohe Genauigkeit und Auflösung des erfassten Messwertes.In a preferred embodiment, the control unit is set up to determine the series resistance of the two-wire line based on a voltage change when the constant current source is switched on and/or switched off. This simple Determination also requires high accuracy and resolution of the recorded measured value over time.

In einer bevorzugten Ausführungsform ist die Steuereinheit dazu eingerichtet, den Parallelwiderstand und den Längswiderstand der Zweidrahtleitung anhand zweier aufeinander aufbauender Approximationen des Spannungsverlaufs während des ersten und zweiten Zeitraumes zu bestimmen. Hierbei sind insbesondere zunächst der zweite Zeitraum und darauf aufbauend der erste Zeitraum auszuwerten.In a preferred embodiment, the control unit is set up to determine the parallel resistance and the series resistance of the two-wire line based on two successive approximations of the voltage profile during the first and second period. In this case, in particular, the second period of time and, based on this, the first period of time are to be evaluated first.

In einer bevorzugten Ausführungsform ist die Steuereinheit dazu eingerichtet, diskrete Werte des erfassten Spannungsverlaufes, insbesondere mittels des Least-Squares-Verfahrens, zu verwenden, um Konstanten zweier linearer Gleichungen der Spannung in erster Ordnung einer von der Zeit abhängigen Variablen während des ersten und zweiten Zeitraumes zu approximieren.In a preferred embodiment, the control unit is set up to use discrete values of the recorded voltage profile, in particular by means of the least squares method, to calculate constants of two linear equations of the voltage in the first order of a time-dependent variable during the first and second period to approximate.

Damit führen beide lineare Gleichungen zu je zwei Parametern, einem konstanten und einem in erster Ordnung von der Zeit abhängigen Parameter. Anschaulich gesprochen entspricht ein Graph der linearen Gleichungen jeweils einer Geraden, wobei die beiden Parameter dann den Ordinatenabschnitt und die Steigung der Geraden angeben. Die von der Zeit abhängige Variable kann eine lineare Abhängigkeit von der Zeit, d.h beispielsweise direkt die Zeit, oder, bevorzugt, eine exponentielle funktionale Abhängigkeit von der Zeit sein. Die exponentielle Abhängigkeit von der Zeit entspricht dem exponentiellen Verlauf der Ladung und Entladung insbesondere von Kondensatoren. Aus den je Gleichung erlangten zwei Parametern lassen sich dann der Längswiderstand und der Parallelwiderstand mit hoher Genauigkeit ableiten.Both linear equations thus lead to two parameters each, one constant and one dependent on time in the first order. To put it bluntly, a graph of the linear equations corresponds to a straight line in each case, with the two parameters then specifying the ordinate intercept and the slope of the straight line. The time-dependent variable may be a linear function of time, i.e., for example, directly time, or, preferably, an exponential functional function of time. The exponential dependence on time corresponds to the exponential course of charging and discharging, in particular of capacitors. The series resistance and the parallel resistance can then be derived with high accuracy from the two parameters obtained for each equation.

Darüber hinaus ist es durch die Approximationen nicht nötig, eine Kapazität des ladbaren Energiespeichers zu kalibrieren bzw. zu vermessen, um aus dem zeitlichen Verlauf der Spannung auf die Widerstände zu schließen. Diese Kapazität ergibt sich ebenfalls aus den Approximationen und lässt sich aus den Parametern der beiden Gleichungen ableiten.In addition, due to the approximations, it is not necessary to calibrate or measure a capacity of the chargeable energy store in order to infer the resistances from the time profile of the voltage. This capacity also results from the approximations and can be derived from the parameters of the two equations.

In einer bevorzugten Ausführungsform ist die Steuereinheit zur Überwachung mehrerer Zweidrahtleitungen ausgebildet. Dadurch wird der Gesamtaufbau der Einrichtung dadurch vereinfacht, dass nicht mehrere Steuereinheiten zur Überwachung mehrerer Zweidrahtleitungen, beispielsweise für Brandschutzsysteme die regelmäßig eine größere Anzahl von Zweidrahtleitungen umfassen, benötigt werden. Ebenso kann die Konstantstromquelle eingerichtet sein, auch mehrere der Zweidrahtleitungen mit einem konstanten Strom zu versorgen. Natürlich sind zur Überwachung auch Kombinationen mehrerer Steuereinheiten und/oder Konstantstromquellen vorstellbar.In a preferred embodiment, the control unit is designed to monitor a number of two-wire lines. This simplifies the overall structure of the device in that a number of control units for monitoring a number of two-wire lines, for example for fire protection systems which regularly include a larger number of two-wire lines, are not required. Likewise, the constant current source can be set up, and several of the two-wire lines with one to supply constant current. Of course, combinations of several control units and/or constant current sources are also conceivable for monitoring.

In einem weiteren Aspekt wird die eingangs genannte Aufgabe durch ein Verfahren zur Überwachung einer Zweidrahtleitung gelöst. Die Zweidrahtleitung ist insbesondere eine Zweidrahtleitung eines Brandschutzsystems. Das Verfahren umfasst: ein Bereitstellen eines Messstroms zu einer passiven Abschlusskomponente zum Abschluss der Zweidrahtleitung, wobei die passive Abschlusskomponente einen ladbaren Energiespeicher aufweist, ein Erfassen eines Spannungsverlaufes an Ausgangsklemmen der Zweidrahtleitung, und ein Auswerten des erfassten Spannungsverlaufes, um einen Längswiderstand und einen Parallelwiderstand der Zweidrahtleitung zu bestimmen.In a further aspect, the object mentioned at the outset is achieved by a method for monitoring a two-wire line. The two-wire line is in particular a two-wire line of a fire protection system. The method includes: providing a measurement current to a passive terminating component for terminating the two-wire line, the passive terminating component having a chargeable energy store, detecting a voltage curve at output terminals of the two-wire line, and evaluating the detected voltage curve to determine a series resistance and a parallel resistance of the two-wire line to determine.

Das erfindungsgemäße Verfahren ermöglicht dieselben Vorteile zu erhalten, wie sie mit der erfindungsgemäßen Einrichtung zur Überwachung einer Zweidrahtleitung erzielbar sind. Ferner sind sämtliche als bevorzugt beschriebenen Ausführungen der Einrichtung in analoger Weise mit dem erfindungsgemäßen Verfahren kombinierbar.The method according to the invention makes it possible to obtain the same advantages as can be achieved with the device according to the invention for monitoring a two-wire line. Furthermore, all of the configurations of the device described as being preferred can be combined in an analogous manner with the method according to the invention.

In einer bevorzugten Ausführungsform wird der Messstrom in einem ersten Zeitraum zum Laden des ladbaren Energiespeichers bereitgestellt und in einem daran anschließenden zweiten Zeitraum nicht bereitgestellt, wobei ein Spannungsverlauf an Ausgangsklemmen während des ersten Zeitraumes und des zweiten Zeitraumes erfasst und ausgewertet wird.In a preferred embodiment, the measurement current is provided in a first period for charging the chargeable energy store and is not provided in a subsequent second period, with a voltage profile at output terminals being recorded and evaluated during the first period and the second period.

In einer bevorzugten Ausführungsform werden der Parallelwiderstand und der Längswiderstand der Zweidrahtleitung anhand zweier aufeinander aufbauender Approximationen des Spannungsverlaufs während des ersten und zweiten Zeitraumes bestimmt.In a preferred embodiment, the parallel resistance and the series resistance of the two-wire line are determined using two successive approximations of the voltage profile during the first and second period.

In einer bevorzugten Ausführungsform werden diskrete Werte des erfassten Spannungsverlaufes verwendet, um den Parallelwiderstand und den Längswiderstand aus approximierten Konstanten zweier linearer Gleichungen der Spannung in erster Ordnung einer von der Zeit abhängigen Variablen während des ersten und zweiten Zeitraumes zu bestimmen.In a preferred embodiment, discrete values of the sensed voltage waveform are used to determine the shunt resistance and series resistance from approximate constants of two linear equations of first order voltage of a time dependent variable during the first and second periods.

In einem weiteren Aspekt wird die eingangs genannte Aufgabe durch ein Steuermodul einer Brandmelder- und/oder Löschsteuerzentrale zur Überwachung einer Zweidrahtleitung eines Brandschutzsystems gelöst, wobei das Steuermodul dazu eingerichtet ist, das erfindungsgemäße Verfahren auszuführen.In a further aspect, the object mentioned at the outset is achieved by a control module of a fire alarm and/or extinguishing control center for monitoring a two-wire line of a fire protection system, the control module being set up to carry out the method according to the invention.

In einem weiteren Aspekt wird die eingangs genannte Aufgabe durch die Verwendung eines Kondensators als passive Abschlusskomponente zum Abschluss einer Zweidrahtleitung eines Brandschutzsystems gelöst.In a further aspect, the object mentioned at the outset is achieved by using a capacitor as a passive terminating component for terminating a two-wire line of a fire protection system.

Weitere Vorteile und Ausgestaltungen werden nachfolgend mit Verweis auf die beigefügten Zeichnungen beschrieben. Hierbei zeigen:

Fig. 1:
schematisch und exemplarisch ein Beispiel einer erfindungsgemäßen Einrichtung zur Überwachung einer Zweidrahtleitung und
Fig. 2.
schematisch und exemplarisch Spannungsverläufe bei verschiedenen Widerständen.
Further advantages and refinements are described below with reference to the accompanying drawings. Here show:
Figure 1:
schematically and by way of example an example of a device according to the invention for monitoring a two-wire line and
2
schematic and exemplary voltage curves for different resistances.

Fig. 1 zeigt schematisch und exemplarisch ein erstes Beispiel einer erfindungsgemäßen Einrichtung 1 zur Überwachung einer Zweidrahtleitung 2. Die Zweidrahtleitung 2 wird an zwei Ausgangsklemmen 4, 6 beispielsweise mit einer Zentrale 100 eines Brandschutzsystems, wie einer Brandmelder- und/oder Löschsteuerzentrale verbunden. Wichtig ist sicherzustellen, dass über die Leitung auftretende Widerstände innerhalb des zulässigen Bereiches liegen, damit beispielsweise in einem Auslösefall eine hinreichende Spannung abfällt bzw. anliegt. 1 shows a schematic and exemplary first example of a device 1 according to the invention for monitoring a two-wire line 2. The two-wire line 2 is connected at two output terminals 4, 6, for example, to a control panel 100 of a fire protection system, such as a fire alarm and/or extinguishing control panel. It is important to ensure that the resistances occurring across the line are within the permissible range, so that, for example, in the event of a trip there is sufficient voltage dropping or being present.

An einem Abschluss 8 der Zweidrahtleitung ist typischerweise eine Abschlusskomponente 10 mit als Diode 52 ausgestaltetem Verpolschutz und als Widerstand 54 dargestelltem Verbraucher vorgesehen. Damit wird ein Kurzschluss über die Zweidrahtleitung vermieden und gleichzeitig die Möglichkeit der Überwachung mit einem durch die Abschlusskomponente 10 fließenden Strom geschaffen. Insbesondere geht durch den Verpolschutz nie ein Überwachungsstrom durch die Abschlusskomponente 10.A termination component 10 with reverse polarity protection configured as a diode 52 and a consumer represented as a resistor 54 is typically provided at a termination 8 of the two-wire line. This avoids a short circuit via the two-wire line and simultaneously creates the possibility of monitoring with a current flowing through the terminating component 10 . In particular, due to the reverse polarity protection, a monitoring current never goes through the terminating component 10.

Die Zweidrahtleitung, an der insbesondere mehrere Teilnehmer wie Melder, Alarmgeber, etc. angeschlossen sind, kann als eine Kombination aus Längswiderstand RL und Parallelwiderstand Rs modelliert werden. Ein Ziel der vorliegenden Erfindung ist es, den Längswiderstand RL und den Parallelwiderstand Rs getrennt bestimmen bzw. überwachen zu können. Hierfür schlägt die Erfindung eine besonders einfache passive Abschlusskomponente 10 vor, die an dem Abschluss 8 der Zweidrahtleitung 2 angeschlossen ist. Gegenüber der herkömmlichen Abschlusskomponente 50, die lediglich den gesamten Leitungswiderstand bestimmt, ist somit eine separate Bestimmung von RL und Rs möglich.The two-wire line, to which several participants such as detectors, alarm devices, etc. are connected, can be modeled as a combination of series resistance R L and parallel resistance Rs. One aim of the present invention is to be able to determine or monitor the series resistance R L and the parallel resistance Rs separately. For this purpose, the invention proposes a particularly simple passive terminating component 10 which is connected to the termination 8 of the two-wire line 2 . In contrast to the conventional terminating component 50, which only determines the overall line resistance, it is therefore possible to determine R L and Rs separately.

Die erfindungsgemäße Abschlusskomponente 10 weist einen ladbaren Energiespeicher 12 auf, die in dem gezeigten Beispiel als Kondensator mit einer Kapazität C ausgestaltet ist. Ferner zeigt die passive Abschlusskomponente 10 keine Temperaturabhängigkeit der Bestimmung, so dass die Kapazität C automatisch bestimmt werden kann, weshalb keine Konfiguration/Einmessung der Abschlusskomponente 10 notwendig ist.The termination component 10 according to the invention has a chargeable energy store 12, which is designed as a capacitor with a capacitance C in the example shown. Furthermore, the passive terminating component 10 does not show any temperature dependence of the determination, so that the capacitance C can be determined automatically, which is why no configuration/calibration of the terminating component 10 is necessary.

Erfindungsgemäß wird nun der Parallelwiderstand Rs und der Längswiderstand RL zusammen mit der Kapazität C anhand eines Spannungsverlaufes U(t) von einer Steuereinheit 40 bestimmt, deren Funktion mit Verweis auf Fig. 2 beschrieben wird.According to the invention, the parallel resistance Rs and the series resistance R L together with the capacitance C are now determined by a control unit 40 using a voltage profile U(t), the function of which is referred to in FIG 2 is described.

Eine Konstantstromquelle 20 ist zwischen den Ausgangsklemmen 4, 6 angeordnet, um einen konstanten aber vorzugsweise einstellbaren Messstrom I1 über den ladbaren Energiespeicher 12 der passiven Abschlusskomponente 10 bereitzustellen.A constant current source 20 is arranged between the output terminals 4, 6 in order to provide a constant but preferably adjustable measurement current I1 via the chargeable energy store 12 of the passive termination component 10.

Ferner ist eine Spannungserfassungseinheit 30 zum Erfassen eines Spannungsverlaufes U(t) zwischen den Ausgangsklemmen 4, 6 bereitgestellt. Die Steuereinheit 40 ist zum Ansteuern der Konstantstromquelle 20 und zum Auswerten des von der Spannungserfassungseinheit 30 erfassten Spannungsverlaufes U(t) eingerichtet. Hierbei ermöglicht es die Steuereinheit 40, auf geschickte Weise den Längswiderstand RL und den Parallelwiderstand Rs der Zweidrahtleitung 2 zu bestimmen, wie im Folgenden erläutert wird.A voltage detection unit 30 for detecting a voltage curve U(t) between the output terminals 4, 6 is also provided. The control unit 40 is set up to control the constant current source 20 and to evaluate the voltage curve U(t) detected by the voltage detection unit 30 . In this case, the control unit 40 enables the series resistance R L and the parallel resistance Rs of the two-wire line 2 to be determined in a skilful manner, as will be explained below.

Zusammenfassend soll die Steuereinheit 40 demnach eine zuverlässige Aussage darüber machen können, ob die vorhandenen Leitungswiderstände RL, Rs im Falle einer Ansteuerung eine ausreichende Spannung am Verbraucher ermöglichen.In summary, the control unit 40 should therefore be able to make a reliable statement as to whether the line resistances R L , Rs that are present allow a sufficient voltage at the load in the event of activation.

Die Steuereinheit 40 ist entweder als separates Modul, beispielsweise innerhalb der Brandmelder- und/oder Löschsteuerzentrale 100, ausgestaltet oder kann als integraler Teil der Brandmelder- und/oder Löschsteuerzentrale 100 ausgeführt sein. In einem bevorzugten Fall sind sämtliche der auf Seite der Zentrale vorgesehene Komponenten der Einrichtung 1 zur Überwachung einer Zweidrahtleitung in Form eines Überwachungsmoduls, das in Fig. 1 mit gestrichelten Linien gezeigt ist, ausgeführt. In diesem Fall wird beispielsweise eine weitere Steuereinheit 45 der Brandmelder- und/oder Löschsteuerzentrale 100 die ergänzenden Funktionen zur Brandüberwachung und/oder Löschsteuerung übernehmen.The control unit 40 is either designed as a separate module, for example within the fire alarm and/or extinguishing control panel 100 , or can be designed as an integral part of the fire alarm and/or extinguishing control panel 100 . In a preferred case, all of the components of the device 1 provided on the control panel side for monitoring a two-wire line are in the form of a monitoring module that is 1 shown with dashed lines. In this case, for example, a further control unit 45 of the fire alarm and/or extinguishing control center 100 will take over the additional functions for fire monitoring and/or extinguishing control.

Der Spannungsverlauf U(t) an den Modulklemmen 4, 6 wird kontinuierlich gemessen. Dabei wird der ladbare Energiespeicher 12 zunächst über die Konstantstromquelle 20 für einen bestimmten Zeitraum T1 mit dem Strom I1 geladen. Anschließend wird die Konstantstromquelle 20 abgeschaltet und über einen Zeitraum T2 wird die Selbstentladung der Kapazität C über den Parallelwiderstand Rs beobachtet. Schließlich wird der ladbare Energiespeicher 12 während eines darauffolgenden Zeitraumes T3 über einen Entladewiderstand einer Entladeeinheit 60 vollständig entladen.The voltage curve U(t) at the module terminals 4, 6 is measured continuously. In this case, the chargeable energy store 12 is initially charged with the current I1 via the constant current source 20 for a specific period of time T1. The constant current source 20 is then switched off and the self-discharge of the capacitance C via the parallel resistance Rs is observed over a period of time T2. Finally, the chargeable energy store 12 is completely discharged via a discharge resistor of a discharge unit 60 during a subsequent time period T3.

Fig. 2 zeigt schematisch ein Diagramm 300, in dem die erfasste Spannung U(t) über die Zeit dargestellt ist. Insbesondere ist die Unterteilung in die Zeiträume T1, T2 und T3 vorgenommen worden und vier verschiedene Spannungsverläufe 310, 312, 320, 322 für je zwei unterschiedliche Werte des Längswiderstands RL und je zwei unterschiediche Werte des Parallelwiderstands Rs wurden aufgenommen. Während des zweiten Zeitraumes T2 fallen diese vier Spannungsverläufe 310, 312, 320, 322 auf zwei Spannungsverläufe 314, 324 zusammen, da das Zeitverhalten der Selbstentladung von dem Längswiderstand RL unabhängig ist. 2 FIG. 3 schematically shows a diagram 300 in which the recorded voltage U(t) is shown over time. In particular, the subdivision into the periods T1, T2 and T3 has been made and four different voltage curves 310, 312, 320, 322 for two different values of the series resistance R L and two different values of the parallel resistance Rs were recorded. During the second time period T2, these four voltage curves 310, 312, 320, 322 coincide with two voltage curves 314, 324, since the time behavior of the self-discharge is independent of the series resistance R L .

Interessant und für die Berechnung wichtig sind insbesondere der Einschalt- und Ausschaltmoment der Konstantstromquelle 20. Aus den in dem Spannungsverlauf U1 erkennbaren Sprüngen 330, 340 lässt sich direkt der Leitungswiderstand bestimmen. Das Zeitverhalten der Selbstentladung ist nur durch eine von der Kapazität C und dem Parallelwiderstand Rs abhängende Zeitkonstante charakterisiert.The switch-on and switch-off moments of the constant current source 20 are particularly interesting and important for the calculation. The line resistance can be determined directly from the jumps 330, 340 that can be seen in the voltage profile U1. The time behavior of the self-discharge is only characterized by a time constant that depends on the capacitance C and the parallel resistance Rs.

Für den Ladevorgang im Zeitraum T1 gilt folgende Differentialgleichung der Spannung U: U = IR L + R S I C U t

Figure imgb0001
The following differential equation of the voltage U applies to the charging process in the period T1: u = IR L + R S I C u t
Figure imgb0001

Es wird davon ausgegangen, dass der Kondensator zu Beginn jeder Messung, also vor dem Zeitraum T1, vollkommen entladen ist. Mit U(t=0) =0 ist eine Lösung der Gleichung (1) gegeben durch U t = I R L + R S 1 e t T S R S C U 0 = 0 U 0 + = IR L

Figure imgb0002
It is assumed that the capacitor is completely discharged at the beginning of each measurement, i.e. before the time period T1. With U(t=0) =0, a solution to equation (1) is given by u t = I R L + R S 1 e t T S R S C u 0 = 0 u 0 + = IR L
Figure imgb0002

Während der Selbstentladung, also während des Zeitraumes T2, fällt keine Spannung über den Längswiderstand RL ab. Daher kann die Standardgleichung der KondensatorEntladung verwendet werden U t = U T L + e t T L R S C U T L + = U C T L

Figure imgb0003
During the self-discharge, ie during the time period T2, no voltage drops across the series resistance R L . Therefore, the standard capacitor discharge equation can be used u t = u T L + e t T L R S C u T L + = u C T L
Figure imgb0003

Die erzwungene Entladung während des dritten Zeitraumes T3 wird nicht betrachtet. Die Entladezeit muss nur so lange gewählt sein, dass der ladbare Energiespeicher 12 zu Beginn der nächsten Messung vollständig entladen ist.The forced discharge during the third period T3 is not considered. The discharge time only has to be long enough for the chargeable energy store 12 to be completely discharged at the start of the next measurement.

Der oben erläuterte und in Fig. 2 skizzierte 3-teilige Messverlauf wird zur Bestimmung der Widerstandswerte vorzugsweise periodisch wiederholt. Für jede Messung liegen diskrete Spannungswerte vor, die in Lade- und Selbstentladevorgang eingeteilt werden können. Ein Vorteil der erfindungsgemäßen Lösung liegt in der kurzen für die Detektion einer Störung benötigten Zeitdauer, die im Bereich weniger Millisekunden liegt.The above explained and in 2 The 3-part measurement curve outlined is preferably repeated periodically to determine the resistance values. Discrete voltage values are available for each measurement, which can be divided into charging and self-discharging processes. An advantage of the solution according to the invention lies in the short time required for detecting a fault, which is in the range of a few milliseconds.

Der Spannungsverlauf U(t) wird im Folgenden zur weiteren Verarbeitung in den Zeiträumen T1, T2 bzw. T3 entsprechende Messwertverläufe U1, U2 bzw. U3 aufgeteilt. Es liegen daher von der Spannungserfassungseinheit 30 insbesondere Messwert-Vektoren U1 und U2 vor, die während der Zeiträume T1 und T2 erfasst werden. Das Ziel der folgenden Berechnungen ist, aus U1 und U2 möglichst genau die Parameter RL und Ps sowie nebenbei C zu bestimmen.The voltage profile U(t) is subsequently divided into corresponding measurement value profiles U1, U2 and U3 for further processing in the time periods T1, T2 and T3. In particular, therefore, measured value vectors U1 and U2 are available from the voltage detection unit 30, which are detected during the time periods T1 and T2. The aim of the following calculations is to determine the parameters R L and Ps and, incidentally, C from U1 and U2 as precisely as possible.

Dazu werden die Gleichungen (2) und (3) betrachtet, in denen diese Parameter vorkommen. Es fällt auf, dass in Gleichung (3) zwei Unbekannte vorhanden sind: Die Zeitkonstante τ = RS * C und der Startwert U(TL +). Die Steuereinheit 40 bestimmt nun vorzugsweise zunächst diese Konstanten, bevor sie in einem getrennten anschließenden Schritt unter Verwendung der Gleichung (2) die restlichen Unbekannten bestimmt.Equations (2) and (3), in which these parameters occur, are considered for this purpose. It is noticeable that there are two unknowns in Equation (3): The time constant τ = R S * C and the starting value U ( T L +) . The control unit 40 preferably first determines these constants before determining the remaining unknowns in a separate subsequent step using equation (2).

Das Ziel ist, wie erwähnt, ausgehend von den erfassten Messreihen der Spannungsverläufe U1 und U2 Aussagen über die Parameter zu treffen. Die Gleichungen (2) und (3) definiert den zeitlichen Verlauf der Spannungswerte, wobei über eine Schätzung bzw. Approximation die Parameter bestimmt werden, die den Kurvenverlauf am besten nachbilden. In diesem Beispiel wird hierfür das Least-Square-Verfahren verwendet, mit dem N beobachtete Messwerte mit möglichst geringem gemittelten Fehler auf eineAs mentioned, the goal is to make statements about the parameters based on the recorded series of measurements of the voltage curves U1 and U2. Equations (2) and (3) define the course of the voltage values over time, with the parameters that best simulate the course of the curve being determined via an estimation or approximation. In this example, the least squares method is used for this, with which N observed measured values are reduced to a

Funktion projiziert werden, in diesem Fall auf eine lineare Gleichung erster Ordnung der Zeit t: y t = α + βt

Figure imgb0004
function are projected, in this case onto a first-order linear equation of time t: y t = a + βt
Figure imgb0004

Mit dem Least-Square-Verfahren wird zu den Messwerten yi , die zu jeweiligen zugehörigen Zeitpunkten ti aufgenommen wurden, ein zugehöriger Messfehler εi addiert, der eine Abweichung gegenüber der idealen Messkurve beschreibt: y i = α + βt i + ε i

Figure imgb0005
Q α β = i = 1 N ε i = i = 1 N y i α βt i 2 = ! min
Figure imgb0006
α ^ = y β ^ t
Figure imgb0007
β ^ = i = 1 N t i t y i y i = 1 N t i t 2 = cov t y var t
Figure imgb0008
With the least squares method, an associated measurement error ε i is added to the measurement values y i recorded at the respective associated times t i , which describes a deviation from the ideal measurement curve: y i = a + βt i + e i
Figure imgb0005
Q a β = i = 1 N e i = i = 1 N y i a βt i 2 = ! at least
Figure imgb0006
a ^ = y β ^ t
Figure imgb0007
β ^ = i = 1 N t i t y i y i = 1 N t i t 2 = cov t y var t
Figure imgb0008

Das Least-Square-Verfahren summiert zunächst die Quadrate der individuellen Messfehler εi zu einer Summe Q, die von den beiden Parametern α und β abhängt. Die anschließende Minimierung dieser Summe führt zu den besten Schätzungen α̂ β̂ für die Parameter α und β.The least squares method first adds the squares of the individual measurement errors ε i to a sum Q that depends on the two parameters α and β . Subsequent minimization of this sum leads to the best estimates α̂ β̂ for the parameters α and β .

Wie erwähnt wird zunächst Gleichung (3) für den Selbstentladevorgang während des Zeitraums T2 herangezogen, da diese lediglich von zwei der drei Parameter beeinflusst ist. Der Einfachheit halber wird der Zeitpunkt, an dem die Konstantstromquelle 20 abgeschaltet wird, in den Zeitlichen Nullpunkt geschoben: U t = U T L + e t R S C τ = R S C U t = U T L + e t τ

Figure imgb0009
As mentioned, Equation (3) is first used for the self-discharge process during the time period T2, since this is only influenced by two of the three parameters. For the sake of simplicity, the point in time at which the constant current source 20 is switched off is shifted to the zero point in time: u t = u T L + e t R S C τ = R S C u t = u T L + e t τ
Figure imgb0009

Diese Gleichung ist nicht linear sondern exponentiell von der Zeit t abhängig. Die Gleichung ist demnach exponentiell und damit nicht linear und muss zur Überführung in eine lineare Gleichung in erster Ordnung der Zeit t beiderseitig logarithmiert werden.This equation does not depend linearly but exponentially on the time t. The equation is therefore exponential and therefore not linear and must be logarithmized on both sides in the first order of the time t in order to convert it into a linear equation.

Hierbei kommen die üblichen Rechengesetze für den natürlichen Logarithmus zur Anwendung: log x y = log x + log y

Figure imgb0010
log e x = x
Figure imgb0011
log U t = log ( U T L + t τ
Figure imgb0012
log U t = α 2 + β 2 t
Figure imgb0013
α 2 = log U T L +
Figure imgb0014
β 2 = 1 τ
Figure imgb0015
The usual arithmetic laws for the natural logarithm are used here: log x y = log x + log y
Figure imgb0010
log e x = x
Figure imgb0011
log u t = log ( u T L + t τ
Figure imgb0012
log u t = a 2 + β 2 t
Figure imgb0013
a 2 = log u T L +
Figure imgb0014
β 2 = 1 τ
Figure imgb0015

In Gleichung (4) ist die nun lineare Form in Bezug auf t zu erkennen. Das heißt, es werden zunächst alle erfassten Spannungen U2 logarithmiert. Auf diese Werte kann dann der Least-Square-Ansatz auf einfache Weise, vgl. Gleichung (4), angewendet werden.Equation (4) shows the now linear form with respect to t. This means that all recorded voltages U2 are first logarithmized. The least squares approach can then be applied to these values in a simple manner, see equation (4).

Aus der Anwendung des Least-Square-Ansatzes auf alle Messwerte während der Selbstentladung aus U2 folgen die Parameter α 2 und β 2. Anschließend kann über die Gleichung (6) die Zeitkonstante τ bestimmt werden: τ = 1 β 2

Figure imgb0016
The parameters α 2 and β 2 follow from the application of the least squares approach to all measured values during the self-discharge from U2. The time constant τ can then be determined using equation (6): τ = 1 β 2
Figure imgb0016

Die gewünschten Parameter RS, RL und C sind damit weiterhin unbekannt. Sie können jetzt allerdings durch Betrachtung des Ladevorgangs ermittelt werden.The desired parameters R S , R L and C are therefore still unknown. However, they can now be determined by looking at the loading process.

Gleichung (2) beschrieb bereits den Spannungsverlauf des Ladevorgangs. In den zeitlichen Nullpunkt verschoben und unter Verwendung der Zeitkonstante τ lässt sie sich schreiben als U t = I R L + R S 1 e t τ

Figure imgb0017
Equation (2) already described the voltage curve of the charging process. Shifted to zero in time and using the time constant τ , it can be written as u t = I R L + R S 1 e t τ
Figure imgb0017

Diese exponentielle Kurve hat im Gegensatz zur Entladekurve zusätzlich einen Offset. Sie lässt sich damit nicht direkt mit dem Least-Square-Ansatz berechnen.In contrast to the discharge curve, this exponential curve also has an offset. It cannot therefore be calculated directly using the least squares approach.

Allerdings ist die Zeitkonstante τ bereits bestimmt. Gleichung (7) kann daher in eine lineare Form, vgl. Gleichung (8), umgeschrieben werden: U t = I R L + R S IR S e t τ

Figure imgb0018
U t = α 1 + β 1 e t τ
Figure imgb0019
α 1 = I R L + R S
Figure imgb0020
β 1 = IR S
Figure imgb0021
However, the time constant τ is already determined. Equation (7) can therefore be rewritten in a linear form, cf. Equation (8): u t = I R L + R S IR S e t τ
Figure imgb0018
u t = a 1 + β 1 e t τ
Figure imgb0019
a 1 = I R L + R S
Figure imgb0020
β 1 = IR S
Figure imgb0021

Dazu muss lediglich mit der bekannten Zeitkonstante τ für jeden Zeitwert die entsprechende Exponentialfunktion berechnet werden.All that is required is to calculate the corresponding exponential function for each time value using the known time constant τ .

Aus Anwendung des Least-Square-Ansatzes auf alle Messwerte U1, d.h. aus dem Zeitraum T1, folgen die Parameter α 1 und β 1. Mit den Gleichungen (10, 9, 3a) können nun schließlich die gewünschten Parameter RS, RL und C direkt berechnet werden: R S = β 1 I

Figure imgb0022
R L = α 1 I R S
Figure imgb0023
C = τ R S
Figure imgb0024
The parameters α 1 and β 1 follow from the application of the least squares approach to all measured values U1, ie from the period T1. Finally, the desired parameters R S , R L and C can be calculated directly using equations (10, 9, 3a): R S = β 1 I
Figure imgb0022
R L = a 1 I R S
Figure imgb0023
C = τ R S
Figure imgb0024

Im Ergebnis bedeutet das, dass nach jeder Lade-Selbstentlade-Kurve über lediglich zwei durchzuführende Least-Square-Schätzungen die benötigten Werte präzise angegeben werden können.As a result, this means that after each charging-self-discharging curve, the required values can be specified precisely using only two least-squares estimates to be carried out.

Die Zeitdauern T1, T2 und T3 können beispielsweise im Bereich von Bruchteilen von Millisekunden, insbesondere 0,1-1 ms, und besonders bevorzugt 0,5 ms, oder wenigen Millisekunden liegen. Damit ist durch die kurze Messdauer eine angemessen hohe Rate der Wiederholung der Messung möglich.The time durations T1, T2 and T3 can be, for example, in the range of fractions of a millisecond, in particular 0.1-1 ms, and particularly preferably 0.5 ms, or a few milliseconds. Due to the short measurement duration, an appropriately high rate of repetition of the measurement is possible.

Liste der BezugszeichenList of References

11
Einrichtung zur Überwachung einer ZweidrahtleitungDevice for monitoring a two-wire line
22
Zweidrahtleitungtwo-wire line
4, 64, 6
Ausgangsklemme der ZweidrahtleitungOutput terminal of the two-wire line
88th
Abschluss der ZweidrahtleitungTermination of the two-wire line
1010
Abschlusskomponenteclosing component
1212
ladbarer Energiespeicherchargeable energy storage
2020
Konstantstromquelleconstant current source
3030
Spannungserfassungseinheitvoltage detection unit
4040
Steuereinheitcontrol unit
4545
Steuereinheitcontrol unit
5050
Verbraucher mit Verpolschutzconsumers with reverse polarity protection
5252
Diodediode
5454
WiderstandResistance
6060
Entladeeinheitunloading unit
100100
Brandmelder- und/oder LöschsteuerzentraleFire alarm and/or extinguishing control panel
RLRL
Längswiderstandseries resistance
RsRs
Parallelwiderstandparallel resistor
CC
Kapazitätcapacity
I1I1
Messstrommeasuring current
U(t)U(t)
Spannungsverlaufvoltage curve
T1T1
erster Zeitraumfirst period
T2T2
zweiter Zeitraumsecond period
T3T3
dritter Zeitraumthird period
300300
Diagrammdiagram
310, 312, 314, 320, 322, 324, 326310, 312, 314, 320, 322, 324, 326
Spannungsverlaufvoltage curve
330330
Spannungssprungvoltage jump
340340
Spannungssprungvoltage jump

Claims (12)

  1. A device (1) for monitoring a two-wire line (2), in particular a two-wire line (2) of a fire protection system, comprising
    a passive terminating component (10) for terminating the two-wire line (2), wherein the passive terminating component has a chargeable energy storage (12),
    a constant current source (20) for providing a measuring current (11) to the passive terminating component,
    a voltage detection unit (30) for detecting a voltage curve (U(t)) at output terminals (4, 6) of the two-wire line (2),
    a control unit (40) for controlling the constant current source (20) and for evaluating the detected voltage curve (U(t)), the control unit (40) being configured to determine a series resistance (RL) and a parallel resistance (Rs) of the two-wire line (2), the control unit being configured to evaluate the voltage curve (U(t)) in response to a change in the provided measuring current (11) and to charge the chargeable energy storage (12) during a predetermined first period (T1) by controlling the constant current source (20) and to evaluate a self-discharging of the chargeable energy storage (12) during a subsequent second period (T2) after the switching off of the constant current source (20).
  2. The device (1) according to claim 1, wherein
    the chargeable energy storage (12) of the passive terminating component (10) is designed as a capacitor that is arrangeable between the two wires of the two-wire line (2).
  3. The device (1) according to claim 2, wherein
    the capacitor has a capacitance (C) that is above 0.1 µF, particularly above 1 µF, and particularly preferred in the range from 1 µF to 10 µF.
  4. The device (1) according to claim 1, wherein
    the control unit is configured to determine the series resistance (RL) and the parallel resistance (Rs) of the two-wire line (2) from the voltage curve (U(t)) over time during the first (T1) and second (T2) period.
  5. The device (1) according to claim 4, wherein
    the control unit is configured to determine the parallel resistance (Rs) and the series resistance (RL) of the two-wire line (2) on the basis of two approximations, based on one another, of the voltage curve (U(t)) during the first (T1) and second (T2) period.
  6. The device (1) according to claim 5, wherein
    the control unit is configured to use discrete values of the detected voltage curve (U(t)), in particular by means of the least squares method, to approximate constants of two linear equations of the voltage in the first order of a time-dependent variable during the first (T1) and second (T2) period.
  7. The device (1) according to one of the preceding claims, wherein
    the control unit is designed to monitor multiple two-wire lines (2).
  8. A method for monitoring a two-wire line (2), in particular of a fire protection system, the method including
    providing a measuring current (11) to a passive terminating component (10) for terminating the two-wire line (2), wherein the passive terminating component (10) comprises a chargeable energy storage (12),
    detecting a voltage curve (U(t)) at output terminals (4, 6) of the two-wire line (2),
    evaluating the detected voltage curve (U(t)) in order to determine a series resistance (RL) and a parallel resistance (Rs) of the two-wire line (2),
    wherein the measuring current (11) is provided in a first period (T1) for charging the chargeable energy storage (12) and is not provided in a subsequent second period (T2), wherein a voltage curve (U(t)) at the output terminals (4, 6) is detected and evaluated during the first period (T1) and the second period (T2).
  9. The method according to claim 8, wherein the parallel resistance (Rs) and the series resistance (RL) of the two-wire line (2) are determined on the basis of two approximations, based on one another, of the voltage curve (U(t)) during the first (T1) and second (T2) period.
  10. The method according to claim 9, wherein
    discrete values of the detected voltage curve (U(t)) are used to determine the parallel resistance (Rs) and the series resistance (RL) from approximated constants of two linear equations of the voltage in the first order of a time-dependent variable during the first (T1) and second (T2) period.
  11. A control module of a fire alarm and/or extinguishing control center for monitoring a two-wire line (2) of a fire protection system, wherein the control module is configured to carry out the method according to one of claims 8 to 10.
  12. The use of a capacitor as a passive terminating component (10) for terminating a two-wire line (2) of a fire protection system in a device for monitoring the two-wire line (2) according to one of claims 1 to 7.
EP19726948.3A 2018-05-23 2019-05-22 Device, method, and control module for monitoring a two-wire line Active EP3797408B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018112299.3A DE102018112299B4 (en) 2018-05-23 2018-05-23 Device, method and control module for monitoring a two-wire line
PCT/EP2019/063244 WO2019224264A1 (en) 2018-05-23 2019-05-22 Device, method, and control module for monitoring a two-wire line

Publications (2)

Publication Number Publication Date
EP3797408A1 EP3797408A1 (en) 2021-03-31
EP3797408B1 true EP3797408B1 (en) 2022-07-06

Family

ID=66668901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19726948.3A Active EP3797408B1 (en) 2018-05-23 2019-05-22 Device, method, and control module for monitoring a two-wire line

Country Status (5)

Country Link
US (1) US11210930B2 (en)
EP (1) EP3797408B1 (en)
CN (1) CN214202626U (en)
DE (1) DE102018112299B4 (en)
WO (1) WO2019224264A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH495022A (en) 1969-09-16 1970-08-15 Cerberus Ag Fire alarm system with a device for line monitoring
DE3036029C2 (en) 1980-09-24 1984-05-30 Peter 8000 München Schubert Circuit arrangement for monitoring a connecting line
JP2721916B2 (en) 1989-06-29 1998-03-04 能美防災株式会社 Fire alarm equipment disconnection monitoring device
GB2389471B (en) * 2002-06-06 2005-09-21 Sun Microsystems Inc Latent fault detection in redundant power supply systems
EP1777671A1 (en) * 2005-10-19 2007-04-25 Honeywell International, Inc. Monitoring of alarm system wiring
PT1816619E (en) 2006-02-02 2009-02-03 Minimax Gmbh & Co Kg Redundant surveillance device for fire extinguishing installations
DE102008003799B4 (en) 2008-01-10 2021-06-10 Robert Bosch Gmbh Monitoring device for a reporting system, reporting system and method for monitoring the reporting system
PT2093737E (en) 2008-02-22 2013-12-05 Minimax Gmbh & Co Kg Active line terminator module
EP2804163B1 (en) 2013-05-17 2015-09-16 Minimax GmbH & Co KG Method and apparatus for detecting faults in control lines in hazard warning and control systems
US9880214B2 (en) * 2013-08-21 2018-01-30 Honeywell International Inc. Apparatus and method for detection and adaption to an end-of-line resistor and for ground fault localization
CN104897967B (en) * 2014-03-04 2019-02-01 西门子瑞士有限公司 The live line detection device and method of fire alarm system

Also Published As

Publication number Publication date
US20210217296A1 (en) 2021-07-15
US11210930B2 (en) 2021-12-28
DE102018112299A1 (en) 2019-11-28
EP3797408A1 (en) 2021-03-31
WO2019224264A1 (en) 2019-11-28
DE102018112299B4 (en) 2020-12-03
CN214202626U (en) 2021-09-14

Similar Documents

Publication Publication Date Title
DE102007046483B4 (en) Circuit arrangement and method for monitoring electrical insulation
DE112014002853B4 (en) Insulation detector and electrical device
EP3844854B1 (en) Battery pack and charging method for a battery pack
DE102014005524B4 (en) interruption of a current
EP0022992B1 (en) Surveillance apparatus for a battery of condensators in a direct current filtering circuit
EP3449264B1 (en) Method for determining a load current and battery sensor
DE2406197C3 (en) Method and device for the detection of short circuits
EP0823057B1 (en) Process for monitoring a three-phase mains for a change in the tuning of the arc supression coil
EP2546852B1 (en) Bi-stable security relay
DE102018221479A1 (en) Circuit arrangement for fault detection in an unearthed high-voltage system
EP3797408B1 (en) Device, method, and control module for monitoring a two-wire line
WO2021122368A1 (en) Device and method for monitoring at least three battery cells of a battery
DE102017116009B3 (en) METHOD AND DEVICE FOR DETECTING LIGHT BOWS
WO2004086069A1 (en) Method for testing components of a circuit board
AT393916B (en) METHOD FOR MONITORING THE INSULATION RESISTANCE OF A SHEET OF ASSEMBLIES OF AN ELECTRICAL SYSTEM WITH A COMMON EARTH-FREE POWER SUPPLY, IN PARTICULAR A TELECOMMUNICATION OR SIGNALING DEVICE
DE102020007246A1 (en) Method for calibrating a first insulation monitor of an on-board electrical system and on-board electrical system
EP0927356B2 (en) Method of checking electrical components and device for carrying out this method
EP1046918A2 (en) Method and circuit for safety monitoring of an electrostatic spray device
EP0368029B1 (en) Measuring method and circuitry for testing protective measures in AC networks
DE102008061996B4 (en) Measuring method for currents with different measuring ranges
DE2628456C3 (en) Circuit arrangement for monitoring the capacitance of an electrolytic capacitor
DE102005058719A1 (en) Autonomous capacitor testing circuit arrangement for motor vehicle, has measuring circuit measuring voltage characteristics at capacitor, and evaluation circuit testing capacitance of capacitor by evaluation of measured characteristics
EP4308946A1 (en) Method for checking the state of isolation of a battery or of a battery system
EP3832823A1 (en) Method and devices for generating soil related information
DE102004003293A1 (en) Automobile battery condition is monitored by measuring quiescent current by transient disconnection of controller from power circuit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MINIMAX GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220128

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1503423

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004895

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221107

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221006

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004895

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

26N No opposition filed

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230522

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240522

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 6