EP2924697B1 - Magnetkern mit plattenförmigem Streukörper und induktives Bauelement - Google Patents
Magnetkern mit plattenförmigem Streukörper und induktives Bauelement Download PDFInfo
- Publication number
- EP2924697B1 EP2924697B1 EP15156744.3A EP15156744A EP2924697B1 EP 2924697 B1 EP2924697 B1 EP 2924697B1 EP 15156744 A EP15156744 A EP 15156744A EP 2924697 B1 EP2924697 B1 EP 2924697B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- plate
- leakage structure
- diffuser
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 81
- 230000001939 inductive effect Effects 0.000 title claims description 42
- 239000000463 material Substances 0.000 claims description 47
- 125000006850 spacer group Chemical group 0.000 claims description 33
- 238000004804 winding Methods 0.000 claims description 28
- 230000035699 permeability Effects 0.000 claims description 10
- 238000009499 grossing Methods 0.000 claims description 7
- 229910000859 α-Fe Inorganic materials 0.000 claims description 6
- 229910010293 ceramic material Inorganic materials 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 13
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 239000000696 magnetic material Substances 0.000 description 5
- 230000007480 spreading Effects 0.000 description 4
- 238000003892 spreading Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/38—Auxiliary core members; Auxiliary coils or windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F3/12—Magnetic shunt paths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/04—Fixed inductances of the signal type with magnetic core
- H01F17/043—Fixed inductances of the signal type with magnetic core with two, usually identical or nearly identical parts enclosing completely the coil (pot cores)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/255—Magnetic cores made from particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/10—Composite arrangements of magnetic circuits
- H01F3/14—Constrictions; Gaps, e.g. air-gaps
Definitions
- the present invention relates to a magnetic core with a plate-shaped diffuser and an inductive component.
- the present invention relates in particular to chokes and transformers with a plate-shaped scattering body inserted therein for the simple adaptation of scattering path guides and for achieving high adjustable leakage inductance values.
- Inductive components are designed as chokes and transformers with magnetic cores.
- a magnetic core of an inductive component consists of a ferromagnetic material, such as iron powder or ferrite, and is used to guide the magnetic field while at the same time improving the magnetic coupling between the windings and turns of individual windings.
- the winding is made of a conductive material, for example copper or aluminum, in the form of a flat wire, round wire, stranded wire or foil wire.
- a smoothing choke represents a special example of an inductive component that is used to reduce the residual ripple of a direct current with a superimposed ripple current.
- Smoothing reactors are used, for example, for voltage converters or generally for components in which current fluctuations are undesirable.
- limiting the magnetic coupling in inductive components is only desirable to a limited extent in various applications.
- a certain amount of leakage inductance is generally desired to limit the current in the event of a short circuit.
- push-pull interference in current-compensated chokes is suppressed by predefined leakage inductances.
- smoothing chokes are designed as coupled inductance with a leakage path. It is therefore common in many cases to take measures when designing an inductive component that reduce the magnetic coupling and increase the leakage inductance.
- a simple way of increasing the leakage inductance is to reduce the magnetic coupling between the windings by spacing the windings apart and nested them as little as possible.
- only a very small and limited increase in the leakage inductance can be achieved by this measure.
- discrete leakage paths made of a material with a magnetic permeability ⁇ 1 are introduced into a magnetic core between the windings.
- air gaps are incorporated in the leakage path to prevent excessive magnetic flux through the leakage path, reducing the leakage inductance effectively limited.
- the main inductance and leakage inductance are set, for example, in that the outer legs are each wound with a winding and air gaps are provided in the central slug and / or the outer legs.
- these known magnetic cores have the disadvantage that they have poor mechanical properties due to the air gaps formed in the magnetic core and are easily damaged under mechanical stress.
- large dimensions must often be selected for corresponding magnetic cores, so that inductive components manufactured accordingly continue to require a very large installation space.
- 5,656,983 A a protective layer of magnetic and non-magnetic materials is placed between a first and a second core half in order to protect magnetic cores from mechanical loads that occur during the operation of a transformer.
- Document JP 2011 146605 A also described a protective layer between two core halves, which, however, only consists of a single non-magnetic material.
- document US 2010/171580 A1 shows an annular core which is formed from two C-core parts and two I-core parts, with gaps with low permeability being formed in the I-core parts.
- ferrite parts and a module which are able to form a magnetic gap and which are influenced by an application environment and are able to reduce a time course of an inductance value and to provide methods for producing the ferrite parts and the
- the module includes a lamination formed by laminating a plurality of ferrite green sheets, a first through hole formed in the lamination direction, and an insulator made of non-magnetic ceramics in the first through hole.
- the first through hole is provided by sintering the lamination as a distributed magnetic gap.
- a magnetic circuit for inductive electrical devices with a frame consisting of yokes and side walls is known, the frame having a preferably rectangular cross section and being made of a laminated magnetic material.
- the frame between the two yokes at least one core leg is arranged, which has a circular cross-section and consists of a laminated magnetic material.
- Plates made of a laminated magnetic material are arranged between the ends of the core limb and the yokes to distribute the flux between the limbs and the yokes.
- the sheets in the plates are oriented so that they are perpendicular to the sheets in the yokes.
- Each plate covers at least the full width of the yoke and at least the entire width of the core leg. The width of each plate is as great as the diameter of the winding which is arranged around the core leg.
- Each plate will thus act as a mechanical support for the ends of the winding.
- the font DE 20 2011 051 056 U1 discloses an inductive component with at least two inductor coils which are coupled to one another by a magnetic circuit and which are arranged in a common core, the common core having at least one intermediate core element which can be changed in the coupling between the windings of the inductor coils.
- the invention provides a magnetic core with a first core section which has a first core limb, and a second core section which has a second core limb, and a plate-shaped diffuser as an insert in the magnetic core.
- the plate-shaped diffuser includes a first diffuser section and a second diffuser section, each formed from a first material, and a first spacer, which is formed from a second material that has a lower magnetic permeability than the first material.
- the first spacer separates the first diffuser section from the second diffuser section and penetrates the diffuser along its thickness direction.
- the plate-shaped scattering body provides a scattering path which can be inserted into a magnetic core of an inductive element and which enables a very precise and reproducible setting of scattering inductances without reducing the mechanical and / or magnetic properties of a magnetic core to be produced. Furthermore, the plate-shaped diffuser can also be easily machined during later production processes in order to set a desired leakage inductance value and / or desired geometric dimensions of the diffuser on the basis of a predetermined design.
- a spacing of the diffuser portions is smaller than a thickness of the diffuser which is set along its thickness direction. It is noted that a thickness of a plate-shaped body or its thickness direction is generally understood as the dimension of the body transverse to its large-area surfaces, as will be described below. The leakage inductance of the diffuser is effectively limited by a corresponding distance.
- the diffuser further comprises a second spacer formed from the second material and a third diffuser portion formed from the first material.
- the second spacer separates the third diffuser section from the second diffuser section and penetrates the diffuser along its thickness direction.
- the first material comprises a ferrite material and the second material comprises a ceramic material.
- Corresponding scattering bodies have advantageous magnetic properties while at the same time being easy to manufacture.
- the spacers are sintered into the diffuser. This provides a mechanically stable diffuser with very easily predeterminable mechanical and magnetic properties, which can also be easily processed in later manufacturing phases.
- the plate-shaped diffuser is arranged between the first core section and the second core section, so that each core section rests on a support surface of the diffuser.
- the first core leg covers a first surface section formed from exposed first material.
- the second core leg covers a second surface section formed from exposed first material.
- the first core section furthermore has a third core limb which, in addition to the first core limb, covers a third surface section formed from exposed first material.
- the third surface section is separated from the first surface section by a surface section formed from exposed second material.
- the second core section furthermore has a fourth core leg which, in addition to the second core leg, covers a fourth surface section formed from exposed first material.
- the fourth surface section is separated from the second surface section by a surface section formed from exposed second material.
- the magnetic core has a double-E, double-C or an E-C core configuration.
- an advantageous spreading path guidance is provided with at the same time great mechanical stability for a large number of core configurations.
- the diffuser is arranged in the magnetic core in an air gap formed by the first and second core legs. This allows a further compact design.
- an inductive component comprises a magnetic core, as described above, a first winding which is provided over the first core leg, and a second winding which is provided over the second core leg.
- the diffuser is arranged in the magnetic core between the first and the second winding.
- the inductive component is designed as a smoothing choke. This provides a smoothing throttle with advantageous spreading path guidance.
- very compact components with very good scattering path guidance are provided by means of a plate-shaped scattering body, without the mechanical stability being adversely affected by the plate-shaped scattering body.
- Components provided accordingly are suitable for the series production of inductive components which, according to the invention, are subject to low production tolerances, due to their mechanical and magnetic properties that can be set very easily. Chokes and transformers can therefore be manufactured with a very easily adjustable scatter path guidance with very low manufacturing tolerances, with magnetic scatter properties being easily and flexibly adjustable.
- plate-shaped is to be understood as “similar to a plate” and therefore roundings in surfaces and / or edges are not excluded.
- a “plate-shaped body” is understood to mean a geometrical body which has dimensions along three directions, each perpendicular to one another, with one of the three dimensions is much smaller than the other two dimensions.
- a plate-shaped body can be viewed as cuboid (similar to a cuboid), one dimension being significantly smaller than the dimensions perpendicular to it.
- the expression “significantly smaller” is to be understood to the effect that a ratio is generally ⁇ 1.
- a ratio of a dimension a to a dimension b which is significantly smaller than the dimension a, can be less than 1 and in particular less than 0.5 or 0.25 or 0.1.
- a ratio of the essentially smaller dimension to the larger one of the other two dimensions can be less than 0.2, for example.
- the dimension that is significantly smaller than the other two dimensions is referred to as "thickness” and the corresponding direction in which the dimension is determined is referred to as "thickness direction”.
- the longer dimension of the other two dimensions is called the “length” and the direction in which the length is determined is called the "length direction”.
- width The remaining dimension is hereinafter referred to as "width” and the corresponding direction in which the width is determined is referred to as “width direction”. In cases where the length and width are the same, both are called “radius” and the corresponding direction is called “radial direction”.
- radius the corresponding direction
- radial direction the corresponding direction
- a “plate-shaped body” has two opposing side surfaces and the remaining side surfaces (in terms of area dimensions) are significantly smaller than the opposing side surfaces.
- plate-shaped scattering bodies are provided as an insert in the magnetic core of an inductive component for adapting a scattering path in the magnetic core and for achieving high leakage inductance values with a simultaneous low manufacturing tolerance.
- Fig. 1 represents an embodiment of a plate-shaped scattering body 2 of a magnetic core according to the invention
- Fig. 1 The coordinate system shown in perspective is oriented in a thickness direction of the diffuser 2 along the z-axis, while a longitudinal direction runs along the x-axis. A width direction is oriented along the y-axis.
- the in Fig. 1 The scattering body 2 shown is cuboid with rounded longitudinal edges, whereby damage to the scattering body and / or damage to the inductive component to be formed is avoided in further manufacturing steps. However, this does not represent a restriction of the present invention. Furthermore, rounded width edges can be provided. Alternatively, rounding can be dispensed with.
- the plate-shaped diffuser 2 is formed from three diffuser sections 11, 13 and 15.
- the diffuser sections 11, 13, 15 are formed from the first material.
- a spacer 17 is arranged between the diffuser sections 11 and 13.
- the diffuser sections 13 and 15 are spaced apart from one another by a spacer 19.
- the spacers 17 and 19 are formed from the second material.
- a surface portion of the diffuser portion 11 in a top surface is shown in FIG Fig. 1 denoted by the reference number 26.
- Corresponding surface sections of the diffuser sections 13, 15 are provided with the reference numerals 27, 28.
- the surface sections 26, 27, 28 represent exposed surface sections made of the first material in the upper surface of the plate-shaped diffuser 2.
- the surface sections 26, 27, 28 are separated and spaced apart in the upper surface by exposed areas of the spacers 17, 19. The same applies to the underside surface of the plate-shaped scattering body 2, which is opposite the upper surface and which is shown in the perspective view of FIG Fig. 1 is not shown.
- the top and bottom surfaces of the plate-shaped scattering body 2 each serve as support surfaces for core legs when the plate-shaped scattering body 2 is inserted in a magnetic core, as further below with reference to FIG Fig. 2a , 2 B is described.
- the plate-shaped diffuser 2 can be formed, for example, by alternating layers of the first and second material and subsequent sintering, whereby the spacers 17 and 19 are sintered into the diffuser 2.
- the diffuser sections 11, 13 and 15 and the spacers 17 and 19 are each produced separately and then connected to one another in an additional sintering process.
- a desired leakage inductance or saturation limit of the leakage inductance is suitably adapted.
- a change in the leakage inductance can be achieved by adapting the spacers in the plate-shaped diffuser 2.
- the saturation limit for the leakage inductance can easily be increased by adapting the thickness of the plate-shaped diffuser 2.
- magnetic properties of the plate-shaped scattering body can thus also be adapted in subsequent processing steps, so that using the plate-shaped scattering body 2 provided according to the invention, leakage inductances and saturation limits for leakage inductances are provided with very low manufacturing tolerances. It can be seen that the leakage inductance and saturation limit are set via suitably dimensioned diffuser sections and / or spacers.
- FIG. 2a shows an inductive component with a magnetic core 100 according to one embodiment and windings W1 and W2 schematically in a cross-sectional view.
- the magnetic core 100 is formed from a first core section 110, a second core section 120 and a plate-shaped diffuser 130.
- the first core section 110 has outer limbs 112 and a central limb 114, which are connected by a transverse yoke 116.
- the second core section 120 has outer limbs 122, a middle limb 124 and a transverse yoke 126 which connects the outer limbs 122 and the middle limb 124 to one another.
- the plate-shaped diffuser 130 has diffuser sections 132, 134 and 136 and spacers 137 and 139. It is noted that the plate-shaped diffuser 130 may correspond to the plate-shaped diffuser 2 that was described above with reference to FIG Fig. 1 is described.
- the diffuser 130 is as shown in FIG Fig. 2a arranged between the core sections 110 and 120, so that the outer limbs 112, 122 and the central limbs 114, 124 rest on the support surfaces 134a, 134b on corresponding diffuser sections 132, 134 and 136 or are in contact there.
- an air gap to the diffuser plate can be ground into the center of the two main cores.
- the two air gaps in the main core set the main inductance of the magnetic core.
- the leakage inductance is set by the two gaps (spacers 137, 139) formed in the diffuser 130. It is noted that the limb and the diffuser can be glued to one another, so that an adhesive is provided between the limb and the support surface of the diffuser.
- surface sections of the diffuser sections 132, 134 and 136 in the support surfaces 134a, 134b are covered by the outer limbs 112, 122 and center limbs 114, 124, the surface sections being formed by exposed first material.
- exposed areas made of the second material in the bearing surface in particular the spacers 137, 139 exposed in the bearing surfaces 134a, 134b, are not covered by the core legs 112, 122, 114, 124 of the core sections 110, 120. This means that the spacers 137, 139 are exposed in the winding spaces formed in the magnetic core 100 when the core sections 110, 120 are resting on them.
- gaps are provided in the scattering path, which is provided by means of the scattering body 130 between the legs of the magnet core 100, through the spacers 137, 139, the magnetically effective cross section of each leg not being influenced by the scattering body 130 , 124 covered surface section in at least one bearing surface may be smaller than the magnetically effective cross section of at least one central limb 114, 124.
- windings W1 and W2 are provided over the center legs 114, 124, with the windings W1 and W2 being separated by the diffuser 130 disposed therebetween.
- Figure 2b shows an alternative embodiment of an inductive component with a scattering body insert schematically in a cross-sectional view, a scattering body 230 being inserted in a magnetic core 200 for guiding the scattering path.
- the magnetic core 200 is formed from a first core section 210, a second core section 220 and a plate-shaped diffuser 230.
- the first core section 210 has outer limbs 212 and a central limb 214, which are connected by a cross yoke 216.
- the second core section 220 has outer limbs 222, a middle limb 224 and a transverse yoke 226, which connects the outer limbs 222 and the middle limb 224 to one another.
- the plate-shaped diffuser 230 has diffuser sections 232, 234 and 236 and spacers 237 and 239. It is noted that the plate-shaped diffuser 230 may correspond to the plate-shaped diffuser 2 that was described above with reference to FIG Fig. 1 is described.
- Diffuser 230 is shown in FIG Figure 2b arranged between the core sections 210 and 220, so that the central legs 214, 224 in the bearing surfaces 134a, 134b rest on the diffuser section 234 or rest there.
- an air gap to the diffuser plate can be ground into the center of the two main cores.
- the two air gaps in the main core set the main inductance of the magnetic core.
- the leakage inductance is set by the two gaps (spacers 237, 239) formed in the diffuser 230.
- the central limb 214, 224 and the diffuser 230 can be glued to one another, so that an adhesive is provided between the central limb 214, 224 and the diffuser portion 234.
- surface sections of the diffuser section 234 are covered in the bearing surfaces by the central limbs 214, 224, the surface sections being formed by exposed first material.
- exposed areas made of the second material in the bearing surface, in particular the spacers 137, 139 exposed in the bearing surfaces, are not covered by the center legs 214, 224. This means that the spacers 237, 239 are exposed when the core sections 210, 220 are in contact in the contact surfaces formed in the magnetic core 200.
- a surface section covered by the central limbs 214, 224 can be smaller in at least one support surface than the magnetically effective cross section of at least one central limb 214, 224.
- the inductive components shown also have windings W3 and W4 formed above the center legs 214, 224, which windings are separated by the scattering body 230 arranged therebetween.
- the diffuser 230 is fitted into an air gap which is formed between the central limbs 214, 224 of the assembled core sections 210, 220.
- the outer legs 212, 222 of the assembled core sections 210, 220 rest on one another. It is also possible here to adjust the leakage inductance by adjusting an additional air gap between the diffuser 230 and the outer legs 212, 222 of the magnetic core 200. Further setting options can be achieved by providing a material with low magnetic permeability between the diffuser 230 and the outer legs 212, 222 of the magnetic core 200, which results in a very compact and mechanically stable configuration of the in Figure 2b shown inductive component is achieved.
- the inductive components according to the invention are shown in FIG Fig. 2a and 2 B very compact and still have great mechanical stability. Due to the advantageously provided scattering path in scattering bodies 130, 230, an advantageous saturation behavior of the scattering inductance is provided, the saturation curve falling extremely constantly up to the saturation point and only falling very late.
- the inductive components shown are ideally suited for series production due to their low manufacturing tolerances. For example, transformers and chokes with advantageous leakage inductance values can be provided. In a particular illustrative example, a smoothing choke is provided.
- first material and a second material the first material having a higher magnetic permeability than the second material.
- first material and a second material the first material having a higher magnetic permeability than the second material.
- a plate-shaped diffuser which is formed from three diffuser sections and two spacers. This does not represent a limitation of the invention and more than three diffuser sections can also be provided, provided a spacer is arranged between two diffuser sections.
- the invention provides a magnetic core with a plate-shaped diffuser according to claim 1 and an inductive component according to claim 6.
- a plate-shaped diffuser is provided as an insert in the magnetic core, through which at least one spacer (compared to the rest of the material of the diffuser) has a very low magnetic permeability penetrated along its thickness direction.
- a spacing of the scatter body sections is smaller than a thickness of the plate-shaped scatter body measured along its thickness direction.
- core legs are arranged over mutually opposing support surfaces of the plate-shaped scattering body, a scattering path being provided between the core legs by the plate-shaped scattering body.
- the plate-shaped scattering body is a scattering plate with at least one integral gap which penetrates the scattering plate along its thickness direction and is formed from a material with low magnetic permeability.
- the gap also penetrates the diffuser plate in its width direction and is designed as a gap along the longitudinal direction.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Coils Or Transformers For Communication (AREA)
Description
- Die vorliegende Erfindung betrifft einen Magnetkern mit einem plattenförmigen Streukörper und ein induktives Bauelement. Die vorliegende Erfindung betrifft insbesondere Drosseln und Transformatoren mit einem darin eingesetzten plattenförmigen Streukörper zur einfachen Anpassung von Streupfadführungen und zum Erreichen hoher einstellbarer Streuinduktivitätswerte.
- Induktive Bauelemente sind als Drosseln und Transformatoren mit Magnetkernen ausgeführt. Im Allgemeinen besteht ein Magnetkern eines induktiven Bauelements aus einem ferromagnetischen Material, wie beispielsweise Eisenpulver oder Ferrit, und dient zur Führung des Magnetfelds bei gleichzeitiger Verbesserung der magnetischen Kopplung zwischen den Wicklungen und Windungen einzelner Wicklungen. Die Wicklung wird dabei aus einem leitfähigen Material, beispielsweise Kupfer oder Aluminium, in Form eines Flachdrahts, Runddrahts, Litzendrahts oder Foliendrahts gebildet.
- Eine Glättungsdrossel stellt ein spezielles Beispiel eines induktiven Bauelements dar, das zur Reduzierung der Restwelligkeit eines Gleichstroms mit überlagertem Rippelstrom verwendet wird. Glättungsdrosseln werden zum Beispiel für Spannungsumrichter oder generell für Bauteile verwendet, in denen Stromschwankungen unerwünscht sind.
- Eine Begrenzung der magnetischen Kopplung in induktiven Bauelementen ist jedoch in diversen Anwendungsfällen nur in begrenztem Maße erwünscht. In Transformatoren ist beispielsweise ein gewisses Maß an Streuinduktivität als Strombegrenzung im Kurzschlussfall allgemein erwünscht. Beispielsweise werden Gegentaktstörungen in stromkompensierten Drosseln durch vorgegebene Streuinduktivitäten unterdrückt. In Current Doubler Schaltungen werden z.B. Glättungsdrosseln als gekoppelte Induktivität mit Streupfad ausgeführt. Es ist also in vielen Fällen üblich, beim Design eines induktiven Bauteils Maßnahmen zu treffen, die die magnetische Kopplung senken und die Streuinduktivität erhöhen.
- Eine einfache Möglichkeit zur Erhöhung der Streuinduktivität besteht darin, die magnetische Kopplung zwischen den Wicklungen dadurch zu verringern, dass die Wicklungen voneinander beabstandet und möglichst wenig miteinander verschachtelt sind. Durch diese Maßnahme lässt sich jedoch nur eine sehr geringe und begrenzte Erhöhung der Streuinduktivität erreichen. Zur weiteren Steigerung der Streuinduktivität werden desweiteren diskrete Streupfade aus einem Material mit einer magnetischen Permeabilität < 1 in einen magnetischen Kern zwischen den Wicklungen eingebracht. In vielen Fällen werden Luftspalte im Streupfad eingearbeitet, um einen übermäßigen magnetischen Fluss durch den Streupfad zu verhindern, wobei die Streuinduktivität effektiv begrenzt wird. In bekannten E-Kernkonfigurationen werden die Haupt- und Streuinduktivität beispielsweise dadurch eingestellt, dass die Außenschenkel jeweils mit einer Wicklung bewickelt und Luftspalte im Mittelbutzen und/oder den Außenschenkeln vorgesehen. Diese bekannten Magnetkerne weisen jedoch den Nachteil auf, dass sie aufgrund der im Magnetkern gebildeten Luftspalte schlechte mechanische Eigenschaften aufweisen und unter mechanischer Beanspruchung leicht beschädigt werden. Außerdem ist zur Einstellung der gewünschten Streuinduktivitätswerte häufig für entsprechende Magnetkerne eine große Dimensionierung zu wählen, so dass entsprechend hergestellte induktive Bauelemente weiterhin einen sehr großen Bauraum benötigen.
- In anderen bekannten induktiven Bauelementen, wie z. B. im Kern der Druckschrift
CN 103236339 A , werden herkömmlicherweise Streuelemente als separate Kernsegmente zwischen Mittelbutzen und Außenschenkel(n) angeordnet, wobei Streuinduktivitäten durch die zwischen Mittelbutzen, Außenschenkeln und Streusegmenten gebildeten Luftspalte festgelegt werden. Es hat sich jedoch gezeigt, dass hierbei Luftspalte nur schlecht homogen einstellbar sind und entsprechend hergestellte Bauteile sehr früh in Sättigung gehen, wobei die Streuinduktivität langsam abfällt. Dies ist für sehr viele Anwendungen nicht akzeptabel. Aufgrund der in diesen Magnetkernen unvermeidlichen Toleranzen im Luftspalt ist eine Serienfertigung nur schwer kontrollierbar. - Es ist bekannt, "Luftspalte" mit niedrig-permeablen Materialien zu bilden. In Dokument
DE 38 21 284 A1 werden zwischen einen E-Kernteil und einen I-Kernteil der Vormagnetisierung dienende Permanentmagnete eingefügt, welche zusätzlich als Luftspalt fungieren, da sie eine Permeabilität nahe 1 aufweisen. DokumentDE 38 21 284 A1 betrifft eine Reduktion von Streufeldern, die durch Luftspalte erzeugt werden. DokumentUS 4 047 138 A zeigt eine Anordnung von Luftspalten innerhalb eines magnetischen Kernes derart, dass auftretende magnetische Kräfte auf den Kern minimiert werden, was akustische Emissionen reduziert. In DokumentUS 5 656 983 A wird eine Schutzschicht aus magnetischen und nichtmagnetischen Materialien zwischen eine erste und eine zweite Kernhälfte eingebracht, um Magnetkerne vor mechanischen Belastungen zu schützten, die während des Betriebes eines Transformators auftreten. Ähnlich hierzu wird in DokumentJP 2011 146605 A US 2010/171580 A1 zeigt einen ringförmigen Kern, der aus zwei C-Kernteilen und zwei I-Kernteilen gebildet wird, wobei in den I-Kernteilen Spalte mit niedriger Permeabilität gebildet sind. - In Dokument
JP 2006 310811 A - Aus Dokument
US 4257025 A ist ein magnetischer Kreis für induktive elektrische Vorrichtungen mit einem Rahmen bekannt, der aus Jochen und Seitenwänden besteht, wobei der Rahmen einen vorzugsweise rechteckigen Querschnitt aufweist und aus einem laminierten magnetischen Material hergestellt ist. In dem Rahmen zwischen den beiden Jochen ist mindestens ein Kernschenkel angeordnet, der einen kreisförmigen Querschnitt aufweist und aus einem laminierten magnetischen Material besteht. Zwischen den Enden des Kernschenkels und den Jochen sind Platten aus einem laminierten magnetischen Material angeordnet, um den Fluss zwischen den Schenkeln und Jochen zu verteilen. Die Bleche in den Platten sind so orientiert, dass sie zu den Blechen in den Jochen senkrecht sind. Jede Platte bedeckt mindestens die volle Breite des Jochs und mindestens die gesamte Breite des Kernschenkels. Die Breite jeder Platte ist so groß wie der Durchmesser der Wicklung, die um den Kernschenkel angeordnet ist. Jede Platte wird somit als eine mechanische Stütze für die Enden der Wicklung wirken. - Die Schrift
DE 20 2011 051 056 U1 offenbart ein induktives Bauteil mit wenigstens zwei durch einen magnetischen Kreis miteinander gekoppelten Drosselspulen, die in einem gemeinsamen Kern angeordnet sind, wobei der gemeinsame Kern wenigstens ein die Kopplung zwischen den Wicklungen der Drosselspulen veränderbares Kernzwischenelement aufweist. - Ausgehend von den vorangehend dargestellten herkömmlichen Magnetkernen und induktiven Bauelementen besteht daher ein Bedarf an einem Magnetkern und einem induktiven Bauelement, in denen die Streuinduktivität sehr genau und reproduzierbar einstellbar ist und wobei entsprechende Magnetkerne für die Serienfertigung geeignet sind.
- Die vorangehenden Probleme werden erfindungsgemäß durch einen Magnetkern für ein induktives Bauelement gemäß dem unabhängigen Anspruch 1 und ein induktives Bauelement gemäß Anspruch 6 gelöst. Vorteilhaftere Ausgestaltungen davon sind in den abhängigen Ansprüchen 2 bis 5 und 7 definiert.
- Die Erfindung stellt in einem Aspekt einen Magnetkern mit einem ersten Kernabschnitt, der einen ersten Kernschenkel aufweist, und einem zweiten Kernabschnitt, der einen zweiten Kernschenkel aufweist, und einem plattenförmigen Streukörper als Einsatz in dem Magnetkern bereit. Dabei umfasst der plattenförmige Streukörper einen ersten Streukörperabschnitt und einen zweiten Streukörperabschnitt, die jeweils aus einem ersten Material gebildet sind, sowie einen ersten Abstandshalter, der aus einem zweiten Material gebildet ist, das gegenüber dem ersten Material eine geringere magnetische Permeabilität aufweist. Der erste Abstandshalter beabstandet den ersten Streukörperabschnitt von dem zweiten Streukörperabschnitt und durchsetzt den Streukörper entlang seiner Dickenrichtung. Durch den plattenförmigen Streukörper wird ein in einen Magnetkern eines induktiven Elements einsetzbarer Streupfad bereitgestellt, der eine sehr genaue und reproduzierbare Einstellung von Streuinduktivitäten ermöglicht, ohne dass mechanische und/oder magnetische Eigenschaften eines herzustellenden Magnetkerns verringert werden. Weiterhin ist der plattenförmige Streukörper auch während späterer Herstellungsprozesse leicht zu bearbeiten, um einen gewünschten Streuinduktivitätswert und/oder gewünschte geometrische Abmessungen des Streukörpers anhand eines vorgegebenen Designs einzustellen.
- In der oben beschriebenen Ausführungsform ist eine Beabstandung der Streukörperabschnitte kleiner als eine Dicke des Streukörpers, die entlang seiner Dickenrichtung festgelegt ist. Es wird angemerkt, dass eine Dicke eines plattenförmigen Körpers bzw. seine Dickenrichtung allgemein als Abmessung des Körpers quer zu seinen großflächigen Oberflächen verstanden wird, wie weiter unten beschrieben ist. Durch einen entsprechenden Abstand wird die Streuinduktivität des Streukörpers wirkungsvoll begrenzt.
- Weiterhin umfasst der Streukörper ferner einen zweiten Abstandshalter gebildet aus dem zweiten Material und einen dritten Streukörperabschnitt, der aus dem ersten Material gebildet ist. Der zweite Abstandshalter beabstandet hierbei den dritten Streukörperabschnitt von dem zweiten Streukörperabschnitt und durchsetzt den Streukörper entlang seiner Dickenrichtung. Dies stellt für Anwendungen in Magnetkernen, die aus E- und/oder C-Kernen gebildet werden, einen vorteilhaften Streukörper bereit.
- Weiterhin umfasst das erste Material ein Ferritmaterial und das zweite Material ein Keramikmaterial. Entsprechende Streukörper weisen vorteilhafte magnetische Eigenschaften bei gleichzeitiger einfacher Herstellung auf. Die Abstandshalter sind dabei in den Streukörper eingesintert. Hierdurch wird ein mechanisch stabiler Streukörper mit sehr gut vorgebbaren mechanischen und magnetischen Eigenschaften bereitgestellt, der auch in späteren Herstellungsphasen leicht bearbeitbar ist.
- In dem Magnetkern Ist der plattenförmige Streukörper hierbei zwischen dem ersten Kernabschnitt und dem zweiten Kernabschnitt angeordnet, so dass jeder Kernabschnitt auf einer Auflagefläche des Streukörpers aufliegt. In einer Auflagefläche des plattenförmigen Streukörpers bedeckt der erste Kernschenkel einen ersten Flächenabschnitt gebildet aus freiliegendem ersten Material. In der gegenüberliegenden Auflagefläche bedeckt der zweite Kernschenkel einen zweiten Flächenabschnitt gebildet aus freiliegendem ersten Material. Hierdurch werden sehr kompakte Bauteile mit über einen weiten Bereich konstanter Streuinduktivität und mit erst spät abfallender Streuinduktivität bereitgestellt.
- In einer vorteilhaften Ausführungsform der obigen Ausgestaltungen weist der erste Kernabschnitt ferner einen dritten Kernschenkel auf, der neben dem ersten Kernschenkel einen dritten Flächenabschnitt gebildet aus freiliegendem ersten Material bedeckt. Der dritte Flächenabschnitt ist dabei von dem ersten Flächenabschnitt durch einen Flächenabschnitt gebildet aus freiliegendem zweiten Material getrennt. Es wird folglich auf einfache Weise ein Streupfad mit Spalt zwischen dem ersten und dritten Schenkel vorgesehen, da der erste und dritte Kernschenkel jeweils auf Streukörperabschnitten aufliegen, die durch einen Abstandshalter beabstandet sind. Es wird also zwischen zwei Kernschenkeln eine vorteilhafte Streupfadführung bereitgestellt.
- In einer vorteilhaften Ausführungsform der obigen Ausgestaltungen weist der zweite Kernabschnitt ferner einen vierten Kernschenkel auf, der neben dem zweiten Kernschenkel einen vierten Flächenabschnitt gebildet aus freiliegendem ersten Material bedeckt. Der vierte Flächenabschnitt ist dabei von dem zweiten Flächenabschnitt durch einen Flächenabschnitt gebildet aus freiliegendem zweiten Material getrennt. Es wird folglich auf einfache Weise ein Streupfad mit Spalt zwischen dem zweiten und vierten Kernschenkel vorgesehen, da der zweite und vierte Kernschenkel jeweils auf Streukörperabschnitten aufliegen, die durch einen Abstandshalter beabstandet sind. Es wird also zwischen zwei Kernschenkeln eine vorteilhafte Streupfadführung bereitgestellt.
- In einer weiteren vorteilhaften Ausführungsform der obigen Ausgestaltungen weist der Magnetkern eine Doppel- E-, Doppel-C- oder eine E-C-Kernkonfiguration auf. Es wird hierdurch eine vorteilhafte Streupfadführung bei gleichzeitig großer mechanischer Stabilität für eine große Anzahl von Kernkonfigurationen vorgesehen.
- In einer weiteren vorteilhaften Ausführungsform der obigen Ausgestaltungen ist der Streukörper im Magnetkern in einem durch den ersten und zweiten Kernschenkel gebildeten Luftspalt angeordnet. Dieser erlaubt eine weitere kompakte Ausgestaltung.
- In weiteren Ausgestaltungen der Erfindung wird ein induktives Bauelement bereitgestellt. In Ausführungsformen umfasst das induktive Bauelement einen Magnetkern, wie oben beschrieben, eine erste Wicklung, die über dem ersten Kernschenkel bereitgestellt ist, und eine zweite Wicklung, die über dem zweiten Kernschenkel bereitgestellt ist. Der Streukörper ist hierbei im Magnetkern zwischen der ersten und der zweiten Wicklung angeordnet. Dadurch werden induktive Bauelemente mit vorteilhafter Streupfadführung bereitgestellt.
- In einer vorteilhaften Ausführungsform dieser Ausgestaltung ist das induktive Bauelement als eine Glättungsdrossel ausgeführt. Dadurch wird eine Glättungsdrossel mit vorteilhafter Streupfadführung bereitgestellt.
- In den unterschiedlichen Aspekten der Erfindung werden sehr kompakte Bauelemente mit sehr guter Streupfadführung anhand eines plattenförmigen Streukörpers bereitgestellt, ohne dass die mechanische Stabilität durch den plattenförmigen Streukörper nachteilig beeinflusst wird. Entsprechend bereitgestellte Bauelemente sind aufgrund sehr gut einstellbaren mechanischen und magnetischen Eigenschaften für die Serienfertigung von induktiven Bauelementen geeignet, die erfindungsgemäß geringen Fertigungstoleranzen unterliegen. Es können also Drosseln und Transformatoren mit einer sehr gut einstellbaren Streupfadführung unter sehr geringen Fertigungstoleranzen hergestellt werden, wobei magnetische Streueigenschaften leicht und flexibel einstellbar sind.
- Weitere Merkmale, vorteilhafte Ausführungsformen und Vorteile der vorliegenden Erfindung gehen aus den beigefügten Patentansprüchen und der folgenden detaillierten Beschreibung anschaulicher Ausführungsformen hervor, wobei auf die folgenden Figuren Bezug genommen wird, in denen:
- Fig. 1
- einen plattenförmigen Streukörper gemäß einer Ausführungsform in einer perspektivischen Ansicht darstellt;
- Fig. 2a
- ein induktives Bauelement gemäß einer Ausführungsform der Erfindung in einer Schnittansicht schematisch darstellt; und
- Fig. 2b
- ein induktives Bauelement gemäß einer anderen Ausführungsform der Erfindung in einer Schnittansicht schematisch darstellt.
- Es wird angemerkt, dass der Ausdruck "plattenförmig" als "einer Platte ähnlich" zu verstehen ist und damit Rundungen in Flächen und/oder Kanten nicht ausgeschlossen sind. Unter einem "plattenförmigen Körper" wird ein geometrischer Körper verstanden, der Abmessungen entlang dreier jeweils senkrecht aufeinander stehender Richtungen aufweist, wobei eine der drei Abmessungen wesentlich kleiner ist als die anderen zwei Abmessungen. Zum Beispiel kann ein plattenförmiger Körper als quaderförmig (einem Quader ähnlich) aufgefasst werden, wobei eine Abmessung wesentlich kleiner ist als die dazu senkrechten Abmessungen. Der Ausdruck "wesentlich kleiner" ist dahingehend zu verstehen, dass ein Verhältnis im Allgemeinen < 1 ist. Beispielsweise kann ein Verhältnis einer Abmessung a zu einer Abmessung b, die wesentlich kleiner als die Abmessung a ist, kleiner als 1 und insbesondere kleiner als 0,5 oder 0,25 oder 0,1 sein. In einem anschaulichen Beispiel kann ein Verhältnis von der im Wesentlichen kleineren Abmessung zu der größeren aus den beiden anderen Abmessungen beispielsweise kleiner als 0,2 sein. Im Folgenden wird die Abmessung, die wesentlich kleiner ist als die beiden anderen Abmessungen, als "Dicke" bezeichnet und die entsprechende Richtung, in der die Abmessung festgelegt ist, wird als "Dickenrichtung" bezeichnet. Gleichfalls wird die längere Abmessung der beiden anderen Abmessungen als "Länge" bezeichnet und die Richtung, in der die Länge festgelegt ist, wird als "Längenrichtung" bezeichnet. Die verbleibende Abmessung wird im Folgenden als "Breite" bezeichnet und die entsprechende Richtung, in der die Breite festgelegt ist, wird als "Breitenrichtung" bezeichnet. In Fällen, in denen die Länge und Breite gleich sind, werden beide als "Radius" bezeichnet und die entsprechende Richtung wird als "Radialrichtung" bezeichnet. Zusätzlich oder alternativ zur vorangehenden Definition von "plattenförmig" wird angemerkt, dass ein "plattenförmiger Körper" zwei einander gegenüberliegende Seitenflächen aufweist und die restlichen Seitenflächen (bezüglich der Flächenmaße) wesentlich kleiner sind als die gegenüberliegenden Seitenflächen.
- Im Folgenden werden anhand von
Fig. 1 verschiedene anschauliche Ausführungsformen der Erfindung beschrieben. Hierbei sind plattenförmige Streukörper als Einsatz im Magnetkern eines induktiven Bauelements zur Anpassung einer Streupfadführung im Magnetkern und zum Erreichen hoher Streuinduktivitätswerte bei gleichzeitiger geringer Fertigungstoleranz vorgesehen. -
Fig. 1 stellt eine Ausführungsform eines plattenförmigen Streukörpers 2 eines Magnetkerns gemäß der Erfindung dar. Gemäß dem inFig. 1 perspektivisch dargestellten Koordinatensystem ist eine Dickenrichtung des Streukörpers 2 entlang der z-Achse orientiert, während eine Längsrichtung entlang der x-Achse verläuft. Eine Breitenrichtung ist entlang der y-Achse orientiert. Der inFig. 1 dargestellte Streukörper 2 ist quaderförmig mit abgerundeten Längskanten, wodurch eine Beschädigung des Streukörpers und/oder eine Beschädigung des zu bildenden induktiven Bauelements in weiteren Fertigungsschritten vermieden wird. Dies stellt jedoch keine Beschränkung der vorliegenden Erfindung dar. Es können weiterhin abgerundete Breitenkanten vorgesehen sein. Alternativ kann auf Abrundungen verzichtet sein. - Der plattenförmige Streukörper 2 ist aus drei Streukörperabschnitten 11, 13 und 15 gebildet. Die Streukörperabschnitte 11, 13, 15 sind aus erstem Material gebildet. Zwischen den Streukörperabschnitten 11 und 13 ist ein Abstandshalter 17 angeordnet. Die Streukörperabschnitte 13 und 15 sind durch einen Abstandshalter 19 voneinander beabstandet. Die Abstandshalter 17 und 19 sind aus dem zweiten Material gebildet. Hinsichtlich der ersten und zweiten Materialien wird auf die vorangehende Beschreibung verwiesen. Ein Flächenabschnitt des Streukörperabschnitts 11 in einer oberseitigen Oberfläche ist in
Fig. 1 mit dem Bezugszeichen 26 bezeichnet. Entsprechende Flächenabschnitte der Streukörperabschnitte 13, 15 sind mit den Bezugszeichen 27, 28 versehen. Die Flächenabschnitte 26, 27, 28 stellen in der oberseitigen Oberfläche des plattenförmigen Streukörpers 2 freiliegende Flächenabschnitte aus erstem Material dar. Die Flächenabschnitte 26, 27, 28 sind in der oberseitigen Oberfläche durch freiliegende Bereiche der Abstandshalter 17, 19 voneinander getrennt und beabstandet. Entsprechendes gilt für die der oberseitigen Oberfläche gegenüberliegende unterseitige Oberfläche des plattenförmigen Streukörpers 2, die in der perspektivischen Ansicht vonFig. 1 nicht dargestellt ist. Die oberseitige und unterseitige Oberfläche des plattenförmigen Streukörpers 2 dienen jeweils als Auflageoberflächen für Kernschenkel, wenn der plattenförmige Streukörper 2 in einem Magnetkern eingesetzt ist, wie weiter unten mit Bezug auf dieFig. 2a ,2b beschrieben ist. - Der plattenförmige Streukörper 2 kann beispielsweise durch abwechselnde Schichten aus dem ersten und zweiten Material und anschließendem Sintern gebildet werden, wodurch die Abstandshalter 17 und 19 in den Streukörper 2 eingesintert werden. Alternativ werden die Streukörperabschnitte 11, 13 und 15 und die Abstandshalter 17 und 19 jeweils separat hergestellt und anschließend in einem zusätzlichen Sinterprozess miteinander verbunden.
- In nachfolgenden Verarbeitungsschritten ist es leicht möglich, den Streukörper 2 durch nachfolgende Bearbeitungen derart zu verändern, dass eine gewünschte Streuinduktivität oder Sättigungsgrenze der Streuinduktivität geeignet angepasst wird. Beispielsweise kann über eine Anpassung der Abstandshalter im plattenförmigen Streukörper 2 eine Veränderung der Streuinduktivität erreicht werden. Eine Erhöhung der Sättigungsgrenze für die Streuinduktivität ist leicht über eine Anpassung der Dicke des plattenförmigen Streukörpers 2 möglich. Damit sind insbesondere magnetische Eigenschaften des plattenförmigen Streukörpers auch in nachfolgenden Verarbeitungsschritten anpassbar, so dass mittels dem erfindungsgemäß bereitgestellten plattenförmigen Streukörper 2 Streuinduktivitäten und Sättigungsgrenzen für Streuinduktivitäten bei sehr geringen Fertigungstoleranzen bereitgestellt werden. Es ist ersichtlich, dass die Streuinduktivität und Sättigungsgrenze über geeignet dimensionierte Streukörperabschnitte und/oder Abstandshalter eingestellt wird.
- Mit Bezug auf die
Figuren 2a und2b werden nachfolgend Magnetkerne und induktive Bauelemente gemäß anschaulicher Ausführungsformen der Erfindung beschrieben.Fig. 2a stellt ein induktives Bauelement mit einem Magnetkern 100 gemäß einer Ausführungsform und Wicklungen W1 und W2 in einer Querschnittansicht schematisch dar. Der Magnetkern 100 ist aus einem ersten Kernabschnitt 110, einem zweiten Kernabschnitt 120 und einem plattenförmigen Streukörper 130 gebildet. Der erste Kernabschnitt 110 weist Außenschenkel 112 und einen Mittelschenkel 114 auf, die durch ein Querjoch 116 verbunden sind. Der zweite Kernabschnitt 120 weist Außenschenkel 122, einen Mittelschenkel 124 und ein Querjoch 126 auf, das die Außenschenkel 122 und den Mittelschenkel 124 miteinander verbindet. - In der Querschnittansicht gemäß
Fig. 2a weist der plattenförmige Streukörper 130 Streukörperabschnitte 132, 134 und 136 und Abstandshalter 137 und 139 auf. Es wird angemerkt, dass der plattenförmige Streukörper 130 dem plattenförmigen Streukörper 2 entsprechen kann, der vorangehend mit Bezug aufFig. 1 beschrieben ist. - Der Streukörper 130 ist gemäß der Darstellung in
Fig. 2a zwischen den Kernabschnitten 110 und 120 angeordnet, so dass die Außenschenkel 112, 122 und die Mittelschenkel 114, 124 auf den Auflageflächen 134a, 134b auf entsprechende Streukörperabschnitte 132, 134 und 136 aufliegen bzw. dort anliegen. Bei dieser Anordnung kann in den Mittebutzen der beiden Hauptkerne ein Luftspalt zur Streuplatte eingeschliffen sein. Die zwei Luftspalte im Hauptkern stellen die Hauptinduktivität ein des Magnetkerns ein. Die Streuinduktivität wird durch die beiden im Streukörper 130 gebildeten Spalte (Abstandhalter 137, 139) eingestellt. Es wird angemerkt, dass Schenkel und Streukörper miteinander verklebt sein können, so dass zwischen Schenkel und Auflagefläche des Streukörpers ein Klebemittel vorgesehen ist. Insbesondere werden in den Auflageflächen 134a, 134b Flächenabschnitte der Streukörperabschnitte 132, 134 und 136 durch die Außenschenkel 112, 122 und Mittelschenkel 114, 124 bedeckt, wobei die Flächenabschnitte durch freiliegendes erstes Material gebildet sind. Insbesondere werden freiliegende Bereiche aus dem zweiten Material in der Auflagefläche, insbesondere die in den Auflageflächen 134a, 134b freiliegenden Abstandshalter 137, 139, nicht durch die Kernschenkel 112, 122, 114, 124 der Kernabschnitte 110, 120 bedeckt. Dies bedeutet, dass die Abstandshalter 137, 139 bei aufliegenden Kernabschnitten 110, 120 in im Magnetkern 100 gebildeten Wickelräumen freiliegen. Damit sind im Streupfad, der mittels des Streukörpers 130 zwischen den Schenkeln des Magnetkerns 100 bereitgestellt wird, durch die Abstandshalter 137, 139 Spalte vorgesehen, wobei der magnetisch wirksame Querschnitt jedes Schenkels durch den Streukörper 130 nicht beeinflusst wird, Alternativ kann ein von den Mittelschenkeln 114, 124 bedeckter Flächenabschnitt in mindestens einer Auflagefläche kleiner sein als der magnetische wirksame Querschnitt von wenigstens einem Mittelschenkel 114, 124. - Die Wicklungen W1 und W2 sind über den Mittelschenkeln 114, 124 vorgesehen, wobei die Wicklungen W1 und W2 durch den dazwischen angeordneten Streukörper 130 getrennt sind. Die Wicklungen W1 und W2, deren Kopplung im induktiven Bauelement vermindert werden soll, liegen darstellungsgemäß auf beiden Seiten des Streukörpers 130, so dass der plattenförmige Streukörper die Wicklungen W1 und W2 voneinander beabstandet. Zusätzlich oder alternativ können über den Außenschenkeln Wicklungen vorgesehen sein.
-
Fig. 2b stellt eine alternative Ausführungsform eines induktiven Bauelements mit einem Streukörpereinsatz schematisch in einer Querschnittansicht dar, wobei ein Streukörper 230 in einem Magnetkern 200 zur Streupfadführung eingesetzt ist. Der Magnetkern 200 ist aus einem ersten Kernabschnitt 210, einem zweiten Kernabschnitt 220 und einem plattenförmigen Streukörper 230 gebildet. Der erste Kernabschnitt 210 weist Außenschenkel 212 und einen Mittelschenkel 214 auf, die durch ein Querjoch 216 verbunden sind. Der zweite Kernabschnitt 220 weist Außenschenkel 222, einen Mittelschenkel 224 und ein Querjoch 226 auf, das die Außenschenkel 222 und den Mittelschenkel 224 miteinander verbindet. - In der Querschnittansicht gemäß
Fig. 2b weist der plattenförmige Streukörper 230 Streukörperabschnitte 232, 234 und 236 und Abstandshalter 237 und 239 auf. Es wird angemerkt, dass der plattenförmige Streukörper 230 dem plattenförmigen Streukörper 2 entsprechen kann, der vorangehend mit Bezug aufFig. 1 beschrieben ist. - Der Streukörper 230 ist gemäß der Darstellung in
Fig. 2b zwischen den Kernabschnitten 210 und 220 angeordnet, so dass die Mittelschenkel 214, 224 in den Auflageflächen 134a, 134b auf dem Streukörperabschnitt 234 aufliegen bzw. dort anliegen. Bei dieser Anordnung kann in den Mittebutzen der beiden Hauptkerne ein Luftspalt zur Streuplatte eingeschliffen sein. Die zwei Luftspalte im Hauptkern stellen die Hauptinduktivität ein des Magnetkerns ein. Die Streuinduktivität wird durch die beiden im Streukörper 230 gebildeten Spalte (Abstandhalter 237, 239) eingestellt. Es wird angemerkt, dass der Mittelschenkel 214, 224 und der Streukörper 230 miteinander verklebt sein können, so dass zwischen den Mittelschenkel 214, 224 und dem Streukörperabschnitt 234 ein Klebemittel vorgesehen ist. Insbesondere werden in den Auflageflächen Flächenabschnitte des Streukörperabschnitts 234 durch die Mittelschenkel 214, 224 bedeckt, wobei die Flächenabschnitte durch freiliegendes erstes Material gebildet sind. Insbesondere werden freiliegende Bereiche aus dem zweiten Material in der Auflagefläche, insbesondere die in den Auflageflächen freiliegenden Abstandshalter 137, 139, nicht durch die Mittelschenkel 214, 224 bedeckt. Dies bedeutet, dass die Abstandshalter 237, 239 bei aufliegenden Kernabschnitten 210, 220 in den Auflageflächen im Magnetkern 200 gebildeten Wickelräumen freiliegen. Damit sind im Streupfad, der mittels des Streukörpers 230 zwischen den Mittelschenkeln 214, 224 des Magnetkerns 200 bereitgestellt wird, durch die Abstandshalter 237, 239 Spalte vorgesehen, wobei der magnetisch wirksame Querschnitt jedes Mittelschenkels 214, 224 durch den Streukörper 230 nicht beeinflusst wird. Alternativ kann ein von den Mittelschenkeln 214, 224 bedeckter Flächenabschnitt in mindestens einer Auflagefläche kleiner sein als der magnetisch wirksame Querschnitt von wenigstens einem Mittelschenkel 214, 224. - Das in
Fig. 2b dargestellte induktive Bauelemente weist ferner über den Mittelschenkeln 214, 224 ausgebildete Wicklungen W3 und W4 auf, die durch den dazwischen angeordneten Streukörper 230 getrennt sind. Die Wicklungen W3 und W4, deren Kopplung im induktiven Bauelement vermindert werden soll, liegen darstellungsgemäß auf beiden Seiten des Streukörpers 230, so dass der plattenförmige Streukörper 230 die Wicklungen W3 und W4 voneinander beabstandet. Zusätzlich oder alternativ können über den Außenschenkeln Wicklungen vorgesehen sein. - Bei dem in
Fig. 2b dargestellten induktiven Bauelement ist der Streukörper 230 in einen Luftspalt eingepasst, der zwischen den Mittelschenkeln 214, 224 der zusammengesetzten Kernabschnitte 210, 220 ausgebildet ist. Die Außenschenkel 212, 222 der zusammengesetzten Kernabschnitte 210, 220 liegen aufeinander auf. Hierbei ist es weiterhin möglich, die Streuinduktivität durch ein Einstellen eines zusätzlichen Luftspalts zwischen dem Streukörper 230 und den Außenschenkeln 212, 222 des Magnetkerns 200 einzustellen. Weitere Einstellungsmöglichkeiten können durch Vorsehen eines Materials mit niedriger magnetischer Permeabilität zwischen dem Streukörper 230 und den Außenschenkeln 212, 222 des Magnetkerns 200 erreicht werden, wodurch eine sehr kompakte und mechanisch stabile Ausgestaltung des inFig. 2b dargestellten induktiven Bauelements erreicht wird. - Wird in induktiven Bauelementen eine Veränderung der Streuinduktivität gewünscht, so kann dies leicht über Anpassungen an den eingesetzten Streukörpern 130, 230 erreicht werden. Weiterhin sind die erfindungsgemäßen induktiven Bauelemente gemäß den Darstellungen in
Fig. 2a und2b sehr kompakt und weisen trotzdem eine große mechanische Stabilität auf. Aufgrund der vorteilhaft bereitgestellten Streupfadführung in Streukörper 130, 230 wird ein vorteilhaftes Sättigungsverhalten der Streuinduktivität vorgesehen, wobei die Sättigungskurve bis zum Sättigungspunkt äußerst konstant und erst sehr spät abfällt. Die dargestellten induktiven Bauelemente sind aufgrund geringer Fertigungstoleranzen für Serienfertigungen bestens geeignet. Beispielsweise können Transformatoren und Drosseln mit vorteilhaften Streuinduktivitätswerten bereitgestellt werden. In einem besonderen anschaulichen Beispiel wird eine Glättungsdrossel bereitgestellt. - In der vorangehenden Beschreibung wird auf ein erstes Material und ein zweites Material Bezug genommen, wobei das erste Material eine im Vergleich zum zweiten Material höhere magnetische Permeabilität aufweist. Dies stellt keine Beschränkung der Erfindung dar und es können auch mehr als ein erstes Material und/oder mehr als ein zweites Material mit entsprechenden magnetischen Eigenschaften vorgesehen sein.
- Mit Bezug auf
Fig. 1 ist ein plattenförmiger Streukörper beschrieben, der aus drei Streukörperabschnitten und zwei Abstandshaltern gebildet ist. Dies stellt keine Beschränkung der Erfindung dar und es können auch mehr als drei Streukörperabschnitte vorgesehen sein, sofern zwischen zwei Streukörperabschnitten ein Abstandshalter angeordnet ist. - Zusammenfassend stellt die Erfindung einen Magnetkern mit einem plattenförmigen Streukörper gemäß Anspruch 1 und ein induktives Bauelement gemäß Anspruch 6 bereit. Hierbei ist ein plattenförmiger Streukörper als Einsatz im Magnetkern vorgesehen, der entlang seiner Dickenrichtung von wenigstens einem Abstandshalter mit (im Vergleich zum übrigen Material des Streukörpers) sehr geringer magnetischer Permeabilität durchsetzt wird. Weiterhin ist eine Beabstandung der Streukörperabschnitte kleiner als eine Dicke des plattenförmigen Streukörpers gemessen entlang seiner Dickenrichtung. In einem Magnetkern gemäß einem Aspekt der Erfindung sind Kernschenkel über einander gegenüberliegenden Auflageoberflächen des plattenförmigen Streukörpers angeordnet, wobei durch den plattenförmigen Streukörper ein Streupfad zwischen den Kernschenkeln bereitgestellt wird. In einem speziellen anschaulichen Beispiel ist der plattenförmige Streukörper eine Streuplatte mit wenigstens einem integralen Spalt, der die Streuplatte entlang ihrer Dickenrichtung durchsetzt und aus einem Material mit niedriger magnetischer Permeabilität gebildet ist. Der Spalt durchsetzt die Streuplatte ferner in ihrer Breitenrichtung und ist entlang der Längsrichtung als Spalt ausgebildet.
Claims (7)
- Magnetkern (100, 200) für ein induktives Bauelement, umfassend:einen ersten Kernabschnitt (110; 210) mit einem ersten Kernschenkel (114; 214) und einen zweiten Kernabschnitt (120; 220) mit einem zweiten Kernschenkel (124; 224); undeinen plattenförmigen Streukörper (2; 130; 230) als Einsatz in dem Magnetkern (100; 200) für das induktive Bauelement zur Einstellung einer gewünschten Streuinduktivität, wobei der Streukörper (2; 130; 230) umfasst:einen ersten Streukörperabschnitt (11; 132; 232), einen zweiten Streukörperabschnitt (13; 134; 234) und einen dritten Streukörperabschnitt (15; 136; 236), die jeweils aus einem ersten Material gebildet sind,einen ersten Abstandshalter (17; 137; 237) gebildet aus einem zweiten Material, das gegenüber dem ersten Material eine geringere magnetische Permeabilität aufweist, wobei der erste Abstandshalter (17; 137; 237) den ersten Streukörperabschnitt (11; 132; 232) von dem zweiten Streukörperabschnitt (13; 134; 234) beabstandet und den plattenförmigen Streukörper (2; 130; 230) entlang einer Dickenrichtung des plattenförmigen Streukörpers (2; 130; 230) durchsetzt, undeinen zweiten Abstandshalter (19; 139; 239) gebildet aus dem zweiten Material, wobei der zweite Abstandshalter (19; 139; 239) den dritten Streukörperabschnitt (15; 136; 236) von dem zweiten Streukörperabschnitt (13; 134; 234) beabstandet und den plattenförmigen Streukörper (2; 130; 230) entlang seiner Dickenrichtung durchsetzt,wobei eine Beabstandung der jeweilig benachbarten Streukörperabschnitte (11, 13, 15; 132, 134, 136; 232, 234, 236) kleiner ist als eine Dicke des plattenförmigen Streukörpers (2; 130; 230) gemessen entlang seiner Dickenrichtung,wobei das erste Material ein Ferritmaterial und das zweite Material ein Keramikmaterial umfasst,wobei die Abstandhalter (17, 19; 137, 139; 237, 239) in den plattenförmigen Streukörper (2; 130; 230) eingesintert sind,wobei der plattenförmige Streukörper (2; 130; 230) zwischen dem ersten und zweiten Kernabschnitt (110, 120; 210, 220) angeordnet ist, so dass jeder Kernabschnitt auf einer Auflagefläche des Streukörpers (2; 130; 230) aufliegt, undwobei der erste Kernschenkel (114; 214) in einer Auflagefläche einen ersten Flächenabschnitt gebildet aus freiliegendem ersten Material bedeckt und der zweite Kernschenkel (124; 224) in der gegenüberliegenden Auflagefläche einen zweiten Flächenabschnitt gebildet aus freiliegendem ersten Material bedeckt.
- Magnetkern (100; 200) nach Anspruch 1, wobei der erste Kernabschnitt (110; 210) ferner einen dritten Kernschenkel (112; 212) aufweist und der dritte Kernschenkel (112; 212) neben dem ersten Kernschenkel (114; 214) einen dritten Flächenabschnitt gebildet aus freiliegendem ersten Material bedeckt, der von dem ersten Flächenabschnitt durch einen Flächenabschnitt gebildet aus freiliegendem zweiten Material getrennt ist.
- Magnetkern (100; 200) nach Anspruch 2, wobei der zweite Kernabschnitt (120: 220) ferner einen vierten Kernschenkel (122; 222) aufweist und der vierte Kernschenkel (122; 222) neben dem zweiten Kernschenkel (124; 224) einen vierten Flächenabschnitt gebildet aus freiliegendem ersten Material bedeckt, der von dem zweiten Flächenabschnitt durch einen Flächenabschnitt gebildet aus freiliegendem zweiten Material getrennt ist.
- Magnetkern (100; 200) nach einem der Ansprüche 1 bis 3, wobei der Magnetkern (100; 200) eine Doppel-E-, Doppel-C- oder eine E-C-Kernkonfiguration aufweist.
- Magnetkern (100; 200) nach einem der Ansprüche 1 bis 4, wobei der plattenförmige Streukörper (130; 230) im Magnetkern (100; 200) in einem durch den ersten und zweiten Kernschenkel (114, 124; 214, 224) ausgebildeten Luftspalt angeordnet ist.
- Induktives Bauelement, umfassend:einen Magnetkern (100; 200) nach einem der Ansprüche 1 bis 5;eine erste Wicklung (W1; W3), die über dem ersten Kernschenkel (114; 214) bereitgestellt ist; undeine zweite Wicklung (W2; W4), die über dem zweiten Kernschenkel (124; 224) bereitgestellt ist,wobei der plattenförmige Streukörper (130; 230) im Magnetkern (100; 200) zwischen der ersten und der zweiten Wicklung (W1, W2; W3, W4) angeordnet ist.
- Induktives Bauelement nach Anspruch 6, wobei das induktive Bauelement als Glättungsdrossel ausgeführt ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014205560.1A DE102014205560A1 (de) | 2014-03-26 | 2014-03-26 | Plattenförmiger Streukörper als Einsatz im Magnetkern eines induktiven Bauelements, Magnetkern mit plattenförmigem Streukörper und induktives Bauelement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2924697A1 EP2924697A1 (de) | 2015-09-30 |
EP2924697B1 true EP2924697B1 (de) | 2021-02-24 |
Family
ID=52577756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15156744.3A Active EP2924697B1 (de) | 2014-03-26 | 2015-02-26 | Magnetkern mit plattenförmigem Streukörper und induktives Bauelement |
Country Status (5)
Country | Link |
---|---|
US (1) | US10170237B2 (de) |
EP (1) | EP2924697B1 (de) |
JP (1) | JP2015188085A (de) |
CN (1) | CN104952591A (de) |
DE (1) | DE102014205560A1 (de) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112016007063T5 (de) * | 2016-07-13 | 2019-03-28 | Mitsubishi Electric Corporation | Leck-transformator |
KR102145921B1 (ko) | 2017-01-03 | 2020-08-28 | 엘지이노텍 주식회사 | 인덕터 및 이를 포함하는 emi 필터 |
DE102017109499A1 (de) * | 2017-05-03 | 2018-11-08 | Valeo Siemens Eautomotive Germany Gmbh | Inverter |
AU2018204009A1 (en) * | 2017-06-07 | 2019-01-03 | Erix Solutions Llc | Electrochemical ion exchange treatment of fluids |
JP6893182B2 (ja) * | 2018-01-17 | 2021-06-23 | 株式会社トーキン | リアクトル及び昇圧回路 |
DE102018218042A1 (de) * | 2018-10-22 | 2020-04-23 | Würth Elektronik eiSos Gmbh & Co. KG | Kern für induktives Bauelement und induktives Bauelement |
CN110070984B (zh) * | 2019-04-22 | 2020-11-13 | 南京邮电大学 | 一种无线供电线圈平面磁芯的结构 |
CN113380516B (zh) | 2020-03-10 | 2024-08-30 | 台达电子企业管理(上海)有限公司 | 耦合电感及功率模块 |
US11749452B2 (en) | 2020-03-10 | 2023-09-05 | Delta Electronics (Thailand) Public Company Limited | Leakage transformer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4257025A (en) * | 1978-06-12 | 1981-03-17 | Asea Aktiebolag | Laminated metallic plates for supporting core leg in inductive electrical devices to determine magnetic circuit |
JP2006310811A (ja) * | 2005-03-28 | 2006-11-09 | Hitachi Metals Ltd | フェライト部品、モジュール及びその製造方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2223800A1 (en) * | 1973-03-30 | 1974-10-25 | Telecommunications Sa | Magnetic circuits with spaced air gaps - are used in translators in telephone call circuits reducing crosstalk and leakage |
US4047138A (en) * | 1976-05-19 | 1977-09-06 | General Electric Company | Power inductor and transformer with low acoustic noise air gap |
JPS5936407B2 (ja) | 1979-02-15 | 1984-09-04 | 松下電工株式会社 | 電磁装置 |
JPS5961021A (ja) | 1982-09-30 | 1984-04-07 | Toshiba Electric Equip Corp | 漏洩変圧器 |
JPS5961110A (ja) | 1982-09-30 | 1984-04-07 | Toshiba Electric Equip Corp | 漏洩変圧器 |
DE3821284A1 (de) * | 1988-06-24 | 1989-12-28 | Electronic Werke Deutschland | Transformator fuer ein schaltnetzteil oder die zeilenendstufe in einem fernsehempfaenger |
US5656983A (en) * | 1992-11-11 | 1997-08-12 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Inductive coupler for transferring electrical power |
JP3139648B2 (ja) | 1992-11-11 | 2001-03-05 | 株式会社豊田自動織機製作所 | 電磁給電装置 |
JP3254783B2 (ja) | 1993-02-09 | 2002-02-12 | 松下電器産業株式会社 | リーケージトランス |
US5626983A (en) | 1994-07-13 | 1997-05-06 | Rayovac Corporation | Zinc anode for reduced environmental hazard LeClanche cell having improved performance |
US6885273B2 (en) * | 2000-03-30 | 2005-04-26 | Abb Ab | Induction devices with distributed air gaps |
US7965163B2 (en) * | 2007-01-15 | 2011-06-21 | Hitachi Metals, Ltd. | Reactor core and reactor |
EP2209128B1 (de) * | 2009-01-20 | 2015-03-04 | ABB Research Ltd. | Magnetjoch mit Spalten |
JP2011146605A (ja) * | 2010-01-15 | 2011-07-28 | Saga Univ | 電気機器 |
US8410884B2 (en) * | 2011-01-20 | 2013-04-02 | Hitran Corporation | Compact high short circuit current reactor |
JP5032690B1 (ja) * | 2011-07-27 | 2012-09-26 | 住友電気工業株式会社 | 圧粉成形体 |
DE202011051056U1 (de) * | 2011-08-23 | 2011-11-21 | Intica Systems Ag | Induktives Bauteil |
CN103236339B (zh) * | 2013-04-19 | 2016-05-11 | 西安森宝电气工程有限公司 | 一种高阻抗壳式变压器 |
-
2014
- 2014-03-26 DE DE102014205560.1A patent/DE102014205560A1/de active Pending
-
2015
- 2015-02-26 EP EP15156744.3A patent/EP2924697B1/de active Active
- 2015-03-21 US US14/664,834 patent/US10170237B2/en active Active
- 2015-03-25 JP JP2015062589A patent/JP2015188085A/ja active Pending
- 2015-03-26 CN CN201510138239.XA patent/CN104952591A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4257025A (en) * | 1978-06-12 | 1981-03-17 | Asea Aktiebolag | Laminated metallic plates for supporting core leg in inductive electrical devices to determine magnetic circuit |
JP2006310811A (ja) * | 2005-03-28 | 2006-11-09 | Hitachi Metals Ltd | フェライト部品、モジュール及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
DE102014205560A1 (de) | 2015-10-01 |
JP2015188085A (ja) | 2015-10-29 |
US10170237B2 (en) | 2019-01-01 |
EP2924697A1 (de) | 2015-09-30 |
US20150279552A1 (en) | 2015-10-01 |
CN104952591A (zh) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2924697B1 (de) | Magnetkern mit plattenförmigem Streukörper und induktives Bauelement | |
EP2463869B1 (de) | Induktives Bauelement mit verbesserten Kerneigenschaften | |
EP3815221A1 (de) | Aktiv gekühlte spule | |
DE102004025076B4 (de) | Spulenanordnung und Verfahren zu deren Herstellung | |
EP3649655B1 (de) | Speicherdrossel | |
EP3729477A1 (de) | Transformatorkern und transformator | |
DE102015101125A1 (de) | Drossel | |
DE102004041931B4 (de) | Zündspule | |
DE102022100647A1 (de) | Drossel für ein Mehrleitersystem | |
WO2018215434A1 (de) | Distanzband, transformatorenwicklung und transformator sowie das verfahren zur herstellung eines distanzbandes | |
WO2021239403A1 (de) | Spulenelement | |
DE19932475C2 (de) | Induktives Bauelement | |
EP1501106B1 (de) | Ferritkern für ein Induktivitätsbauteil | |
EP2956947B1 (de) | Magnetisch vorgespannte drossel | |
DE102017214857B4 (de) | Ringkernbaugruppe, stromkompensierte Drossel und Verfahren zur Herstellung einer Ringkernbaugruppe | |
DE3108161C2 (de) | Wicklung für einen Transformator bzw. eine Drossel | |
DE2653568A1 (de) | Geschichteter oder gewickelter magnetkern | |
EP2500917A2 (de) | Induktives passives Bauelement, insbesondere Drossel | |
EP2867906B1 (de) | Induktives bauteil | |
WO2020015962A1 (de) | Kernanordnung mit magnetischen eigenschaften für eine elektrische vorrichtung und drossel mit einer derartigen kernanordnung | |
DE361873C (de) | Eisenkern fuer Induktionsspulen | |
WO2019034501A1 (de) | Geschlitzter magnetischer kern und verfahren zur herstellung eines geschlitzten magnetischen kerns | |
DE102011055880B4 (de) | Induktives Bauelement mit verbesserten Kerneigenschaften | |
DE202013100358U1 (de) | Kern für Induktivitätsbauteil und Induktivitätsbauteil | |
DE102019135462A1 (de) | Streufeldtransformator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20151105 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180517 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
INTG | Intention to grant announced |
Effective date: 20200729 |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200917 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015014276 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1365528 Country of ref document: AT Kind code of ref document: T Effective date: 20210315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210624 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210525 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210524 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210624 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210226 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015014276 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210226 |
|
26N | No opposition filed |
Effective date: 20211125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1365528 Country of ref document: AT Kind code of ref document: T Effective date: 20210226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150226 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240226 Year of fee payment: 10 Ref country code: GB Payment date: 20240221 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240227 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210224 |