EP2856842B1 - Thin film heater with pyramid-shaped laser cutting pattern - Google Patents

Thin film heater with pyramid-shaped laser cutting pattern Download PDF

Info

Publication number
EP2856842B1
EP2856842B1 EP13700306.7A EP13700306A EP2856842B1 EP 2856842 B1 EP2856842 B1 EP 2856842B1 EP 13700306 A EP13700306 A EP 13700306A EP 2856842 B1 EP2856842 B1 EP 2856842B1
Authority
EP
European Patent Office
Prior art keywords
heating element
thin layer
section
thin
layer heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13700306.7A
Other languages
German (de)
French (fr)
Other versions
EP2856842A1 (en
Inventor
Sabine VELDEN
Dang Cuong Phan
Walter Schreiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Priority to EP13700306.7A priority Critical patent/EP2856842B1/en
Publication of EP2856842A1 publication Critical patent/EP2856842A1/en
Application granted granted Critical
Publication of EP2856842B1 publication Critical patent/EP2856842B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/007Heaters using a particular layout for the resistive material or resistive elements using multiple electrically connected resistive elements or resistive zones
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters

Definitions

  • the present invention relates to a laser cut pattern for thin film heaters.
  • Transparent thin-film heaters are already being used in a wide variety of applications, for example as a windshield in motor vehicles, as heatable mirrors or as radiators in living spaces.
  • thin-film heaters in the form of heated windscreens or rear windows can be used to keep the vehicle windows ice-free and fogging-free.
  • energy costs increase, homes are getting better and better insulated.
  • Especially low-energy and passive houses need only low heat outputs due to their good insulation, but they should always be available flexibly.
  • Radiators with low heat dissipation, such as glass thin-film radiators are also well suited in this area of responsibility.
  • Such electrically operated thin-film heaters have only a short heating phase and are able to deliver their radiant heat quickly, which makes them particularly interesting for use in passive houses.
  • Thin-film heaters can be installed without much effort and require only one power supply, which eliminates the costly installation of a complete heating system and associated piping systems. Furthermore, thin-film heaters are not only suitable for wall mounting, but can also be installed freely in the room. Transparent thin-film heaters can also be used as decorative elements by their visually appealing shape. In this case, a diverse design of the glass surface is possible, for example by screen printing. However, the design freedom of the design of thin-film heaters is limited since the required power is not high enough for all radiator formats. The previously known thin-film heaters are available only in standard formats, long narrow radiators are not yet feasible.
  • DE 36 44 297 A1 discloses a windshield having a conductive transparent coating having a plurality of slots in this coating. In the area of the slots, the coating is removed, whereby no current flows in these areas. This structuring results in current paths in the coating. Upon application of a voltage, the coating heats up, wherein the current density in the individual regions can be controlled in a controlled manner by the choice of the slot pattern. Thus, certain areas of the disc can be primarily freed from ice.
  • EP 0 250 386 discloses a transparent glass radiation heating, which is preferably used as a heated window glazing.
  • the radiator consists of several parallel mounted glass plates of which at least one glass plate contains a metal coating on its surface.
  • the metal coating is extremely thin and thus has no undesirable effects on the transparency of the glass heater. Due to its small thickness, this metal coating acts as a resistor when it is connected to a circuit and heats up due to the so-called Joule effect. Between the heated metal coating and the adjacent arrangement, a further metal layer is introduced, which reflects the radiant heat. Thus, the entire generated radiant heat is emitted in one direction.
  • the two metal layers are separated by an electrically insulating air chamber.
  • DE 102 59 110 B3 discloses a plate element with a layer heater.
  • the plate member includes a glass sheet provided with an electrically conductive coating. This coating is divided into rungs via dividing lines. On the coating two closely adjacent electrodes are applied. By applying a voltage, the current flows through the current paths from one electrode to the other. The coating acts as a resistor and is thereby heated. The current paths are arranged parallel to each other and interlaced, whereby the Electricity should be distributed as evenly as possible over the entire surface of the coating. Between these active regions of the coating connected to the electrodes there are passive regions in which no current flows. These passive areas are located between the active areas of the coating and serve for homogeneous temperature distribution. By delivering heat to the unheated passive areas of the coating, the heated active areas can intercept and smooth peak temperature distribution. The passive areas act as heat sinks.
  • Thin-film radiators generally comprise two glass plates laminated together, between which an electrically conductive layer is applied to one of the two glass surfaces.
  • the electrically conductive layer is patterned by means of a laser, so that in the electrically conductive layer, a cutting pattern of a plurality of Schustrompfaden is formed along which the current flows.
  • the resulting heating field should allow the most homogeneous possible heating of the electrically conductive coating.
  • all Schustrompfade have a similar resistance and thus have a similar length.
  • the outside heating path is too long according to the previously known patterns. As a result, the resistance of this heating path is too high compared to the heating paths located further inside, and the outer heating path is hardly traversed by current.
  • radiators are limited with the previously known patterns in their geometry, since such patterns are not suitable for large narrow radiator. Furthermore, only radiators with comparatively low power can be produced with the previously known patterns.
  • the previously known radiators are expensive to manufacture because the patterns used extend over the entire surface of the conductive coating. For this reason, the time required and thus the costs for the laser process are enormously high.
  • the object of the invention is to provide a thin-film heater which is inexpensive to produce and delivers high and homogeneous heating even with long narrow heater geometries.
  • the thin-film heating element comprises at least one pane composite consisting of two panes and a laminating film, wherein at least one of the panes on the inside has an electrically conductive coating and at least two connection electrodes for contacting the conductive coating.
  • the thin-film heater has two long sides and two short sides, and preferably has a narrow, tall shape where the long side is at least twice as long as the short side.
  • On the short side of the thin-film heater are at least two terminal electrodes that contact the conductive coating.
  • At least one cutting pattern is introduced into the conductive coating, the conductive coating being removed in the region of the cutting pattern.
  • the conductive coating has an exceptional pyramidal pattern, in which large parts of the coating need not be patterned.
  • the pattern is composed of long cut lines that run parallel to the long side of the thin-film heater, and short cut lines that are parallel to the short side of the thin-film heater together.
  • the long cut lines are not necessarily longer than the short cut lines, but only defined as such due to their parallelism to the long side edge. The same applies to the short cutting lines.
  • a heating field which is divided by the short cutting lines into several sections n, where n is an integer> 1.
  • the number of sections is not fixed and can be variably adjusted to the desired radiator geometry. Preferably, patterns with five to six sections are used.
  • a section n comprises a short cutting line and the long cutting lines between this and the subsequent vertical cutting line and ends before the subsequent perpendicular cutting line.
  • the following vertical section line is generally the short section line of the following section n + 1.
  • the last section the following vertical cut line corresponds however, the final cut line.
  • the number of long cut lines per section n + 1 increases as compared to the previous section n, while its length decreases.
  • a heater panel contains at least two sections, a first section and a last section. Between these two sections are optionally further sections, which are referred to as the middle sections.
  • the first and the last section of the heating field in contrast to the middle sections a slightly modified structure.
  • the middle sections are the same in their general construction.
  • the first section differs from the subsequent sections in that it does not begin with a short cut line.
  • a first outer long cutting line and a second outer long cutting line each begin at the inner edges of the terminal electrodes and terminate before the first short cutting line of the subsequent section. Between the two outer long cut lines originate one or more inner long cut lines. These inner long cutting lines meet the first short cutting line of the following section.
  • the pattern ends with a short cut line, on which the inner long cut lines of this section hit. However, no further long cut lines go beyond the final cut line.
  • the thin-film heater according to the invention in the production is much cheaper than the known in the prior art radiators, since the laser time can be significantly reduced. Furthermore, the thin-film heater according to the invention enables higher heat outputs and new radiator geometries.
  • the number of long cut lines per section n in section n + 1 increases in comparison to the previous section n and the length of the long cut lines decreases in section n + 1.
  • the number of long cut lines per section n in the section n + 1 increases by two long cut lines compared to the previous section n, and the length of the long cut lines is halved in the section n + 1.
  • the conductive coating is preferably mounted on the inside of one of the two panes, but may also be applied to the insides of both panes, resulting in two opposing heating fields.
  • An edge region of the conductive coating is separated from the heating field by a peripheral parting line.
  • the circumferential parting line is located at a small distance from the edge of the pane, so that a narrow edge area results, which preferably has a width of 0.5 cm to 2 cm.
  • this edge region is electrically insulated. In this way, corrosion of the conductive coating is prevented in the heating field, as a beginning of the outer edge corrosion can not continue beyond the circumferential parting line.
  • the pattern of the thin-film heater is preferably mirror-symmetrical over its longer centerline. As a longer center line while the center line is referred to, which is parallel to the long side of the thin-film heater. This symmetry ensures that the heating current paths have a constant area. This achieves a constant current density along the entire coating. At the same time, the number of laser cuts needed to create the pattern is minimized. However, pyramidal patterns are also conceivable which have no mirror symmetry along the center line.
  • a plurality of cutting patterns can be introduced in the conductive coating.
  • two patterns are used whose long cutting lines are parallel to each other and to the long side of the thin-film heater. This results in two mirror-symmetric small heating fields on the thin-film heater whose outer Schwarzstrompfade each have an adequate length, so that a good heating performance is guaranteed.
  • adjacent patterns have a common terminal electrode of the same polarity located between the patterns on the short side of the thin-film heater.
  • the terminal electrodes of the opposite polarity are also located above and below the cutting pattern also on the short side of the thin-film heating element.
  • the final cutting line in the last section of the heating field can also optionally coincide with the circulating dividing line.
  • Such a pattern is chosen especially for large heaters with multiple patterns. This is how the outside is going Heating path lengthened, whereby a uniform heating is possible even with multiple patterns per thin-film heater.
  • the Schumpfade between the terminal electrodes with opposite polarity have the same path length and thus also the same resistance in all sections of the thin-film heater according to the invention.
  • current flows through the outside of the heating current paths to the same extent as the internal heating current paths. In this way, a uniform heating of all coating areas and thus a higher performance of the thin-film heater can be ensured.
  • the first and the second pane of the thin-film heating element contain soda-lime glass, quartz glass and / or borosilicate glass. Float glass is preferably used.
  • the glass sheets are preferably thermally biased.
  • the first and the second disc of the thin-film heater have a thickness of from 1 mm to 20 mm. Preferably, slices of thickness 2 mm to 8 mm are used.
  • the laminating film comprises polyvinyl butyral, ethylene vinyl acetate, polyurethane and / or mixtures and / or copolymers thereof.
  • polyvinyl butyral is used.
  • the laminating film has a thickness of from 0.1 mm to 0.8 mm, preferably from 0.3 mm to 0.5 mm.
  • the conductive coating of the thin-film heating element can be both silver, gold, copper, indium, tin, zinc and / or mixtures and / or oxides and / or alloys thereof, as well as TCO ( transparent conductive oxide ) layers such as indium tin oxide ( ITO).
  • TCO transparent conductive oxide
  • ITO indium tin oxide
  • Silver coatings of several individual layers of silver are preferably used.
  • an antireflection coating of the silver layer can be effected by means of silicon nitride.
  • the conductive coating is thermally highly resilient and can thus be applied to the surface before tempering the glass sheets.
  • the conductive coating is preferably applied by vapor deposition techniques, for example chemical vapor deposition (CVD) or physical vapor deposition (PVD). Particular preference is given to using sputtering processes, for example magnetron sputtering. By means of these methods, the metal layer can be applied very evenly to the surface of the glass sheet.
  • the conductive coating has a thickness of from 1 nm to 500 nm, preferably from 50 nm to 250 nm.
  • the conductive coating has a sheet resistance of 0.5 ⁇ to 15 ⁇ per square, preferably 1 ⁇ to 10 ⁇ per square, more preferably 2 ⁇ to 7 ⁇ per square.
  • the surface resistance of the coating must be adjusted so that the thin-film heater reaches a maximum temperature of 80 ° C to 90 ° C during operation, as required by DIN EN 60335. This temperature limitation prevents persons from getting burned when they touch the thin-film radiator.
  • the greater the thickness or the conductor cross-section of the conductive coating the lower the sheet resistance. With low surface resistances higher current intensities occur at the same voltage, whereby larger powers are achieved. Higher currents, however, also cause a higher temperature of the thin-film heater.
  • the maximum possible outputs are therefore limited by the temperature limitation of 80 ° C to 90 ° C. Since the current levels depend on both the resistance and the applied voltage, thin-film heaters with different surface resistances, which are adapted to the local grid voltages, are provided worldwide. For the American market with mains voltages of 110 V, thin-film heaters with lower surface resistances are therefore produced than for the European market with mains voltages of usually 230 V.
  • the pattern in the conductive coating is produced by means of lasers, etching and / or ablation. Preference is given to using laser processes for removing the coating.
  • the lasing takes place with a wavelength of 300 nm to 1300 nm. The wavelength used depends on the type of coating. Pulsed solid-state lasers are preferably used as the laser source.
  • At least 80 percent by weight, preferably at least 90 percent by weight of the metal coating is removed from the glass surface.
  • the thin-layer heating element according to the invention has two or more connection electrodes with an elongate shape. These are located on the short side of the thin-film heater and are aligned parallel to this short side.
  • connection electrodes can be applied to the pane either before or after the deposition of the conductive coating.
  • the connection electrodes are preferably applied after deposition of the conductive coating.
  • an electrically conductive metal paste is applied to the inner side of the disk and then baked.
  • the terminal electrodes are located on the same side of the disc as the electrically conductive coating, whereby a permanent electrical contact between terminal electrode and conductive coating is ensured by burning the metal paste.
  • the metal paste preferably contains silver, gold, platinum, palladium, copper, nickel, manganese, iron and / or mixtures or alloys thereof, particularly preferably silver.
  • the connection electrodes are connected to the power source via an electrical conductor.
  • the invention comprises a method for producing a thin-film heating element with a pyramidal laser pattern.
  • a conductive coating is applied to a first pane.
  • the conductive coating is preferably applied to the pane by means of a PVD process.
  • a pyramidal pattern is then introduced by means of lasers, the long cutting lines are meshed with each other like a comb.
  • two or more terminal electrodes are applied by baking an electrically conductive metal paste. The terminal electrodes are applied as elongated strips parallel to the short side of the first disc and contact the conductive coating.
  • first pane On the inside of the first pane, which carries the conductive coating and the connection electrodes, a laminating film is placed in the next step and a second pane is placed on the laminating film.
  • This arrangement of first disc with conductive coating and terminal electrodes, laminating film and second disc is first pre-evacuated and finally in the autoclave for 2.5 hours at 80 ° C to 135 ° C and 7 bar to 13 bar laminated.
  • the invention comprises the use of a thin-film heating element as a functional and / or decorative single piece and / or as a built-in part in furniture, appliances, buildings and vehicles.
  • the thin-film radiator according to the invention is preferably used as a freestanding or wall-mounted radiator in living spaces, as heatable facade glazing or as a heatable vehicle window, ship window or aircraft windscreen.
  • Special embodiments of the thin-film heater according to the invention with a pyramidal laser pattern include thin-film heaters with rounded corners up to ellipsoidal thin-film heaters. As a long side of the thin-film heater, to which the long cutting lines are parallel, thereby defining the voltage applied to the long side radiator tangent is defined.
  • Other embodiments of the thin film heater according to the invention with a pyramidal laser pattern include a breakage sensor in the edge strip of the thin film heater. The edge strip is divided into different areas. In one of these areas a weak voltage is applied. Damage to the radiator can thus be detected by a drop in the voltage in this area.
  • Other embodiments of the thin film heater with pyramidal laser pattern include thin film heater with Messstrompfaden for temperature measurement at different points of the radiator.
  • the connection electrodes are combined to form a busbar. This design is particularly advantageous for very wide thin-film radiators with more than 3 terminal electrodes.
  • FIG. 1a shows a schematic view of the thin-film heater (1) according to the invention with a pyramidal laser pattern.
  • the thin-film heating element (1) comprises a first pane (2.1) on which a conductive coating (3) and two connection electrodes (4.1, 4.2) are applied, a laminating film (17) and a second pane (2.2).
  • the thin-film heater (1) has two long sides (8) and two short sides (7), which are perpendicular to each other.
  • the two terminal electrodes (4.1, 4.2) have an elongated shape and are arranged on a short side (7) of the thin-film heating element (1).
  • the terminal electrodes contact the conductive coating (3) so that a voltage applied to the terminal electrodes (4.1, 4.2) is also applied to the coating.
  • the conductive coating (3) has a cutting pattern (13) is introduced. In these areas is the conductive coating (3) from the surface of the first disc (2.2) removed, whereby these areas are electrically isolated. This structuring produces heating current paths (12.n) in the conductive coating (3). These heating current paths (12.n) are supplied with current when a voltage is applied to the connection electrodes (4.1, 4.2).
  • the cutting pattern (13) of the conductive coating (3) is divided into long cutting lines (5) and short cutting lines (6), wherein the long cutting lines (5) differentiate between outer long cutting lines (5.1) and inner long cutting lines (5.2) , All long cutting lines (5) are parallel to the long side (8) of the thin-film heater (1), while the short cutting lines (6) are arranged parallel to the short side.
  • the long cutting lines (5) and the short cutting lines are perpendicular to each other.
  • the heating field (10) resulting from the structuring is subdivided into a plurality of sections (11.n) which are delimited by the short cutting lines (6).
  • at least a first section (11.1) and a last section (19) are necessary, between which optionally a plurality of middle sections (11.2) are located.
  • three middle sections (11.2a, 11.2b, 11.2c) are present.
  • a first outer long cutting line (5.1a) and a second outer long cutting line (5.1b) bear against the inner edges of the connecting electrodes (4.1, 4.2).
  • first inner long cutting line (5.2a) Between these two outer long cutting lines (5.1a, 5.2b) runs a first inner long cutting line (5.2a).
  • the total number of long cutting lines (5) of the first section (11.1) thus amounts to three.
  • the number of long cut lines (5) per section (11.n) is increased by two while the length of the long cut lines (5) is halved.
  • the length of the short cutting lines (6) increases from the first section (11.1) to the last section (19).
  • the first outer long section line (5.1a) and the second outer long section line (5.1b) terminate before the first short section line (6.1) of the second section (11.2a), while the first inner long section line (5.2a) terminates at the first short section Cutting line (6.1) hits.
  • the second section (11.2a) arise on the first short cutting line (6.1) three outer long cutting lines (5), which ends before the short cutting line (6) of the subsequent section.
  • an inner long cutting line (5) which meets the short cutting line (6) of the subsequent section.
  • the two subsequent middle sections (11.2b, 11.2c) are constructed analogously to the first middle section (11.2a).
  • the last section (19) is delimited by a final cutting line (9) on which the long cutting lines (5) running in this section meet.
  • this unusual pattern (13) results in very homogeneous heating powers while at the same time reducing the number of laser cuts.
  • the pattern (13) preferably has a mirror symmetry over the longer centerline (16).
  • a narrow edge region (14) is separated from the heating field (10) by a peripheral parting line (15). This edge region (14) is thereby electrically insulated.
  • FIG. 1b shows an enlarged section of the pyramidal laser cut pattern of the thin-film heater according to the invention.
  • This in FIG. 1a described cutting pattern comprises a plurality of cutting lines, which can be largely assigned to the two groups of the short cutting lines (6) and the long cutting lines (5).
  • the long cutting lines (5) are in turn divided into outer long cutting lines (5.1) and inner long cutting lines (5.2).
  • the short cutting lines (6) run parallel to the short side (7) of the thin-film heating element (1), while the long cutting lines are arranged parallel to the long side (8). From each short cutting line (6) go out several outer long cutting lines (5.1), wherein in the spaces between two outer long cutting lines (5.1) each have an inner long cutting line (5.2).
  • FIG. 2 shows a schematic view of the thin-film heater (1) according to the invention with Schustrompfaden shown by way of example.
  • the thin-film heating element (1) comprising a first pane (2.1), laminating film (17), second pane (2.2), long sides (8) and short sides (7) has a surface-applied conductive coating (3) and two connection electrodes (4.1, 4.2) on the short side (7).
  • On the conductive coating (3) is a pattern (13) analogous to that in FIG. 1 applied, wherein the long cutting lines (5) parallel to the long side (8) of the thin-film heater (1) and the short cutting lines (6) and the final cutting line (9) perpendicular thereto.
  • a heating field (10) is formed on the conductive coating (3).
  • a narrow edge region (14) is separated from the heating field (10) by a circumferential dividing line (15) and is electrically insulated.
  • different heating current paths (12.n) are formed by the structuring of the conductive coating (3), of which a first heating current path (12.1), one of the middle heating current paths (12.2) and one last heating current path (12.3) are shown by way of example.
  • the other heating current paths (12.n) are for the sake of clarity not shown.
  • the current always flows through the heating current paths (12.n) from one of the negative connection electrodes (4.2) to the positive connection electrodes (4.1).
  • the heating current paths (12.n) all have the same length and thus also the same resistance, so that all the heating current paths (12.n) are equally heated and the thin-layer heating element (1) has a very homogeneous heating power.
  • FIG. 3 shows a schematic view of the thin-film heater (1) according to the invention with two pyramidal laser cut patterns.
  • the thin-film heating element (1) comprises a first pane (2.1), a laminating film (17) and a second pane (2.2) and a long side (8) and a short side (7).
  • the electrically conductive coating (3) applied to the first pane (2.1) is subdivided by a first pattern (13.1) and a second pattern (13.2) into heating current paths (12.n).
  • the first pattern (13.1) and the second pattern (13.2) are mirror-symmetrical to each other over the longer center line (16).
  • On a short side (7) of the thin-film electrodes (1) is located between the two patterns (13.1, 13.2), a common negative terminal electrode (4.2).
  • a first positive connection electrode (4.1) and a second positive connection electrode (4.3) are likewise arranged on the short side (7) of the thin-layer heating element (1).
  • the two cutting patterns (13.1, 13.2) comprise long cutting lines (5) and short cutting lines (6), which are analogous to those in FIG FIG. 1 placed patterns are placed. All long cut lines (5) are parallel to the long side (8), while the short cut lines (6) perpendicular to this.
  • An edge region (14) of the thin-film heating element (1) is separated from the heating field (10) by a peripheral parting line (15), the peripheral parting line (15) simultaneously functioning as the final parting line of the two cutting patterns (13.1, 13.2).
  • FIG. 4 shows a schematic cross section of the thin-film heater (1) according to the invention.
  • a conductive coating (3) is applied flat.
  • connection electrodes (4.1, 4.2) are mounted on the conductive coating (3).
  • the connection electrodes (4.1, 4.2) are connected to the power source via electrical connections (18).
  • a laminating film (17) is placed on the conductive coating (3) .
  • the arrangement is covered by a second disc (2.2).
  • FIG. 5 shows a flow chart of the method for producing the thin-film heater (1) according to the invention.
  • a conductive coating (3) is applied to a first pane (2.1).
  • a pyramid-shaped cutting pattern (13) is introduced into the conductive coating (3), wherein the long cutting lines (5) are meshed with one another like a comb.
  • two or more connection electrodes (4.1, 4.2, 4.3) are applied by burning in an electrically conductive metal paste such that the connection electrodes (4.1, 4.2, 4.3) cover the conductive coating (3). to contact.
  • first disc (2.1) On the first disc (2.1) a laminating film (17) and on the laminating film (17) a second disc (2.2) is placed.
  • the laminating film (17) is placed on the side of the first disk (2.1) which carries the conductive coating (3) and the connection electrodes (4.1, 4.2, 4.3).
  • the arrangement of first pane (2.1) with conductive coating (3) and connection electrodes (4.1, 4.2, 4.3), laminating film (17) and second pane (2.2) is laminated in an autoclave.
  • FIG. 6 shows the schematic representation of two thermographies of a known in the prior art thin-film heater.
  • the thermographs show a temperature drop from the inner area of the thin-film heater to the outer edge.
  • These so-called hot spots (I) are areas with a significantly higher temperature compared to the average temperature.
  • Adjacent to the hot spots is a medium temperature zone (II) with a relatively homogeneous temperature distribution.
  • the edge of the radiator is also visible as a colder area (III), in which the temperature is below the average temperature. Some of these colder areas (III) are also visible inside the radiator.
  • the lack of homogeneity of the known in the art thin film heater is clearly visible.
  • FIG. 7 shows the schematic representation of a thermography of the thin-film heater according to the invention.
  • I some spatially very limited hot spots
  • III some colder areas
  • the thin film heater according to the invention has only a very narrow colder region (III) in the edge region.
  • the thin-film heater according to the invention has, as a comparison of the thermographies in FIG. 6 and FIG. 7 shows a much higher homogeneity than the known prior art models.
  • thermographs of the thin-film heating element according to the invention and of a thin-layer heating element according to the prior art the maximum powers and the production times of both thin-layer heating elements.
  • the maximum power, the production time and the homogeneity of the thin-film heater according to the invention were compared with a thin-film heater according to the prior art.
  • a thin-film heating element comprising a first pane (2.1) with a conductive coating (3), a laminating film (17) and a second pane (2.2) was used.
  • the two longer side edges of the thin-film heating element (1) were defined as long sides (8) and the two short side edges as short sides (7).
  • Float glass with a thickness of 6 mm was used as the first pane (2.1) and the second pane (2.2).
  • the laminating film used was a PVB film having a thickness of 0.38 mm.
  • the conductive coating (3) was applied by means of magnetron sputtering on the first disc (2.1).
  • the connection electrodes (4.1, 4.2) were produced by applying and burning in a silver paste.
  • the structuring of the conductive coating (3) took place by means of laser treatment.
  • the homogeneity of the thin-film radiators was investigated by measuring the colder edge areas visible in the thermographs in different radiator sections and placing them in relation to the total width of the radiator.
  • the corresponding measurements were carried out in the lengths 1 ⁇ 8, 1 ⁇ 4, 1 ⁇ 2, and 3 ⁇ 4 based on the total length of the long side (8) and starting at the lower short side (7) of the thin-film heater.
  • the values given for the thin-film radiator according to the prior art correspond to the average values of the two in FIG. 6 schematically illustrated thermographies.
  • the thin film heaters were connected to a power supply and after reaching a constant temperature (about 20 minutes) at maximum power was using an infrared camera a thermography (schematic representations in FIG. 6 and 7 ) of the thin-film heaters. To ensure a sufficient detail of the infrared images, the images were taken in several sections. The individual pictures were then combined to form a complete picture.
  • Example 1 Maximum power, production time and homogeneity of the thin-film heater according to the invention
  • the thin-film heating element (1) according to the invention with a size of 400 mm ⁇ 1800 mm has two elongate connection electrodes (4.1, 4.2) on the short side (7) of the thin-layer heating element (1).
  • a pyramid-shaped cutting pattern (13) is introduced whose long cutting lines (5) are meshed with each other like a comb.
  • the electrical connections (18) located at the connection electrodes (4.1, 4.2) were connected to a power supply. A voltage of 230 V was applied to the heating field (10).
  • Thermovit Elegance (Saint-Gobain Glass Solutions) thin-film heater which is known in the art, has a size of 400mm x 1800mm and has two small round terminal electrodes.
  • the cut lines extending from one connection electrode to the other extend in a labyrinth-like manner over the entire conductive coating analogously to the sectional patterns described in the prior art (for example DE 102 59 110 B3 and WO 2012/066112 ).
  • the electrical connections were connected to a power source and a voltage of 230 V applied.
  • Table 2 shows the percentages of cold edge areas on the total cross-section in different lengths of the thin-film heaters. ⁇ b> Table 2 ⁇ / b> Percentage of cold edge areas longitudinal section example 1 Comparative Example 2 1 ⁇ 8 9.6% 34.3% 1 ⁇ 4 9.6% 24.8% 1 ⁇ 2 9.3% 24.4% 3 ⁇ 4 9.6% 22.6%
  • the time required for the laser process can be halved in comparison with a thin-film heating element according to the prior art (see Table 1).
  • the total length of all laser cuts in the thin-film heater according to the invention by about 50% less than usual in the prior art.
  • the reduction of the laser cuts thus also leads to a corresponding time savings.
  • the laser process is the slowest step in a series of production steps, the entire manufacturing process is enormously accelerated.
  • the time required for this step is also crucial for the cost of the production process, since the laser machining is lengthy and therefore expensive. An acceleration of this step thus allows a significant cost savings.
  • the thin-film heater according to the invention also offers a significantly higher heating power (see Table 1).
  • the pyramid-shaped pattern with comb-toothed long cut lines is particularly suitable for narrow high radiators.
  • the thin-film heaters known from the prior art only provide insufficient heating power, since the heating current path running on the outside has too high a resistance. Thus, not all heating current paths are equally flowed through by electricity and the maximum power is reduced. For this reason, inhomogeneities occur in the heating power, as in the thermographs (see schematic diagrams FIG. 6 and FIG. 7 ) clearly recognizable.
  • the thermographs show a temperature drop from the inner area to the outer edge of the thin-film heater.
  • hot spots (I) appear in both thin-layer radiators, which, however, have a greater extent in the thin-layer radiator known from the prior art.
  • the hot spots (I) inside the radiator are followed by an area of medium temperature (II) with a relatively homogeneous temperature distribution.
  • II medium temperature
  • II medium temperature
  • III colder area
  • the thin-film radiator according to the invention has over the entire length of the radiator a very small constant edge portion of less than 10%.
  • the thin-film heater according to the prior art has especially in the lower area (Length 1 ⁇ 8, Table 2) over a very high margin of about 34% which decreases towards the top, but does not fall below 20%.
  • the problem of lack of homogeneity occurs especially in long narrow radiators, since the outboard Schustrompfad has thin film heaters according to the prior art, too high a resistance.
  • an exceptionally high homogeneity can be achieved.

Landscapes

  • Surface Heating Bodies (AREA)

Description

Die vorliegende Erfindung betrifft ein Laserschnittmuster für Dünnschichtheizkörper.The present invention relates to a laser cut pattern for thin film heaters.

Transparente Dünnschichtheizungen werden bereits in den verschiedensten Anwendungsgebieten eingesetzt, beispielsweise als Windschutzscheibe in Kraftfahrzeugen, als beheizbare Spiegel oder auch als Heizkörper in Wohnräumen. In Kraftfahrzeugen können Dünnschichtheizkörper in Form von beheizbaren Windschutzscheiben oder Heckscheiben verwendet werden um die Fahrzeugfenster eisfrei und beschlagsfrei zu halten. Im Zuge der steigenden Energiekosten werden Wohnhäuser immer besser isoliert. Gerade Niedrigenergie- und Passivhäuser benötigen aufgrund ihrer guten Isolierung nur geringe Heizleistungen, die allerdings jederzeit flexibel zur Verfügung stehen sollten. In diesem Aufgabenbereich sind auch Heizkörper mit niedriger Wärmeabgabe wie Dünnschichtheizkörper aus Glas gut geeignet. Solche elektrisch betriebenen Dünnschichtheizkörper verfügen nur über eine kurze Aufheizphase und sind in der Lage ihre Strahlungswärme schnell abzugeben, was sie besonders für die Anwendung in Passivhäusern interessant macht. Dünnschichtheizungen können ohne großen Aufwand installiert werden und benötigen nur eine Stromversorgung, wodurch die aufwändige Installation einer kompletten Heizungsanlage und der zugehörigen Rohrsysteme entfällt. Des Weiteren sind Dünnschichtheizungen nicht nur für die Wandmontage geeignet, sondern können auch frei im Raum aufgestellt werden. Transparente Dünnschichtheizkörper können zudem durch ihre optisch ansprechende Form auch als Dekorationselemente eingesetzt werden. Dabei ist eine vielfältige Gestaltung der Glasoberfläche möglich, beispielsweise durch Siebdruck. Die Gestaltungsfreiheit bezüglich des Designs von Dünnschichtheizungen ist jedoch eingeschränkt, da die benötigte Leistung nicht bei allen Heizkörperformaten hoch genug ist. Die bisher bekannten Dünnschichtheizungen sind nur in Standardformaten verfügbar, lange schmale Heizkörper sind bisher nicht realisierbar.Transparent thin-film heaters are already being used in a wide variety of applications, for example as a windshield in motor vehicles, as heatable mirrors or as radiators in living spaces. In motor vehicles thin-film heaters in the form of heated windscreens or rear windows can be used to keep the vehicle windows ice-free and fogging-free. As energy costs increase, homes are getting better and better insulated. Especially low-energy and passive houses need only low heat outputs due to their good insulation, but they should always be available flexibly. Radiators with low heat dissipation, such as glass thin-film radiators, are also well suited in this area of responsibility. Such electrically operated thin-film heaters have only a short heating phase and are able to deliver their radiant heat quickly, which makes them particularly interesting for use in passive houses. Thin-film heaters can be installed without much effort and require only one power supply, which eliminates the costly installation of a complete heating system and associated piping systems. Furthermore, thin-film heaters are not only suitable for wall mounting, but can also be installed freely in the room. Transparent thin-film heaters can also be used as decorative elements by their visually appealing shape. In this case, a diverse design of the glass surface is possible, for example by screen printing. However, the design freedom of the design of thin-film heaters is limited since the required power is not high enough for all radiator formats. The previously known thin-film heaters are available only in standard formats, long narrow radiators are not yet feasible.

DE 10 2008 029 986 A1 offenbart eine Windschutzscheibe mit elektrisch beheizbarer transparenter Beschichtung. An den beiden vertikal gegenüberliegenden Seiten der Scheibe sind zwei Elektroden der gleichen Polarität angebracht. In der Mitte der Scheibe ist parallel zu diesen beiden Elektroden eine weitere Elektrode angebracht, die die entgegengesetzte Polarität besitzt. Der Heizstrom fließt jeweils zwischen einer äußeren Elektrode und der inneren Elektrode, so dass die Scheibe in zwei Heizfelder aufgeteilt ist. Diese beiden Heizfelder weisen einzeln betrachtet einen geringeren elektrischen Widerstand auf als ein großes Heizfeld, das die gesamte Breite der Scheibe einnimmt. DE 10 2008 029 986 A1 discloses a windshield with electrically heatable transparent coating. On the two vertically opposite sides of the disc, two electrodes of the same polarity are mounted. In the middle of the disc is parallel attached to these two electrodes another electrode which has the opposite polarity. The heating current flows in each case between an outer electrode and the inner electrode, so that the disk is divided into two heating fields. Viewed individually, these two heating fields have a lower electrical resistance than a large heating field that occupies the entire width of the pane.

DE 36 44 297 A1 offenbart eine Windschutzscheibe mit einer leitfähigen transparenten Beschichtung, die mehrere Schlitze in dieser Beschichtung aufweist. Im Bereich der Schlitze wird die Beschichtung entfernt, wodurch in diesen Bereichen kein Strom fließt. Durch diese Strukturierung ergeben sich Strompfade in der Beschichtung. Bei Anlegen einer Spannung erwärmt sich die Beschichtung, wobei die Stromdichte in den einzelnen Bereichen gezielt über die Wahl des Schlitzmusters gesteuert werden kann. So können bestimmte Bereiche der Scheibe vorrangig von Eis befreit werden. DE 36 44 297 A1 discloses a windshield having a conductive transparent coating having a plurality of slots in this coating. In the area of the slots, the coating is removed, whereby no current flows in these areas. This structuring results in current paths in the coating. Upon application of a voltage, the coating heats up, wherein the current density in the individual regions can be controlled in a controlled manner by the choice of the slot pattern. Thus, certain areas of the disc can be primarily freed from ice.

EP 0 250 386 offenbart eine transparente Glasstrahlungsheizung, die bevorzugt als beheizbare Fensterverglasung eingesetzt wird. Der Heizkörper besteht aus mehreren parallel angebrachten Glasplatten von denen mindestens eine Glasplatte eine Metallbeschichtung auf ihrer Oberfläche enthält. Die Metallbeschichtung ist extrem dünn und hat dadurch keine unerwünschten Auswirkungen auf die Transparenz des Glasheizkörpers. Diese Metallbeschichtung wirkt aufgrund ihrer geringen Dicke als Widerstand wenn sie an einen Stromkreis angeschlossen wird und heizt sich dabei durch den sogenannten Joule-Effekt auf. Zwischen der beheizten Metallbeschichtung und der angrenzenden Anordnung ist eine weitere Metallschicht eingebracht, die die Strahlungswärme reflektiert. So wird die gesamte erzeugte Strahlungswärme in eine Richtung abgegeben. Die beiden Metallschichten sind durch eine elektrisch isolierende Luftkammer voneinander getrennt. EP 0 250 386 discloses a transparent glass radiation heating, which is preferably used as a heated window glazing. The radiator consists of several parallel mounted glass plates of which at least one glass plate contains a metal coating on its surface. The metal coating is extremely thin and thus has no undesirable effects on the transparency of the glass heater. Due to its small thickness, this metal coating acts as a resistor when it is connected to a circuit and heats up due to the so-called Joule effect. Between the heated metal coating and the adjacent arrangement, a further metal layer is introduced, which reflects the radiant heat. Thus, the entire generated radiant heat is emitted in one direction. The two metal layers are separated by an electrically insulating air chamber.

DE 102 59 110 B3 offenbart ein Plattenelement mit einer Schichtheizung. Das Plattenelement enthält eine Glasscheibe, die mit einer elektrisch leitfähigen Beschichtung versehen ist. Diese Beschichtung wird über Trennlinien in Strompfade unterteilt. Auf der Beschichtung sind zwei dicht nebeneinander liegende Elektroden aufgebracht. Durch Anlegen einer Spannung fließt der Strom über die Strompfade von einer Elektrode zur anderen. Die Beschichtung fungiert als Widerstand und wird dadurch erwärmt. Die Strompfade sind parallel zueinander angeordnet und miteinander verschachtelt, wodurch der Strom möglichst gleichmäßig über die gesamte Fläche der Beschichtung verteilt werden soll. Zwischen diesen mit den Elektroden verbundenen aktiven Bereichen der Beschichtung liegen passive Bereiche in denen kein Strom fließt. Diese passiven Bereiche befinden sich zwischen den aktiven Bereichen der Beschichtung und dienen der homogenen Temperaturverteilung. Indem die beheizten aktiven Bereiche Wärme an die unbeheizten passiven Bereiche der Beschichtung abgeben können Spitzenwerte der Temperaturverteilung abgefangen und geglättet werden. Die passiven Bereiche fungieren dabei als Wärmesenken. DE 102 59 110 B3 discloses a plate element with a layer heater. The plate member includes a glass sheet provided with an electrically conductive coating. This coating is divided into rungs via dividing lines. On the coating two closely adjacent electrodes are applied. By applying a voltage, the current flows through the current paths from one electrode to the other. The coating acts as a resistor and is thereby heated. The current paths are arranged parallel to each other and interlaced, whereby the Electricity should be distributed as evenly as possible over the entire surface of the coating. Between these active regions of the coating connected to the electrodes there are passive regions in which no current flows. These passive areas are located between the active areas of the coating and serve for homogeneous temperature distribution. By delivering heat to the unheated passive areas of the coating, the heated active areas can intercept and smooth peak temperature distribution. The passive areas act as heat sinks.

Dünnschichtheizkörper umfassen im Allgemeinen zwei miteinander laminierte Glasplatten zwischen denen eine elektrisch leitende Schicht auf einer der beiden Glasoberflächen aufgebracht ist. Die elektrisch leitende Schicht wird mittels eines Lasers strukturiert, so dass in der elektrisch leitenden Schicht ein Schnittmuster aus einer Vielzahl von Heizstrompfaden entsteht entlang derer der Strom fließt. Das resultierende Heizfeld sollte dabei eine möglichst homogene Erwärmung der elektrisch leitfähigen Beschichtung ermöglichen. Dazu müssen alle Heizstrompfade einen ähnlichen Widerstand und somit auch eine ähnliche Länge aufweisen. Besonders bei großen schmalen Heizkörpern ist der außen laufende Heizpfad nach den bisher bekannten Schnittmustern zu lang. Dadurch ist der Widerstand dieses Heizpfades im Vergleich zu den weiter innen liegenden Heizpfaden zu hoch und der äußere Heizpfad wird kaum von Strom durchflossen. Infolgedessen strahlt die Heizung ihre Wärme nicht homogen ab. Somit sind Heizkörper mit den bisher bekannten Schnittmustern in ihrer Geometrie beschränkt, da solche Schnittmuster nicht für große schmale Heizkörper geeignet sind. Des Weiteren sind mit den bisher bekannten Schnittmustern nur Heizkörper mit vergleichsweise niedrigen Leistungen herstellbar. Die bisher bekannten Heizkörper sind in ihrer Herstellung aufwändig, da die verwendeten Schnittmuster sich über die gesamte Fläche der leitfähigen Beschichtung erstrecken. Aus diesem Grund sind der Zeitaufwand und somit auch die Kosten für den Laserprozess enorm hoch.Thin-film radiators generally comprise two glass plates laminated together, between which an electrically conductive layer is applied to one of the two glass surfaces. The electrically conductive layer is patterned by means of a laser, so that in the electrically conductive layer, a cutting pattern of a plurality of Heizstrompfaden is formed along which the current flows. The resulting heating field should allow the most homogeneous possible heating of the electrically conductive coating. For this purpose, all Heizstrompfade have a similar resistance and thus have a similar length. Especially with large narrow radiators, the outside heating path is too long according to the previously known patterns. As a result, the resistance of this heating path is too high compared to the heating paths located further inside, and the outer heating path is hardly traversed by current. As a result, the heater does not radiate its heat homogeneously. Thus radiators are limited with the previously known patterns in their geometry, since such patterns are not suitable for large narrow radiator. Furthermore, only radiators with comparatively low power can be produced with the previously known patterns. The previously known radiators are expensive to manufacture because the patterns used extend over the entire surface of the conductive coating. For this reason, the time required and thus the costs for the laser process are enormously high.

Die Aufgabe der Erfindung liegt darin einen Dünnschichtheizkörper bereitzustellen, der kostengünstig herstellbar ist und auch bei langen schmalen Heizungsgeometrien hohe sowie homogene Heizleistungen liefert.The object of the invention is to provide a thin-film heater which is inexpensive to produce and delivers high and homogeneous heating even with long narrow heater geometries.

Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch einen Dünnschichtheizkörper mit pyramidenförmigem Laserschnittmuster und dessen Verwendung nach den unabhängigen Ansprüchen 1, 15 und 16 gelöst. Bevorzugte Ausführungen der Erfindung gehen aus den Unteransprüchen hervor.The object of the present invention is achieved by a thin-film heater with pyramidal laser pattern and its use according to the independent claims 1, 15 and 16 solved. Preferred embodiments of the invention will become apparent from the dependent claims.

Der erfindungsgemäße Dünnschichtheizkörper umfasst mindestens einen Scheibenverbund aus zwei Scheiben und einer Laminierfolie, wobei mindestens eine der Scheiben auf der Innenseite eine elektrisch leitfähige Beschichtung und mindestens zwei Anschlusselektroden zur Kontaktierung der leitfähigen Beschichtung aufweist. Der Dünnschichtheizkörper verfügt über zwei lange Seiten und zwei kurze Seiten und hat bevorzugt eine schmale hohe Form, bei der die lange Seite mindestens doppelt so lang wie die kurze Seite ist. An der kurzen Seite des Dünnschichtheizkörpers befinden sich mindestens zwei Anschlusselektroden, die die leitfähige Beschichtung kontaktieren. In die leitfähige Beschichtung ist mindestens ein Schnittmuster eingebracht, wobei die leitfähige Beschichtung im Bereich des Schnittmusters abgetragen ist. Dadurch entstehen in der leitfähigen Beschichtung Heizstrompfade, die die Anschlusselektroden verbinden und bei Anlegen einer Spannung an die Anschlusselektroden von Strom durchflossen werden. Die leitfähige Beschichtung weist ein außergewöhnliches pyramidenförmiges Schnittmuster auf, bei dem weite Teile der Beschichtung nicht strukturiert werden müssen.The thin-film heating element according to the invention comprises at least one pane composite consisting of two panes and a laminating film, wherein at least one of the panes on the inside has an electrically conductive coating and at least two connection electrodes for contacting the conductive coating. The thin-film heater has two long sides and two short sides, and preferably has a narrow, tall shape where the long side is at least twice as long as the short side. On the short side of the thin-film heater are at least two terminal electrodes that contact the conductive coating. At least one cutting pattern is introduced into the conductive coating, the conductive coating being removed in the region of the cutting pattern. As a result, in the conductive coating, heating current paths which connect the connection electrodes and through which current flows when a voltage is applied to the connection electrodes are formed. The conductive coating has an exceptional pyramidal pattern, in which large parts of the coating need not be patterned.

Das Schnittmuster setzt sich dabei aus langen Schnittlinien, die parallel zur langen Seite des Dünnschichtheizkörpers verlaufen, und kurzen Schnittlinien, die parallel zur kurzen Seite des Dünnschichtheizkörpers verlaufen, zusammen. Die langen Schnittlinien sind nicht zwangsläufig länger als die kurzen Schnittlinien, sondern nur aufgrund ihrer Parallelität zur langen Seitekante als solche definiert. Gleiches gilt für die kurzen Schnittlinien.The pattern is composed of long cut lines that run parallel to the long side of the thin-film heater, and short cut lines that are parallel to the short side of the thin-film heater together. The long cut lines are not necessarily longer than the short cut lines, but only defined as such due to their parallelism to the long side edge. The same applies to the short cutting lines.

Auf der leitfähigen Beschichtung besteht ein Heizfeld, das durch die kurzen Schnittlinien in mehrere Abschnitte n, wobei n eine ganze Zahl > 1 ist, gegliedert ist. Die Anzahl der Abschnitte ist nicht festgelegt und kann variabel der gewünschten Heizkörpergeometrie angepasst werden. Bevorzugt werden Schnittmuster mit fünf bis sechs Abschnitten eingesetzt. Ein Abschnitt n umfasst eine kurze Schnittlinie und die zwischen dieser und der nachfolgenden senkrechten Schnittlinie liegenden langen Schnittlinien und endet vor der nachfolgenden dazu senkrechten Schnittlinie. Bei der nachfolgenden dazu senkrechten Schnittlinie handelt es sich im Allgemeinen um die kurze Schnittlinie des nachfolgenden Abschnitts n+1. Im letzten Abschnitt entspricht die nachfolgende senkrechte Schnittlinie jedoch der abschließenden Schnittlinie. Die Zahl der langen Schnittlinien pro Abschnitt n+1 nimmt im Vergleich zum vorherigen Abschnitt n zu, während ihre Länge abnimmt. Ein Heizfeld enthält mindestens zwei Abschnitte, einen ersten Abschnitt und einen letzten Abschnitt. Zwischen diesen beiden Abschnitten befinden sich optional weitere Abschnitte, die als die mittleren Abschnitte bezeichnet werden. Der erste und der letzte Abschnitt des Heizfeldes zeigen im Gegensatz zu den mittleren Abschnitten einen leicht modifizierten Aufbau. Die mittleren Abschnitte sind in ihrem allgemeinen Aufbau gleich.On the conductive coating is a heating field, which is divided by the short cutting lines into several sections n, where n is an integer> 1. The number of sections is not fixed and can be variably adjusted to the desired radiator geometry. Preferably, patterns with five to six sections are used. A section n comprises a short cutting line and the long cutting lines between this and the subsequent vertical cutting line and ends before the subsequent perpendicular cutting line. The following vertical section line is generally the short section line of the following section n + 1. In the last section, the following vertical cut line corresponds however, the final cut line. The number of long cut lines per section n + 1 increases as compared to the previous section n, while its length decreases. A heater panel contains at least two sections, a first section and a last section. Between these two sections are optionally further sections, which are referred to as the middle sections. The first and the last section of the heating field, in contrast to the middle sections a slightly modified structure. The middle sections are the same in their general construction.

In allen Abschnitten n gehen von jeder kurzen Schnittlinie mehrere äußere lange Schnittlinien ab, die vor der kurzen Schnittlinie des nachfolgenden Abschnitts n+1 oder der abschließenden Schnittlinie enden. In allen Zwischenräumen zwischen diesen äußeren langen Schnittlinien im Abschnitt n verläuft jeweils mindestens eine weitere innere lange Schnittlinie, die auf die kurze Schnittlinie des nachfolgenden Abschnitts n+1 bzw. auf die abschließende Schnittlinie des letzten Abschnitts trifft.In all sections n, from each short cut line, there are several outer long cut lines that terminate before the short cut line of the subsequent section n + 1 or the final cut line. In each of the spaces between these outer long cut lines in the section n, at least one further inner long cut line runs, which meets the short cut line of the subsequent section n + 1 or the final cut line of the last section.

Der erste Abschnitt unterscheidet sich von den nachfolgenden Abschnitten dadurch, dass dieser nicht mit einer kurzen Schnittlinie beginnt. Im ersten Abschnitt beginnen eine erste äußere lange Schnittlinie und eine zweite äußere lange Schnittlinie jeweils an den inneren Kanten der Anschlusselektroden und enden vor der ersten kurzen Schnittlinie des nachfolgenden Abschnitts. Zwischen den beiden äußeren langen Schnittlinien entspringen ein oder mehrere innere lange Schnittlinien. Diese inneren langen Schnittlinien treffen auf die erste kurze Schnittlinie des nachfolgenden Abschnitts.The first section differs from the subsequent sections in that it does not begin with a short cut line. In the first section, a first outer long cutting line and a second outer long cutting line each begin at the inner edges of the terminal electrodes and terminate before the first short cutting line of the subsequent section. Between the two outer long cut lines originate one or more inner long cut lines. These inner long cutting lines meet the first short cutting line of the following section.

Im letzten Abschnitt schließt das Schnittmuster mit einer kurzen Schnittlinie ab, auf die die inneren langen Schnittlinien dieses Abschnitts auftreffen. Von der abschließenden Schnittlinie gehen darüber hinaus jedoch keine weiteren langen Schnittlinien aus.In the last section, the pattern ends with a short cut line, on which the inner long cut lines of this section hit. However, no further long cut lines go beyond the final cut line.

Durch diese Strukturierung der leitfähigen Beschichtung ergibt sich von den Anschlusselektroden bis zu der abschließenden Schnittlinie ein Schnittmuster mit pyramidenförmigem Aufbau, dessen lange Schnittlinien kammartig miteinander verzahnt sind. Der Strom muss somit auf dem Weg von einer Anschlusselektrode zur anderen mehrere Windungen der Heizstrompfade durchlaufen. Das kammartige Schnittmuster ist dabei so aufgebaut, dass die Weglängen und somit auch die Widerstände der einzelnen Heizstrompfade identisch sind. Auf diese Weise ist eine sehr homogene Erwärmung des Heizfeldes möglich, wodurch auch die Leistung des Dünnschichtheizkörpers verbessert wird. Überraschenderweise müssen die Bereiche der leitfähigen Beschichtung, die an die äußeren langen Schnittlinien angrenzen, nicht strukturiert werden. In den anderen Abschnitten des Heizfeldes bleiben ebenfalls die Flächenbereiche abseits der pyramidenförmigen Grundform unbearbeitet. Im Vergleich zu dem nach dem Stand der Technik bekannten labyrinthartigen Schnittmustern sind bei dem erfindungsgemäßen Dünnschichtheizkörper wesentlich weniger Laserschnitte zur Strukturierung der leitfähigen Beschichtung nötig. Somit ist der erfindungsgemäße Dünnschichtheizkörper in der Produktion wesentlich kostengünstiger als die nach dem Stand der Technik bekannten Heizkörper, da die Laserzeit erheblich reduziert werden kann. Des Weiteren ermöglicht der erfindungsgemäße Dünnschichtheizkörper höhere Heizleistungen und neue Heizkörpergeometrien.As a result of this structuring of the conductive coating, from the terminal electrodes to the final cutting line, a pattern of patterns having a pyramidal structure is obtained, the long cutting lines of which are toothed in a comb-like manner. The current must thus pass through several turns of the heating current paths on the way from one connection electrode to the other. The comb-like pattern is constructed so that the path lengths and thus the resistances of the individual Heating current paths are identical. In this way, a very homogeneous heating of the heating field is possible, whereby the performance of the thin-film heater is improved. Surprisingly, the areas of the conductive coating adjacent to the outer long cutting lines need not be patterned. In the other sections of the heating field also remain the surface areas away from the pyramidal basic shape unprocessed. In comparison with the labyrinthine patterns known from the prior art, substantially fewer laser cuts are required for structuring the conductive coating in the case of the thin-film heater according to the invention. Thus, the thin-film heater according to the invention in the production is much cheaper than the known in the prior art radiators, since the laser time can be significantly reduced. Furthermore, the thin-film heater according to the invention enables higher heat outputs and new radiator geometries.

Die Zahl der langen Schnittlinien pro Abschnitt n im Abschnitt n+1 nimmt im Vergleich zum vorhergehenden Abschnitt n zu und die Länge der langen Schnittlinien nimmt im Abschnitt n+1 ab. In einer bevorzugten Ausführungsform nimmt die Zahl der langen Schnittlinien pro Abschnitt n im Abschnitt n+1 im Vergleich zum vorhergehenden Abschnitt n um zwei lange Schnittlinien zu und die Länge der langen Schnittlinien wird im Abschnitt n+1 halbiert.The number of long cut lines per section n in section n + 1 increases in comparison to the previous section n and the length of the long cut lines decreases in section n + 1. In a preferred embodiment, the number of long cut lines per section n in the section n + 1 increases by two long cut lines compared to the previous section n, and the length of the long cut lines is halved in the section n + 1.

Die leitfähige Beschichtung ist bevorzugt auf der Innenseite einer der beiden Scheiben angebracht, kann aber auch auf den Innenseiten beider Scheiben aufgebracht sein, so dass sich zwei gegenüberliegende Heizfelder ergeben.The conductive coating is preferably mounted on the inside of one of the two panes, but may also be applied to the insides of both panes, resulting in two opposing heating fields.

Ein Randbereich der leitfähigen Beschichtung ist durch eine umlaufende Trennlinie vom Heizfeld abgetrennt. Die umlaufende Trennlinie befindet sich in geringem Abstand zum Scheibenrand, so dass sich ein schmaler Randbereich ergibt, der bevorzugt eine Breite von 0,5 cm bis 2 cm aufweist. Dadurch ist dieser Randbereich elektrisch isoliert. Auf diese Weise wird eine Korrosion der leitfähigen Beschichtung im Heizfeld verhindert, da sich eine am äußeren Rand beginnende Korrosion sich nicht über die umlaufende Trennlinie hinaus fortsetzen kann.An edge region of the conductive coating is separated from the heating field by a peripheral parting line. The circumferential parting line is located at a small distance from the edge of the pane, so that a narrow edge area results, which preferably has a width of 0.5 cm to 2 cm. As a result, this edge region is electrically insulated. In this way, corrosion of the conductive coating is prevented in the heating field, as a beginning of the outer edge corrosion can not continue beyond the circumferential parting line.

Da die Anzahl der langen Schnittlinien pro Abschnitt n in jedem Abschnitt n+1 zunimmt, während der Abstand benachbarter langer Schnittlinien gleich bleibt, muss die Länge der kurzen Schnittlinien mit steigendem Abstand von den Anschlusselektroden ebenfalls zunehmen.Since the number of long cut lines per section n in each section n + 1 increases, while the distance between adjacent long section lines remains the same, the length of the short cut lines with increasing distance from the terminal electrodes also increase.

Das Schnittmuster des Dünnschichtheizkörpers ist bevorzugt über seine längere Mittellinie spiegelsymmetrisch. Als längere Mittellinie wird dabei die Mittellinie bezeichnet, die zur langen Seite des Dünnschichtheizkörpers parallel ist. Durch diese Symmetrie wird gewährleistet, dass die Heizstrompfade eine konstante Fläche aufweisen. So wird eine konstante Stromdichte entlang der gesamten Beschichtung erreicht. Gleichzeitig wird auch die Zahl der Laserschnitte minimiert, die zur Erstellung des Schnittmusters nötig sind. Es sind jedoch auch pyramidenförmige Schnittmuster denkbar, die keine Spiegelsymmetrie entlang der Mittellinie aufweisen.The pattern of the thin-film heater is preferably mirror-symmetrical over its longer centerline. As a longer center line while the center line is referred to, which is parallel to the long side of the thin-film heater. This symmetry ensures that the heating current paths have a constant area. This achieves a constant current density along the entire coating. At the same time, the number of laser cuts needed to create the pattern is minimized. However, pyramidal patterns are also conceivable which have no mirror symmetry along the center line.

Bei sehr großen Dünnschichtheizkörpern mit einem einzelnen Schnittmuster wird der außen laufende Heizstrompfad zu lang, wodurch die Heizleistung in diesem Bereich stark absinkt. Besonders bei breiten und hohen Heizkörpern ist dies der Fall. Um einen solchen Verlust von Heizleistung zu vermeiden können in der leitfähigen Beschichtung mehrere Schnittmuster eingebracht werden. Bevorzugt werden zwei Schnittmuster eingesetzt, deren lange Schnittlinien zueinander und zur langen Seite des Dünnschichtheizkörpers parallel sind. Dadurch ergeben sich zwei spiegelsymmetrische kleine Heizfelder auf dem Dünnschichtheizkörper, deren äußere Heizstrompfade jeweils eine adäquate Länge aufweisen, so dass eine gute Heizleistung gewährleistet ist. Es ist jedoch auch eine spiegelsymmetrische Anordnung von drei oder mehr Schnittmustern denkbar.In the case of very large thin-film heaters with a single cutting pattern, the heating current path running on the outside becomes too long, as a result of which the heating power in this area drops sharply. This is the case especially with wide and high radiators. In order to avoid such a loss of heating power, a plurality of cutting patterns can be introduced in the conductive coating. Preferably, two patterns are used whose long cutting lines are parallel to each other and to the long side of the thin-film heater. This results in two mirror-symmetric small heating fields on the thin-film heater whose outer Heizstrompfade each have an adequate length, so that a good heating performance is guaranteed. However, it is also conceivable a mirror-symmetrical arrangement of three or more patterns.

Bei Dünnschichtheizkörpern mit mehreren Schnittmustern verfügen benachbarte Schnittmuster über eine gemeinsame Anschlusselektrode gleicher Polarität, die sich zwischen den Schnittmustern an der kurzen Seite des Dünnschichtheizkörpers befindet. Die Anschlusselektroden der entgegengesetzten Polarität befinden sich jeweils ober- und unterhalb der Schnittmuster ebenfalls an der kurzen Seite des Dünnschichtheizkörpers.For thin-layer radiators with multiple patterns, adjacent patterns have a common terminal electrode of the same polarity located between the patterns on the short side of the thin-film heater. The terminal electrodes of the opposite polarity are also located above and below the cutting pattern also on the short side of the thin-film heating element.

Die abschließende Schnittlinie im letzten Abschnitt des Heizfeldes kann optional auch mit der umlaufenden Trennlinie übereinstimmen. Ein derartiges Schnittmuster wird vor allem bei großen Heizungen mit mehreren Schnittmustern gewählt. So wird der außen laufende Heizpfad verlängert, wodurch auch bei mehreren Schnittmustern pro Dünnschichtheizkörper eine gleichmäßige Erwärmung möglich ist.The final cutting line in the last section of the heating field can also optionally coincide with the circulating dividing line. Such a pattern is chosen especially for large heaters with multiple patterns. This is how the outside is going Heating path lengthened, whereby a uniform heating is possible even with multiple patterns per thin-film heater.

Die Heizstrompfade zwischen den Anschlusselektroden mit entgegengesetzter Polung weisen in allen Abschnitten des erfindungsgemäßen Dünnschichtheizkörpers die gleiche Weglänge und somit auch den gleichen Widerstand auf. Dadurch werden auch die außen laufenden Heizstrompfade in gleichem Maße von Strom durchflossen wie die innen liegenden Heizstrompfade. Auf diese Weise kann eine gleichmäßige Erwärmung aller Beschichtungsbereiche und somit auch eine höhere Leistung des Dünnschichtheizkörpers sichergestellt werden.The Heizstrompfade between the terminal electrodes with opposite polarity have the same path length and thus also the same resistance in all sections of the thin-film heater according to the invention. As a result, current flows through the outside of the heating current paths to the same extent as the internal heating current paths. In this way, a uniform heating of all coating areas and thus a higher performance of the thin-film heater can be ensured.

Die erste und die zweite Scheibe des Dünnschichtheizkörpers enthalten Kalk-Natron-Glas, Quarzglas und/oder Borsilikatglas. Bevorzugt wird Floatglas verwendet. Die Glasscheiben werden bevorzugt thermisch vorgespannt.The first and the second pane of the thin-film heating element contain soda-lime glass, quartz glass and / or borosilicate glass. Float glass is preferably used. The glass sheets are preferably thermally biased.

Die erste und die zweite Scheibe des Dünnschichtheizkörpers weisen eine Dicke auf von 1 mm bis 20 mm. Bevorzugt werden Scheiben der Dicke 2 mm bis 8 mm eingesetzt.The first and the second disc of the thin-film heater have a thickness of from 1 mm to 20 mm. Preferably, slices of thickness 2 mm to 8 mm are used.

Die Laminierfolie umfasst Polyvinylbutyral, Ethylenvinylacetat, Polyurethan und/oder Gemische und/oder Copolymere davon. Bevorzugt wird Polyvinylbutyral verwendet.The laminating film comprises polyvinyl butyral, ethylene vinyl acetate, polyurethane and / or mixtures and / or copolymers thereof. Preferably, polyvinyl butyral is used.

Die Laminierfolie weist eine Dicke auf von 0,1 mm bis 0,8 mm, bevorzugt von 0,3 mm bis 0,5 mm.The laminating film has a thickness of from 0.1 mm to 0.8 mm, preferably from 0.3 mm to 0.5 mm.

Die leitfähige Beschichtung des Dünnschichtheizkörpers kann sowohl Silber, Gold, Kupfer, Indium, Zinn, Zink und/oder Gemische und/oder Oxide und/oder Legierungen davon, als auch TCO-Schichten (transparent conductive oxide) wie beispielsweise Indium-Zinn-Oxid (ITO) enthalten. Bevorzugt werden Silberbeschichtungen aus mehreren Einzellagen Silber eingesetzt. Um eine hohe Transparenz des Dünnschichtheizkörpers zu gewährleisten kann eine Entspiegelung der Silberschicht mittels Siliciumnitrid erfolgen. Die leitfähige Beschichtung ist thermisch hoch belastbar und kann somit auch vor dem Vorspannen der Glasscheiben auf deren Oberfläche aufgebracht werden. Die leitfähige Beschichtung wird bevorzugt durch Verfahren zur Gasphasenabscheidung aufgebracht, beispielsweise chemische Gasphasenabscheidung (CVD, chemical vapor deposition) oder physikalische Gasphasenabscheidung (PVD, physical vapor deposition). Besonders bevorzugt werden Sputtering-Verfahren, wie beispielsweise Magnetron-Sputtering eingesetzt. Mittels dieser Verfahren kann die Metallschicht sehr gleichmäßig auf die Oberfläche der Glasscheibe aufgetragen werden.The conductive coating of the thin-film heating element can be both silver, gold, copper, indium, tin, zinc and / or mixtures and / or oxides and / or alloys thereof, as well as TCO ( transparent conductive oxide ) layers such as indium tin oxide ( ITO). Silver coatings of several individual layers of silver are preferably used. In order to ensure a high transparency of the thin-film heating element, an antireflection coating of the silver layer can be effected by means of silicon nitride. The conductive coating is thermally highly resilient and can thus be applied to the surface before tempering the glass sheets. The conductive coating is preferably applied by vapor deposition techniques, for example chemical vapor deposition (CVD) or physical vapor deposition (PVD). Particular preference is given to using sputtering processes, for example magnetron sputtering. By means of these methods, the metal layer can be applied very evenly to the surface of the glass sheet.

Die leitfähige Beschichtung weist eine Dicke auf von 1nm bis 500 nm, bevorzugt von 50 nm bis 250 nm.The conductive coating has a thickness of from 1 nm to 500 nm, preferably from 50 nm to 250 nm.

Die leitfähige Beschichtung verfügt über einen Flächenwiderstand von 0,5 Ω bis 15 Ω pro Quadrat, bevorzugt 1 Ω bis 10 Ω pro Quadrat, besonders bevorzugt 2 Ω bis 7 Ω pro Quadrat. Der Flächenwiderstand der Beschichtung ist so einzustellen, dass der Dünnschichtheizkörper im Betrieb eine maximale Temperatur von 80 °C bis 90 °C erreicht, wie in DIN EN 60335 gefordert. Durch diese Temperaturbegrenzung wird ausgeschlossen, dass sich Personen beim Berühren des Dünnschichtheizkörpers Verbrennungen zuziehen. Je größer die Dicke bzw. der Leitungsquerschnitt der leitfähigen Beschichtung desto geringer ist der Flächenwiderstand. Bei geringen Flächenwiderständen treten bei gleicher Spannung höhere Stromstärken auf, wodurch größere Leistungen erreicht werden. Höhere Stromstärken bewirken jedoch auch eine höhere Temperatur des Dünnschichtheizkörpers. Die maximal möglichen Leistungen sind somit durch die Temperaturbegrenzung von 80 °C bis 90 °C limitiert. Da die Stromstärken sowohl vom Widerstand als auch von der angelegten Spannung abhängen werden weltweit Dünnschichtheizungen mit unterschiedlichen Flächenwiderständen bereitgestellt, die an die örtlichen Netzspannungen angepasst sind. Für den amerikanischen Markt mit Netzspannungen von 110 V werden somit Dünnschichtheizkörper mit geringeren Flächenwiderständen produziert als für den europäischen Markt mit Netzspannungen von üblicherweise 230 V.The conductive coating has a sheet resistance of 0.5 Ω to 15 Ω per square, preferably 1 Ω to 10 Ω per square, more preferably 2 Ω to 7 Ω per square. The surface resistance of the coating must be adjusted so that the thin-film heater reaches a maximum temperature of 80 ° C to 90 ° C during operation, as required by DIN EN 60335. This temperature limitation prevents persons from getting burned when they touch the thin-film radiator. The greater the thickness or the conductor cross-section of the conductive coating, the lower the sheet resistance. With low surface resistances higher current intensities occur at the same voltage, whereby larger powers are achieved. Higher currents, however, also cause a higher temperature of the thin-film heater. The maximum possible outputs are therefore limited by the temperature limitation of 80 ° C to 90 ° C. Since the current levels depend on both the resistance and the applied voltage, thin-film heaters with different surface resistances, which are adapted to the local grid voltages, are provided worldwide. For the American market with mains voltages of 110 V, thin-film heaters with lower surface resistances are therefore produced than for the European market with mains voltages of usually 230 V.

Das Schnittmuster in der leitfähigen Beschichtung wird mittels Lasern, Ätzen und/oder Abtragen erzeugt. Bevorzugt werden Laserprozesse zur Entfernung der Beschichtung eingesetzt. Das Lasern erfolgt mit einer Wellenlänge von 300 nm bis 1300 nm. Die eingesetzte Wellenlänge hängt dabei von der Art der Beschichtung ab. Als Laserquelle werden bevorzugt gepulste Festkörperlaser eingesetzt.The pattern in the conductive coating is produced by means of lasers, etching and / or ablation. Preference is given to using laser processes for removing the coating. The lasing takes place with a wavelength of 300 nm to 1300 nm. The wavelength used depends on the type of coating. Pulsed solid-state lasers are preferably used as the laser source.

Im Bereich der Schnittlinien werden mindestens 80 Gewichtsprozent, bevorzugt mindestens 90 Gewichtsprozent der Metallbeschichtung von der Glasoberfläche entfernt.In the area of the cut lines, at least 80 percent by weight, preferably at least 90 percent by weight of the metal coating is removed from the glass surface.

Im Gegensatz zu den nach dem Stand der Technik bekannten punkt- oder kreisförmigen Anschlusselektroden weist der erfindungsgemäße Dünnschichtheizkörper zwei oder mehr Anschlusselektroden mit länglicher Form auf. Diese befinden sich an der kurzen Seite des Dünnschichtheizkörpers und sind parallel zu dieser kurzen Seite ausgerichtet.In contrast to the point or circular connection electrodes known from the prior art, the thin-layer heating element according to the invention has two or more connection electrodes with an elongate shape. These are located on the short side of the thin-film heater and are aligned parallel to this short side.

Die Anschlusselektroden können sowohl vor oder auch nach der Abscheidung der leitfähigen Beschichtung auf die Scheibe aufgebracht werden. Bevorzugt werden die Anschlusselektroden nach Abscheidung der leitfähigen Beschichtung aufgetragen. Dazu wird eine elektrisch leitfähige Metallpaste auf die innere Scheibenseite aufgebracht und anschließend eingebrannt. Die Anschlusselektroden befinden sich dabei auf der gleichen Scheibenseite wie die elektrisch leitfähige Beschichtung, wobei durch Einbrennen der Metallpaste eine permanente elektrische Kontaktierung zwischen Anschlusselektrode und leitfähiger Beschichtung gewährleistet ist. Die Metallpaste enthält bevorzugt Silber, Gold, Platin, Palladium, Kupfer, Nickel, Mangan, Eisen und/oder Gemische oder Legierungen davon, besonders bevorzugt Silber. Die Anschlusselektroden sind über einen elektrischen Leiter mit der Stromquelle verbunden.The connection electrodes can be applied to the pane either before or after the deposition of the conductive coating. The connection electrodes are preferably applied after deposition of the conductive coating. For this purpose, an electrically conductive metal paste is applied to the inner side of the disk and then baked. The terminal electrodes are located on the same side of the disc as the electrically conductive coating, whereby a permanent electrical contact between terminal electrode and conductive coating is ensured by burning the metal paste. The metal paste preferably contains silver, gold, platinum, palladium, copper, nickel, manganese, iron and / or mixtures or alloys thereof, particularly preferably silver. The connection electrodes are connected to the power source via an electrical conductor.

Des Weiteren umfasst die Erfindung ein Verfahren zur Herstellung eines Dünnschichtheizkörpers mit pyramidenförmigem Laserschnittmuster. In einem ersten Schritt wird auf eine erste Scheibe eine leitfähige Beschichtung aufgetragen. Die leitfähige Beschichtung wird bevorzugt mittels eines PVD-Verfahrens auf die Scheibe aufgetragen. In die leitfähige Beschichtung wird daraufhin mittels Lasern ein pyramidenförmiges Schnittmuster eingebracht, dessen lange Schnittlinien kammartig miteinander verzahnt sind. An der kurzen Seite der ersten Scheibe werden zwei oder mehr Anschlusselektroden durch Einbrennen einer elektrisch leitfähigen Metallpaste aufgebracht. Die Anschlusselektroden werden als längliche Streifen parallel zur kurzen Seite der ersten Scheibe aufgetragen und kontaktieren die leitfähige Beschichtung. Auf die Innenseite der ersten Scheibe, die die leitfähige Beschichtung und die Anschlusselektroden trägt, wird im nächsten Schritt eine Laminierfolie und auf die Laminierfolie eine zweite Scheibe aufgelegt. Diese Anordnung aus erster Scheibe mit leitfähiger Beschichtung und Anschlusselektroden, Laminierfolie und zweiter Scheibe wird zunächst vorevakuiert und abschließend im Autoklaven 2,5 Stunden lang bei 80 °C bis 135 °C und 7 bar bis 13 bar laminiert.Furthermore, the invention comprises a method for producing a thin-film heating element with a pyramidal laser pattern. In a first step, a conductive coating is applied to a first pane. The conductive coating is preferably applied to the pane by means of a PVD process. In the conductive coating, a pyramidal pattern is then introduced by means of lasers, the long cutting lines are meshed with each other like a comb. On the short side of the first disc, two or more terminal electrodes are applied by baking an electrically conductive metal paste. The terminal electrodes are applied as elongated strips parallel to the short side of the first disc and contact the conductive coating. On the inside of the first pane, which carries the conductive coating and the connection electrodes, a laminating film is placed in the next step and a second pane is placed on the laminating film. This arrangement of first disc with conductive coating and terminal electrodes, laminating film and second disc is first pre-evacuated and finally in the autoclave for 2.5 hours at 80 ° C to 135 ° C and 7 bar to 13 bar laminated.

Des Weiteren umfasst die Erfindung die Verwendung eines Dünnschichtheizkörpers als funktionales und/oder dekoratives Einzelstück und/oder als Einbauteil in Möbeln, Geräten, Gebäuden und Fahrzeugen. Bevorzugt wird der erfindungsgemäße Dünnschichtheizkörper als freistehender oder wandmontierter Heizkörper in Wohnräumen, als beheizbare Fassadenverglasung oder als beheizbare Fahrzeugscheibe, Schiffsscheibe oder Flugzeugscheibe eingesetzt.Furthermore, the invention comprises the use of a thin-film heating element as a functional and / or decorative single piece and / or as a built-in part in furniture, appliances, buildings and vehicles. The thin-film radiator according to the invention is preferably used as a freestanding or wall-mounted radiator in living spaces, as heatable facade glazing or as a heatable vehicle window, ship window or aircraft windscreen.

Besondere Ausführungen des erfindungsgemäßen Dünnschichtheizkörpers mit pyramidenförmigem Laserschnittmuster umfassen Dünnschichtheizkörper mit abgerundeten Ecken bis hin zu ellipsenförmigen Dünnschichtheizkörpern. Als lange Seite des Dünnschichtheizkörpers, zu der die langen Schnittlinien parallel sind, wird dabei die an der langen Heizkörperseite anliegende Tangente definiert. Andere Ausführungen des erfindungsgemäßen Dünnschichtheizkörpers mit pyramidenförmigem Laserschnittmuster beinhalten einen Bruchsensor im Randstreifen des Dünnschichtheizkörpers. Dabei wird der Randstreifen in verschiedene Bereiche aufgeteilt. In einem dieser Bereiche wird eine schwache Spannung angelegt. Eine Beschädigung des Heizkörpers kann somit über einen Abfall der Spannung in diesem Bereich detektiert werden. Andere Ausführungen des Dünnschichtheizkörpers mit pyramidenförmigem Laserschnittmuster umfassen Dünnschichtheizkörper mit Messstrompfaden zur Temperaturmessung an verschiedenen Stellen des Heizkörpers. In einer weiteren Ausführungsform des erfindungsgemäßen Dünnschichtheizkörpers werden die Anschlusselektroden zu einem Busbar zusammengefasst. Diese Ausführung ist vor allem bei sehr breiten Dünnschichtheizkörpern mit mehr als 3 Anschlusselektroden von Vorteil.Special embodiments of the thin-film heater according to the invention with a pyramidal laser pattern include thin-film heaters with rounded corners up to ellipsoidal thin-film heaters. As a long side of the thin-film heater, to which the long cutting lines are parallel, thereby defining the voltage applied to the long side radiator tangent is defined. Other embodiments of the thin film heater according to the invention with a pyramidal laser pattern include a breakage sensor in the edge strip of the thin film heater. The edge strip is divided into different areas. In one of these areas a weak voltage is applied. Damage to the radiator can thus be detected by a drop in the voltage in this area. Other embodiments of the thin film heater with pyramidal laser pattern include thin film heater with Messstrompfaden for temperature measurement at different points of the radiator. In a further embodiment of the thin-film heating element according to the invention, the connection electrodes are combined to form a busbar. This design is particularly advantageous for very wide thin-film radiators with more than 3 terminal electrodes.

Im Folgenden wird die Erfindung anhand einer Zeichnung näher erläutert. Die Zeichnung schränkt die Erfindung in keiner Weise ein.In the following the invention will be explained in more detail with reference to a drawing. The drawing does not limit the invention in any way.

Es zeigen:

  • Figur 1a eine schematische Ansicht des erfindungsgemäßen Dünnschichtheizkörpers mit pyramidenförmigem Laserschnittmuster.
  • Figur 1b einen vergrößerten Ausschnitt des pyramidenförmigen Laserschnittmusters des erfindungsgemäßen Dünnschichtheizkörpers.
  • Figur 2 eine schematische Ansicht des erfindungsgemäßen Dünnschichtheizkörpers mit beispielhaft dargestellten Heizstrompfaden.
  • Figur 3 eine schematische Ansicht des erfindungsgemäßen Dünnschichtheizkörpers mit zwei pyramidenförmigen Laserschnittmustern.
  • Figur 4 einen schematischen Querschnitt des erfindungsgemäßen Dünnschichtheizkörpers.
  • Figur 5 ein Fließschema des Verfahrens zur Herstellung des erfindungsgemäßen Dünnschichtheizkörpers.
  • Figur 6 zwei schematische Darstellungen der Thermographien eines Dünnschichtheizkörpers nach dem Stand der Technik.
  • Figur 7 eine schematische Darstellung einer Thermographie des erfindungsgemäßen Dünnschichtheizkörpers.
Show it:
  • FIG. 1a a schematic view of the thin film heater according to the invention with pyramidal laser pattern.
  • FIG. 1b an enlarged section of the pyramidal laser cut pattern of the thin-film heater according to the invention.
  • FIG. 2 a schematic view of the thin-film heater according to the invention with Heizstrompfaden shown by way of example.
  • FIG. 3 a schematic view of the thin film heater according to the invention with two pyramidal laser cut patterns.
  • FIG. 4 a schematic cross section of the thin-film heater according to the invention.
  • FIG. 5 a flow diagram of the method for producing the thin-film heater according to the invention.
  • FIG. 6 two schematic representations of the thermographies of a thin film heater according to the prior art.
  • FIG. 7 a schematic representation of a thermography of the thin film heater according to the invention.

Figur 1a zeigt eine schematische Ansicht des erfindungsgemäßen Dünnschichtheizkörpers (1) mit pyramidenförmigem Laserschnittmuster. Der Dünnschichtheizkörper (1) umfasst eine erste Scheibe (2.1), auf der eine leitfähige Beschichtung (3) und zwei Anschlusselektroden (4.1, 4.2) aufgebracht sind, eine Laminierfolie (17) und eine zweite Scheibe (2.2). Der Dünnschichtheizkörper (1) weist zwei lange Seiten (8) und zwei kurze Seiten (7) auf, die senkrecht zueinander stehen. Die beiden Anschlusselektroden (4.1, 4.2) haben eine längliche Form und sind an einer kurzen Seite (7) des Dünnschichtheizkörpers (1) angeordnet. Die Anschlusselektroden kontaktieren die leitfähige Beschichtung (3), so dass eine Spannung, die an die Anschlusselektroden (4.1, 4.2) angelegt ist auch an der Beschichtung anliegt. In die leitfähige Beschichtung (3) ist ein Schnittmuster (13) eingebracht. In diesen Bereichen ist die leitfähige Beschichtung (3) von der Oberfläche der ersten Scheibe (2.2) abgetragen, wodurch diese Bereiche elektrisch isoliert sind. Durch diese Strukturierung entstehen in der leitfähigen Beschichtung (3) Heizstrompfade (12.n). Diese Heizstrompfade (12.n) werden bei Anlegen einer Spannung an den Anschlusselektroden (4.1, 4.2) von Strom durchflossen. Das Schnittmuster (13) der leitfähigen Beschichtung (3) gliedert sich in lange Schnittlinien (5) und kurze Schnittlinien (6), wobei bei den langen Schnittlinien (5) zwischen äußeren langen Schnittlinien (5.1) und inneren langen Schnittlinien (5.2) unterschieden wird. Alle langen Schnittlinien (5) verlaufen parallel zur langen Seite (8) des Dünnschichtheizkörpers (1), während die kurzen Schnittlinien (6) parallel zur kurzen Seite angeordnet sind. Die langen Schnittlinien (5) und die kurzen Schnittlinien sind dabei senkrecht zueinander. Das durch die Strukturierung entstehende Heizfeld (10) gliedert sich in mehrere Abschnitte (11.n), die von den kurzen Schnittlinien (6) begrenzt sind. Dabei sind mindestens ein erster Abschnitt (11.1) und ein letzter Abschnitt (19) notwendig, zwischen denen sich optional mehrere mittlere Abschnitte (11.2) befinden. Im vorliegenden Ausführungsbeispiel sind drei mittlere Abschnitte (11.2a, 11.2b, 11.2c) vorhanden. Im ersten Abschnitt (11.1) liegen eine erste äußere lange Schnittlinie (5.1a) und eine zweite äußere lange Schnittlinie (5.1b) an den inneren Rändern der Anschlusselektroden (4.1, 4.2) an. Zwischen diesen beiden äußeren langen Schnittlinien (5.1a, 5.2b) verläuft eine erste innere lange Schnittlinie (5.2a). Die Gesamtzahl der langen Schnittlinien (5) des ersten Abschnitts (11.1) beläuft sich somit auf drei. In jedem nachfolgenden Abschnitt (11.n) wird die Zahl der langen Schnittlinien (5) pro Abschnitt (11.n) um zwei erhöht, während die Länge der langen Schnittlinien (5) halbiert wird. Die Länge der kurzen Schnittlinien (6) nimmt vom ersten Abschnitt (11.1) bis zum letzten Abschnitt (19) hin zu. Die erste äußere lange Schnittlinie (5.1a) und die zweite äußere lange Schnittlinie (5.1b) enden vor der ersten kurzen Schnittlinie (6.1) des zweiten Abschnitts (11.2a), während die erste innere lange Schnittlinie (5.2a) auf die erste kurze Schnittlinie (6.1) auftrifft. Im zweiten Abschnitt (11.2a) entstehen auf der ersten kurzen Schnittlinie (6.1) drei äußere lange Schnittlinien (5), die vor der kurzen Schnittlinie (6) des nachfolgenden Abschnitts enden. In den Zwischenräumen dieser äußeren langen Schnittlinien (5) verläuft jeweils eine innere lange Schnittlinie (5), die auf die kurze Schnittlinie (6) des nachfolgenden Abschnitts trifft. Die beiden nachfolgenden mittleren Abschnitte (11.2b, 11.2c) sind analog zum ersten mittleren Abschnitt (11.2a) aufgebaut. Der letzte Abschnitt (19) wird von einer abschließenden Schnittlinie (9) begrenzt, auf die die in diesem Abschnitt verlaufenden langen Schnittlinien (5) treffen. Durch eine derartige Anordnung der einzelnen Schnittlinien (5, 6) sind die langen Schnittlinien (5) des pyramidenförmigen Schnittmusters (13) kammartig miteinander verzahnt. Dieses außergewöhnliche Schnittmuster (13) ergibt überraschenderweise sehr homogene Heizleistungen bei gleichzeitiger Reduzierung der Anzahl der Laserschnitte. Das Schnittmuster (13) weist bevorzugt eine Spiegelsymmetrie über die längere Mittellinie (16) auf. Am Rand des Dünnschichtheizkörpers (1) ist ein schmaler Randbereich (14) durch eine umlaufende Trennlinie (15) vom Heizfeld (10) abgetrennt. Diese Randbereich (14) ist dadurch elektrisch isoliert. FIG. 1a shows a schematic view of the thin-film heater (1) according to the invention with a pyramidal laser pattern. The thin-film heating element (1) comprises a first pane (2.1) on which a conductive coating (3) and two connection electrodes (4.1, 4.2) are applied, a laminating film (17) and a second pane (2.2). The thin-film heater (1) has two long sides (8) and two short sides (7), which are perpendicular to each other. The two terminal electrodes (4.1, 4.2) have an elongated shape and are arranged on a short side (7) of the thin-film heating element (1). The terminal electrodes contact the conductive coating (3) so that a voltage applied to the terminal electrodes (4.1, 4.2) is also applied to the coating. In the conductive coating (3) has a cutting pattern (13) is introduced. In these areas is the conductive coating (3) from the surface of the first disc (2.2) removed, whereby these areas are electrically isolated. This structuring produces heating current paths (12.n) in the conductive coating (3). These heating current paths (12.n) are supplied with current when a voltage is applied to the connection electrodes (4.1, 4.2). The cutting pattern (13) of the conductive coating (3) is divided into long cutting lines (5) and short cutting lines (6), wherein the long cutting lines (5) differentiate between outer long cutting lines (5.1) and inner long cutting lines (5.2) , All long cutting lines (5) are parallel to the long side (8) of the thin-film heater (1), while the short cutting lines (6) are arranged parallel to the short side. The long cutting lines (5) and the short cutting lines are perpendicular to each other. The heating field (10) resulting from the structuring is subdivided into a plurality of sections (11.n) which are delimited by the short cutting lines (6). In this case, at least a first section (11.1) and a last section (19) are necessary, between which optionally a plurality of middle sections (11.2) are located. In the present embodiment, three middle sections (11.2a, 11.2b, 11.2c) are present. In the first section (11.1), a first outer long cutting line (5.1a) and a second outer long cutting line (5.1b) bear against the inner edges of the connecting electrodes (4.1, 4.2). Between these two outer long cutting lines (5.1a, 5.2b) runs a first inner long cutting line (5.2a). The total number of long cutting lines (5) of the first section (11.1) thus amounts to three. In each subsequent section (11.n), the number of long cut lines (5) per section (11.n) is increased by two while the length of the long cut lines (5) is halved. The length of the short cutting lines (6) increases from the first section (11.1) to the last section (19). The first outer long section line (5.1a) and the second outer long section line (5.1b) terminate before the first short section line (6.1) of the second section (11.2a), while the first inner long section line (5.2a) terminates at the first short section Cutting line (6.1) hits. In the second section (11.2a) arise on the first short cutting line (6.1) three outer long cutting lines (5), which ends before the short cutting line (6) of the subsequent section. In the interstices of these outer long cutting lines (5) in each case an inner long cutting line (5), which meets the short cutting line (6) of the subsequent section. The two subsequent middle sections (11.2b, 11.2c) are constructed analogously to the first middle section (11.2a). The last section (19) is delimited by a final cutting line (9) on which the long cutting lines (5) running in this section meet. By such an arrangement of the individual cutting lines (5, 6) the long cut lines (5) of the pyramidal pattern (13) are meshed with each other like a comb. Surprisingly, this unusual pattern (13) results in very homogeneous heating powers while at the same time reducing the number of laser cuts. The pattern (13) preferably has a mirror symmetry over the longer centerline (16). At the edge of the thin-film heating element (1), a narrow edge region (14) is separated from the heating field (10) by a peripheral parting line (15). This edge region (14) is thereby electrically insulated.

Figur 1b zeigt einen vergrößerten Ausschnitt des pyramidenförmigen Laserschnittmusters des erfindungsgemäßen Dünnschichtheizkörpers. Das in Figur 1a beschriebene Schnittmuster umfasst eine Vielzahl von Schnittlinien, die sich größtenteils den beiden Gruppen der kurzen Schnittlinien (6) und der langen Schnittlinien (5) zuordnen lassen. Die langen Schnittlinien (5) gliedern sich wiederum in äußere lange Schnittlinien (5.1) und innere lange Schnittlinien (5.2). Die kurzen Schnittlinien (6) verlaufen dabei parallel zur kurzen Seite (7) des Dünnschichtheizkörpers (1), während die langen Schnittlinien parallel zur langen Seite (8) angeordnet sind. Von jeder kurzen Schnittlinie (6) gehen mehrere äußere lange Schnittlinien (5.1) aus, wobei in den Zwischenräumen zwischen zwei äußeren langen Schnittlinien (5.1) jeweils eine innere lange Schnittlinie (5.2) verläuft. FIG. 1b shows an enlarged section of the pyramidal laser cut pattern of the thin-film heater according to the invention. This in FIG. 1a described cutting pattern comprises a plurality of cutting lines, which can be largely assigned to the two groups of the short cutting lines (6) and the long cutting lines (5). The long cutting lines (5) are in turn divided into outer long cutting lines (5.1) and inner long cutting lines (5.2). The short cutting lines (6) run parallel to the short side (7) of the thin-film heating element (1), while the long cutting lines are arranged parallel to the long side (8). From each short cutting line (6) go out several outer long cutting lines (5.1), wherein in the spaces between two outer long cutting lines (5.1) each have an inner long cutting line (5.2).

Figur 2 zeigt eine schematische Ansicht des erfindungsgemäßen Dünnschichtheizkörpers (1) mit beispielhaft dargestellten Heizstrompfaden. Der Dünnschichtheizkörper (1) aus erster Scheibe (2.1), Laminierfolie (17), zweiter Scheibe (2.2), langen Seiten (8) und kurzen Seiten (7) verfügt über eine flächig aufgebrachte leitfähige Beschichtung (3) sowie zwei Anschlusselektroden (4.1, 4.2) auf der kurze Seite (7). Auf der leitfähigen Beschichtung (3) ist ein Schnittmuster (13) analog dem in Figur 1 beschriebenen Schnittmuster aufgebracht, wobei die langen Schnittlinien (5) parallel zur langen Seite (8) des Dünnschichtheizkörpers (1) und die kurzen Schnittlinien (6) sowie die abschließende Schnittlinie (9) senkrecht dazu verlaufen. Dadurch entsteht auf der leitfähigen Beschichtung (3) ein Heizfeld (10). Ein schmaler Randbereich (14) ist durch eine umlaufende Trennlinie (15) vom Heizfeld (10) abgetrennt und elektrisch isoliert. Im Heizfeld (10) entstehen durch die Strukturierung der leitfähigen Beschichtung (3) verschiedene Heizstrompfade (12.n), von denen ein erster Heizstrompfad (12.1), einer der mittleren Heizstrompfade (12.2) und ein letzter Heizstrompfad (12.3) beispielhaft gezeigt werden. Die anderen Heizstrompfade (12.n) sind der Übersichtlichkeit halber nicht dargestellt. Der Strom fließt durch die Heizstrompfade (12.n) hindurch immer von einer der negativen Anschlusselektroden (4.2) zur positiven Anschlusselektroden (4.1). Die Heizstrompfade (12.n) haben dabei alle die gleiche Länge und somit auch den gleichen Widerstand, so dass alle Heizstrompfade (12.n) gleichermaßen erwärmt werden und der Dünnschichtheizkörper (1) eine sehr homogene Heizleistung aufweist. FIG. 2 shows a schematic view of the thin-film heater (1) according to the invention with Heizstrompfaden shown by way of example. The thin-film heating element (1) comprising a first pane (2.1), laminating film (17), second pane (2.2), long sides (8) and short sides (7) has a surface-applied conductive coating (3) and two connection electrodes (4.1, 4.2) on the short side (7). On the conductive coating (3) is a pattern (13) analogous to that in FIG. 1 applied, wherein the long cutting lines (5) parallel to the long side (8) of the thin-film heater (1) and the short cutting lines (6) and the final cutting line (9) perpendicular thereto. As a result, a heating field (10) is formed on the conductive coating (3). A narrow edge region (14) is separated from the heating field (10) by a circumferential dividing line (15) and is electrically insulated. In the heating field (10), different heating current paths (12.n) are formed by the structuring of the conductive coating (3), of which a first heating current path (12.1), one of the middle heating current paths (12.2) and one last heating current path (12.3) are shown by way of example. The other heating current paths (12.n) are for the sake of clarity not shown. The current always flows through the heating current paths (12.n) from one of the negative connection electrodes (4.2) to the positive connection electrodes (4.1). The heating current paths (12.n) all have the same length and thus also the same resistance, so that all the heating current paths (12.n) are equally heated and the thin-layer heating element (1) has a very homogeneous heating power.

Figur 3 zeigt eine schematische Ansicht des erfindungsgemäßen Dünnschichtheizkörpers (1) mit zwei pyramidenförmigen Laserschnittmustern. Der Dünnschichtheizkörper (1) umfasst eine erste Scheibe (2.1), eine Laminierfolie (17) und eine zweite Scheibe (2.2) sowie eine lange Seite (8) und eine kurze Seite (7). Die auf der ersten Scheibe (2.1) aufgebrachte elektrisch leitfähige Beschichtung (3) ist durch ein erstes Schnittmuster (13.1) und ein zweites Schnittmuster (13.2) in Heizstrompfade (12.n) unterteilt. Das erste Schnittmuster (13.1) und das zweite Schnittmuster (13.2) sind über die längere Mittellinie (16) zueinander spiegelsymmetrisch. An einer kurzen Seite (7) der Dünnschichtelektroden (1) befindet sich zwischen den beiden Schnittmustern (13.1, 13.2) eine gemeinsame negative Anschlusselektrode (4.2). Oberhalb und unterhalb der Schnittmuster (13.1, 13.2) sind eine erste positive Anschlusselektrode (4.1) und eine zweite positive Anschlusselektrode (4.3) ebenfalls an der kurzen Seite (7) des Dünnschichtheizkörpers (1) angeordnet. Die beiden Schnittmuster (13.1, 13.2) umfassen lange Schnittlinien (5) und kurze Schnittlinien (6), die analog zu dem in Figur 1 beschriebenen Muster platziert sind. Alle langen Schnittlinien (5) sind dabei parallel zur langen Seite (8), während die kurzen Schnittlinien (6) senkrecht zu diesen verlaufen. Ein Randbereich (14) des Dünnschichtheizkörpers (1) ist über eine umlaufende Trennlinie (15) vom Heizfeld (10) abgetrennt, wobei die umlaufende Trennlinie (15) gleichzeitig als abschließende Trennlinie der beiden Schnittmuster (13.1, 13.2) fungiert. FIG. 3 shows a schematic view of the thin-film heater (1) according to the invention with two pyramidal laser cut patterns. The thin-film heating element (1) comprises a first pane (2.1), a laminating film (17) and a second pane (2.2) and a long side (8) and a short side (7). The electrically conductive coating (3) applied to the first pane (2.1) is subdivided by a first pattern (13.1) and a second pattern (13.2) into heating current paths (12.n). The first pattern (13.1) and the second pattern (13.2) are mirror-symmetrical to each other over the longer center line (16). On a short side (7) of the thin-film electrodes (1) is located between the two patterns (13.1, 13.2), a common negative terminal electrode (4.2). Above and below the cutting patterns (13.1, 13.2), a first positive connection electrode (4.1) and a second positive connection electrode (4.3) are likewise arranged on the short side (7) of the thin-layer heating element (1). The two cutting patterns (13.1, 13.2) comprise long cutting lines (5) and short cutting lines (6), which are analogous to those in FIG FIG. 1 placed patterns are placed. All long cut lines (5) are parallel to the long side (8), while the short cut lines (6) perpendicular to this. An edge region (14) of the thin-film heating element (1) is separated from the heating field (10) by a peripheral parting line (15), the peripheral parting line (15) simultaneously functioning as the final parting line of the two cutting patterns (13.1, 13.2).

Figur 4 zeigt einen schematischen Querschnitt des erfindungsgemäßen Dünnschichtheizkörpers (1). Auf eine erste Scheibe (2.1) ist eine leitfähige Beschichtung (3) flächig aufgebracht. In direktem Kontakt zur leitfähigen Beschichtung (3) sind mindestens zwei Anschlusselektroden (4.1, 4.2) angebracht. Die Anschlusselektroden (4.1, 4.2) sind über elektrische Anschlüsse (18) mit der Stromquelle verbunden. Auf die leitfähigen Beschichtung (3) ist eine Laminierfolie (17) aufgelegt. Die Anordnung wird durch eine zweite Scheibe (2.2) abgedeckt. FIG. 4 shows a schematic cross section of the thin-film heater (1) according to the invention. On a first disc (2.1), a conductive coating (3) is applied flat. In direct contact with the conductive coating (3) at least two connection electrodes (4.1, 4.2) are mounted. The connection electrodes (4.1, 4.2) are connected to the power source via electrical connections (18). On the conductive coating (3) a laminating film (17) is placed. The arrangement is covered by a second disc (2.2).

Figur 5 zeigt ein Fließschema des Verfahrens zur Herstellung des erfindungsgemäßen Dünnschichtheizkörpers (1). In einem ersten Schritt wird eine leitfähige Beschichtung (3) auf eine erste Scheibe (2.1) aufgebracht. Daraufhin wird mittels Lasern ein pyramidenförmiges Schnittmuster (13) in die leitfähige Beschichtung (3) eingebracht, wobei die langen Schnittlinien (5) kammartig miteinander verzahnt werden. An der kurzen Seite (7) der ersten Scheibe (2.1) werden zwei oder mehrere Anschlusselektroden (4.1, 4.2, 4.3) durch Einbrennen einer elektrisch leitfähigen Metallpaste so aufgebracht, dass die Anschlusselektroden (4.1, 4.2, 4.3) die leitfähige Beschichtung (3) kontaktieren. Auf die erste Scheibe (2.1) wird eine Laminierfolie (17) und auf die Laminierfolie (17) eine zweite Scheibe (2.2) aufgelegt. Die Laminierfolie (17) wird dabei auf die Seite der ersten Scheibe (2.1) aufgelegt, die die leitfähige Beschichtung (3) und die Anschlusselektroden (4.1, 4.2, 4.3) trägt. Die Anordnung aus erster Scheibe (2.1) mit leitfähiger Beschichtung (3) und Anschlusselektroden (4.1, 4.2, 4.3), Laminierfolie (17) und zweiter Scheibe (2.2) wird im Autoklaven laminiert. FIG. 5 shows a flow chart of the method for producing the thin-film heater (1) according to the invention. In a first step, a conductive coating (3) is applied to a first pane (2.1). Then, by means of lasers, a pyramid-shaped cutting pattern (13) is introduced into the conductive coating (3), wherein the long cutting lines (5) are meshed with one another like a comb. On the short side (7) of the first pane (2.1), two or more connection electrodes (4.1, 4.2, 4.3) are applied by burning in an electrically conductive metal paste such that the connection electrodes (4.1, 4.2, 4.3) cover the conductive coating (3). to contact. On the first disc (2.1) a laminating film (17) and on the laminating film (17) a second disc (2.2) is placed. The laminating film (17) is placed on the side of the first disk (2.1) which carries the conductive coating (3) and the connection electrodes (4.1, 4.2, 4.3). The arrangement of first pane (2.1) with conductive coating (3) and connection electrodes (4.1, 4.2, 4.3), laminating film (17) and second pane (2.2) is laminated in an autoclave.

Figur 6 zeigt die schematische Darstellung zweier Thermographien eines nach dem Stand der Technik bekannten Dünnschichtheizkörpers. Die Thermographien zeigen einen Temperaturabfall vom inneren Bereich des Dünnschichtheizkörpers hin zum äußeren Rand. Im inneren Bereich sind mehrere teils ausgedehnte Hot Spots (I) erkennbar. Diese sogenannten Hot Spots (I) sind Bereiche mit deutlich erhöhter Temperatur im Vergleich zur Durchschnittstemperatur. Angrenzend zu den Hot Spots folgt ein Bereich mittlerer Temperatur (II) mit relativ homogener Temperaturverteilung. Der Rand des Heizkörpers ist ebenfalls als kälterer Bereich (III) erkennbar, in dem die Temperatur unterhalb der Durchschnittstemperatur liegt. Einige solcher kälteren Bereiche (III) sind auch im Inneren des Heizkörpers sichtbar. Die mangelnde Homogenität der nach dem Stand der Technik bekannten Dünnschichtheizkörper ist klar erkennbar. FIG. 6 shows the schematic representation of two thermographies of a known in the prior art thin-film heater. The thermographs show a temperature drop from the inner area of the thin-film heater to the outer edge. In the inner area several partly extended Hot Spots (I) are recognizable. These so-called hot spots (I) are areas with a significantly higher temperature compared to the average temperature. Adjacent to the hot spots is a medium temperature zone (II) with a relatively homogeneous temperature distribution. The edge of the radiator is also visible as a colder area (III), in which the temperature is below the average temperature. Some of these colder areas (III) are also visible inside the radiator. The lack of homogeneity of the known in the art thin film heater is clearly visible.

Figur 7 zeigt die schematische Darstellung einer Thermographie des erfindungsgemäßen Dünnschichtheizkörpers. Im Inneren des Dünnschichtheizkörpers zeigen sich einige räumlich sehr begrenzte Hot Spots (I), in denen die Temperatur oberhalb der Durchschnittstemperatur liegt. Im Inneren des Dünnschichtheizkörpers sind ebenfalls einige kältere Bereiche (III) erkennbar. Zum Rand des Heizkörpers hin fällt die Temperatur ab, wobei der erfindungsgemäße Dünnschichtheizkörper erstaunlicherweise nur einen sehr schmalen kälteren Bereich (III) im Randbereich aufweist. FIG. 7 shows the schematic representation of a thermography of the thin-film heater according to the invention. Inside the thin-film radiator are some spatially very limited hot spots (I), in which the temperature is above the average temperature. Inside the thin-film radiator also some colder areas (III) are recognizable. To the edge of the radiator down the temperature drops, the Surprisingly, thin film heater according to the invention has only a very narrow colder region (III) in the edge region.

Der erfindungsgemäße Dünnschichtheizkörper weist, wie ein Vergleich der Thermographien in Figur 6 und Figur 7 zeigt, eine deutlich höhere Homogenität auf als die nach dem Stand der Technik bekannten Modelle.The thin-film heater according to the invention has, as a comparison of the thermographies in FIG. 6 and FIG. 7 shows a much higher homogeneity than the known prior art models.

Im Folgenden wird die Erfindung anhand der Thermographien des erfindungsgemäßen Dünnschichtheizkörpers und eines Dünnschichtheizkörpers nach dem Stand der Technik, der maximalen Leistungen und der Produktionszeiten beider Dünnschichtheizkörper näher erläutert.The invention will be explained in more detail below with reference to the thermographs of the thin-film heating element according to the invention and of a thin-layer heating element according to the prior art, the maximum powers and the production times of both thin-layer heating elements.

In zwei Versuchsreihen wurden die maximale Leistung, die Produktionszeit und die Homogenität des erfindungsgemäßen Dünnschichtheizkörpers mit einem Dünnschichtheizkörper nach dem Stand der Technik verglichen. In beiden Versuchsreihen wurde ein Dünnschichtheizkörper umfassend eine erste Scheibe (2.1) mit leitfähiger Beschichtung (3), eine Laminierfolie (17) und eine zweite Scheibe (2.2) eingesetzt. Die beiden längeren Seitenkanten des Dünnschichtheizkörpers (1) wurden als lange Seiten (8) und die beiden kurzen Seitenkanten als kurze Seiten (7) definiert. Als erste Scheibe (2.1) und zweite Scheibe (2.2) wurde Floatglas mit einer Dicke von jeweils 6 mm eingesetzt. Als Laminierfolie wurde eine PVB-Folie mit einer Dicke von 0,38 mm verwendet. Die leitfähige Beschichtung (3) wurde mittels Magnetron-Sputtering auf die erste Scheibe (2.1) aufgetragen. Die Anschlusselektroden (4.1, 4.2) wurden durch Auftragen und Einbrennen einer Silberpaste erzeugt. Die Strukturierung der leitfähigen Beschichtung (3) erfolgte mittels Laserbehandlung. Auf die erste Scheibe (2.1) mit bearbeiteter leitfähiger Beschichtung (3) und Anschlusselektroden (4.1, 4.2) wurde eine Laminierfolie (17) aufgelegt und die Laminierfolie (17) mit einer zweiten Scheibe (2.2) abgedeckt. Diese Anordnung wurde 2,5 Stunden lang bei 80 °C bis 135 °C und 7 bar bis 13 bar laminiert. Die Homogenität der Dünnschichtheizkörper wurde untersucht indem die in den Thermographien sichtbaren kälteren Randbereiche in verschiedenen Heizkörperabschnitten abgemessen und in Relation zur Gesamtbreite des Heizkörpers gesetzt wurden. Die entsprechenden Messungen wurden in den Längenabschnitten ⅛, ¼, ½, und ¾ bezogen auf die Gesamtlänge der langen Seite (8) und beginnend bei der unteren kurzen Seite (7) des Dünnschichtheizkörpers durchgeführt. Die für den Dünnschichtheizkörper nach dem Stand der Technik angegebenen Werte entsprechen den Durchschnittswerten der beiden in Figur 6 schematisch dargestellten Thermographien.In two test series, the maximum power, the production time and the homogeneity of the thin-film heater according to the invention were compared with a thin-film heater according to the prior art. In both test series, a thin-film heating element comprising a first pane (2.1) with a conductive coating (3), a laminating film (17) and a second pane (2.2) was used. The two longer side edges of the thin-film heating element (1) were defined as long sides (8) and the two short side edges as short sides (7). Float glass with a thickness of 6 mm was used as the first pane (2.1) and the second pane (2.2). The laminating film used was a PVB film having a thickness of 0.38 mm. The conductive coating (3) was applied by means of magnetron sputtering on the first disc (2.1). The connection electrodes (4.1, 4.2) were produced by applying and burning in a silver paste. The structuring of the conductive coating (3) took place by means of laser treatment. On the first disc (2.1) with processed conductive coating (3) and terminal electrodes (4.1, 4.2), a laminating film (17) was placed and the laminating film (17) covered with a second disc (2.2). This arrangement was laminated for 2.5 hours at 80 ° C to 135 ° C and 7 bar to 13 bar. The homogeneity of the thin-film radiators was investigated by measuring the colder edge areas visible in the thermographs in different radiator sections and placing them in relation to the total width of the radiator. The corresponding measurements were carried out in the lengths ⅛, ¼, ½, and ¾ based on the total length of the long side (8) and starting at the lower short side (7) of the thin-film heater. The values given for the thin-film radiator according to the prior art correspond to the average values of the two in FIG. 6 schematically illustrated thermographies.

Die Dünnschichtheizkörper wurden mit einer Stromversorgung verbunden und nach Erreichen einer konstanten Temperatur (ca. 20 Minuten) bei maximaler Leistung wurde mit einer Infrarotbildkamera eine Thermographie (schematische Darstellungen in Figur 6 und 7) der Dünnschichtheizkörper aufgenommen. Um eine hinreichende Detailtreue der Infrarotbilder zu gewährleisten erfolgten die Aufnahmen in mehreren Abschnitten. Die einzelnen Bilder wurden danach zu einer Gesamtaufnahme zusammengesetzt.The thin film heaters were connected to a power supply and after reaching a constant temperature (about 20 minutes) at maximum power was using an infrared camera a thermography (schematic representations in FIG. 6 and 7 ) of the thin-film heaters. To ensure a sufficient detail of the infrared images, the images were taken in several sections. The individual pictures were then combined to form a complete picture.

a) Beispiel 1: Maximale Leistung, Produktionszeit und Homogenität des erfindungsgemäßen Dünnschichtheizkörpersa) Example 1: Maximum power, production time and homogeneity of the thin-film heater according to the invention

Der erfindungsgemäße Dünnschichtheizkörper (1) mit einer Größe von 400 mm x 1800 mm verfügt über zwei längliche Anschlusselektroden (4.1, 4.2) an der kurzen Seite (7) des Dünnschichtheizkörpers (1). In der leitfähigen Beschichtung (3) des Dünnschichtheizkörpers (1) ist ein pyramidenförmiges Schnittmuster (13) eingebracht, dessen lange Schnittlinien (5) kammartig miteinander verzahnt sind. Zur Aufnahme der Thermographie (Figur 6) wurden die an den Anschlusselektroden (4.1, 4.2) befindlichen elektrischen Anschlüsse (18) mit einer Stromversorgung verbunden. Dabei wurde eine Spannung von 230 V an das Heizfeld (10) angelegt.The thin-film heating element (1) according to the invention with a size of 400 mm × 1800 mm has two elongate connection electrodes (4.1, 4.2) on the short side (7) of the thin-layer heating element (1). In the conductive coating (3) of the thin-film heating element (1), a pyramid-shaped cutting pattern (13) is introduced whose long cutting lines (5) are meshed with each other like a comb. For recording the thermography ( FIG. 6 ), the electrical connections (18) located at the connection electrodes (4.1, 4.2) were connected to a power supply. A voltage of 230 V was applied to the heating field (10).

b) Vergleichsbeispiel 2: Maximale Leistung, Produktionszeit und Homogenität eines Dünnschichtheizkörpers nach dem Stand der Technikb) Comparative Example 2: Maximum performance, production time and homogeneity of a thin film heater according to the prior art

Der nach dem Stand der Technik bekannte Dünnschichtheizkörper vom Modell Thermovit Elegance (Saint-Gobain Glass Solutions) mit einer Größe von 400 mm x 1800 mm verfügt über zwei kleine rundliche Anschlusselektroden. Die von einer Anschlusselektrode zur anderen verlaufenden Schnittlinien erstrecken sich labyrinthförmig über die gesamte leitfähige Beschichtung analog zu den im Stand der Technik beschriebenen Schnittmustern (beispielsweise DE 102 59 110 B3 und WO 2012/066112 ). Zur Aufnahme der Thermographie wurden die elektrischen Anschlüsse mit einer Stromquelle verbunden und eine Spannung von 230 V angelegt.The Thermovit Elegance (Saint-Gobain Glass Solutions) thin-film heater, which is known in the art, has a size of 400mm x 1800mm and has two small round terminal electrodes. The cut lines extending from one connection electrode to the other extend in a labyrinth-like manner over the entire conductive coating analogously to the sectional patterns described in the prior art (for example DE 102 59 110 B3 and WO 2012/066112 ). To record the thermography, the electrical connections were connected to a power source and a voltage of 230 V applied.

Tabelle 1 zeigt die maximalen Leistungen des erfindungsgemäßen Dünnschichtheizkörpers und eines nach dem Stand der Technik bekannten Dünnschichtheizkörpers sowie die im Laserprozess erzielte Ersparnis der Produktionszeit im Vergleich. Tabelle 1 max. Leistung Zeitersparnis Laserprozess Beispiel 1 720 W 50 % Vergleichsbeispiel 2 540 W =̂ 0 % Table 1 shows the maximum performance of the thin-film heater according to the invention and of a thin-film heater known from the prior art and the savings in production time achieved in the laser process in comparison. <b> Table 1 </ b> Max. power Time saving laser process example 1 720W 50% Comparative Example 2 540 W = 0%

Tabelle 2 zeigt die prozentualen Anteile kalter Randbereiche am Gesamtquerschnitt in verschiedenen Längenabschnitten der Dünnschichtheizkörper. Tabelle 2 prozentualer Anteil kalter Randbereiche Längenabschnitt Beispiel 1 Vergleichsbeispiel 2 9,6 % 34,3 % ¼ 9,6 % 24,8 % ½ 9,3 % 24,4 % ¾ 9,6 % 22,6 % Table 2 shows the percentages of cold edge areas on the total cross-section in different lengths of the thin-film heaters. <b> Table 2 </ b> Percentage of cold edge areas longitudinal section example 1 Comparative Example 2 9.6% 34.3% ¼ 9.6% 24.8% ½ 9.3% 24.4% ¾ 9.6% 22.6%

Bei der Herstellung des erfindungsgemäßen Dünnschichtheizkörpers kann der für den Laserprozess benötigte Zeitaufwand im Vergleich zu einem Dünnschichtheizkörper nach dem Stand der Technik halbiert werden (s. Tabelle 1). Die Gesamtlänge aller Laserschnitte ist beim erfindungsgemäßen Dünnschichtheizkörper um ca. 50 % geringer als bisher nach dem Stand der Technik üblich. Die Verringerung der Laserschnitte führt somit auch zu einer entsprechenden Zeitersparnis. Da der Laserprozess der langsamste Schritt einer Serie von Produktionsschritten ist wird der gesamte Herstellungsprozess dadurch enorm beschleunigt. Der Zeitaufwand dieses Schrittes ist ebenfalls entscheidend für die Kosten des Produktionsprozesses, da die Bearbeitung mittels Laser langwierig und somit teuer ist. Eine Beschleunigung dieses Schrittes ermöglicht demnach eine erhebliche Kostenersparnis. Neben diesen wirtschaftlichen Vorteilen bietet der erfindungsgemäße Dünnschichtheizkörper auch eine wesentlich höhere Heizleistung (siehe Tabelle 1). Das pyramidenförmige Schnittmuster mit kammartig verzahnten langen Schnittlinien ist besonders für schmale hohe Heizkörper geeignet. Bei derartigen Formen liefern die nach dem Stand der Technik bekannten Dünnschichtheizkörper nur eine unzureichende Heizleistung, da der außen laufende Heizstrompfad einen zu hohen Widerstand aufweist. Somit werden nicht alle Heizstrompfade gleichmäßig von Strom durchflossen und die maximale Leistung wird reduziert. Aus diesem Grund treten Inhomogenitäten in der Heizleistung auf, wie in den Thermographien (schematische Darstellungen siehe Figur 6 und Figur 7) eindeutig erkennbar. Die Thermographien zeigen einen Temperaturabfall vom inneren Bereich zum äußeren Rand des Dünnschichtheizkörpers. Im inneren Bereich des Heizkörpers zeigen sich bei beiden Dünnschichtheizkörpern sogenannte Hot Spots (I), die jedoch bei dem nach dem Stand der Technik bekannten Dünnschichtheizkörper eine größere Ausdehnung aufweisen. Auf die Hot Spots (I) im Inneren des Heizkörpers folgt ein Bereich mittlerer Temperatur (II) mit relativ homogener Temperaturverteilung. Im Randbereich der Heizkörper ist in allen Thermographien ein kälterer Bereich (III) erkennbar. Ein Vergleich der Thermographien des erfindungsgemäßen Dünnschichtheizkörpers und des Dünnschichtheizkörpers nach dem Stand der Technik lässt bereits auf den ersten Blick die wesentlich höhere Homogenität des erfindungsgemäßen Dünnschichtheizkörpers erkennen. Eine genauere Auswertung des Anteils der kalten Randbereiche am Gesamtquerschnitt bestätigt dies eindeutig (Tabelle 2). Der erfindungsgemäße Dünnschichtheizkörper weist über die gesamte Länge des Heizkörpers einen sehr kleinen gleichbleibenden Randanteil von unter 10 % auf. Der Dünnschichtheizkörper nach dem Stand der Technik verfügt besonders im unteren Bereich (Längenabschnitt ⅛, Tabelle 2) über einen sehr hohen Randanteil von ca. 34 % der zwar nach oben hin abnimmt, jedoch nicht unter 20 % sinkt. Die Problematik der mangelnden Homogenität tritt besonders bei langen schmalen Heizkörpern auf, da der außen laufende Heizstrompfad bei Dünnschichtheizkörpern nach dem Stand der Technik einen zu hohen Widerstand aufweist. Trotz dieser besonders schmalen hohen Form des erfindungsgemäßen Dünnschichtheizkörpers kann erstaunlicherweise eine außergewöhnlich hohe Homogenität erreicht werden.In the production of the thin-film heating element according to the invention, the time required for the laser process can be halved in comparison with a thin-film heating element according to the prior art (see Table 1). The total length of all laser cuts in the thin-film heater according to the invention by about 50% less than usual in the prior art. The reduction of the laser cuts thus also leads to a corresponding time savings. As the laser process is the slowest step in a series of production steps, the entire manufacturing process is enormously accelerated. The time required for this step is also crucial for the cost of the production process, since the laser machining is lengthy and therefore expensive. An acceleration of this step thus allows a significant cost savings. In addition to these economic advantages, the thin-film heater according to the invention also offers a significantly higher heating power (see Table 1). The pyramid-shaped pattern with comb-toothed long cut lines is particularly suitable for narrow high radiators. In such forms, the thin-film heaters known from the prior art only provide insufficient heating power, since the heating current path running on the outside has too high a resistance. Thus, not all heating current paths are equally flowed through by electricity and the maximum power is reduced. For this reason, inhomogeneities occur in the heating power, as in the thermographs (see schematic diagrams FIG. 6 and FIG. 7 ) clearly recognizable. The thermographs show a temperature drop from the inner area to the outer edge of the thin-film heater. In the inner region of the radiator, so-called hot spots (I) appear in both thin-layer radiators, which, however, have a greater extent in the thin-layer radiator known from the prior art. The hot spots (I) inside the radiator are followed by an area of medium temperature (II) with a relatively homogeneous temperature distribution. In the edge area of the radiator a colder area (III) can be seen in all thermographies. A comparison of the thermographs of the thin-film heater according to the invention and the thin-film heater according to the prior art reveals the substantially higher homogeneity of the thin-film heater according to the invention even at first glance. A more precise evaluation of the proportion of cold edge areas on the total cross-section clearly confirms this (Table 2). The thin-film radiator according to the invention has over the entire length of the radiator a very small constant edge portion of less than 10%. The thin-film heater according to the prior art has especially in the lower area (Length ⅛, Table 2) over a very high margin of about 34% which decreases towards the top, but does not fall below 20%. The problem of lack of homogeneity occurs especially in long narrow radiators, since the outboard Heizstrompfad has thin film heaters according to the prior art, too high a resistance. Despite this particularly narrow high shape of the thin-film heater according to the invention, surprisingly, an exceptionally high homogeneity can be achieved.

Die Tatsache, dass ein neuartiges Schnittmuster trotz einer Reduzierung der Laserschnitte eine homogenere Heizleistung sowie eine höhere maximale Leistung liefert war für den Fachmann überraschend und unerwartet. Die enorme Reduzierung der Laserschnitte des erfindungsgemäßen Dünnschichtheizkörpers ist im Hinblick auf eine Kostensenkung des Produktionsprozesses von entscheidendem Vorteil.The fact that a novel cutting pattern, despite a reduction of the laser cuts, provides a more homogeneous heat output and a higher maximum output was surprising and unexpected to the person skilled in the art. The enormous reduction of the laser cuts of the thin-film heater according to the invention is of decisive advantage with regard to a cost reduction of the production process.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Dünnschichtheizkörperthin film heater
22
Scheibenslices
2.12.1
erste Scheibefirst disc
2.22.2
zweite Scheibesecond disc
33
leitfähige Beschichtungconductive coating
44
Anschlusselektrodenterminal electrodes
4.14.1
erste positive Anschlusselektrodefirst positive connection electrode
4.24.2
negative Anschlusselektrodenegative connection electrode
4.34.3
zweite positive Anschlusselektrodesecond positive connection electrode
55
lange Schnittlinienlong cutting lines
5.15.1
äußere lange Schnittlinienouter long cut lines
5.1a5.1a
erste äußere lange Schnittliniefirst outer long cut line
5.1b5.1b
zweite äußere lange Schnittliniesecond outer long cutting line
5.25.2
innere lange Schnittlinieninner long cut lines
5.2a5.2a
erste innere lange Schnittliniefirst inner long cut line
66
kurze Schnittlinienshort cutting lines
6.16.1
erste kurze Schnittliniefirst short cutting line
77
kurze Seiteshort page
88th
lange Seitelong page
99
abschließende Schnittliniefinal cut line
1010
Heizfeldheating field
1111
Abschnittesections
11.111.1
erster Abschnittfirst section
11.211.2
mittlere Abschnittemiddle sections
11.2a11.2a
zweiter Abschnittsecond part
11.2b11.2b
dritter Abschnittthird section
11.2c11.2c
vierter Abschnittfourth section
12.n12.n
HeizstrompfadeHeizstrompfade
12.112.1
erster Heizstrompfadfirst heating current path
12.212.2
mittlere Heizstrompfademedium heating current paths
12.312.3
letzter Heizstrompfadlast heating current path
1313
Schnittmusterpatterns
13.113.1
erstes Schnittmusterfirst pattern
13.213.2
zweites Schnittmustersecond pattern
1414
Randbereichborder area
1515
umlaufende Trennliniecircumferential dividing line
1616
längere Mittellinielonger centerline
1717
Laminierfolielaminating
1818
elektrische Anschlüsseelectrical connections
1919
letzter Abschnittlast section
II
Hot Spotshot spots
IIII
Bereiche mittlerer TemperaturAreas of medium temperature
IIIIII
kältere Bereichecolder areas

Claims (16)

  1. Thin layer heating element (1) comprising at least a laminated pane consisting of a first pane (2.1), a laminating film (17), a second pane (2.2), two long sides (8), two short sides (7), a laminar electrically conductive coating (3) applied at least on the inside of the first pane (2.1), at least two connection electrodes (4.1, 4.2, 4.3) on the short side (7) of the thin layer heating element (1) for contacting the conductive coating (3), at least one electrical connection (18), and at least one cut pattern (13) having heat current pathways (12. n), which connect the connection electrodes (4.1, 4.2, 4.3), wherein
    a) the cut pattern (13) has long cut lines (5.1, 5.2), including outer long cut lines (5.1) and inner long cut lines (5.2), which run parallel to the long side (8) of the thin layer heating element (1), and short cut lines (6), which run parallel to the short side (7) of the thin layer heating element (1), ,
    b) on the conductive coating (3), there is a heating field (10), which is divided by the short cut lines (6) into a plurality of sections (11.n), where n is an integer > 1,
    c) the number of long cut lines (5.1, 5.2) per section (11.n) increases in the section (11.n+1) compared to the section (11.n) and the length of the long cut lines (5.1, 5.2) decreases in the section (11.n+1),
    d) from each short cut line (6) of the section (11.n), a plurality of outer long cut lines (5.1) branch out, which end before the short cut line (6) of the section (11.n+1) or a final cut line (9),
    e) in all intermediate spaces between two outer long cut lines (5.1) in the section (11.n), in each case at least one inner long cut line (5.2) runs and strikes the cut line (6) of the section (1 I.n+1) or the final cut line (9), and
    f) in the first section (11.1), a first outer long cut line (5.1 a) and a second outer long cut line (5.1 b) begin in each case on the inner edge of the connection electrodes (4.1, 4.2) and end before a first short cut line (6.1)
    such that the conductive coating (3) has a pyramid-shaped cut pattern (13) from the connection electrodes (4.1, 4.2) all the way to the final cut line (9), whose long cut lines (5) are meshed with each other in a comb-like manner.
  2. Thin layer heating element according to claim 1, wherein the number of the long cut lines (5.1, 5.2) per section (II.n) increases in the section (11.n+1) compared to the section (11.n) by two long cut lines (II.n) and the length of the long cut lines (5.1, 5.2) is halved in the section (11.n+1).
  3. Thin layer heating element according to claim 1 or 2, wherein the conductive coating (3) is applied on the first pane (2.1) and the second pane (2.2).
  4. Thin layer heating element (1) according to one of claims 1 through 3, wherein an edge region (14) is separated from and is electrically isolated from the heating field (10) by a surrounding separation line (15).
  5. Thin layer heating element (1) according to one of claims 1 through 4, wherein the length of the short cut lines (6) increases with the increasing distance of the associated section (11) from the connection electrodes (4.1, 4.2).
  6. Thin layer heating element (1) according to one of claims 1 through 5, wherein the cut pattern (13) is mirror symmetrical over its longer center line (16).
  7. Thin layer heating element (1) according to one of claims 1 through 6, wherein a plurality of cut patterns (13) is applied on at least one of the two panes (2) such that the long cut lines (5) of the two cut patterns (13) are parallel to each other and to the long side (8) of the thin layer heating element (1) and the arrangement is mirror symmetrical over the longer center line (16) of the thin layer heating element (1).
  8. Thin layer heating element (1) according to claim 7, wherein adjacent cut patterns (13) have a common connection electrode (4.1, 4.2, 4.3) of the same polarity.
  9. Thin layer heating element (1) according to one of claims 1 through 8, wherein the final cut line (9) coincides with the surrounding separation line (15).
  10. Thin layer heating element (1) according to one of claims 1 through 9, wherein the resistance and the path length of the heating current paths (12.n) between connection electrodes (4.1, 4.2, 4.3) with opposite polarity are the same in all sections (11).
  11. Thin layer heating element (1) according to one of claims 1 through 10, wherein the conductive coating (3) contains silver, gold, copper, indium, tin, zinc, indium tin oxide, and/or mixtures and/or oxides and/or alloys thereof, preferably silver.
  12. Thin layer heating element (1) according to one of claims 1 through 11, wherein the cut pattern (13) is generated by removal of the conductive coating by means of lasering, etching, and/or ablation, preferably lasering.
  13. Thin layer heating element (1) according to one of claims 1 through 12, wherein the connection electrodes (4.1, 4.2, 4.3) have an elongated shape and are arranged parallel to the short side (7) of the thin layer heating element (1).
  14. Thin layer heating element (1) according to one of claims 1 through 13, wherein the connection electrodes (4.1, 4.2, 4.3) are produced before or after deposition of the conductive coating (3) by application and baking of an electrically conductive metal paste onto the same pane surface as the conductive coating (3).
  15. Method for producing a thin layer heating element (1) according to claims 1 through 14, wherein
    m) a cut pattern (13) is introduced into the conductive coating (3) by lasering,
    n) two or more connection electrodes (4.1, 4.2, 4.3) are applied on one of the short sides (7) of the first pane (2.1) by baking of an electrically conductive metal paste,
    o) a laminating film (17) is placed on the surface of the first pane (2.1) which carries the conductive coating (3) and the connection electrodes (4.1, 4.2, 4.3), and at least one second pane (2.2) is placed on the laminating film (17), and
    p) the arrangement is autoclaved.
  16. Use of a thin layer heating element (1) according to one of claims 1 through 15 as a functional and/or decorative individual item and/or as a built-in component in furniture, appliances, buildings, and vehicles, preferably as a freestanding or wall-mounted heater in living areas, as a heatable façade glazing or as a heatable vehicle window pane, watercraft window pane, or aircraft window pane.
EP13700306.7A 2012-06-01 2013-01-16 Thin film heater with pyramid-shaped laser cutting pattern Not-in-force EP2856842B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13700306.7A EP2856842B1 (en) 2012-06-01 2013-01-16 Thin film heater with pyramid-shaped laser cutting pattern

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12170435 2012-06-01
PCT/EP2013/050694 WO2013178369A1 (en) 2012-06-01 2013-01-16 Thin layer heating element having a pyramid-shaped laser cut pattern
EP13700306.7A EP2856842B1 (en) 2012-06-01 2013-01-16 Thin film heater with pyramid-shaped laser cutting pattern

Publications (2)

Publication Number Publication Date
EP2856842A1 EP2856842A1 (en) 2015-04-08
EP2856842B1 true EP2856842B1 (en) 2016-04-27

Family

ID=47559495

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13700306.7A Not-in-force EP2856842B1 (en) 2012-06-01 2013-01-16 Thin film heater with pyramid-shaped laser cutting pattern

Country Status (3)

Country Link
EP (1) EP2856842B1 (en)
DK (1) DK2856842T3 (en)
WO (1) WO2013178369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016117255B4 (en) 2016-09-14 2023-10-12 imbut GmbH Method for configuring and manufacturing a heating track structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3269546A1 (en) 2016-07-13 2018-01-17 Saint-Gobain Glass France Heated glass

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3644297A1 (en) * 1985-12-26 1987-07-02 Nippon Sheet Glass Co Ltd HEATED GLASS PANEL
EP1514452A1 (en) * 2002-06-05 2005-03-16 Glaverbel Heatable glazing panel
US7132625B2 (en) * 2002-10-03 2006-11-07 Ppg Industries Ohio, Inc. Heatable article having a configured heating member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016117255B4 (en) 2016-09-14 2023-10-12 imbut GmbH Method for configuring and manufacturing a heating track structure

Also Published As

Publication number Publication date
DK2856842T3 (en) 2016-07-25
WO2013178369A1 (en) 2013-12-05
EP2856842A1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
EP2936925B1 (en) Glasspane with electrical heating layer
EP2698039B1 (en) Panel heating element and method for producing same
EP2591638B1 (en) Composite pane having an electrically heatable coating
EP2614680B1 (en) Transparent panel having a heatable coating
EP2569189B1 (en) Transparent pane with heatable coating and process for its manufacture
EP2718098B1 (en) Heatable laminated glazing with safety function
DE60315158T2 (en) ELECTRICALLY HEATABLE DISK
EP3178295B1 (en) Transparent pane with an electrical heating layer, method for its production and its use
EP3178294B1 (en) Transparent pane with an electrical heating layer, method for its production and its use
EP3189706B1 (en) Pane with electric heating area
EP3034295A1 (en) Laminated glazing with corrosion protected functional coating
DE202011110333U1 (en) Residual current safety shutdown for electric vehicles
EP2856842B1 (en) Thin film heater with pyramid-shaped laser cutting pattern
EP2574142A1 (en) Residual current safety cut-off for electric vehicles
EP3189707A1 (en) Transparent panel having heat coating
DE602004003375T2 (en) PLATE ELEMENT FOR STORED WARMING
EP3391706A1 (en) Method for repairing substrates with an electrically conductive coating, and laser cutting pattern
DE68928797T2 (en) Electrically heated pane
DE202014010748U1 (en) Composite disc with corrosion-protected functional coating
DE9412666U1 (en) Glass pane for refrigerated counters
WO2022258402A1 (en) Pane having patterned functional coating
DE764267C (en) Process for the production of electrical resistance layers arranged in a band shape
EP4385286A1 (en) Heatable vehicle glazing
EP4103922A1 (en) Vehicle pane with integrated temperature sensor
EP2748620B1 (en) Assemblies, method and sheets for determining the contact resistance of electrically conductive layers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHREIBER, WALTER

Inventor name: VELDEN, SABINE

Inventor name: PHAN, DANG, CUONG

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160129

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PHAN, DANG CUONG

Inventor name: VELDEN, SABINE

Inventor name: SCHREIBER, WALTER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 795998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013002773

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160715

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160829

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160728

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013002773

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 795998

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20191217

Year of fee payment: 8

Ref country code: FR

Payment date: 20191216

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20200110

Year of fee payment: 8

Ref country code: IT

Payment date: 20200114

Year of fee payment: 8

Ref country code: DE

Payment date: 20191231

Year of fee payment: 8

Ref country code: GB

Payment date: 20200113

Year of fee payment: 8

Ref country code: SE

Payment date: 20200110

Year of fee payment: 8

Ref country code: NO

Payment date: 20200108

Year of fee payment: 8

Ref country code: NL

Payment date: 20200130

Year of fee payment: 8

Ref country code: FI

Payment date: 20200109

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200109

Year of fee payment: 8

Ref country code: CH

Payment date: 20200116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013002773

Country of ref document: DE

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210131

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210116

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210803

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210116

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131