EP2831298B1 - Composite material - Google Patents
Composite material Download PDFInfo
- Publication number
- EP2831298B1 EP2831298B1 EP13715919.0A EP13715919A EP2831298B1 EP 2831298 B1 EP2831298 B1 EP 2831298B1 EP 13715919 A EP13715919 A EP 13715919A EP 2831298 B1 EP2831298 B1 EP 2831298B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- contact material
- oxide
- contact
- magnesium
- magnesium stannate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/12—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0016—Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/021—Composite material
- H01H1/023—Composite material having a noble metal as the basic material
- H01H1/0237—Composite material having a noble metal as the basic material and containing oxides
- H01H1/02372—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
- H01H1/02376—Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component SnO2
Definitions
- silver / metal and silver / metal oxide composites have proven themselves.
- the silver / metal composite most commonly used is silver / nickel, which has its main application at lower currents.
- the AgSnO 2 WO 3 / MoO 3 material is produced by powder metallurgy using the extrusion technique.
- the powder metallurgical production has the advantage that additives of any kind and quantity can be used.
- the material can be specifically optimized for certain properties, such as welding force or heating.
- the combination of powder metallurgy with the extrusion technology allows a particularly high efficiency in the production of the contact pieces.
- An internally oxidized AgSnO 2 / In 2 O 3 material is also used. This material, described in DE-OS 24 28 147 , contains 5-10% SnO 2 and 1-6% In 2 O 3 .
- a targeted change in the concentrations of the oxide additives to influence certain switching properties is often not always possible due to the oxidation kinetics.
- a contact material which contains 1.6 to 6.5 Bi 2 O 3 and 0.1 to 7.5 SnO 2 in addition to silver.
- This material can be produced both by internal oxidation and powder metallurgy.
- Such high Bi 2 O 3 contents lead to embrittlement, so that the material can be produced only by individual sintering, but not by the more economical extrusion technology.
- From the US 4,680,162 is an internally oxidized AgSnO 2 material is known, which may contain at tin contents of more than 4.5% additions of 0.1-5 indium and 0.01-5 bismuth.
- the metal alloy powder is compacted and then internally oxidized. These additives inhibit the inhomogeneous oxide precipitations customary in internal oxidation. Optimal contact properties shows this Material not.
- the powder metallurgical production of contact materials based on silver-tin oxide by mixing the powder, cold isostatic pressing, sintering and extrusion to semi-finished is, for example, from DE 43 19 137 and DE 43 31 526 known.
- JP 50-19352 B1 shows a composite electrical contact material consisting of silver, cadmium oxide, magnesium oxide containing 0.1 to 0.3 wt .-% magnesium and tin oxide containing 2-4Gew .-% metallic tin, wherein a portion of magnesium and tin in the form of Mg 2 SnO 4 is present.
- This object is achieved by a metal composite containing at least one metal and 5% to 60% by weight magnesium stannate, wherein the metal is silver or a silver alloy.
- Magnesium stannate, Mg 2 SnO 4 is a compound known from the literature, the preparation of which is described, for example, in US Pat Materials in Electronics, 16 (2005), pages 193 to 196 .
- the present patent application also relates to the use of a contact material containing at least one metal and magnesium stannate, wherein the metal is silver or a silver alloy, for the production of electrical contact pieces, as well as electrical contacts comprising such a contact material as further described.
- the metal used is silver or silver alloys.
- Silver alone also has excellent properties for many applications.
- Cadmium on the other hand, is not included and may be present in the maximum range of unavoidable impurities.
- at least 60% of the further oxide that is, for example, the tin oxide, particle sizes of 1 .mu.m or more, which is particularly advantageous in forming processes such as by extrusion.
- the further oxide can also be used particle sizes of 20 nm to 2 microns or 50 nm to less than 2000 nm, in particular 100 nm to 1800 nm or 200 nm to 900 nm. In this case, advantageously 60% of the further oxide particle sizes of 100 nm to 900 nm.
- the contact material can be obtained by a manufacturing method selected from powder metallurgy production, internal oxidation or combinations thereof.
- magnesium stannate Mg 2 SnO 4 or a magnesium stannate precursor compound and optionally other oxides cold isostatic pressing the powder mixture, and sintering at temperatures of about 500 ° C to about 940 ° C and optionally forming the sintered material, such as by extrusion to wires or profiles, the contact material obtained.
- Magnesiumstannat precursor compound of Magnesiumstannat various compounds can be used, which decompose under the process conditions in magnesium stannate and optionally further decomposition products.
- the further decomposition products must either be volatile in the process conditions or be substances whose presence does not disturb the properties of the product obtained, ideally substances whose presence is desired, such as the metal used or another oxide selected from the group consisting of magnesium oxide, copper oxide, Bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide or their combinations, their mixed oxides or combinations thereof.
- Suitable compounds are, for example, alkoxides of tin and magnesium, such as hexakis [ ⁇ - (2-methyl-2-propanolato)] bis [(2-methyl-2-propanolato) tin] di-magnesium, CAS no. 139731-82-1.
- the further oxide can also be used particle sizes of 20 nm to 2 microns or 50 nm to less than 2000 nm, in particular 100 nm to 1800 nm or 200 nm to 900 nm. In this case, advantageously 60% of the further oxide particle sizes of 100 nm to 900 nm.
- the contact material can be obtained by a manufacturing method selected from powder metallurgy production, internal oxidation or combinations thereof.
- magnesium stannate Mg 2 SnO 4 or a magnesium stannate precursor compound and optionally other oxides cold isostatic pressing the powder mixture, and sintering at temperatures of about 500 ° C to about 940 ° C and optionally forming the sintered material, such as by extrusion to wires or profiles, the contact material obtained.
- Magnesiumstannat precursor compound of Magnesiumstannat various compounds can be used, which decompose under the process conditions in magnesium stannate and optionally further decomposition products.
- the further decomposition products must either be volatile in the process conditions or be substances whose presence does not disturb the properties of the product obtained, ideally substances whose presence is desired, such as the metal used or another oxide selected from the group consisting of magnesium oxide, copper oxide, Bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide or their combinations, their mixed oxides or combinations thereof.
- Suitable compounds are, for example, alkoxides of tin and magnesium, such as, for example, hexakis [ ⁇ - (2-methyl-2-propanolato)] bis [(2-methyl-2-propanolato) tin] di-magnesium, CAS no. 139731-82-1.
- too fine magnesium stannate or else other oxides can be coarsened by a heat treatment in which, for example, annealed at temperatures of about 700 ° C to about 1400 ° C until more than 60 wt.% Of magnesium stannate or other oxides have a particle size of more than 1 micron.
- magnesium stannate (Mg 2 SnO 4 ) powders having smaller particle sizes may also be used, in which case additives such as sintering activators are advantageous, for example copper oxide CuO, nanoscale silver powder or other nanomaterials.
- magnesium stannate can be used in which 60 wt.% Even before mixing with the metal powder have a particle size of at least 1 micron, but also magnesium stannate (Mg 2 SnO 4 ), in which 60% of magnesium stannate particle sizes of 50 nm to less than 1000 nm, in particular 60% of the magnesium stannate has particle sizes of 100 nm to 900 nm.
- Mg 2 SnO 4 magnesium stannate
- an alloy of silver with base metals is made pyrometallurgically and often heat-treated in pure oxygen under overpressure to form a contact material.
- Such methods are known from the literature and described for example in EP 1505164 and EP 0508055 ,
- a metal powder may be used which is e.g. contains further oxides which have been produced by internal oxidation, such as, for example, silver containing tin oxide.
- the further processing then proceeds by powder metallurgy, that is to say by adding magnesium stannate and / or further oxides and / or metal powder, subsequent pressing, sintering and, if appropriate, shaping, such as, for example, Extrusion.
- the contact material contains in particular silver and magnesium stannate and moreover only conventional impurities.
- the contact material magnesium stannate in an amount of 0.2 to 20 wt .-% and ad 100 wt .-% silver and conventional impurities.
- the contact material comprises magnesium stannate which has at least 60% of a particle size of 1 ⁇ m or more, in an amount of 0.2 to 20% by weight and ad 100% by weight of silver and conventional impurities.
- the crushed powder mixture is calcined at 1400 ° C for 20 hours in air and then ground to a particle size (d50) of 2 microns (Fritsch Pulverisette 5, 2 mm ZrO 2 spheres, dry isopropanol).
- d50 particle size of 2 microns
- the resulting product was found to consist of 95.6% dimagnesium stannate (Mg 2 SnO 4 ) and 4.4% cassiterite (SnO 2 ).
- FIG. 2 shows for both contact materials, which have an oxide content of 17.07 per cent by volume, the burnup in mg per switching operation.
- the lower column shows the change at the fixed contact, the upper column at the moving contact. It can be seen that the magnesium stannate (Mg 2 SnO 4 ) and silver based contact material exhibits improved burn-off properties.
- FIG. 3 shows the contact resistances in mOhms for both contact materials, which are given as mean values (in each case right column) and as 99% values. It can be seen that the averages are comparable but the 99% values are significantly lower for the magnesium stannate (Mg 2 SnO 4 ) and silver-based contact material and thus significantly improved over the silver-tin oxide material.
- Mg 2 SnO 4 magnesium stannate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Contacts (AREA)
- Powder Metallurgy (AREA)
Description
Für die Herstellung von elektrischen Kontakten in Niederspannungsschaltgeräten haben sich Silber/Metall- und Silber/Metalloxid-Verbundwerkstoffe bewährt. Als Silber/Metall-Verbundwerkstoff wird am häufigsten Silber/Nickel eingesetzt, dessen Hauptanwendungsgebiet bei niedrigeren Strömen liegt.For the production of electrical contacts in low-voltage switchgear, silver / metal and silver / metal oxide composites have proven themselves. The silver / metal composite most commonly used is silver / nickel, which has its main application at lower currents.
Bestimmte Zusätze, wie WO3 oder MoO3, haben sich bei Schaltgeräten, die hohen thermischen Belastungen standhalten müssen, bewährt. Besonders gut bewährte sich AgSnO2 mit diesen Zusätzen in Schaltgeräten mit Nennströmen von mehr als 100 A und unter sogenannter AC4-Belastung. Bei geringeren Schaltströmen ist allerdings die Lebensdauer dieser Werkstoffe relativ kurz.Certain additives, such as WO 3 or MoO 3 , have been proven in switching devices that have to withstand high thermal loads. AgSnO 2 proved to be particularly suitable with these accessories in switchgear with rated currents of more than 100 A and under so-called AC4 load. At lower switching currents, however, the life of these materials is relatively short.
Der AgSnO2WO3/MoO3-Werkstoff wird pulvermetallurgisch über die Strangpresstechnik hergestellt. Die pulvermetallurgische Herstellung hat den Vorteil, dass Zusätze beliebiger Art und Menge verwendet werden können. Damit kann der Werkstoff gezielt auf bestimmte Eigenschaften hin, wie z.B. Verschweisskraft oder Erwärmung, optimiert werden. Zudem erlaubt die Kombination von Pulvermetallurgie mit der Strangpresstechnik eine besonders hohe Wirtschaftlichkeit bei der Herstellung der Kontaktstücke. Ein innerlich oxidierter AgSnO2/In2O3-Werkstoff findet ebenfalls Verwendung. Dieser Werkstoff, beschrieben in
In der
In der Veröffentlichung "
In der
Die pulvermetallurgische Herstellung von Kontaktwerkstoffen auf Silber-Zinnoxid-Basis durch Mischen der Pulver, kaltisostatischem Pressen, Sintern und Strangpressen zu Halbzeug ist beispielsweise aus der
Aus der
Durch ansteigende Anforderungen an die Kontaktwerkstoffe genügen die bekannten Materialien den Anforderungen nicht immer oder für alle Anwendungen.Due to increasing demands on the contact materials, the known materials do not always meet the requirements or for all applications.
- 1. Elektrischer, cadmiumfreier Kontaktwerkstoff bestehend aus einem Metall und 5 Gew.-% bis 60 Gew.-% Magnesiumstannat Mg2SnO4, wobei optional zusätzlich wobei zusätzlich Oxide aus der Gruppe bestehend aus Magnesiumoxid, Kupferoxid, Wismutoxid, Telluroxid, Zinnoxid, indiumoxid, Wolframoxid, Molybdänoxid, deren Mischoxide oder deren Kombinationen in Mengen von 0,5 Gew.-% bis 30 Gew.-% enthalten sind und wobei das Metall Silber oder eine Silberlegierung ist.1. Electric, cadmium-free contact material consisting of a metal and 5 wt .-% to 60 wt .-% magnesium stannate Mg 2 SnO 4 , optionally optionally additionally wherein additionally oxides consisting of the group of magnesium oxide, copper oxide, bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide, their mixed oxides or combinations thereof are contained in amounts of 0.5 wt .-% to 30 wt .-% and wherein the metal is silver or a silver alloy.
- 2. Kontaktwerkstoff nach Punkt 1, wobei 0,2 bis 60 Vol.-% Magnesiumstannat enthalten sind.2. contact material according to item 1, wherein 0.2 to 60 vol .-% magnesium stannate are included.
- 3. Kontaktwerkstoff nach Punkt 1 bis 2, wobei mindestens 60 Gew.-% des im Kontaktwerkstoff vorhandenen Magnesiumstannats eine Teilchengröße von 1 µm oder mehr aufweist.3. Contact material according to item 1 to 2, wherein at least 60 wt .-% of the magnesium stannate present in the contact material has a particle size of 1 micron or more.
- 4. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 3, wobei das im Kontaktwerkstoff vorhandene Magnesiumstannat ganz oder teilweise eine Teilchengröße von 20 nm bis 1 µm aufweist.4. Contact material according to one or more of the items 1 to 3, wherein the magnesium stannate present in the contact material wholly or partially has a particle size of 20 nm to 1 micron.
- 5. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 4, wobei das im Kontaktwerkstoff vorhandene Magnesiumstannat ganz oder teilweise eine Teilchengröße von 100 nm bis 900 nm aufweist.5. Contact material according to one or more of the items 1 to 4, wherein the magnesium stannate present in the contact material wholly or partially has a particle size of 100 nm to 900 nm.
- 6. Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 5, erhältlich durch pulvermetallurgischer Herstellung.6. Contact material according to one or more of items 1 to 5, obtainable by powder metallurgy production.
- 7. Verwendung eines Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 11 zur Herstellung von elektrischen Kontaktstücken.7. Use of a contact material according to one or more of the items 1 to 11 for the production of electrical contact pieces.
- 8. Elektrischer Kontakt enthaltend einen Kontaktwerkstoff nach einem oder mehreren der Punkte 1 bis 11.8. An electrical contact containing a contact material according to one or more of the items 1 to 11.
- 9. Bewegliches Schaltstück eines Schaltgerätes oder elektrisches Schaltgerät, enthaltend einen elektrischen Kontakt nach Punkt 14.9. Moving contact piece of a switching device or electrical switching device, containing an electrical contact according to item 14.
- 10. Verfahren zur Herstellung eines Kontaktwerkstoffes aus dem Metall und Magnesiumstannat Mg2SnO4 durch Vermischen von pulverförmigem Magnesiumstannat Mg2SnO4 oder einer Magnesiumstannat-Vorläuferverbindung mit dem mindestens einem Metallpulver und gegebenenfalls den weiteren Oxiden, Pressen der Mischung um einen Preßling zu erhalten und Sintern des Preßlings um einen Sinterling zu erhalten.10. A process for producing a contact material from the metal and magnesium stannate Mg 2 SnO 4 by mixing powdered magnesium stannate Mg 2 SnO 4 or a magnesium stannate precursor compound with the at least one metal powder and optionally the further oxides, pressing the mixture to obtain a compact and sintering the compact around a sintered compact.
-
11. Verfahren nach Punkt 10, wobei der erhaltene Sinterling in einem weiteren Verfahrensschritt umgeformt, insbesondere stranggepreßt, wird,11. The method according to
item 10, wherein the resulting sintered compact is shaped, in particular extruded, in a further process step, -
12. Verfahren nach Punkt 10, wobei der Sinterling ein Kontaktstück ist.12. The method of
item 10, wherein the sintered compact is a contact piece. -
13. Verfahren nach Punkt 10, wobei der Sinterling zusätzlich Kupferoxid enthält.13. The method of
item 10, wherein the sintered article additionally contains copper oxide. -
14. Kontaktwerkstoff, erhältlich nach einem Verfahren der Punkte 10 oder 11.14. Contact material obtainable by a method of
items 10 or 11.
Es war die Aufgabe, einen neuen Metall-Verbundwerkstoff bereit zu stellen, der beim Einsatz als Kontaktmaterial in elektrischen Schaltgeräten gegenüber verbreiteten silberbasierten Silber-Zinnoxid Verbundwerkstoffen ein verbessertes Abbrandverhalten und einen niedrigeren Kontaktwiderstand zeigt. Diese Aufgabe wird gelöst durch einen Metall-Verbundwerkstoff, welcher mindestens ein Metall und 5 Gew.-% bis 60 Gew.-% Magnesiumstannat enthält, wobei das Metall Silber oder eine Silberlegierung ist. Magnesiumstannat, Mg2SnO4, ist eine literaturbekannte Verbindung, deren Herstellung beispielsweise beschrieben ist in
In einer Ausführungsform kann das weitere Oxid auch Teilchengrößen von 20 nm bis 2 µm oder 50 nm bis kleiner 2000 nm, insbesondere 100 nm bis 1800 nm oder 200 nm bis 900 nm verwendet werden. In diesem Fall weisen vorteilhaft 60 % des weiteren Oxids Teilchengrößen von 100 nm bis 900 nm auf.In one embodiment, the further oxide can also be used particle sizes of 20 nm to 2 microns or 50 nm to less than 2000 nm, in particular 100 nm to 1800 nm or 200 nm to 900 nm. In this case, advantageously 60% of the further oxide particle sizes of 100 nm to 900 nm.
Der Kontaktwerkstoff kann durch eine Herstellungsweise ausgewählt aus pulvermetallurgischer Herstellung, innerer Oxidation oder deren Kombinationen erhalten werden.The contact material can be obtained by a manufacturing method selected from powder metallurgy production, internal oxidation or combinations thereof.
Bei pulvermetallurgischer Herstellung des Werkstoffs wird durch Mischen eines Pulvers aus dem Metall oder einer Legierung mit Magnesiumstannat Mg2SnO4 oder einer Magnesiumstannat-Vorläuferverbindung und gegebenenfalls weiteren Oxiden, kaltisostatischem Pressen des Pulvergemischs, und Sintern bei Temperaturen von etwa 500°C bis etwa 940°C und gegebenenfalls Umformen des gesinterten Materials, etwa durch Strangpressen zu Drähten oder Profilen, der Kontaktwerkstoff erhalten. Als Magnesiumstannat-Vorläuferverbindung können von Magnesiumstannat verschiedene Verbnindungen eingesetzt werden, welche unter den Verfahrensbedingungen in Magnesiumstannat und gegebenenfalls weiteren Zersetzungsprodukten zerfallen. Die weiteren Zersetzungsprodukte müssen entweder bei den Verfahrensbedingungen flüchtig sein oder Stoffe sein, deren Anwesenheit die Eigenschaften des erhaltenen Produktes nicht stören, idealerweise Stoffe, deren Anwesenheit erwünscht ist, wie das verwendete Metall oder ein weiteres Oxid, aus der Gruppe bestehend aus Magnesiumoxid, Kupferoxid, Wismutoxid, Telluroxid, Zinnoxid, Indiumoxid, Wolframoxid, Molybdänoxid oder deren Kombinationen, deren Mischoxide oder Kombinationen daraus. Geeignete Verbindungen sind beispielsweise Alkoholate des Zinns und Magnesiums, wie beispielsweise Hexakis[µ-(2-methyl-2-propanolato)]bis[(2-methyl-2-propanolato)Zinn]di-Magnesium, CAS-Nr. 139731-82-1.In the powder metallurgy production of the material by mixing a powder of the metal or an alloy with magnesium stannate Mg 2 SnO 4 or a magnesium stannate precursor compound and optionally other oxides, cold isostatic pressing the powder mixture, and sintering at temperatures of about 500 ° C to about 940 ° C and optionally forming the sintered material, such as by extrusion to wires or profiles, the contact material obtained. As Magnesiumstannat precursor compound of Magnesiumstannat various compounds can be used, which decompose under the process conditions in magnesium stannate and optionally further decomposition products. The further decomposition products must either be volatile in the process conditions or be substances whose presence does not disturb the properties of the product obtained, ideally substances whose presence is desired, such as the metal used or another oxide selected from the group consisting of magnesium oxide, copper oxide, Bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide or their combinations, their mixed oxides or combinations thereof. Suitable compounds are, for example, alkoxides of tin and magnesium, such as hexakis [μ- (2-methyl-2-propanolato)] bis [(2-methyl-2-propanolato) tin] di-magnesium, CAS no. 139731-82-1.
Es ist sinnvoll, wenn das verwendete Magnesiumstannat bzw. die Magnesiumstannat-Vorläuferverbindung und/oder weitere Oxide bereits vor dem Vermischen mit dem Pulver aus dem Metall oder einer Legierung, wie z.B. Silberpulver, die gewünschte Teilchengröße bzw. Teilchengrößenverteilung aufweist, oder zu mehr als 60 Gew.% bereits vor dem Vermischen mit dem Pulver aus dem Metall oder einer Legierung, wie In einer Ausführungsform weisen mindestens 60% des weiteren Oxids, also z.B. des Zinnoxids, Teilchengrößen von 1 µm oder mehr auf, was insbesondere bei umformender Weiterverarbeitung wie beispielsweise durch Strangpressen vorteilhaft ist.It is useful if the magnesium stannate used or the magnesium stannate precursor compound and / or other oxides already before mixing with the powder of the metal or an alloy such as silver powder, the desired particle size or particle size distribution, or more than 60 % By weight already before mixing with the powder of the metal or an alloy, such as In one embodiment, at least 60% of the further oxide, that is, for example, the tin oxide, particle sizes of 1 .mu.m or more, which is particularly advantageous in forming processes such as by extrusion.
In einer Ausführungsform kann das weitere Oxid auch Teilchengrößen von 20 nm bis 2 µm oder 50 nm bis kleiner 2000 nm, insbesondere 100 nm bis 1800 nm oder 200 nm bis 900 nm verwendet werden. In diesem Fall weisen vorteilhaft 60 % des weiteren Oxids Teilchengrößen von 100 nm bis 900 nm auf.In one embodiment, the further oxide can also be used particle sizes of 20 nm to 2 microns or 50 nm to less than 2000 nm, in particular 100 nm to 1800 nm or 200 nm to 900 nm. In this case, advantageously 60% of the further oxide particle sizes of 100 nm to 900 nm.
Der Kontaktwerkstoff kann durch eine Herstellungsweise ausgewählt aus pulvermetallurgischer Herstellung, innerer Oxidation oder deren Kombinationen erhalten werden.The contact material can be obtained by a manufacturing method selected from powder metallurgy production, internal oxidation or combinations thereof.
Bei pulvermetallurgischer Herstellung des Werkstoffs wird durch Mischen eines Pulvers aus dem Metall oder einer Legierung mit Magnesiumstannat Mg2SnO4 oder einer Magnesiumstannat-Vorläuferverbindung und gegebenenfalls weiteren Oxiden, kaltisostatischem Pressen des Pulvergemischs, und Sintern bei Temperaturen von etwa 500°C bis etwa 940°C und gegebenenfalls Umformen des gesinterten Materials, etwa durch Strangpressen zu Drähten oder Profilen, der Kontaktwerkstoff erhalten. Als Magnesiumstannat-Vorläuferverbindung können von Magnesiumstannat verschiedene Verbnindungen eingesetzt werden, welche unter den Verfahrensbedingungen in Magnesiumstannat und gegebenenfalls weiteren Zersetzungsprodukten zerfallen. Die weiteren Zersetzungsprodukte müssen entweder bei den Verfahrensbedingungen flüchtig sein oder Stoffe sein, deren Anwesenheit die Eigenschaften des erhaltenen Produktes nicht stören, idealerweise Stoffe, deren Anwesenheit erwünscht ist, wie das verwendete Metall oder ein weiteres Oxid, aus der Gruppe bestehend aus Magnesiumoxid, Kupferoxid, Wismutoxid, Telluroxid, Zinnoxid, Indiumoxid, Wolframoxid, Molybdänoxid oder deren Kombinationen, deren Mischoxide oder Kombinationen daraus. Geeignete Vernindungen sind beispielsweise Alkoholate des Zinns und Magnesiums, wie beispielsweise Hexakis[µ-(2-methyl-2-propanolato)]bis[(2-methyl-2-propanolato)Zinn]di-Magnesium, CAS-Nr. 139731-82-1.In the powder metallurgy production of the material by mixing a powder of the metal or an alloy with magnesium stannate Mg 2 SnO 4 or a magnesium stannate precursor compound and optionally other oxides, cold isostatic pressing the powder mixture, and sintering at temperatures of about 500 ° C to about 940 ° C and optionally forming the sintered material, such as by extrusion to wires or profiles, the contact material obtained. As Magnesiumstannat precursor compound of Magnesiumstannat various compounds can be used, which decompose under the process conditions in magnesium stannate and optionally further decomposition products. The further decomposition products must either be volatile in the process conditions or be substances whose presence does not disturb the properties of the product obtained, ideally substances whose presence is desired, such as the metal used or another oxide selected from the group consisting of magnesium oxide, copper oxide, Bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide or their combinations, their mixed oxides or combinations thereof. Suitable compounds are, for example, alkoxides of tin and magnesium, such as, for example, hexakis [μ- (2-methyl-2-propanolato)] bis [(2-methyl-2-propanolato) tin] di-magnesium, CAS no. 139731-82-1.
Es ist sinnvoll, wenn das verwendete Magnesiumstannat bzw. die Magnesiumstannat-Vorläuferverbindung und/oder weitere Oxide bereits vor dem Vermischen mit dem Pulver aus dem Metall oder einer Legierung, wie z.B. Silberpulver, die gewünschte Teilchengröße bzw. Teilchengrößenverteilung aufweist, oder zu mehr als 60 Gew.% bereits vor dem Vermischen mit dem Pulver aus dem Metall oder einer Legierung, wie z.B. Silberpulver, eine Teilchengrösse von mehr als 1 µm aufweisen. Hierbei kann zu feines Magnesiumstannat oder auch andere Oxide durch eine Wärmebehandlung vergröbert werden in dem z.B. bei Temperaturen von etwa 700°C bis etwa 1400°C geglüht wird, bis mehr als 60 Gew.% des Magnesiumstannats bzw. der weiteren Oxide eine Teilchengrösse von mehr als 1 µm aufweisen. Die Verwendung dieser vergröberten Oxidpulver liefert nach dem Sintern der Presslinge einen Werkstoff, der duktiler ist als Werkstoffe mit geringeren Oxidteilchengrössen und kann daher leichter verformt werden, was bei weiterer umformender Behandlung vorteilhaft sein kann, wie zum Beispiel Strangpressen. Beim Einzelsintern von Kontakten können wie oben beschrieben auch Magnesiumstannat (Mg2SnO4) Pulver mit kleineren Teilchengrößen verwendet werden, wobei in diesem Fall Additive, wie Sinteraktivatoren vorteilhaft sind, zum Beispiel Kupferoxid CuO, nanoskaliges Silberpulver oder andere Nanomaterialien. In diesem Fall kann natürlich auch Magnesiumstannat verwendet werden, bei welchem 60 Gew.% bereits vor dem Vermischen mit dem Metallpulver eine Teilchengrösse von mindestens 1 µm aufweisen, aber auch Magnesiumstannat (Mg2SnO4), bei welchem 60 % des Magnesiumstannats Teilchengrößen von 50 nm bis weniger als 1000 nm, insbesondere 60 % des Magnesiumstannats Teilchengrößen von 100 nm bis 900 nm aufweist.It is useful if the magnesium stannate used or the magnesium stannate precursor compound and / or other oxides already before mixing with the powder of the metal or an alloy such as silver powder, the desired particle size or particle size distribution, or more than 60 % By weight already before mixing with the powder of the metal or an alloy, such as For example, silver powder, have a particle size of more than 1 micron. In this case, too fine magnesium stannate or else other oxides can be coarsened by a heat treatment in which, for example, annealed at temperatures of about 700 ° C to about 1400 ° C until more than 60 wt.% Of magnesium stannate or other oxides have a particle size of more than 1 micron. The use of these coarsened oxide powders, after sintering the compacts, provides a material which is more ductile than materials having smaller oxide particle sizes and therefore can be more easily deformed, which may be advantageous in further forming treatment, such as extrusion. In individual sintering of contacts, as described above, magnesium stannate (Mg 2 SnO 4 ) powders having smaller particle sizes may also be used, in which case additives such as sintering activators are advantageous, for example copper oxide CuO, nanoscale silver powder or other nanomaterials. In this case, of course, magnesium stannate can be used in which 60 wt.% Even before mixing with the metal powder have a particle size of at least 1 micron, but also magnesium stannate (Mg 2 SnO 4 ), in which 60% of magnesium stannate particle sizes of 50 nm to less than 1000 nm, in particular 60% of the magnesium stannate has particle sizes of 100 nm to 900 nm.
Bei der Herstellung durch innere Oxidation wird beispielsweise eine Legierung aus Silber mit unedlen Metallen pyrometallurgisch hergestellt und oft in reinem Sauerstoff unter Überdruck wärmebehandelt, so daß ein Kontaktwerkstoff entsteht. Derartige Verfahren sind literaturbekannt und beispielsweise beschrieben in
Bei der Herstellung durch innere Oxidation in Kombination mit pulvermetallurgischer Herstellung kann beispielsweise als Pulvers aus dem Metall oder einer Legierung ein Metallpulver eingesetzt werden, welches z.B. weitere Oxide enthält, welche durch innere Oxidation erzeugt wurden, wie zum Beispiel Silber mit einem Gehalt an Zinnoxid. Die weitere Verarbeitung verläuft dann pulvermetallurgisch, also durch Zufügen von Magnesiumstannat und/oder weiteren Oxiden und/oder Metallpulver, anschließendem Pressen, Sintern und gegebenenfalls Umformwn, wie z.B. Strangpressen.In the production by internal oxidation in combination with powder metallurgy production, for example, as a powder of the metal or an alloy, a metal powder may be used which is e.g. contains further oxides which have been produced by internal oxidation, such as, for example, silver containing tin oxide. The further processing then proceeds by powder metallurgy, that is to say by adding magnesium stannate and / or further oxides and / or metal powder, subsequent pressing, sintering and, if appropriate, shaping, such as, for example, Extrusion.
In einer Ausführungsform enthält der Kontaktwerkstoff insbesondere Silber und Magnesiumstannat und darüber hinaus lediglich übliche Verunreinigungen. In einer Ausführungsform enthält der Kontaktwerkstoff Magnesiumstannat in einer Menge von 0,2 bis 20 Gew.-% und ad 100 Gew.-% Silber sowie übliche Verunreinigungen.In one embodiment, the contact material contains in particular silver and magnesium stannate and moreover only conventional impurities. In a Embodiment contains the contact material magnesium stannate in an amount of 0.2 to 20 wt .-% and ad 100 wt .-% silver and conventional impurities.
In einer weiteren Ausführungsform der Erfindung enthält der Kontaktwerkstoff Magnesiumstannat, welches zu mindestens 60% eine Teilchengröße von 1 µm oder mehr aufweist, in einer Menge von 0,2 bis 20 Gew.-% und ad 100 Gew.-% Silber sowie übliche Verunreinigungen.In a further embodiment of the invention, the contact material comprises magnesium stannate which has at least 60% of a particle size of 1 μm or more, in an amount of 0.2 to 20% by weight and ad 100% by weight of silver and conventional impurities.
13,03 g SnO2 und 6,97 g MgO wurden eingewogen und 2 x 5 Minuten bei 250 U/min nass vermahlen (Fritsch Pulverisette 5, 2 mm ZrO2-Kugeln, trockenes Isopropanol). Das Pulvergemisch wird im Trockenschrank (Temperatur) getrocknet und anschließend mit einem Mörser zerkleinert.13.03 g SnO 2 and 6.97 g MgO were weighed in and wet-ground for 2 × 5 minutes at 250 rpm (
Die zerkleinerte Pulvermischung wird bei 1400°C 20 Stunden an Luft kalziniert und anschließend bis zu einer Partikelgröße (d50) von 2 µm gemahlen (Fritsch Pulverisette 5, 2 mm ZrO2-Kugeln, trockenes Isopropanol). Durch Röntgenbeugung am Reaktionsprodukt und Rietveld-Verfeinerung wurde festgestellt, daß das entstandene Produkt zu 95,6 % aus Dimagnesiumstannat (Mg2SnO4) und zu 4,4 % aus Cassiterite (SnO2) besteht.The crushed powder mixture is calcined at 1400 ° C for 20 hours in air and then ground to a particle size (d50) of 2 microns (
914,4 g Silberpulver (Umicore, verdüstes Silberpulver, auf <42 µm abgesiebt) werden mit 17,07 Volumenprozent Mg2SnO4-Pulver (85,6 g) in einem Mischaggregat (MTI-Mischer 8 Min., 1000 U/min) gemischt. Die Pulvermischung wird in eine plastische zylinderförmige Form gefüllt und bei einem Druck von 800 bar kaltisostatisch zu einem Bolzen gepresst. Dieser Bolzen wird 2 h bei 820 °C gesintert und anschließend stranggepresst.914.4 g of silver powder (Umicore, atomized silver powder, sieved to <42 microns) with 17.07 volume percent Mg 2 SnO 4 powder (85.6 g) in a mixing unit (MTI mixer 8 min., 1000 U / min ) mixed. The powder mixture is filled into a plastic cylindrical shape and cold isostatically pressed into a bolt at a pressure of 800 bar. This stud is sintered for 2 h at 820 ° C and then extruded.
880 g Silberpulver (gleiches Silberpulver wie in Beispiel 1) werden mit 120 g entsprechend 17,07 Vol.% SnO2-Pulver in einem Mischaggregat (MTI-Mischer, 8 Min., 1000 U/min) gemischt. Die Pulvermischung wird in eine plastische zylinderförmige Form gefüllt und bei einem Druck von 800 bar kaltisostatisch zu einem Bolzen gepresst. Dieser Bolzen wird 2 h bei 820 °C gesintert und anschließend stranggepresst.880 g of silver powder (same silver powder as in Example 1) are mixed with 120 g corresponding to 17.07% by volume SnO 2 powder in a mixing unit (MTI mixer, 8 min., 1000 U / min). The powder mixture is filled into a plastic cylindrical shape and cold isostatically pressed into a bolt at a pressure of 800 bar. This stud is sintered for 2 h at 820 ° C and then extruded.
Es wurden mit Proben beider Kontaktwerkstoffe Zugversuche gemäß EN ISO 6892-1 durchgeführt und die Bruchdehnung bei beiden Kontaktwerkstoffen zu 27% bestimmt.Tensile tests according to EN ISO 6892-1 were carried out with samples of both contact materials and the elongation at break for both contact materials was determined to be 27%.
Aus den hergestellten Kontaktwerkstoffen werden nach dem Strangpressen Kontaktstücke gefertigt (5 mm Draht, Halbzeug, wird aufgelötet und abgedreht, dann geschaltet) und mit diesen Kontaktstücken Schaltversuche in einem Ausschalter mit 500 Schaltungen, einer Stromstärke von 350 A und Blasfeld: 30 mT/kA durchgeführt. Die Ergebnisse sind in
Claims (14)
- Electrical, cadmium-free contact material consisting of a metal and 5% by weight to 60% by weight of magnesium stannate Mg2SnO4 and optionally additionally oxides from the group consisting of magnesium oxide, copper oxide, bismuth oxide, tellurium oxide, tin oxide, indium oxide, tungsten oxide, molybdenum oxide, mixed oxides thereof or combinations thereof in amounts of 0.5% by weight to 30% by weight, wherein the metal is silver or a silver alloy.
- Contact material according to Claim 1, wherein 0.2 to 60 percent by volume of magnesium stannate is present.
- Contact material according to either of Claims 1 and 2, wherein at least 60% by weight of the magnesium stannate present in the contact material has a particle size of 1 µm or more.
- Contact material according to one or more of Claims 1 to 3, wherein all or some of the magnesium stannate present in the contact material has a particle size of 20 nm to 1 µm.
- Contact material according to one or more of Claims 1 to 4, wherein 60% of the magnesium stannate in the contact material has a particle size of 100 nm to 900 nm.
- Contact material according to one or more of Claims 1 to 5, obtainable by powder metallurgy production.
- Use of a contact material according to one or more of Claims 1 to 5 for production of electrical contact parts.
- Electrical contact comprising a contact material according to one or more of Claims 1 to 5.
- Moving switch part of a switch device or electrical switch device, comprising an electrical contact according to Claim 8.
- Process for producing a contact material from the metal and magnesium stannate Mg2SnO4 according to one or more of Claims 1 to 5 by mixing pulverulent magnesium stannate Mg2SnO4 or a magnesium stannate precursor compound with the metal powder and optionally the further oxides, pressing the mixture in order to obtain a compact and sintering the compact to obtain a sintered body.
- Process according to Claim 10, wherein the sintered body obtained is formed, especially extruded, in a further process step.
- Process according to Claim 10, wherein the sintered body is a contact part.
- Process according to Claim 10, wherein the sintered body additionally comprises copper oxide.
- Contact material obtainable by a process according to either of Claims 10 and 11.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13715919.0A EP2831298B1 (en) | 2012-03-26 | 2013-03-26 | Composite material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12161247.7A EP2644723B1 (en) | 2012-03-26 | 2012-03-26 | Composite material |
EP13715919.0A EP2831298B1 (en) | 2012-03-26 | 2013-03-26 | Composite material |
PCT/EP2013/056345 WO2013144112A1 (en) | 2012-03-26 | 2013-03-26 | Contact material |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2831298A1 EP2831298A1 (en) | 2015-02-04 |
EP2831298B1 true EP2831298B1 (en) | 2019-05-08 |
Family
ID=48092916
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12161247.7A Not-in-force EP2644723B1 (en) | 2012-03-26 | 2012-03-26 | Composite material |
EP13715919.0A Active EP2831298B1 (en) | 2012-03-26 | 2013-03-26 | Composite material |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12161247.7A Not-in-force EP2644723B1 (en) | 2012-03-26 | 2012-03-26 | Composite material |
Country Status (4)
Country | Link |
---|---|
US (1) | US9928931B2 (en) |
EP (2) | EP2644723B1 (en) |
CN (1) | CN104245976B (en) |
WO (1) | WO2013144112A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103613118B (en) * | 2013-11-15 | 2015-08-19 | 广东光华科技股份有限公司 | A kind of preparation method of high-purity magnesium stannate powder |
CN103681015B (en) * | 2013-11-28 | 2015-12-02 | 昆明理工大学 | A kind of complex-phase metallic oxide strengthens the preparation method of Ag-based electrical contact material |
CN103710556B (en) * | 2013-12-27 | 2015-08-05 | 桂林电器科学研究院有限公司 | A kind of powqder rolling process prepares the technique of sliver oxidized tin contactor materials |
US10699851B2 (en) * | 2016-06-22 | 2020-06-30 | Teledyne Scientific & Imaging, Llc | Sintered electrical contact materials |
US10290434B2 (en) | 2016-09-23 | 2019-05-14 | Honeywell International Inc. | Silver metal oxide alloy and method of making |
CN115537594B (en) * | 2022-10-28 | 2023-04-25 | 台州慧模科技有限公司 | Silver-based electrical contact material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5019352B1 (en) * | 1970-12-28 | 1975-07-05 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3811910A (en) * | 1972-05-17 | 1974-05-21 | Ford Motor Co | Two-step method of making a color picture tube |
JPS5526697B2 (en) * | 1973-07-05 | 1980-07-15 | ||
US3933485A (en) | 1973-07-20 | 1976-01-20 | Chugai Denki Kogyo Kabushiki-Kaisha | Electrical contact material |
US4141727A (en) | 1976-12-03 | 1979-02-27 | Matsushita Electric Industrial Co., Ltd. | Electrical contact material and method of making the same |
DE2952128C2 (en) | 1979-12-22 | 1984-10-11 | Degussa Ag, 6000 Frankfurt | Process for the pretreatment of the powder for sintered and extruded semifinished products made of silver-tin oxide for electrical contacts |
US4647477A (en) * | 1984-12-07 | 1987-03-03 | Kollmorgen Technologies Corporation | Surface preparation of ceramic substrates for metallization |
US4680162A (en) | 1984-12-11 | 1987-07-14 | Chugai Denki Kogyo K.K. | Method for preparing Ag-SnO system alloy electrical contact material |
US4695330A (en) | 1985-08-30 | 1987-09-22 | Chugai Denki Kogyo K.K. | Method of manufacturing internal oxidized Ag-SnO system alloy contact materials |
JPH01312046A (en) * | 1988-06-13 | 1989-12-15 | Chugai Electric Ind Co Ltd | Silver-oxide electrical contact material |
JPH04311543A (en) * | 1991-04-09 | 1992-11-04 | Chugai Electric Ind Co Ltd | Ag-sno-ino electrical contact material and production thereof |
DE69219397T2 (en) | 1991-04-12 | 1997-11-06 | Mitsubishi Materials Corp., Tokio/Tokyo | Silver-based metal oxide material for electrical contacts |
WO1993026021A1 (en) * | 1992-06-10 | 1993-12-23 | Doduco Gmbh + Co. | Material for electrical contacts based on silver-tin oxide or silver-zinc oxide |
DE4319137A1 (en) | 1992-06-10 | 1993-12-16 | Duerrwaechter E Dr Doduco | Material for electrical contacts consisting of silver@ or silver@-alloy matrix - incorporate tin oxide and other oxide(s) and carbide(s), has longer service life but is less brittle than other materials |
JP3441074B2 (en) | 1992-09-16 | 2003-08-25 | ドドウコ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コンパニー・ドクトル・オイゲン・デュルベヒテル | Member for electrical contact based on silver-tin oxide or silver-zinc oxide and method for producing the same |
DE19607183C1 (en) | 1996-02-27 | 1997-04-10 | Degussa | Sintered silver@-iron@ alloy for making electrical contacts |
CN1082235C (en) * | 1999-05-10 | 2002-04-03 | 昆明理工大学 | Synthesis method for preparing silver-tin dioxide electric contact materials |
DE602004020844D1 (en) | 2003-08-08 | 2009-06-10 | Mitsubishi Materials C M I Corp | A method of making an electrical contact of high electrical conductivity for an electromagnetic relay and electrical contact therewith |
DE102009059690A1 (en) * | 2009-12-19 | 2011-06-22 | Umicore AG & Co. KG, 63457 | oxidation process |
DE102010014745B4 (en) * | 2010-01-15 | 2011-09-22 | Tyco Electronics Amp Gmbh | Electric contact element and method for producing an electrical contact element |
-
2012
- 2012-03-26 EP EP12161247.7A patent/EP2644723B1/en not_active Not-in-force
-
2013
- 2013-03-26 WO PCT/EP2013/056345 patent/WO2013144112A1/en active Application Filing
- 2013-03-26 CN CN201380015121.7A patent/CN104245976B/en not_active Expired - Fee Related
- 2013-03-26 US US14/388,171 patent/US9928931B2/en not_active Expired - Fee Related
- 2013-03-26 EP EP13715919.0A patent/EP2831298B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5019352B1 (en) * | 1970-12-28 | 1975-07-05 |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Section Ch Week 197531, Derwent World Patents Index; Class L03, AN 1975-51740W, XP002703252 * |
SPIEKERMANN P: "LEGIERUNGEN - EIN BESONDERES PATENTRECHTLICHES PROBLEM? - LEGIERUNGSPRUEFUNG IM EUROPAEISCHEN PATENTAMT -", MITTEILUNGEN DER DEUTSCHEN PATENTANWAELTE, HEYMANN, KOLN, DE, 1 January 1993 (1993-01-01), pages 178 - 190, XP000961882, ISSN: 0026-6884 * |
Also Published As
Publication number | Publication date |
---|---|
US20150060741A1 (en) | 2015-03-05 |
EP2644723B1 (en) | 2017-01-18 |
EP2831298A1 (en) | 2015-02-04 |
US9928931B2 (en) | 2018-03-27 |
EP2644723A1 (en) | 2013-10-02 |
CN104245976B (en) | 2017-06-09 |
CN104245976A (en) | 2014-12-24 |
WO2013144112A1 (en) | 2013-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2831298B1 (en) | Composite material | |
DE69032065T2 (en) | Composite of silver and metal oxide and method of manufacturing the same | |
EP2600996A2 (en) | Process for producing a cu-cr material by powder metallurgy | |
EP0440620B1 (en) | Semifinished product for electrical contacts, made of a composite material based on silver and tin oxide, and powder metallurgical process for producing it | |
DE69221398T2 (en) | Process for the production of contact materials for vacuum switches | |
DE2932275A1 (en) | MATERIAL FOR ELECTRICAL CONTACTS MADE OF INNER OXIDIZED AG-SN-BI ALLOY | |
DE3421758A1 (en) | SINTER CONTACT MATERIAL FOR LOW VOLTAGE SWITCHGEAR IN ENERGY TECHNOLOGY AND METHOD FOR THE PRODUCTION THEREOF | |
EP0725154B1 (en) | Sintered material based on silver-tinoxide for electrical contacts and process for its production | |
EP0586410A1 (en) | Silver-based contact material for use in power-engineering switchgear, and a method of manufacturing contacts made of this material. | |
EP0586411B1 (en) | Silver-based contact material for use in power-engineering switchgear, and a method of manufacturing contacts made of this material | |
DE19607183C1 (en) | Sintered silver@-iron@ alloy for making electrical contacts | |
EP0152606A2 (en) | Contact material and production of electric contacts | |
EP0369283B1 (en) | Sintered contact material for low-tension switchgear, particularly for contactors | |
DE3911904A1 (en) | Powder-metallurgical process for producing a semifinished product for electric contacts from a silver-based composite with iron | |
DE69614489T2 (en) | Contact material for vacuum switch and process for its manufacture | |
WO2007020006A1 (en) | Use of indium-tin mixed oxide for silver-based materials | |
EP1043409B1 (en) | Composite material prepared by powder metallurgy | |
DE3421759A1 (en) | SINTER CONTACT MATERIAL FOR LOW VOLTAGE SWITCHGEAR OF ENERGY TECHNOLOGY | |
DE3405218C2 (en) | ||
DE1930859A1 (en) | Powder metal compositions and processes for their preparation | |
EP0916146B1 (en) | Method of producing a product from a silver-based contact material, contact material and product produced therefrom | |
EP0338401A1 (en) | Powder-metallurgical process for the production of a semi-finished product for electrical contacts made from a composite material based on silver and iron | |
DE10012250B4 (en) | Contact materials based on silver-iron-copper | |
EP0311134A1 (en) | Powder-metallurgically produced electrical contact material comprising silver and graphite, and process for producing it | |
EP0876670A2 (en) | Method of producing a shaped part from a silver-based contact material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141027 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170307 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SAXONIA TECHNICAL MATERIALS GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20181031 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1130225 Country of ref document: AT Kind code of ref document: T Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013012791 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190908 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190808 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190808 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190809 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013012791 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
26N | No opposition filed |
Effective date: 20200211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200320 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200331 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200318 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200326 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200326 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1130225 Country of ref document: AT Kind code of ref document: T Effective date: 20200326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200326 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502013012791 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211001 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210326 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190908 |