EP2193597B1 - Multi-channel dc controller operating independently of output power in critical conduction mode - Google Patents
Multi-channel dc controller operating independently of output power in critical conduction mode Download PDFInfo
- Publication number
- EP2193597B1 EP2193597B1 EP08803412A EP08803412A EP2193597B1 EP 2193597 B1 EP2193597 B1 EP 2193597B1 EP 08803412 A EP08803412 A EP 08803412A EP 08803412 A EP08803412 A EP 08803412A EP 2193597 B1 EP2193597 B1 EP 2193597B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- current
- microcontroller
- chopper controller
- channel
- period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 claims description 39
- 230000004913 activation Effects 0.000 claims description 5
- 238000004804 winding Methods 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims 2
- 239000000470 constituent Substances 0.000 claims 1
- 230000002457 bidirectional effect Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 230000007704 transition Effects 0.000 description 11
- 238000011084 recovery Methods 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
- H02M1/15—Arrangements for reducing ripples from dc input or output using active elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1588—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
- H02M3/1586—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the invention relates to a multichannel DC chopper, with multiple parallel current channels, which are controlled by a microcontroller to each other with a time delay, wherein the current channels each have at least two semiconductor switches, by which they can be operated by the microcontroller either as a boost converter or as buck converter.
- the object was to create a DC chopper, which is simple and inexpensive, is as versatile and efficient to use and provides the smoothest possible output current.
- At least one current channel has a device for detecting the current zero crossing that the microcontroller, the period of the current zero crossings in this Current channel detects that the microcontroller operates all current channels at the gap limit due to the detected period time, and that the microcontroller drives the current channels with a time offset, wherein the time offset is given by the detected period time divided by the number of current channels.
- the FIG. 2 shows the basic circuit shown schematically a bidirectional DC adjuster, at whose fundamental. How it works should be explained.
- the DC-DC converter consists essentially of a first and a second voltage source (U1, U2), a storage inductor L1, as well as two semiconductor switches (T1, T2), the may preferably be formed as IGBT (Insulated Gate Bipolar Transistor). Parallel to the load terminals of the semiconductor switches (T1, T2) in each case a freewheeling diode (D1, D2) is connected.
- the semiconductor switches (T1, T2) are connected to the other components in such a way that, in the case of a through-connected first semiconductor switch T1, the connections of the storage inductor L1 are connected to the first voltage source U1 via the first semiconductor switch T1, and the storage inductor L1 is connected to a through-connected second semiconductor switch T2 is connected in series with the second semiconductor switch T2 and the two voltage sources (U1, U2) at the same time.
- the operating principle of such a DC adjuster is that by energizing one of the semiconductor switches (T1 or T2), the storage inductor L1 is energized, which then builds up a magnetic field. The stored energy in this magnetic field causes after turning off the one semiconductor switch (T1 or T2) an induction current (output current i 2 or i 1 ), via the respective other semiconductor switch (T2 or T1) belonging freewheeling diode (D2 or D2). D1) and one of the voltage sources (U2, U1) flows.
- PWM pulse width modulation
- this control device is referred to below as a microcontroller.
- a representation of the microcontroller was omitted in the figures.
- two modes of the DC adjuster are to be distinguished, namely the boost converter operation and the Buck converter operation.
- Step-up converter operation (FIGS. 3 to 5)
- the energy flows from the first voltage source U1 to the second voltage source U2.
- the semiconductor switch T1 is driven with a suitable PWM signal.
- the semiconductor switch T2 is not active in this operating state and therefore de-energized.
- the voltage u 2 of the second voltage source U2 must be greater than the voltage u 1 of the first voltage source U1.
- u T1 stands for the drive voltage of the first semiconductor switch T1 and i T1 , i D2 and i L1 for the currents flowing through the first semiconductor switch T1, the associated diode D1 and the storage inductor L1.
- the current i L1 in the storage inductor L1 is here without zeros.
- the current curve depends on the turn-on time of the semiconductor switch T1, the voltages u 1 and u 2 and the inductance L of the storage inductor L1.
- the operation of the boost converter at the gap boundary which is also referred to as transition mode, shown.
- the advantage of this operating state is that the semiconductor switch T1 still in the de-energized State is turned on again and so the switching losses are minimal.
- the freewheeling diode D1 can be designed as a "normal" fast silicon diode. Silicon carbide diodes are often found in the boost converters of solar inverters because the so-called reverse recovery currents of the diode massively determine the losses in the semiconductor switch T1.
- the storage inductor L1 is optimally utilized, ie there are no periods in which the storage inductor L1 is de-energized and does not transfer energy.
- the respective load condition determines which of the three operating conditions mentioned above will occur.
- buck converter operation flows in the circuit according to the FIG. 2 the energy from the voltage source U2 to U1.
- the semiconductor switch T2 is driven with a suitable pulse width modulated drive voltage u T2 .
- the semiconductor switch T1 is not active and therefore de-energized.
- u 2 In order for the circuit to work, u 2 must also be greater than u 1 here.
- FIG. 2 described circuit described.
- the block diagram of FIG. 9 illustrates the use of a bidirectional actuator.
- the in the FIG. 9 shown solar system is powered by a solar generator 1. This is connected via a unidirectional working boost converter 2 to the DC voltage intermediate circuit 3. The energy of the solar generator 1 can then be fed by an inverter 4 with three output-side phases (P1, P2, P3) in the public grid.
- a solar generator 1 This is connected via a unidirectional working boost converter 2 to the DC voltage intermediate circuit 3.
- the energy of the solar generator 1 can then be fed by an inverter 4 with three output-side phases (P1, P2, P3) in the public grid.
- a storage battery 5 can be charged via the bidirectional DC chopper 6.
- the prerequisite for this is that the voltage u z in the DC voltage intermediate circuit 3 is greater than the voltage u B of the storage battery 5.
- the DC chopper 6 operates as a step-down converter and the energy flow direction is from the DC voltage intermediate circuit 3 to the storage battery 5.
- the storage battery 5 if it was sufficiently charged before, additionally feed energy into the DC link 3
- the bidirectional DC chopper 6 then works as a boost converter, ie also here the voltage u z in the DC voltage intermediate circuit 3 is greater than the Battery voltage u B be.
- the energy flow direction is now from the storage battery 5 to the DC voltage intermediate circuit 3rd
- Control technology usually a subordinate current control circuit is provided for such a DC chopper. This is either in hardware, z. B. realized with a control IC or with the aid of a microcontroller. In photovoltaic inverters, almost exclusively digitally controlled systems are used, so that the actual current value must be recorded and processed in real time for current regulation.
- the control engineering equivalent circuit diagram of such an arrangement is in the FIG. 10 shown.
- the control is realized as a cascade control.
- There is an internal "fast" control circuit current setpoint i_setpoint, I-controller, integrating controller 1 / L, current actual value i_act, dotted line
- an external control circuit voltage setpoint u_set, U-controller, integrating controller 1 / C, voltage setpoint u_act) voltage regulation.
- FIG. 11 schematically shows a bidirectional DC chopper, which can always be operated at the gap limit.
- an additional winding W is applied to the storage inductor L1, which needs only have a few turns and over which the current zero crossing in the storage inductor L1 can be detected.
- the time of the current zero crossing is detected, for example, by a non-illustrated microcontroller, which then immediately one of the semiconductor switches (T1 or T2) drives again.
- this sets a variable switching frequency of the power output stage; the higher the output, the lower the switching frequency.
- the mean value i L1_avg of the current i L1 corresponds exactly to half of the maximum current value i L1_dach .
- the switch-on time t_on the current i L1_avg can be adjusted directly and without delay.
- a disadvantage of the operation at the gap limit is the large ripple of the storage throttle current i L1 and thus also in the output current i 1 and i 2 .
- a DC chopper is provided which has a plurality of parallel current channels (I, II). Such a DC chopper with two current channels shows the FIG. 1 ,
- the first current channel I is formed by the storage inductor L1, the semiconductor switches T1 and T2 and the diodes D1 and D2; the second current channel II correspondingly through the storage inductor L2, the semiconductor switches T3 and T4, as well as through the diodes D3 and D4.
- Both current channels (I, II) are clocked at the same clock rate, but each with a time offset.
- the microcontroller provided for clocking the semiconductor switches (T1, T3 or T2, T4) can advantageously control the respective semiconductor switches (T1, T3 or T2, T4) of all the current channels (I, II) to be clocked.
- the storage inductor L2 in the second current channel II which is connected in parallel with the first current channel I, has no instance for detecting a current zero crossing here.
- the current channel II is controlled as a function of the current zero crossing detected in the first current channel I and can therefore be referred to as "slave channel", while the first current channel I, whose Storage choke L1 has a winding W for current zero crossing detection, hereinafter referred to as "master channel”.
- the microcontroller now determines from the detected current zero crossings the period of the master channel I to determine from this information the ignition timing for the slave channel II and possibly also for the other slave channels.
- FIG. 14 are the current curves for a two-channel DC chopper according to the FIG. 1 represented, which is operated as a boost converter.
- the upper diagram shows the current profile i L1 through the storage inductor L1 in the master channel I; the middle diagram shows the current flow through the storage inductor L2 in the slave channel II.
- the microcontroller determines the time interval of the current zero crossings T period of the master channel I in real time, and then to calculate the ignition timing of the slave channel II.
- FIG. 14 shows that the resulting output current i 1 , shown here inverted as -i 1 , has a significantly lower ripple than the current characteristics (i L1 , i L2 ) in each one of the current channels (I, II).
- i L1 , i L2 current characteristics in each one of the current channels (I, II).
- the DC chopper can also be operated as a buck converter, which is particularly interesting for photovoltaic inverters with battery buffer.
- the microcontroller can calculate the required switch-on time t_on, which then leads to the desired t_off. Like the ones from the FIG. 15 shows, the sum of t_on and t_off exactly the time between two current zero crossings, which is detected by the microcontroller. As long as the circuit operates at the gap limit during operation, a direct adjustment of i L1_avg without delay is possible.
- the current can thus be adjusted directly and without delay, without a subordinate current control loop.
- the FIG. 18 shows a sketch of the current waveforms (i L1 , i L2 ) in the current channels (I, II) and at the output of the DC adjuster in buck converter mode.
- These current curves (i L1 , i L2 ) correspond exactly to the inverted current curves for the boost converter operation, which consists of the FIG. 14 can be seen. Accordingly, a particularly smooth output current (-i 1 ) is also obtained in buck converter operation by a time-offset control of the current channels (I, II).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Description
Die Erfindung betrifft einen mehrkanaligen Gleichstromsteller, mit mehreren parallelen Stromkanälen, die durch einen Mikrocontroller zueinander zeitversetzt gesteuert werden, wobei die Stromkanäle jeweils mindestens zwei Halbleiterschalter aufweisen, durch die sie vom Mikrocontroller entweder als Hochsetzsteller oder als Tiefsetzsteller betrieben werden können.The invention relates to a multichannel DC chopper, with multiple parallel current channels, which are controlled by a microcontroller to each other with a time delay, wherein the current channels each have at least two semiconductor switches, by which they can be operated by the microcontroller either as a boost converter or as buck converter.
Ein derartiger Gleichstromsteller ist in der Veröffentlichung "
Aus der deutschen Patentanmeldung
Es sind darüber hinaus auch bidirektionale Gleichstromsteller bekannt. Die Grundschaltung eines solchen Gleichstromstellers ist in der
Es stellte sich die Aufgabe einen Gleichstromsteller zu schaffen, der einfach und kostengünstig aufgebaut ist, möglichst vielseitig und effizient einsetzbar ist und einen möglichst glatten Ausgangsstrom liefert.The object was to create a DC chopper, which is simple and inexpensive, is as versatile and efficient to use and provides the smoothest possible output current.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass wenigstens ein Stromkanal eine Einrichtung zur Erfassung des Stromnulldurchgangs aufweist, dass der Mikrocontroller die Periodenzeit der Stromnulldurchgänge in diesem Stromkanal erfasst, dass der Mikrocontroller aufgrund der erfassten Periodenzeit alle Stromkanäle an der Lückgrenze betreibt, und dass der Mikrocontroller die Stromkanäle mit einem zeitlichen Versatz ansteuert, wobei der zeitliche Versatz durch die erfasste Periodenzeit geteilt durch die Anzahl der Stromkanäle gegeben ist.This object is achieved in that at least one current channel has a device for detecting the current zero crossing that the microcontroller, the period of the current zero crossings in this Current channel detects that the microcontroller operates all current channels at the gap limit due to the detected period time, and that the microcontroller drives the current channels with a time offset, wherein the time offset is given by the detected period time divided by the number of current channels.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung schematisch dargestellt und wird im folgenden anhand der Zeichnung näher erläutert.An embodiment of the invention is shown schematically in the drawing and will be explained in more detail below with reference to the drawing.
Es zeigen
Figur 1- die Grundschaltung eines erfindungsgemäßen mehrkanaligen bidirektionalen Gleichstromstellers,
Figur 2- die Grundschaltung eines bidirektionalen Gleichstromstellers nach dem Stand der Technik,
Figuren 3bis 5- Stromverlaufsdiagramme eines Hochsetzstellers,
Figuren 6 bis 8- Stromverlaufsdiagramme eines Tiefsetzstellers,
- Figur 9
- ein Verwendungsbeispiel eines bidirektionalen Gleichstromstellers,
- Figur 10
- einen Regelkreis nach dem Stand der Technik,
- Figur 11
- die Grundschaltung eines bidirektionalen, an der Lückgrenze betreibbaren Gleichstromstellers,
Figur 12- ein Stromverlaufsdiagramm der Schaltung gemäß der
Figur 11 im Hochsetzstellerbetrieb, - Figur 13
- einen Regelkreis zur Schaltung gemäß der
Figur 11 , - Figur 14
- ein Stromverlaufsdiagramm eines mehrkanaligen Gleichstromstellers im Hochsetzstellerbetrieb,
- Figur 15
- ein weiteres Stromverlaufdiagramm der Schaltung gemäß
Figur 11 als Tiefsetzsteller, - Figur 16
- einen Abschnitt eines Regelkreises,
- Figur 17
- eine vereinfachte Darstellung des Regelkreisabschnitts gemäß der
Figur 16 , - Figur 18
- ein Stromverlaufdiagramm eines mehrkanaligen Gleichstromstellers im Tiefsetzstellerbetrieb.
- FIG. 1
- the basic circuit of a multichannel bidirectional DC actuator according to the invention,
- FIG. 2
- the basic circuit of a bidirectional DC adjuster according to the prior art,
- FIGS. 3 to 5
- Current flow diagrams of a boost converter,
- FIGS. 6 to 8
- Current flow diagrams of a buck converter,
- FIG. 9
- a usage example of a bidirectional DC-DC actuator,
- FIG. 10
- a control circuit according to the prior art,
- FIG. 11
- the basic circuit of a bidirectional DC-gap actuator which can be operated at the gap limit,
- FIG. 12
- a current flow diagram of the circuit according to the
FIG. 11 in boost converter operation, - FIG. 13
- a control circuit for switching according to the
FIG. 11 . - FIG. 14
- a current flow diagram of a multi-channel DC chopper in boost converter operation,
- FIG. 15
- a further current flow diagram of the circuit according to
FIG. 11 as a buck converter, - FIG. 16
- a section of a control loop,
- FIG. 17
- a simplified representation of the control loop section according to the
FIG. 16 . - FIG. 18
- a current flow diagram of a multi-channel DC-DC converter in buck converter mode.
Die
Die Halbleiterschalter (T1, T2) sind derart mit den anderen Bauelementen verschaltet, dass bei einem durchgeschalteten ersten Halbleiterschalter T1 die Anschlüsse der Speicherdrossel L1 über den ersten Halbleiterschalter T1 mit der ersten Spannungsquelle U1 verbunden sind, und bei einem durchgeschaltetem zweiten Halbleiterschalter T2 die Speicherdrossel L1 mit dem zweiten Halbleiterschalter T2 und den beiden Spannungsquellen (U1, U2) zugleich in Reihe geschaltet ist.The semiconductor switches (T1, T2) are connected to the other components in such a way that, in the case of a through-connected first semiconductor switch T1, the connections of the storage inductor L1 are connected to the first voltage source U1 via the first semiconductor switch T1, and the storage inductor L1 is connected to a through-connected second semiconductor switch T2 is connected in series with the second semiconductor switch T2 and the two voltage sources (U1, U2) at the same time.
Das Funktionsprinzip eines derartigen Gleichstromstellers besteht darin, dass durch Einschalten eines der Halbleiterschalter (T1 bzw. T2) die Speicherdrossel L1 bestromt wird, die in daraufhin ein Magnetfeld aufbaut. Die in diesem Magnetfeld gespeicherte Energie bewirkt nach dem Ausschalten des einen Halbleiterschalters (T1 bzw. T2) einen Induktionsstrom (Ausgangsstrom i2 bzw. i1), der über die zum jeweils anderen Halbleiterschalter (T2 bzw. T1) gehörende Freilaufdiode (D2 bzw. D1) und eine der Spannungsquellen (U2, U1) fließt.The operating principle of such a DC adjuster is that by energizing one of the semiconductor switches (T1 or T2), the storage inductor L1 is energized, which then builds up a magnetic field. The stored energy in this magnetic field causes after turning off the one semiconductor switch (T1 or T2) an induction current (output current i 2 or i 1 ), via the respective other semiconductor switch (T2 or T1) belonging freewheeling diode (D2 or D2). D1) and one of the voltage sources (U2, U1) flows.
Zum kontinuierlichen Betrieb ist eine Taktung eines der Halbleiterschalter (T1 bzw. T2) erforderlich, beispielsweise durch eine PWM-Steuerung (PWM = Pulsweitenmodulation), die durch einen zentrale Steuerungseinrichtung und besonders vorteilhaft durch einen Mikrocontroller realisiert sein kann. Ohne Beschränkung der Allgemeinheit wird diese Steuerungseinrichtung im folgenden als Mikrocontroller bezeichnet. Zur Vereinfachung wurde in den Figuren auf eine Darstellung des Mikrocontrollers verzichtet.For continuous operation, a clocking of one of the semiconductor switches (T1 or T2) is required, for example by a PWM control (PWM = pulse width modulation), which can be realized by a central control device and particularly advantageously by a microcontroller. Without limiting the generality, this control device is referred to below as a microcontroller. For simplicity, a representation of the microcontroller was omitted in the figures.
Grundsätzlich sind zwei Betriebsarten des Gleichstromstellers zu unterscheiden, und zwar den Hochsetzstellerbetrieb und den Tiefsetzstellerbetrieb.Basically, two modes of the DC adjuster are to be distinguished, namely the boost converter operation and the Buck converter operation.
Im Hochsetzstellerbetrieb fließt die Energie von der ersten Spannungsquelle U1 zur zweiten Spannungsquelle U2. Dazu wird der Halbleiterschalter T1 mit einem geeigneten PWM-Signal angesteuert. Der Halbleiterschalter T2 ist in diesem Betriebszustand nicht aktiv und daher stromlos. Damit die Schaltung arbeiten kann, muss die Spannung u2 der zweiten Spannungsquelle U2 größer sein als die Spannung u1 der ersten Spannungsquelle U1.In boost converter operation, the energy flows from the first voltage source U1 to the second voltage source U2. For this purpose, the semiconductor switch T1 is driven with a suitable PWM signal. The semiconductor switch T2 is not active in this operating state and therefore de-energized. For the circuit to work, the voltage u 2 of the second voltage source U2 must be greater than the voltage u 1 of the first voltage source U1.
Beim Betrieb eines Gleichstromstellers sind grundsätzlich drei unterschiedliche Betriebszustände definiert. Diese Betriebszustände sind vom Stromverlauf iL1 in der Speicherdrossel L1 bestimmt. Für die drei Betriebszustände sind die typischen Strom- und Spannungsverläufe in den
Die drei möglichen Betriebszustände des Hochsetzstellers sind:
- kontinuierlicher Betrieb, d. h. der Strom iL1 in der Speicherdrossel L1 weist keine Nullstellen auf (
Figur 3 ), - diskontinuierlicher Betrieb, d. h. es treten Zeiträume auf, in denen die Speicherdrossel L1 stromlos ist (
Figur 4 ), - Betrieb an der Lückgrenze (Transition Mode). Hier wird durch eine geeignete Ansteuerung des Halbleiterschalters T1 der Strom iL1 in der Speicherdrossel L1 an der Lückgrenze, das heißt genau zwischen dem kontinuierlichen und dem diskontinuierlichen Betrieb gehalten (
Figur 5 ).
- continuous operation, ie the current i L1 in the storage inductor L1 has no zeros (
FIG. 3 ) - discontinuous operation, ie periods occur during which the storage inductor L1 is de-energized (
FIG. 4 ) - Operation at the gap limit (transition mode). Here, by a suitable control of the semiconductor switch T1, the current i L1 in the storage inductor L1 is kept at the gap limit, that is to say exactly between the continuous and the discontinuous operation (
FIG. 5 ).
Der Strom iL1 in der Speicherdrossel L1 ist hier ohne Nullstellen. Während der Einschaltphase des Halbleiterschalters T1 hängt der Strom iL1 von folgender Differentialgleichung ab:
Wenn die Diode D2 leitet gilt:
Da u2 größer als u1 ist, wird der Differentialquotient negativ und der Strom sinkt in dieser Phase ab. Generell hängt also die Stromverlauf von der Einschaltzeit des Halbleiterschalters T1, den Spannungen u1 und u2 und der Induktivität L der Speicherdrossel L1 ab.Since u 2 is greater than u 1 , the differential quotient becomes negative and the current decreases in this phase. In general, therefore, the current curve depends on the turn-on time of the semiconductor switch T1, the voltages u 1 and u 2 and the inductance L of the storage inductor L1.
In diesem Fall weist der Strom iL1 durch die Speicherdrossel L1 Nullstellen auf. Dieser Betriebszustand wird häufig auch "Lückbetrieb" genannt.In this case, the current i L1 through the storage inductor L1 zeros. This operating state is often called "gapping operation".
In der
Bei Gleichstromstellern, die mit einer konstanten Schaltfrequenz arbeiten, bestimmt der jeweilige Lastzustand, welcher der drei oben genannten Betriebszustände sich einstellt.In the case of DC controllers operating at a constant switching frequency, the respective load condition determines which of the three operating conditions mentioned above will occur.
Im Tiefsetzstellerbetrieb fließt in der Schaltung gemäß der
Analog zu den Betriebszuständen des Hochsetzstellers verdeutlichen die
Dargestellt sind die Betriebszustände:
- kontinuierlicher Betrieb (
Figur 6 ), - diskontinuierlicher Betrieb (
Figur 7 ), - Betrieb an der Lückgrenze (Transition Mode;
Figur 8 ).
- continuous operation (
FIG. 6 ) - discontinuous operation (
FIG. 7 ) - Operation at the gap limit (transition mode;
FIG. 8 ).
Damit sind alle möglichen Betriebszustände der in der
Die in der
In Zeiten, in denen der Solargenerator 1 mehr Leistung liefert als zur Einspeisung in das Stromnetz erforderlich ist, kann eine Speicherbatterie 5 über den bidirektionalen Gleichstromsteller 6 aufgeladen werden. Die Voraussetzung hierzu ist, dass die Spannung uz im Gleichspannungszwischenkreis 3 größer als die Spannung uB der Speicherbatterie 5 ist. Der Gleichstromsteller 6 arbeitet in diesem Fall als Tiefsetzsteller und die Energieflussrichtung ist vom Gleichspannungszwischenkreis 3 hin zur Speicherbatterie 5.In times when the
Sollte vom Stromnetz mehr elektrische Leistung gefordert werden, als augenblicklich vom Solargenerator 1 geliefert werden kann, kann die Speicherbatterie 5, sofern sie vorher ausreichend geladen wurde, zusätzlich Energie in den Gleichspannungszwischenkreis 3 einspeisen Der bidirektionale Gleichstromsteller 6 arbeitet dann als Hochsetzsteller, d. h. auch hier muss die Spannung uz im Gleichspannungszwischenkreis 3 größer als die Batteriespannung uB sein. Die Energieflussrichtung ist nun von der Speicherbatterie 5 hin zum Gleichspannungszwischenkreis 3.Should more electrical power be required from the power grid, as can be supplied immediately from the
In den heute verwendeten bidirektionalen Gleichstromstellern wird häufig zur Ansteuerung der Halbleiterschalter eine Pulsweitenmodulation mit fester Frequenz verwendet. Das führt dazu, dass je nach Lastfall die Schaltung im diskontinuierlichen oder im kontinuierlichen Betriebszustand oder im Betriebszustand an der Lückgrenze arbeiten kann und zwischen diesen Betriebszuständen hin und her wechselt.In the bidirectional direct current actuators used today, pulse width modulation with a fixed frequency is frequently used to drive the semiconductor switches. As a result, depending on the load situation, the circuit can operate in the discontinuous or in the continuous operating state or in the operating state at the gap limit and switches back and forth between these operating states.
Regelungstechnisch wird üblicherweise für einen solchen Gleichstromsteller ein unterlagerter Stromregelkreis vorgesehen. Dieser ist entweder in Hardware, z. B. mit einem Steuer-IC oder mit Hilfe eines Mikrocontrollers realisiert. In Photovoltaikwechselrichtern werden nahezu ausschließlich digital geregelte Systeme eingesetzt, so dass für die Stromregelung der Stromistwert in Echtzeit erfasst und verarbeitet werden muss.Control technology usually a subordinate current control circuit is provided for such a DC chopper. This is either in hardware, z. B. realized with a control IC or with the aid of a microcontroller. In photovoltaic inverters, almost exclusively digitally controlled systems are used, so that the actual current value must be recorded and processed in real time for current regulation.
Das regelungstechnische Ersatzschaltbild einer solchen Anordnung ist in der
Ein solcher Regler weist mehrere Nachteile auf:
- Es muss in Echtzeit der Stromistwert i_ist erfasst und verarbeitet werden.
- Je nach Betriebszustand der Schaltung (kontinuierlich, diskontinuierlich oder Transition Mode) ändern sich die Eigenschaften der Stromregelstrecke, so dass unter Umständen eine Anpassung im I-Regler vorgenommen werden muss.
- Da die Induktivität L der Speicherdrossel maßgeblich das Verhalten des Stromregelkreises bestimmt, darf für deren Wert eine gewisse Untergrenze nicht unterschritten werden.
- Wenn sich die Schaltung im kontinuierlichen Betriebszustand befindet, steigen die Verluste im aktiven Halbleiterschalter stark an, weil dann der Halbleiterschalter auf eine leitende Freilaufdiode schaltet. Die Reverse Recovery Ladung der Freilaufdiode beeinflusst massiv die Einschaltverluste des Halbleiterschalters.
- Um die sogenannten Reverse Recovery Verluste zu verringern, werden häufig Silizium Karbid Dioden an Stelle der üblichen Siliziumdioden eingesetzt. Solche Dioden sind extrem teuer, schwer verfügbar und nicht sehr robust.
- Wegen des "hart" schaltenden Betriebes der Leistungsendstufe wird die Schaltfrequenz häufig so niedrig wie möglich gewählt. Das führt zu einer Vergrößerung des Bauvolumens der Speicherdrossel.
- The current actual value i_act must be recorded and processed in real time.
- Depending on the operating state of the circuit (continuous, discontinuous or transition mode), the properties of the current control path change, so that under some circumstances an adjustment in the I-controller must be made.
- Since the inductance L of the storage choke decisively determines the behavior of the current control loop, its value must not fall below a certain lower limit.
- When the circuit is in the continuous mode, the losses in the active semiconductor switch increase sharply, because then the semiconductor switch switches to a conductive freewheeling diode. The reverse recovery charge of the freewheeling diode massively influences the turn-on losses of the semiconductor switch.
- In order to reduce the so-called reverse recovery losses, silicon carbide diodes are often used instead of the usual silicon diodes. Such diodes are extremely expensive, difficult to obtain and not very robust.
- Because of the "hard" switching operation of the power output stage, the switching frequency is often chosen as low as possible. This leads to an increase in the volume of the storage throttle.
Die
Bezeichnet man die Zeit in der Aufmagnetisierungsphase mit "t_on" und die Zeit in der Abmagnetisierung mit "t_off", dann können die folgenden Gleichungen unter Berücksichtigung linearer Verhältnisse aufgestellt werden:
Aus der
Damit ergibt sich für den Hochsetzstellerbetrieb das regelungstechnische Ersatzschaltbild gemäß der
Nachteilig am Betrieb an der Lückgrenze ist allerdings die große Welligkeit des Speicherdrosselstromes iL1 und damit auch im Ausgangsstrom i1 bzw. i2. Um diese zu verringern, ist ein Gleichstromsteller vorgesehen, der mehrere parallele Stromkanäle (I, II) aufweist. Einen derartigen Gleichstromsteller mit zwei Stromkanälen zeigt die
Zu Ausbildung des Gleichstromstellers können selbstverständlich auch mehr als zwei parallele Stromkanäle (I, II) vorgesehen sein, was trotz des größeren Bauteileaufwands vorteilhaft sein kann, da sich mit jedem weiteren Stromkanal die Welligkeit des Speicherdrosselstromes iL1 verringert.Of course, more than two parallel current channels (I, II) may also be provided for the formation of the DC adjuster, which may be advantageous in spite of the larger component expenditure, since the ripple of the storage inductor current I L1 decreases with each further current channel.
Der erste Stromkanal I ist durch die Speicherdrossel L1, die Halbleiterschalter T1 und T2 und die Dioden D1 und D2 gebildet; der zweite Stromkanal II entsprechend durch die Speicherdrossel L2, die Halbleiterschalter T3 und T4, sowie durch die Dioden D3 und D4.The first current channel I is formed by the storage inductor L1, the semiconductor switches T1 and T2 and the diodes D1 and D2; the second current channel II correspondingly through the storage inductor L2, the semiconductor switches T3 and T4, as well as through the diodes D3 and D4.
Beide Stromkanäle (I, II) werden mit der gleichen Taktrate, aber jeweils mit einem zeitlichen Versatz getaktet. Der zur Taktung der Halbleiterschalter (T1, T3 bzw. T2, T4) vorgesehene Mikrocontroller kann dabei vorteilhafterweise die jeweils zu taktenden Halbleiterschalter (T1, T3 bzw. T2, T4) sämtlicher Stromkanäle (I, II) ansteuern.Both current channels (I, II) are clocked at the same clock rate, but each with a time offset. The microcontroller provided for clocking the semiconductor switches (T1, T3 or T2, T4) can advantageously control the respective semiconductor switches (T1, T3 or T2, T4) of all the current channels (I, II) to be clocked.
Die Speicherdrossel L2 im zweiten, zum ersten Stromkanal I parallel geschalteten, Stromkanal II weist hier keine Instanz zur Erkennung eines Stromnulldurchgangs auf. Der Stromkanal II wird in Abhängigkeit von dem im ersten Stromkanal I erfassten Stromnulldurchgang gesteuert und kann daher als "Slavekanal" bezeichnet werden, während der erste Stromkanal I, dessen Speicherdrossel L1 eine Wicklung W zur Stromnulldurchgangserkennung aufweist, nachfolgend als "Masterkanal" bezeichnet wird.The storage inductor L2 in the second current channel II, which is connected in parallel with the first current channel I, has no instance for detecting a current zero crossing here. The current channel II is controlled as a function of the current zero crossing detected in the first current channel I and can therefore be referred to as "slave channel", while the first current channel I, whose Storage choke L1 has a winding W for current zero crossing detection, hereinafter referred to as "master channel".
Die Welligkeit im Ausgangsstrom i1 bzw. i2 wird minimal, wenn die Phasenverschiebung zwischen dem Masterkanal I und dem Slavekanal II oder gegebenenfalls auch den weiteren Slavekanälen, 360°/n (n = Anzahl der Stromkanäle) beträgt. Der Mikrocontroller bestimmt nun aus den erfassten Stromnulldurchgängen die Periodendauer des Masterkanals I, um aus dieser Information den Zündzeitpunkt für den Slavekanal II und gegebenenfalls auch für die weiteren Slavekanäle zu ermitteln.The ripple in the output current i 1 or i 2 is minimal if the phase shift between the master channel I and the slave channel II or possibly also the other slave channels, 360 ° / n (n = number of current channels). The microcontroller now determines from the detected current zero crossings the period of the master channel I to determine from this information the ignition timing for the slave channel II and possibly also for the other slave channels.
In der
Die
Neben dem zuvor beschriebenen Hochsetzstellerbetrieb kann der Gleichstromsteller auch als Tiefsetzsteller betrieben werden, was insbesondere für Photovoltaikwechselrichter mit Batteriepuffer interessant ist.In addition to the boost converter operation described above, the DC chopper can also be operated as a buck converter, which is particularly interesting for photovoltaic inverters with battery buffer.
Für den Tiefsetzstellerbetrieb gelten sehr ähnliche Bedingungen wie für den Hochsetzstellerbetrieb. Aus dem in der
Im Tiefsetzstellerbetrieb ist die Ausschaltzeit t_off proportional zum maximalen Strom iL1_dach bzw. dem durchschnittlichen Strom iL1_avg durch die Speicherdrossel L1. Da der Mikrocontroller aber nur die Einschaltzeit t_on direkt verstellen kann, muss eine weitere Bedingung herangezogen werden, um eine Regelung realisieren zu können. Aus den beiden zuletzt genannten Gleichungen kann der folgende Zusammenhang hergeleitet werden:
Indem der Mikrocontroller die Spannungen u1 und u2 mit erfasst, kann er die erforderliche Einschaltzeit t_on errechnen, die dann zum gewünschten t_off führt. Wie die aus der
Damit kann wiederum ein Regelkreis realisiert werden, der in der
Durch Einsatz des Transitionmodestellers ist kann so der Strom ohne unterlagerten Stromregelkreis direkt und verzögerungsfrei verstellt werden.By using the transition modifier, the current can thus be adjusted directly and without delay, without a subordinate current control loop.
Die
- 11
- Solargeneratorsolar generator
- 22
- HochsetzstellerBoost converter
- 33
- GleichspannungszwischenkreisDc link
- 44
- Wechselrichterinverter
- 55
- Speicherbatteriestorage battery
- 66
- GleichstromstellerDC chopper
- D1 - D4D1 - D4
- (Freilauf)diodendiode (freewheel)
- II
- erster Stromkanal (Masterkanal)first current channel (master channel)
- IIII
- zweiter Stromkanal (Slavekanal)second current channel (slave channel)
- LL
- Induktivität (der Speicherdrossel)Inductance (the storage choke)
- L1, L2L1, L2
- SpeicherdrosselPower inductor
- T1 - T4T1 - T4
- HalbleiterschalterSemiconductor switches
- U1, U2U1, U2
- Spannung(squell)enVoltage (squell) s
- P1, P2, P3P1, P2, P3
- Phasenphases
- UZUZ
- Spannung im GleichspannungszwischenkreisVoltage in DC voltage intermediate circuit
- UBUB
- Spannung der SpeicherbatterieVoltage of the storage battery
- WW
- Wicklungwinding
- i1, i2 i 1 , i 2
- Ausgangsstromoutput current
- iT1, iT2, iD1... i T1 , i T2 , i D1 ...
- Strom (durch das jeweils indizierte Bauelement)Current (by the respective indexed component)
- iL1_avg i L1_avg
- mittlerer Ausgangsstromaverage output current
- i_isti_ist
- StromistwertCurrent feedback
- i_LastI_Last
- Laststromload current
- i_solli_nom
- StromsollwertCurrent setpoint
- t_onvolume
- Einschaltzeiton time
- t_offt_off
- Ausschaltzeitoff time
- TPeriode T period
- Periodenzeit (zeitlicher Abstand der Stromnulldurchgänge)Period time (time interval of current zero crossings)
- TPeriode/2T period / 2
- zeitlicher Versatztime offset
- u_istu_ist
- Spannungsistwert (Ausgangsspannung)Voltage actual value (output voltage)
- u_soll,U_Soll,
- SpannungssollwertVoltage setpoint
- u1, u2 u 1 , u 2
- Spannungen (der Spannungsquellen U1 und U2)Voltages (voltage sources U1 and U2)
- uB u B
- Batteriespannungbattery voltage
- uT1, uT2 u T1 , u T2
- Ansteuerspannung (der Halbleiterschalter)Drive voltage (the semiconductor switch)
- uz u z
- Spannung im GleichspannungszwischenkreisVoltage in DC voltage intermediate circuit
- 1/C, 1/L1 / C, 1 / L
- integrierende Reglerintegrating controllers
- L1/U1, U1/(U2-U1) L1/(U2-U1)L1 / U1, U1 / (U2-U1) L1 / (U2-U1)
- Proportionalgliederproportional elements
Claims (8)
- Multi-channel DC chopper controller,
having a plurality of parallel current channels (I, II) which are controlled by a microcontroller with a time offset between them,
with each of the current channels having at least two semi-conductor switches (T1, T2; T3, T4) by way of which they can be operated by the microcontroller either as boost converters or as buck converters,
characterised in that
at least one current channel (I) has a facility for sensing the current zero crossing,
that the microcontroller records the period of time (TPeriod) of the current zero crossings in the said current channel (I),
that the microcontroller operates all the current channels (I, II) in the critical conduction mode based on the recorded period of time (TPeriod), and
that the microcontroller actuates the current channels (I, II) with a time offset (TPeriod/2), for which purpose the time offset (TPeriod/2) is provided by the recorded period of time (TPeriod) divided by the number of current channels. - DC chopper controller according to Claim 1, characterised in that each current channel (I, II) has at least one storage choke (L1, L2) and the storage choke (L1) of at least one current channel (I) has an additional winding (W) whose output signal is evaluated by the microcontroller for the purpose of recording the current zero crossing.
- DC chopper controller according to Claim 1, characterised in that the DC chopper controller is a constituent of a charging/discharging circuit for a storage battery (5) of a photovoltaic system.
- DC chopper controller according to Claim 3, characterised in that the microcontroller controls the DC chopper controller as a buck converter for the purpose of charging the storage battery (5) and as a boost converter for the purpose of discharging the storage battery (5).
- DC chopper controller according to Claim 4, characterised in that the activation time (t_on) for one of the semi-conductor switches (T1, T2, T3, T4) of one current channel (I, II) in each case effects an output current (i1, i2) of the DC chopper controller which is proportional to the activation time (t_on).
- DC chopper controller according to Claim 5, characterised in that the activation time (t_on) in the boost converter mode is controlled by a superimposed voltage control loop (U-Regler, 1/C) for the output voltage (u_ist) of the DC chopper controller.
- DC chopper controller according to Claim 5, characterised in that the activation time (t_on) is proportional to the average output current (iL1_avg) in buck converter mode and, conversely, is proportional to the output/input voltage difference (U2-U1).
- DC chopper controller according to any of the aforesaid claims, characterised in that a microcontroller controls the semi-conductor switches (T1, T2, T3, T4) of all current channels (I, II).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007041510A DE102007041510A1 (en) | 2007-08-31 | 2007-08-31 | Multichannel DC-DC controller |
PCT/EP2008/061422 WO2009027523A1 (en) | 2007-08-31 | 2008-08-29 | Multi-channel dc controller operating independently of output power in critical conduction mode |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2193597A1 EP2193597A1 (en) | 2010-06-09 |
EP2193597B1 true EP2193597B1 (en) | 2013-03-06 |
Family
ID=40130568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08803412A Active EP2193597B1 (en) | 2007-08-31 | 2008-08-29 | Multi-channel dc controller operating independently of output power in critical conduction mode |
Country Status (8)
Country | Link |
---|---|
US (1) | US8378633B2 (en) |
EP (1) | EP2193597B1 (en) |
CN (1) | CN101803163B (en) |
DE (1) | DE102007041510A1 (en) |
DK (1) | DK2193597T3 (en) |
ES (1) | ES2411466T3 (en) |
PT (1) | PT2193597E (en) |
WO (1) | WO2009027523A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007057230A1 (en) | 2007-11-28 | 2009-06-04 | Kostal Industrie Elektrik Gmbh | Method for controlling a DC-DC actuator |
US8576598B2 (en) * | 2009-07-20 | 2013-11-05 | General Electric Company | Systems, methods, and apparatus for converting direct current (DC) power to alternating current (AC) power |
TWI473394B (en) * | 2009-09-04 | 2015-02-11 | Richtek Technology Corp | Switching regulator and driver circuit and control method thereof |
JP5496038B2 (en) * | 2010-09-22 | 2014-05-21 | 三菱電機株式会社 | DC-DC converter |
JP5355617B2 (en) | 2011-04-25 | 2013-11-27 | 三菱電機株式会社 | Power supply |
US8963529B2 (en) | 2011-04-28 | 2015-02-24 | Texas Instruments Incorporated | Transition mode charge control for a power converter |
DE102012204255A1 (en) * | 2012-03-19 | 2013-09-19 | Siemens Aktiengesellschaft | DC converter |
US9270182B2 (en) * | 2012-05-04 | 2016-02-23 | Schneider Electric Industries Sas | Conversion stage, electric converter including such a conversion stage, device for converting an AC current into DC current including such a converter, terminal for recharging an electric battery including such a converter or conversion device |
DE102013009823A1 (en) * | 2013-06-11 | 2014-12-11 | Liebherr-Components Biberach Gmbh | Electric drive system and energy storage device therefor |
US9343967B2 (en) * | 2014-01-24 | 2016-05-17 | Analog Devices, Inc. | Single input multiple input/output supply for energy harvest application |
CN104065119B (en) * | 2014-06-04 | 2017-01-04 | 南京矽力杰半导体技术有限公司 | Battery feed circuit and method of supplying power to |
US20170063094A1 (en) * | 2015-08-27 | 2017-03-02 | Sunpower Corporation | Power processing |
CN105119486A (en) * | 2015-09-23 | 2015-12-02 | 三峡大学 | Low voltage stress bidirectional DC/DC converter |
US9966853B2 (en) * | 2015-10-05 | 2018-05-08 | Maxim Integrated Products, Inc. | Method and apparatus for multi-phase DC-DC converters using coupled inductors in discontinuous conduction mode |
DE102017125548A1 (en) | 2017-11-01 | 2019-05-02 | Sma Solar Technology Ag | CIRCUIT ARRANGEMENT AND POWER ELECTRONIC TRANSFORMER |
CN110994993B (en) * | 2019-12-30 | 2021-01-29 | 施耐德电气(中国)有限公司 | Multichannel bidirectional buck-boost circuit |
US20230223852A1 (en) * | 2022-01-07 | 2023-07-13 | Qorvo Us, Inc. | Dc-dc converter and method of operating the same |
FR3138253A1 (en) * | 2022-07-25 | 2024-01-26 | Synchrotron Soleil | Voltage/current or current/voltage conversion system. |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5905369A (en) | 1996-10-17 | 1999-05-18 | Matsushita Electric Industrial Co., Ltd. | Variable frequency switching of synchronized interleaved switching converters |
JP4110470B2 (en) * | 2003-05-28 | 2008-07-02 | 株式会社デンソー | Multiphase multiple control system |
DE102004011801A1 (en) | 2003-11-11 | 2005-06-09 | Leopold Kostal Gmbh & Co Kg | Method for controlling a boost converter and multichannel boost converter and use of such |
US7288924B2 (en) * | 2004-07-16 | 2007-10-30 | Cellex Power Products, Inc. | Digital input current control for switch mode power supplies |
JP2006149107A (en) * | 2004-11-19 | 2006-06-08 | Matsushita Electric Ind Co Ltd | Multi-output power supply circuit |
US7375985B2 (en) * | 2006-03-17 | 2008-05-20 | Yuan Ze University | High efficiency single stage bidirectional converter |
US7652393B2 (en) * | 2006-09-14 | 2010-01-26 | American Power Conversion Corporation | Apparatus and method for employing a DC source with an uninterruptible power supply |
-
2007
- 2007-08-31 DE DE102007041510A patent/DE102007041510A1/en not_active Withdrawn
-
2008
- 2008-08-29 PT PT88034129T patent/PT2193597E/en unknown
- 2008-08-29 EP EP08803412A patent/EP2193597B1/en active Active
- 2008-08-29 DK DK08803412.9T patent/DK2193597T3/en active
- 2008-08-29 WO PCT/EP2008/061422 patent/WO2009027523A1/en active Application Filing
- 2008-08-29 CN CN2008801050142A patent/CN101803163B/en not_active Expired - Fee Related
- 2008-08-29 ES ES08803412T patent/ES2411466T3/en active Active
-
2010
- 2010-02-26 US US12/713,612 patent/US8378633B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20100164435A1 (en) | 2010-07-01 |
EP2193597A1 (en) | 2010-06-09 |
CN101803163B (en) | 2013-05-29 |
PT2193597E (en) | 2013-06-04 |
CN101803163A (en) | 2010-08-11 |
ES2411466T3 (en) | 2013-07-05 |
DE102007041510A1 (en) | 2009-03-05 |
US8378633B2 (en) | 2013-02-19 |
DK2193597T3 (en) | 2013-06-10 |
WO2009027523A1 (en) | 2009-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2193597B1 (en) | Multi-channel dc controller operating independently of output power in critical conduction mode | |
EP2996235B1 (en) | Dc/dc-converter | |
DE102008032876B4 (en) | Method, circuit arrangement and bridge circuit | |
EP2661806B1 (en) | Electrical circuit and method for operation thereof | |
DE69834981T2 (en) | Phase-shifted full-bridge converter with gentle PWM switching | |
DE69103918T2 (en) | Power converter using synchronous switching system with high efficiency. | |
EP3028377B1 (en) | Direct current converter | |
EP2863528B1 (en) | Operation of an inverter as a DC/DC-converter | |
DE102014103454A1 (en) | System and method for a switching power converter | |
DE102015116995A1 (en) | Power factor correction circuit and method of operation | |
DE102015219850A1 (en) | Device for controlling a switching DC-DC converter, switching DC-DC converter and method for controlling a switched DC-DC converter | |
EP2709257A2 (en) | Power converter circuit and method for controlling the power converter circuit | |
EP2066011B1 (en) | Method for controlling a direct current power converter | |
DE112016004961T5 (en) | Multiphase converter | |
DE112019002256T5 (en) | POWER CONVERTER | |
EP3563475B1 (en) | Power converter circuit and method for controlling same | |
DE112017005404T5 (en) | DC-DC converter | |
DE102010052808A1 (en) | Method for operating vehicle e.g. hybrid vehicle, involves setting switch of one bridge branch of quasi-Z-source inverter such that outputs are shorted together in one time period and not short-circuited in another time period | |
DE102006060828A1 (en) | Inverter with a delay circuit for PWM signals | |
EP2584692A2 (en) | Inverter with asymmetric operation of the chokes | |
DE102013212692A1 (en) | Energy storage device with DC power supply circuit | |
DE102020117180A1 (en) | Step-up converter for a power supply of an electrical consumer and a power supply and method for up-converting the input voltage in a power supply of an electrical consumer | |
DE102016119523A1 (en) | Power conversion process and power converter | |
LU101923B1 (en) | Boost converter for a power supply for an electrical load, and power supply and method for boosting the input voltage in a power supply for an electrical load | |
EP2562918B1 (en) | Circuit arrangement with electronic switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100324 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BARTLING, RALF |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BARTLING, RALF |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 600099 Country of ref document: AT Kind code of ref document: T Effective date: 20130315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ALDO ROEMPLER PATENTANWALT, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008009426 Country of ref document: DE Effective date: 20130502 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20130529 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2411466 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130705 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130606 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130606 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130607 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130706 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20131209 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008009426 Country of ref document: DE Effective date: 20131209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080829 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150623 Year of fee payment: 8 Ref country code: NL Payment date: 20150529 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20150805 Year of fee payment: 8 Ref country code: GB Payment date: 20150805 Year of fee payment: 8 Ref country code: PT Payment date: 20150706 Year of fee payment: 8 Ref country code: CZ Payment date: 20150805 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150724 Year of fee payment: 8 Ref country code: AT Payment date: 20150819 Year of fee payment: 8 Ref country code: BE Payment date: 20150828 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20151117 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20160823 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20160810 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20160901 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 600099 Country of ref document: AT Kind code of ref document: T Effective date: 20160829 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160829 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160829 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160829 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20170831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181128 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502008009426 Country of ref document: DE Owner name: KOSTAL INDUSTRIE ELEKTRIK GMBH & CO. KG, DE Free format text: FORMER OWNER: KOSTAL INDUSTRIE ELEKTRIK GMBH, 58513 LUEDENSCHEID, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240815 Year of fee payment: 17 |