EP2135600B1 - Targeting agent for cancer cell or cancer-associated fibroblast - Google Patents

Targeting agent for cancer cell or cancer-associated fibroblast Download PDF

Info

Publication number
EP2135600B1
EP2135600B1 EP08739842.6A EP08739842A EP2135600B1 EP 2135600 B1 EP2135600 B1 EP 2135600B1 EP 08739842 A EP08739842 A EP 08739842A EP 2135600 B1 EP2135600 B1 EP 2135600B1
Authority
EP
European Patent Office
Prior art keywords
cancer
carrier
carcinoma
caf
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08739842.6A
Other languages
German (de)
French (fr)
Other versions
EP2135600A4 (en
EP2135600A1 (en
Inventor
Yoshiro Niitsu
Rishu Takimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of EP2135600A1 publication Critical patent/EP2135600A1/en
Publication of EP2135600A4 publication Critical patent/EP2135600A4/en
Application granted granted Critical
Publication of EP2135600B1 publication Critical patent/EP2135600B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/07Retinol compounds, e.g. vitamin A
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/203Retinoic acids ; Salts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/04Uses of viruses as vector in vivo
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Definitions

  • the present invention relates to a composition for use in treating cancer in which cancer-associated fibroblasts (CAF) are involved and a preparation kit for this composition.
  • CAF cancer-associated fibroblasts
  • Cancer is one of the most significant diseases confronting centuries, and much research effort is going into the treatment thereof.
  • various anticancer agents for suppressing the growth of cancer cells have been developed, and some degree of success has been achieved, but since such drugs suppress the growth of not only cancer cells but also normal cells, there are problems with various side effects such as nausea and vomiting, hair loss, myelosuppression, kidney damage, and nerve damage.
  • attempts have been made in recent years to specifically deliver an anticancer agent to cancer cells or cancer tissue.
  • By specific delivery of an anticancer agent is it is not only possible to prevent the anticancer agent from reaching normal cells and reduce the side effects, but also to obtain the economic benefit that the dose of the anticancer agent can be decreased.
  • a delivery method there have been developed techniques such as passive targeting in which the EPR (enhanced permeability and retention) effect is utilized and active targeting in which a drug is modified by a ligand for a surface molecule that is specifically expressed on cancer cells.
  • molecules that can be utilized in active targeting molecules that are endocytosed into cells as a result of ligand bonding, such as, for example, CD19, HER2, a transferrin receptor, a folate receptor, a VIP receptor, EGFR (Nonpatent Publication 1), RAAG10 (Patent Publication 1), PIPA (Patent Publication 2), and KID3 (Patent Publication 3) have been reported.
  • Nonpatent Publication 1 Nonpatent Publication 1
  • RAAG10 Patent Publication 1
  • PIPA Patent Publication 2
  • KID3 Patent Publication 3
  • CAFs CAFs from a prostate tumor patient were grafted on an athymic animal together with human prostate cells, the neoplastic growth thereof was markedly accelerated. Furthermore, it has been clarified that a bioactive substance such as PDGF (platelet-derived growth factor), TGF- ⁇ (transforming growth factor- ⁇ ), HGF (hepatocyte growth factor), or SDF-1 (stromal cell-derived factor - 1) produced in the interstitium is involved in such growth of a tumor (see Nonpatent Publication 4).
  • PDGF platelet-derived growth factor
  • TGF- ⁇ transforming growth factor- ⁇
  • HGF hepatocyte growth factor
  • SDF-1 stromal cell-derived factor - 1
  • composition comprising a carrier.
  • the present invention relates to the compositions for use in treating cancer in which cancer-associated fibroblasts are involved as specified in the appended claims.
  • the carrier contained in the composition of the present invention specifically targets a CAF, and efficiently delivers to a CAF a drug that controls the activity or growth of a CAF, thus enabling a desired effect such as, for example, suppression of the activity or growth of a CAF thereby curing cancer, suppressing the advance thereof, and preventing the onset thereof, to be achieved with the highest efficiency and the minimum side effects.
  • the anticancer composition of the present invention is based on the completely novel approach of treating a cancer by acting on a CAF efficacy can be expected on cancers for which a conventional treatment method could not give satisfactory results and, furthermore, a synergistic effect due to combined use with a conventional anticancer agent, angiogenesis inhibitor, etc. can be anticipated.
  • the carrier contained in the composition invention can specifically deliver a substance to a cancer cell and a CAF, it can be utilized for specifically labeling a cancer cell and a CAF, gene transfer, etc, but such use is not part of the present invention.
  • a cancer-associated fibroblast means an ⁇ -SMA (smooth muscle actin) positive fibroblast present in the interior and/or the periphery of a cancer lesion.
  • the presence of a CAF is confirmed with respect to various cancers such as colon carcinoma, lung carcinoma, prostate carcinoma, breast carcinoma, stomach carcinoma, bile duct carcinoma, and basal cell carcinoma.
  • whether or not given cell is CAF is determined by the following method. That is, a cell present in the interior and/or the periphery of the cancer lesion is immunostained with a labeled antibody for ⁇ -SMA, which is a CAF marker, for example, FITC-labeled anti ⁇ -SMA antibody or Cy3-labeled anti ⁇ -SMA antibody, and that detected by ⁇ -SMA is determined to be a CAF.
  • a labeled antibody for ⁇ -SMA which is a CAF marker, for example, FITC-labeled anti ⁇ -SMA antibody or Cy3-labeled anti ⁇ -SMA antibody
  • Cancer accompanied by CAF in the present invention is not particularly limited, and examples thereof include solid carcinomas such as brain tumor, head and neck carcinoma, breast carcinoma, lung carcinoma, esophageal carcinoma, stomach carcinoma, duodenal carcinoma, appendiceal carcinoma, colon carcinoma, rectal carcinoma, hepatic carcinoma, pancreatic carcinoma, gallbladder carcinoma, bile duct carcinoma, anal carcinoma, kidney carcinoma, ureteral carcinoma, bladder carcinoma, prostate carcinoma, penile carcinoma, testicular carcinoma, uterine carcinoma, ovarian carcinoma, vulvar carcinoma, vaginal carcinoma, and skin carcinoma.
  • solid carcinomas such as brain tumor, head and neck carcinoma, breast carcinoma, lung carcinoma, esophageal carcinoma, stomach carcinoma, duodenal carcinoma, appendiceal carcinoma, colon carcinoma, rectal carcinoma, hepatic carcinoma, pancreatic carcinoma, gallbladder carcinoma, bile duct carcinoma, anal carcinoma, kidney carcinoma, ureteral carcinoma, bladder carcinoma, prostate carcinoma, penile carcinoma, testicular carcinoma, uterine carcinoma, ova
  • a CAF typically accompanies a carcinoma, but as long as similar properties are possessed, it may accompany a malignant solid tumor other than a carcinoma, for example, a sarcoma such as fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, synovial sarcoma, chondrosarcoma, or osteosarcoma, and they are included in the scope of the present invention.
  • a sarcoma such as fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, synovial sarcoma, chondrosar
  • a CAF is preferably present at sites other than the liver and pancreas. Therefore, in this embodiment, the CAF is present in, for example, the brain, head and neck, breast, limbs, lung, heart, thymus, esophagus, stomach, small intestine (duodenum, jejunum, ileum), large intestine (colon, cecum, appendix, rectum), gallbladder, anus, kidney, ureter, bladder, prostate, penis, testis, uterus, ovary, vulva, vagina, skin, striated muscle, smooth muscle, synovial membrane, cartilage, bone, thyroid, adrenal gland, peritoneum, mesentery, etc.
  • a retinoid is a member of the class of compounds having a skeleton in which four isoprenoid units are bonded in a head-to-tail manner. See G. P. Moss, "Biochemical Nomenclature and Related Documents," 2nd Ed. Portland Press, pp. 247-251 (1992 ). Vitamin A is a generic descriptor for a retinoid qualitatively showing the biological activity of retinol. Retinoid in the present invention promotes specific substance delivery to a cancer cell and a CAF (that is, the substance is targeted at these cells).
  • Such a retinoid is not particularly limited, and examples thereof include retinoid derivatives such as retinol, retinal, retinoic acid, an ester of retinol and a fatty acid, an ester of an aliphatic alcohol and retinoic acid, etretinate, tretinoin, isotretinoin, adapalene, acitretine, tazarotene, and retinol palmitate, and vitamin A analogues such as fenretinide (4-HPR), and bexarotene.
  • retinoid derivatives such as retinol, retinal, retinoic acid, an ester of retinol and a fatty acid, an ester of an aliphatic alcohol and retinoic acid, etretinate, tretinoin, isotretinoin, adapalene, acitretine, tazarotene, and retinol palmitate
  • retinoid has the same meaning as retinoid derivative and/or vitamin A analogue. Although the mechanism by which a retinoid promotes specific substance delivery to a cancer cell and a CAF has not been completely elucidated, it is surmised that uptake via a certain type of receptor on the surface of a CAF is involved.
  • retinol, retinal, retinoic acid, an ester of retinol and a fatty acid e.g. retinyl acetate, retinyl palmitate, retinyl stearate, and retinyl laurate
  • an ester of an aliphatic alcohol and retinoic acid e.g. ethyl retinoate
  • retinoid isomers such as cis-trans
  • the retinoid may be substituted with one or more substituents.
  • the retinoid in the present invention includes a retinoid in an isolated state as well as in a solution or mixture state with a medium that can dissolve or retain the retinoid.
  • the targeting referred to here means enabling a substance such as a drug or a drug carrier to be delivered to a specific target such as a specific cell or tissue (in the present invention a cell selected from the group consisting of cancer-associated fibroblasts) more rapidly, efficiently, and/or in a larger quantity than with non-target cell or tissue and a substance that is non-targeted, that is, it enables specific delivery to a target
  • the targeting agent means a substance that can subject a substance to the above-mentioned targeting when it binds to or reacts with the substance. Therefore, in the present specification, for example, 'cancer cell-specific carrier or composition' has the same meaning as 'cancer cell-targeted carrier or composition'.
  • the targeting agent is in the configuration of a molecule, this has the same meaning as a targeting molecule.
  • the composition of the present invention may include a constituent element other than the retinoid, for example, an element for promoting or stabilizing binding between the targeting agent and a carrier or a drug, an element for protecting the retinoid during storage, during use in a production of a formulation, or during storage of a formulation, or a spacer for spatially separating the retinoid from a carrier or a drug.
  • the targeting agent is bound to any carrier or drug, and can target this carrier or drug at a cell selected from the group consisting of a cancer cell and a cancer-associated fibroblast.
  • composition of the present invention employs a substance delivery carrier to a cancer-associated fibroblast, the carrier including the targeting agent.
  • the carrier may be formed from the targeting agent on its own or may be formed by making the targeting agent bind to or be enclosed in another constituent component, other than the targeting agent, of the carrier. Therefore, the carrier may include a constituent component other than the targeting agent.
  • a constituent component is not particularly limited, and any component known in the medicinal and pharmaceutical fields may be used, but those that can enclose the targeting agent, and the retinoid in particular, or can bind thereto are preferable.
  • a component examples include a lipid, for example, a phospholipid such as glycerophospholipid, a sphingolipid such as sphingomyelin, a sterol such as cholesterol, a vegetable oil such as soybean oil or poppy seed oil, a mineral oil, and a lecithin such as egg-yolk lecithin, but the examples are not limited thereto.
  • a phospholipid such as glycerophospholipid
  • a sphingolipid such as sphingomyelin
  • a sterol such as cholesterol
  • a vegetable oil such as soybean oil or poppy seed oil
  • mineral oil a mineral oil
  • lecithin such as egg-yolk lecithin
  • a liposome for example, a natural phospholipid such as lecithin, a semisynthetic phospholipid such as dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or distearoylphosphatidylcholine (DSPC), dioleylphosphatidylethanolamine (DOPE), dilauroylphosphatidylcholin (DLPC), and cholesterol.
  • DMPC dimyristoylphosphatidylcholine
  • DPPC dipalmitoylphosphatidylcholine
  • DSPC distearoylphosphatidylcholine
  • DOPE dioleylphosphatidylethanolamine
  • DLPC dilauroylphosphatidylcholin
  • a particularly preferred component is a component that can avoid capture by the reticuloendothelial system, and examples thereof include cationic lipids such as N-( ⁇ -trimethylammonioacetyl)-didodecyl-D-glutamate chloride (TMAG), N,N',N'',N''-tetramethyl-N,N',N'',N'''-tetrapalmitylspermine (TMTPS), 2,3-dioleyloxy-N-[2 (sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA), N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), dioctadecyldimethylammonium chloride (DODAC), didodecylammonium bromide (DDAB), 1,2-dioleyloxy-3
  • the binding of the targeting agent to the carrier or the enclosing of it therein is also possible by binding or enclosing the targeting agent to or in a constituent component, other than the targeting agent, of the carrier by a chemical and/or physical method.
  • the binding or enclosing the targeting agent to or in the carrier can also be carried out by mixing the targeting agent and a constituent component, other than the targeting agent, of the carrier when preparing the carrier.
  • the amount of targeting agent bound to or enclosed in the carrier may be, as a weight ratio in the carrier constituent components including the targeting agent, 0.01% to 100%, preferably 0.2% to 20%, and more preferably 1% to 5%.
  • the binding or enclosing of the targeting agent to or in the carrier may be carried out before a drug, etc.
  • the present disclosure also relates to a process for producing a formulation targeted at a CAF, the process including a step of binding a targeting agent to any existing drug binding carrier or drug encapsulating carrier, for example, a liposomal formulation such as DaunoXome®, Doxil, Caelyx®, or Myocet®.
  • the configuration of the carrier contained in the composition present invention may be any configuration as long as a desired substance or body can be carried to a CAF, and although not limited thereto, examples thereof include a macromolecular micelle, a liposome, an emulsion, microspheres, and nanospheres.
  • the size of the carrier can be changed according to the type, etc. of drug. Such a size is not particularly limited and, for example, the diameter is preferably 50 to 200 ⁇ m, and more preferably 75 to 150 ⁇ m. This is because such a size is suitable for exhibiting the EPR effect which promotes the accumulation in cancer tissue, and is also suitable for delivery of a drug that controls the activity or growth of a CAF, which is described later. Such a diameter is measured by a dynamic light scattering method.
  • the molar ratio (abundance ratio) of the targeting agent to constituent components, other than the targeting agent, of the carrier when administered is preferably 8:1 to 1:4, more preferably 4:1 to 1:2, yet more preferably 3:1 to 1:1, and particularly preferably 2:1.
  • a molar ratio is effective in giving good binding or enclosing of the targeting agent to or in a carrier (that is, the targeting function of the targeting agent is not impaired) and in specifically delivering a substance to a CAF.
  • a liposomal configuration is preferable among the configurations, and a cationic liposome that includes a cationic lipid is particularly preferable.
  • the carrier contained in the composition of the present invention may contain a substance to be carried within its interior, may be attached to the exterior of a substance to be carried, or may be mixed with a substance to be carried, as long as the targeting agent contained therein is present in such a configuration that it can exhibit a targeting function.
  • the 'exhibiting a targeting function' referred to here means that the carrier containing the targeting agent reaches and/or is taken up by the CAF more rapidly, efficiently and/or in a larger quantity than with a carrier not containing the targeting agent, and this may easily be confirmed by, for example, adding a labeled or label-containing carrier to cultured cancer cell and/or CAF, and analyzing sites where the label is present after a predetermined period of time.
  • the present inventors have found that specific substance delivery to a CAF is efficiently realized by at least partially exposing the targeting agent on the exterior of a formulation containing the carrier at the latest by the time it reaches the CAF.
  • the present inventors consider this to be a phenomenon in which the targeting agent exposed on the exterior of the formulation containing the carrier is taken up by the CAF more efficiently than by normal diffusion, via a certain type of receptor on the surface of the CAF.
  • a technique for exposing the targeting agent on the exterior of the formulation containing the carrier is not particularly limited; for example, when preparing a carrier, excess targeting agent may be added relative to constituent components, other than the targeting agent, of the carrier.
  • the molar ratio (compounding ratio) of the targeting agent to constituent components, other than the targeting agent, of the carrier when compounded is preferably 8:1 to 1:4, more preferably 4:1 to 1:2, yet more preferably 3:1 to 1:1, and particularly preferably 2:1.
  • the substance or body that is delivered by the present carrier is not particularly limited, and it preferably has a size such that it can physically move within the body of a living being from an administration site to a lesion site where a CAF is/are present. Therefore, the carrier can carry not only a substance such as an atom, a molecule, a compound, a protein, or a nucleic acid, but also a body such as a vector, a virus particle, a cell, a drug-releasing system formed from one or more elements, or a micromachine.
  • the above substance or body is selected from drugs that control (e.g. increase or suppress) the activity and growth of a CAF.
  • the substance that the carrier delivers is 'a drug controlling the activity or growth of a CAF'.
  • the activity of a CAF means various activities such as secretion, uptake, migration, etc. exhibited by CAF, and in the present invention it typically means activities involved in the onset and/or progression of a cancer in particular.
  • activities include the production/secretion of bioactive substances such as TGF- ⁇ , HGF, PDGF, VEGF, IGF (IFG1, IGF2, etc.), MMP (MMP1, 2, 3, 9, 11, 13, 14, etc.), FGF (FGF7, bFGF, etc.), uPA, cathepsin, and SDF-1, and extracellular matrix components such as collagen, proteoglycan, tenascin, fibronectin, thrombospondin, osteopontin, osteonectin, and elastin.
  • bioactive substances such as TGF- ⁇ , HGF, PDGF, VEGF, IGF (IFG1, IGF2, etc.), MMP (MMP1, 2, 3, 9, 11, 13, 14, etc.), FGF (FGF7, bFGF,
  • the 'drug controlling the activity or growth of a CAF' referred to here may be any drug that directly or indirectly suppresses the physical, chemical, and/or physiological actions, etc. of a CAF related to the onset and/or progression of a cancer, and examples thereof include, without being limited thereto, drugs that inhibit the activity or production of the above bioactive substances, for example, TGF- ⁇ II receptors that antagonize TGF- ⁇ (truncated TGF- ⁇ II receptor, soluble TGF- ⁇ II receptor, etc.), MMP inhibitors such as batimastat, antibodies and antibody fragments that neutralize the above bioactive substances, substances that suppress the expression of the above bioactive substances, such as an siRNA, a ribozyme, an antisense nucleic acid (including RNA, DNA, PNA, and composites thereof), substances that have a dominant negative effect such as a dominant negative mutant, vectors expressing same, cell activation inhibitors such as a sodium channel inhibitor, cell-growth inhibitors such as alkylating agents
  • antitumor antibiotics e.g. idarubicin hydrochloride, epirubicin hydrochloride, daunorubicin hydrochloride, daunorubicin citrate, doxorubicin hydrochloride, pirarubicin hydrochloride, bleomycin hydrochloride, peplomycin sulfate, mitoxantrone hydrochloride, mitomycin C, etc.
  • antimetabolites e.g.
  • gemcitabine hydrochloride enocitabine, cytarabine ocfosfate, a cytarabine formulation, tegafur/uracil, a tegafur/gimeracil/oteracil potassium mixture, doxifluridine, hydroxycarbamide, fluorouracil, methotrexate, and mercaptopurine, etc.
  • alkaloids such as etoposide, irinotecan hydrochloride, vinorelbine tartrate, docetaxel hydrate, paclitaxel, vincristine sulfate, vindesine sulfate, and vinblastine sulfate
  • platinum complexes such as carboplatin, cisplatin, nedaplatin, etc., and apoptosis inducers such as compound 861 and gliotoxin.
  • the 'drug controlling the activity or growth of a CAF' referred to in the present invention may be any drug that directly or indirectly promotes the physical, chemical, and/or physiological actions, etc. of a CAF directly or indirectly related to suppressing the onset and/or progression of a cancer.
  • a drug controlling the activity or growth of a CAF' include drugs controlling the metabolism of an extracellular matrix, for example, collagen, and examples thereof include substances having an effect in suppressing the expression of a target molecule, such as an siRNA, a ribozyme, and an antisense nucleic acid (including RNA, DNA, PNA, or a composite thereof), which are targeted at an extracellular matrix constituent molecule produced by a CAF or targeted at one or more molecules involved in the production or secretion of the extracellular matrix constituent molecule, substances having a dominant negative effect such as a dominant negative mutant, and vectors expressing same.
  • a target molecule such as an siRNA, a ribozyme, and an antisense nucleic acid (including RNA, DNA, PNA, or a composite thereof)
  • siRNA is a double strand RNA having a sequence specific to a target molecule such as an mRNA, and suppresses the expression of a substance, for example, a protein, formed by the target molecule, by promoting the decomposition of the target molecule (RNA interference).
  • RNA interference RNA interference
  • Fire et al. published the principle (Nature, 391: 806-811, 1998 )
  • a wide range of research has been carried out into the optimization of siRNAs, and a person skilled in the art is familiar with such techniques.
  • intensive research has been carried out into substances, other than siRNAs, that cause RNA interference or a gene expression inhibition reaction, and at present there are a large number of such substances.
  • JP 2003-219893 A discloses a double strand polynucleotide formed from DNA and RNA that inhibits the expression of a target gene.
  • This polynucleotide may be either a DNA/RNA hybrid in which one of the double strands is DNA and the other is RNA, or a DNA/RNA chimera in which a portion of the same strand is DNA and the other portion is RNA.
  • Such a polynucleotide is preferably formed from 19 to 25 nucleotides, more preferably 19 to 23 nucleotides, and yet more preferably 19 to 21 nucleotides; in the case of a DNA/RNA hybrid it is preferable that the sense strand is DNA and the antisense strand is RNA, and in the case of a DNA/RNA chimera it is preferable that portion on the upstream side of the double strand polynucleotide is RNA.
  • Such a polynucleotide may be prepared so as to have any sequence by a standard procedure of a known chemical synthetic method.
  • the target molecule is preferably a molecule that can completely suppress the production and/or secretion of an extracellular matrix constituent molecule, for example, and examples thereof include, without being limited thereto, HSP47.
  • the gene sequence of HSP47 or a homologue thereof is disclosed as, for example, GenBank accession No. AB010273 (human), X60676 (mouse), and M69246 (rat, gp46).
  • an siRNA, a DNA/RNA hybrid, a chimeric polynucleotide, an antisense nucleic acid, etc, that are targeted at HSP47 are preferable.
  • the substance or body delivered by the carrier of the present invention may or may not be labeled. Labeling enables the success or failure of transport, increases and decreases in CAFs, etc. to be monitored, and is particularly useful at the testing/research level.
  • a label may be selected from any label known to a person skilled in the art such as, for example, any radioisotope, magnetic material, a substance that binds to a labeling substance (e.g. an antibody), a fluorescent substance, a fluorophore, a chemiluminescent substance, an enzyme, etc.
  • a cancer-associated fibroblast means that it is suitable to use cancer-associated fibroblasts as a target, and this includes it being possible to deliver a substance to a target cell, that is, a cancer-associated fibroblast, more rapidly, efficiently, and/or in a larger quantity than to other cells (non-target cells), for example, a noncancer cell or a normal fibroblast.
  • the carrier of the present invention can deliver a substance to a cancer-associated fibroblast at a rate and/or efficiency of at least 1.1 times, at least 1.2 times, at least 1.3 times, at least 1.5 times, at least 2 times, or even at least 3 times compared with other cells.
  • the 'efficiency' referred to here means the proportion of cells to which a substance is delivered relative to all the cells of the evaluation target.
  • the present invention relates to a composition that includes the targeting agent or carrier, and one or more types of the above-mentioned drugs controlling the activity or growth of a CAF, the composition being for for controlling the activity or growth of a CAF (anti-CAF composition), or for treating a cancer in which CAF is involved, and use of the targeting agent or carrier in the production of these compositions.
  • the cancer is any malignant tumor, and examples thereof include fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, synovial sarcoma, chondrosarcoma, osteosarcoma and, furthermore, brain tumor, head and neck carcinoma, breast carcinoma, lung carcinoma, esophageal carcinoma, stomach carcinoma, duodenal carcinoma, appendiceal carcinoma, colon carcinoma, rectal carcinoma, hepatic carcinoma, pancreatic carcinoma, gallbladder carcinoma, bile duct carcinoma, anal carcinoma, kidney carcinoma, ureteral carcinoma, bladder carcinoma, prostate carcinoma, penile carcinoma, testicular carcinoma, uterine carcinoma, ovarian carcinoma, vulvar carcinoma, vaginal carcinoma, skin carcinoma, leukemia, and malignant lymphoma as long as the cancer is accompanied by
  • the cancer in which CAF is involved in the present invention is not only a 'CAF-accompanied cancer' for which CAF is present in the interior or the periphery of the cancer, but also includes a cancer from which CAF is spatially separated but whose growth and activity are promoted by the above-mentioned bioactive substances released from CAF.
  • the cancer in which CAF is involved broadly means a malignant tumor, and includes any carcinoma, which is an epithelial malignant tumor, such as for example brain tumor, head and neck carcinoma, breast carcinoma, lung carcinoma, esophageal carcinoma, stomach carcinoma, duodenal carcinoma, appendiceal carcinoma, colon carcinoma, rectal carcinoma, hepatic carcinoma, pancreatic carcinoma, gallbladder carcinoma, bile duct carcinoma, anal carcinoma, kidney carcinoma, ureteral carcinoma, bladder carcinoma, prostate carcinoma, penile carcinoma, testicular carcinoma, uterine carcinoma, ovarian carcinoma, vulvar carcinoma, vaginal carcinoma, and skin carcinoma and, furthermore, any other malignant solid tumor, which is a nonepithelial malignant tumor, such as for example fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma
  • a cancer in which CAF is involved selected from colorectal carcinoma, lung carcinoma, breast carcinoma, prostate carcinoma, stomach carcinoma, bile duct carcinoma, and a skin carcinoma such as basal cell carcinoma, can advantageously be treated due to a high degree of contribution of CAF to the growth.
  • the cancer in which CAF is involved does not include hepatic carcinoma or pancreatic carcinoma.
  • the treatment of a cancer in which CAF is involved does not include the prevention of hepatic carcinoma or pancreatic carcinoma.
  • One embodiment of the anticancer composition of the present invention includes the targeting agent or the carrier, and a drug controlling the activity or growth of a CAF, and delivering this to a CAF and controlling the activity or growth thereof allows an anticancer action to be exhibited indirectly.
  • Yet another embodiment of the anticancer composition of the present invention includes the targeting agent or the carrier, and a drug controlling the activity or growth of a cancer cell and a drug controlling the activity or growth of a CAF, and since the drug controlling the activity or growth of a cancer cell acts on a cancer cell, and the drug controlling the activity or growth of a CAF acts on a CAF, the anticancer action is doubled.
  • the drug controlling the activity or growth of a cancer cell and the drug controlling the activity or growth of a CAF may be identical to each other or different from each other.
  • the carrier may contain a substance to be carried within its interior, may be attached to the exterior of a substance to be carried, or may be mixed with a substance to be carried. Therefore, depending on the administration route, the manner in which the drug is released, etc., the composition may be covered with an appropriate material such as, for example, an enteric coating or a material that disintegrates over time, or may be incorporated into an appropriate drug release system.
  • composition of the present invention may be administered via various routes including both oral and parenteral, and examples thereof include, but are not limited to, oral, intravenous, intramuscular, subcutaneous, local, rectal, intraarterial, intraportal, intraventricular, transmucosal, percutaneous, intranasal, intraperitoneal, intratumoral, intrapulmonary, and intrauterine routes, and it may be formulated into a dosage form suitable for each administration route.
  • Such a dosage form and formulation method may be selected as appropriate from any known forms and methods (see e.g. Hyojun Yakuzaigaku (Standard Pharmaceutics), Ed. by Yoshiteru Watanabe et al., Nankodo, 2003 ).
  • dosage forms suitable for oral administration include, but are not limited to, powder, granules, tablet, capsule, liquid, suspension, emulsion, gel, and syrup
  • examples of the dosage form suitable for parenteral administration include injections such as an injectable solution, an injectable suspension, an injectable emulsion, and an injection in a form that is prepared at the time of use.
  • Formulations for parenteral administration may be a configuration such as an aqueous or nonaqueous isotonic aseptic solution or suspension.
  • the targeting agent, the carrier, or the composition of the present invention may be supplied in any configuration, but from the viewpoint of storage stability, it is preferably provided in a configuration that can be prepared at the time of use, for example in a configuration that allows a doctor and/or a pharmacist, a nurse, another paramedic, etc. to prepare it at the place of treatment or in the vicinity thereof.
  • the targeting agent, the carrier, or the composition of the present invention is provided as one or more containers containing at least one essential constituent element therefor, and it is prepared prior to use, for example, within 24 hours prior to use, preferably within 3 hours prior to use, and more preferably immediately prior to use.
  • a reagent, a solvent, preparation equipment, etc. that are normally available in a place of preparation may be used as appropriate.
  • the present invention therefore also relates to a preparation kit for the composition, the kit including one or more containers containing singly or in combination a targeting agent, and a substance to be carried, and a carrier-constituting substance other than the targeting agent, and also to a constituent element necessary for the carrier or the composition provided in the form of such a kit.
  • the kit of the present invention may contain, in addition to the above, instructions, an electronic recording medium such as a CD or DVD related to a process for preparing the targeting agent, the carrier, and the composition of the present invention, or an administration method, etc.
  • the kit of the present invention may include all of the constituent elements for completing the targeting agent, the carrier, or the composition of the present invention, but need not always include all of the constituent elements. Therefore, the kit of the present invention need not include a reagent or a solvent that is normally available at a place of medical treatment, an experimental facility, etc. such as, for example, sterile water, physiological saline, or a glucose solution.
  • the present disclosure further relates to a method for controlling the activity or growth of a CAF or treating a cancer in which CAF is involved, the method including administering an effective amount of the composition to a subject that requires it.
  • the effective amount referred to here is, in a method for treating a cancer, for example, an amount that suppresses the onset of a cancer, alleviates the symptoms, or delays or stops progression of the cancer, and is preferably an amount that prevents the onset of a cancer or cures a cancer. It is also preferably an amount that does not cause an adverse effect that exceeds the benefit from administration.
  • Such an amount may be determined as appropriate by an in vitro test using cultured cells or by a test in a model animal such as a mouse, a rat, a dog, or a pig, and such test methods are well known to a person skilled in the art.
  • a model animal such as a mouse, a rat, a dog, or a pig
  • the dose of the targeting agent contained in the carrier and the dose of the drug used in the method of the present disclosure are known to a person skilled in the art, or may be determined as appropriate by the above-mentioned test, etc.
  • One embodiment of the cancer treatment method involves administering the anticancer composition that includes a targeting agent or a carrier and a drug controlling the activity or growth of a CAF, and delivering the drug to a CAF so as to control the activity or growth thereof, thus indirectly treating the cancer.
  • Yet another embodiment of the cancer treatment method includes administering the anticancer composition that includes a targeting agent or a carrier and a drug controlling the activity or growth of a cancer cell and a drug controlling the activity or growth of a CAF, and delivering the drug controlling the activity or growth of a cancer cell to a cancer cell and the drug controlling the activity or growth of a CAF to a CAF respectively, thus treating the cancer via two routes.
  • the drug controlling the activity or growth of a cancer cell and the drug controlling the activity or growth of a CAF may be identical to each other or different from each other.
  • the specific dose of the composition administered may be determined while taking into consideration various conditions with respect to a subject that requires the treatment, such as for example the severity of the symptoms, general health condition of the subject, age, weight, gender of the subject, diet, the timing and frequency of administration, a medicine used in combination, reaction to the treatment, compliance with the treatment, etc.
  • administration route there are various routes including both oral and parenteral administrations, and examples thereof include oral, intravenous, intramuscular, subcutaneous, local, rectal, intraarterial, intraportal, intraventricular, transmucosal, percutaneous, intranasal, intraperitoneal, intratumoral, intrapulmonary, and intrauterine routes.
  • the frequency of administration depends on the properties of the composition used and the above-mentioned condition of the subject, and may be a plurality of times per day (that is, 2, 3, 4, 5, or more times per day), once a day, every few days (that is, every 2, 3, 4, 5, 6, or 7 days, etc.), a few times per week (e.g. 2, 3, 4 times, etc. per week), every other week, or every few weeks (that is, every 2, 3, 4 weeks, etc.).
  • the term 'subject' means any living individual, preferably an animal, more preferably a mammal, and yet more preferably a human individual.
  • the subject may be healthy or affected by some disorder, and when treatment of a cancer is intended, it typically means a subject affected by a cancer or having a risk of being affected.
  • the term 'treatment' includes all types of medically acceptable preventive and/or therapeutic intervention for the purpose of the cure, temporary remission, or prevention of a disorder.
  • the term 'treatment' includes medically acceptable intervention for various purposes, including delaying or stopping the progression of a cancer, involution or disappearance of lesions, prevention of onset of a cancer, and prevention of recurrence.
  • the present invention also relates to a method for delivering a drug to a cancer cell and/or a CAF, utilizing the above carrier.
  • This method includes, but is not limited to, for example, a step of supporting a substance to be carried on the carrier, and a step of administering or adding the carrier having the substance to be carried supported thereon to a living being or a medium, for example a culture medium, containing a cancer cell and/or a CAF. These steps may be achieved as appropriate in accordance with any known method or a method described in the present specification, etc.
  • the above delivery method may be combined with another delivery method, for example, a delivery method targeted at an organ in which a cancer cell and/or a CAF is/are present.
  • the above method includes a mode carried out in vitro and a mode in which a cancer cell and/or a CAF inside the body is/are targeted.
  • Cancer tissue or peripheral normal tissue (normal tissue separated from a site spaced from cancer tissue by at least 2 cm) removed from a colon cancer patient was finely cut into 1 x 1 x 1 mm, then centrifugally washed with PBS twice, and the pellets were cultured in a culture liquid (DMEM (Dulbecco's Modified Eagle Medium) containing collagenase type I (225 U/ml), hyaluronidase (125 U/ml), 10% FBS (fetal bovine serum), streptomycin/penicillin) for 24 hours. Subsequently, the supernatant was aspirated, and culturing was continued after changing the liquid culture for 10% FBS/DMEM.
  • DMEM Dynamic Eagle Medium
  • ⁇ -SMA which is a marker for CAFs
  • vimentin which is a marker for mesenchymal cells
  • a 6-well plate was seeded with CAFs or normal fibroblasts obtained in Example 1 at a density of 1 x 10 5 cells/well and cultured with 10% FBS/DMEM, the liquid culture was replaced with 0.5% FBS/DMEM in a confluent state on the third day, and the liquid culture was seeded with colon cancer cell line M7609 cells (2 x 10 5 cells), and coculturing was carried out for 7 days.
  • the number of M7609 cells was counted with a Coulter counter (Beckman) at 0 days and on the 3rd and 5th days. The results are given in FIG. 2 . This shows that CAFs promote the growth of cancer cells.
  • siRNA targeted at gp46 (GenBank Accession No. M69246), which is a rat homologue of human HSP47, and a random siRNA control were purchased from Hokkaido System Science Co., Ltd. Each siRNA consists of 27 bases overhanging on the 3' side, and the sequences are as follows.
  • siRNA labeled on the 5' side with the fluorescent dye 6'-carboxyfluorescein (6-FAM) was also prepared.
  • a cationic liposome containing DC-6-14, cholesterol, and DOPE at a molar ratio of 4:3:3 (Lipotrust, Hokkaido System Science Co., Ltd.) was used. 10 nmol of liposome and 20 nmol of all-trans retinol (hereinafter, referred to as 'VA') were mixed in DMSO using a 1.5 mL tube, then dissolved in chloroform, evaporated once, and then suspended in PBS. Subsequently, the siRNA (10 ⁇ g/mL) obtained in Example 3 and the liposome suspension were mixed at a ratio of 1:1 (w/w).
  • VA-lip-siRNA siRNA-containing VA-bound liposome
  • siRNA-containing liposome lip-siRNA
  • VA-bound liposome VA-lip
  • a 6-well plate was seeded with CAFs or normal fibroblasts at a density of 5 x 10 5 cells/well, and culturing was carried out in 10% FBS/DMEM. After 2 days it was washed with serum-free medium in a subconfluent state, and the medium was replaced with serum-containing OPTI-MEM. Subsequently, the liposome suspension containing siRNA (final concentration 50 pmol/mL) obtained in Example 4 was added to the medium, and reacted at 37°C for 24 hours. When the VA-bound liposome was added, the final concentration of VA was adjusted to 40 nmol/mL. Furthermore, as siRNA, 6-FAM labeled random siRNA was used.
  • FIG. 4 shows a representative field of vision used in evaluating the localization of siRNA, and according to this, when the VA-bound liposome (VA-lip-siRNA-FAM) was used, siRNA was incorporated into all of the CAFs in the field of vision, but when the liposome containing no VA (lip-siRNA-FAM) was used, siRNA was incorporated into only 1 CAF among 5 CAFs in the field of vision. Moreover, FIG.
  • VA-lip-siRNA-FAM the liposome containing no VA
  • Liposome encapsulated DNR lip-DNR, DaunoXome®, hereinafter also called liposomal DNR
  • VA liposomal DNR
  • DaunoXome® daunorubicin citrate is encapsulated in a liposome formed from distearoyl phosphatidylcholine (DSPC) and cholesterol (Chol), and the molar ratio of DSPC:Chol:daunorubicin citrate is 10:5:1.
  • a chamber slide was seeded with the CAFs obtained in Example 1, normal fibroblasts, or commercial fibroblasts (skin fibroblast, Cells System, product No. CS-2FO-101) respectively at a density of 2 x 10 4 cells/chamber, cultured with 10% FBS/DMEM overnight, then washed with serum-free medium once in a subconfluent state, and the medium was replaced with serum-containing OPTI-MEM. Subsequently, a liposome suspension containing lip-DNR or the VA-lip-DNR obtained above at 5 ⁇ g/mL as a DaunoXome® concentration was added to medium and reacted at 37°C. Furthermore, nuclei were stained with DAPI. The localization of DNR, which exhibited a red color, was examined under a fluorescence microscope before the reaction started (0 min), and 5 minutes, 15 minutes, and 30 minutes after the reaction started. The results are given in FIGS. 6 to 9 .
  • CAF cells were established by cloning from a clinical sample of a human cancer patient.
  • HT-1080 human fibrosarcoma cells (fibrosarcoma), and HepG2 human hepatic cancer-derived cells were purchased from American Type Culture Collection. All cells were cultured with a DMEM medium (Sigma Aldrich) to which 10% fetal bovine serum (FBS) was added. They were trypsinized, a 4-well culture slide (BD Falcon #354114) was then seeded therewith at 2 x 10 5 cells/mL, and cultured overnight under conditions of 37°C and 5% CO 2 .
  • DMEM medium Sigma Aldrich
  • FBS fetal bovine serum
  • DaunoXome® As a model drug, DaunoXome® (Gilead Sciences, Inc.), which is a liposome encapsulated daunorubicin formulation, was used. DaunoXome® contains the drug daunorubicin at a concentration of 2 mg/mL. 990 ⁇ L of 10% FBS-containing DMEM was added to 10 ⁇ L of DaunoXome®, thus giving a 20 ⁇ g/mL solution.
  • VA-containing liposomal formulation VA+
  • RA-containing liposomal formulation retinoic acid+
  • the medium was removed from the culture slide, and 750 ⁇ L of fresh 10% FBS-containing DMEM was added thereto. Except for the culture slide that had no treatment (No treatment), 250 ⁇ L of formulation (VA-), which was the DaunoXome® solution containing no VA or RA, the VA-containing liposomal formulation (VA+), and the RA-containing liposomal formulation (retinoic acid+) respectively were added and incubated under conditions of 37°C and 5% CO 2 for 15 minutes.
  • VA- formulation
  • VA+ the VA-containing liposomal formulation
  • retinoic acid+ retinoic acid+
  • the medium was removed from each of the culture slides, they were washed with 1 mL of PBS twice, subsequently 1 mL of a 4% paraformaldehyde solution (Wako Pure Chemical Industries, Ltd.) was added thereto, and the cells were fixed at room temperature for 5 minutes. The fixing solution was then removed, and the cells were washed with PBS three times.
  • the slide glass was taken out from each culture slide, Prolong Gold (Invitrogen) was added dropwise, and the slide glass was sealed with a cover glass.
  • the slide glass was examined using a fluorescence microscope (Keyence BZ8000). It is known that daunorubicin is incorporated into the nucleus of a cell and emits red fluorescence under green excitation light ( FIG. 10 upper left). Furthermore, the Prolong Gold used when sealing contains the fluorescent dye DAPI. DAPI binds to the nucleus of a cell and exhibits blue fluorescence under UV excitation light ( FIG. 10 upper right). Therefore, in microscopic examination, when there is uptake of a liposomal formulation, both red and blue fluorescence is observed, and as a result a purple color is exhibited when superimposing the two images ( FIG. 10 lower). On the other hand, when a liposomal formulation is not incorporated into a cell, only blue fluorescence due to DAPI is detected.
  • Example 8 CAF-specific growth inhibition by VA-bound liposome encapsulated drug
  • the CAF growth inhibitory activity of VA-bound liposome containing siRNA toward gp46 or DNR was examined.
  • siRNA sequence A described in Example 3 was used.
  • a 24-well dish was seeded with CAFs and normal fibroblasts respectively at 1 x 10 4 cells and cultured with 10% FBS/DMEM for 24 hours, VA-lip-siRNA was added at a final concentration of 50 pmol/mL, incubation was carried out for 1 hour, and subsequently the cells were washed. The viable cell count was measured by the WST-1 method after culturing with 10% FBS/DMEM for 48 hours.
  • lip-siRNA- and random siRNA-containing VA-bound and nonbound liposomes (VA-lip-siRNA (ran) and lip-siRNA (ran) were used, and evaluation of significant difference was carried out by the U test.
  • a 96-well dish was seeded with CAFs or normal fibroblasts respectively at 2 x 10 3 cells, and cultured with 10% FBS/DMEM for 24 hours, subsequently the VA-lip-DNR obtained in Example 6 or lip-DNR was added at a final DaunoXome® concentration of 5 ⁇ g/mL and after exposing for 15 minutes, the cells were washed. Culturing was carried out with 10% FBS/DMEM for 24 hours, and the viable cell count was measured by the WST-1 method. Evaluation of significant difference was carried out by the U test. The results are shown in FIG. 15 .
  • Chamber slides were seeded with human fibrosarcoma-derived cell lines HT-1080, HS913T, and Sw684, human breast cancer-derived cell line MCF7, human osteosarcoma-derived cell line Saos2 (all purchased from ATCC), and human hepatic cancer-derived cell line Huh7 (purchased from JCRB Cell Bank) at a cell density of 1 x 10 4 cells/well, cultured overnight, and washed with 10% FBS-containing DMEM.
  • a 96-well plate was seeded with human fibrosarcoma-derived cell lines HT-1080, HS913T, and Sw684 at a cell density of 2 x 10 3 cells/well and cultured overnight, subsequently 5 ⁇ g/mL of lip-DNR or 5 ⁇ g/mL of the VA-lip-DNR used in Example 6 was added, and culturing was carried out for 15 minutes. Following this, the cells were washed so as to remove drug that was outside the cells, and then cultured with 10% FBS-containing DMEM for 22 hours. 2 hours after WST-1 Cell Proliferation Assay Kit (Cayman Chemical) was added thereto, the absorbance was measured, and the proportion relative to the number of cells when the treatment was not carried out was calculated. From the result shown in FIG. 20 , it can be seen that the binding of VA remarkably increases the antitumor activity of liposomal DNR.
  • VA-bound liposome VA-lip-siRNA-FAM
  • liposome containing no VA liposome containing no VA (lip-siRNA-FAM) used in Example 5 were administered via the tail vein at doses of 200 nmol of VA, 100 nmol of lip, and 100 ⁇ g of siRNA. In this VA-bound liposome, part of the VA was already exposed on the surface of liposome when administered.
  • Example 12 (Comparative) in vivo VA-lip-DNR antitumor activity
  • composition of the present invention is extremely effective in treatment of a cancer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Dermatology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

    Technical Field
  • The present invention relates to a composition for use in treating cancer in which cancer-associated fibroblasts (CAF) are involved and a preparation kit for this composition.
  • Background Art
  • Cancer is one of the most significant diseases confronting mankind, and much research effort is going into the treatment thereof. In cancer treatment, particularly in the medical therapy of cancer, various anticancer agents for suppressing the growth of cancer cells have been developed, and some degree of success has been achieved, but since such drugs suppress the growth of not only cancer cells but also normal cells, there are problems with various side effects such as nausea and vomiting, hair loss, myelosuppression, kidney damage, and nerve damage. As an approach to reduce such side effects, attempts have been made in recent years to specifically deliver an anticancer agent to cancer cells or cancer tissue. By specific delivery of an anticancer agent, is it is not only possible to prevent the anticancer agent from reaching normal cells and reduce the side effects, but also to obtain the economic benefit that the dose of the anticancer agent can be decreased.
  • As a concrete example of a delivery method, there have been developed techniques such as passive targeting in which the EPR (enhanced permeability and retention) effect is utilized and active targeting in which a drug is modified by a ligand for a surface molecule that is specifically expressed on cancer cells. As molecules that can be utilized in active targeting, molecules that are endocytosed into cells as a result of ligand bonding, such as, for example, CD19, HER2, a transferrin receptor, a folate receptor, a VIP receptor, EGFR (Nonpatent Publication 1), RAAG10 (Patent Publication 1), PIPA (Patent Publication 2), and KID3 (Patent Publication 3) have been reported. However, none of the delivery methods are yet satisfactory, and there has been a further desire for the development of cancer cell-specific delivery methods.
  • Furthermore, in the medical therapy of cancer, from the idea that a cancer can be cured by killing the cancer cells themselves, various anticancer agents targeted at cancer cells have been developed and used. However, such attempts could not always achieve satisfactory results because of the above-mentioned problems with side effects, or the occurrence of additional phenomena such as relapse due to minimal residual disease, resistance of tumor cells to the anticancer agent, etc.
  • On the other hand, as a result of recent research, it has gradually become clear that the environment around a cancer, for example, interstitial tissue which includes blood vessels, ECM, and fibroblasts, plays an important role in the onset and progression of the cancer. For example, Camps et al. (see Nonpatent Publication 2) reported that when an athymic nude mouse was inoculated with tumor cells that do not form a tumor on their own or for which the tumor formation rate is low, together with tumorigenic fibroblasts, rapid and marked formation of a tumor was observed, and Olumi et al. (see Nonpatent Publication 3) reported that when peritumoral fibroblasts (i.e. CAFs) from a prostate tumor patient were grafted on an athymic animal together with human prostate cells, the neoplastic growth thereof was markedly accelerated. Furthermore, it has been clarified that a bioactive substance such as PDGF (platelet-derived growth factor), TGF-β (transforming growth factor-β), HGF (hepatocyte growth factor), or SDF-1 (stromal cell-derived factor - 1) produced in the interstitium is involved in such growth of a tumor (see Nonpatent Publication 4).
  • From these findings, the importance of the environment around a cancer has been brought to the fore, and new treatment methods that, rather than the cancer cells themselves, are targeted at the environment around them have been investigated. Among them, CAFs, which secrete various bioactive substances and are deeply involved in the onset and progression of cancer, have been attracting attention in recent years, but fundamental research thereinto only has a short history of 10 or so years, and although some of the cancer treatment methods that are targeted at bioactive substances secreted from CAFs have been recognized as having some degree of effect, in the current situation none is recognized as having any effect as a cancer treatment method targeted at CAFs themselves (see Nonpatent Publication 4).
  • Reference List
    • Patent Publication 1. JP 2005-532050 A
    • Patent Publication 2. JP 2006-506071 A
    • Patent Publication 3. JP 2007-529197 A
    • Patent Publication 4. WO 2006/068232
    • Nonpatent Publication 1. Torchilin, AAPS J. 2007; 9(2): E128-47
    • Nonpatent Publication 2. Camps et al., Proc Natl Acad Sci U S A. 1990; 87 (1) : 75-9
    • Nonpatent Publication 3. Olumi et al., Cancer Res. 1999; 59(19): 5002-11
    • Nonpatent Publication 4. Micke et al., Expert Opin Ther Targets. 2005; 9(6): 1217-33
    Disclosure of Invention Problems to be Solved by the Invention
  • It is an object of the present invention to provide composition comprising a carrier.
  • Means for Solving the Problems
  • While searching for a novel cancer treatment method, the present inventors have found that there is not yet a carrier that can deliver a drug specifically to CAFs, and as a result of continuing an intensive investigation in order to develop such a carrier, it has been found that a carrier containing a retinoid as a targeting agent specifically accelerates drug delivery to CAFs. As a result of further investigation into the above carrier, it has been found that the carrier also specifically accelerates the delivery of a substance to cancer cells, and the present invention has thus been accomplished.
  • It is known that a carrier containing retinol delivers a drug to stellate cells storing retinol (see Patent Publication 4), but it was not known until now that it specifically accelerates the delivery of a drug to cancer cells or CAFs.
  • That is, the present invention relates to the compositions for use in treating cancer in which cancer-associated fibroblasts are involved as specified in the appended claims.
  • Effects of the Invention
  • The carrier contained in the composition of the present invention specifically targets a CAF, and efficiently delivers to a CAF a drug that controls the activity or growth of a CAF, thus enabling a desired effect such as, for example, suppression of the activity or growth of a CAF thereby curing cancer, suppressing the advance thereof, and preventing the onset thereof, to be achieved with the highest efficiency and the minimum side effects.
  • Since the anticancer composition of the present invention is based on the completely novel approach of treating a cancer by acting on a CAF efficacy can be expected on cancers for which a conventional treatment method could not give satisfactory results and, furthermore, a synergistic effect due to combined use with a conventional anticancer agent, angiogenesis inhibitor, etc. can be anticipated.
  • Furthermore, since the carrier contained in the composition invention can specifically deliver a substance to a cancer cell and a CAF, it can be utilized for specifically labeling a cancer cell and a CAF, gene transfer, etc, but such use is not part of the present invention.
  • Brief Description of Drawings
    • FIG. 1 is a photographic diagram of cancer tissue-derived cells immunostained with respect to α-SMA, vimentin, and desmin.
    • FIG. 2 is a graph showing change in the number of cancer cells when cancer cells and CAFs or normal fibroblasts are cocultured.
    • FIG. 3 is a graph in which the percentage introduction of siRNA to CAFs or normal fibroblasts when siRNA is delivered by various liposomes is compared over time.
    • FIG. 4 is a photographic diagram showing the localization of siRNA in CAFs that have been reacted with VA-lip-siRNA or lip-siRNA.
    • FIG. 5 is a photographic diagram showing the localization of siRNA in CAFs and normal fibroblasts that have been reacted with VA-lip-siRNA, lip-siRNA, or VA-lip.
    • FIG. 6 is a photographic diagram showing the localization of DNR in CAFs that have been reacted with VA-lip-DNR or lip-DNR. The numbers in the diagram show elapsed time (min) from the start of the reaction. The magnification is 200 times (400 times for enlarged images).
    • FIG. 7 is a photographic diagram showing the localization of DNR in normal fibroblasts that have been reacted with VA-lip-DNR or lip-DNR. The numbers in the diagram show elapsed time (min) from the start of the reaction. The magnification is 200 times.
    • FIG. 8 is a photographic diagram showing the localization of DNR in skin fibroblasts that have been reacted with VA-lip-DNR or lip-DNR. The numbers in the diagram show elapsed time (min) from the start of the reaction. The magnification is 200 times.
    • FIG. 9 is a photographic diagram showing the localization of DNR in CAFs that have been reacted with VA-lip-DNR (left) or lip-DNR (right). The magnification is 400 times (800 times for enlarged image).
    • FIG. 10 is a photographic diagram showing daunorubicin emitting red fluorescence under green excitation light (upper left), DAPI (4',6-diamino-2-phenylindole) emitting blue fluorescence under UV excitation light (upper right), and a merged image exhibiting a purple color (lower).
    • FIG. 11 is a photographic diagram showing the localization of DNR in CAFs that have been either not treated (No treatment: upper left) or reacted with DaunoXome® (VA-: upper right), DaunoXome® + retinol (VA+: lower left), or DaunoXome® + retinoic acid (Retinoic acid +: lower right). The magnification is 400 times.
    • FIG. 12 is a photographic diagram showing the localization of DNR in HT-1080 that has been either not treated (No treatment: upper left) or reacted with DaunoXome® (VA-: upper right), DaunoXome® + retinol (VA+: lower left), or DaunoXome® + retinoic acid (Retinoic acid +: lower right). The magnification is 400 times.
    • FIG. 13 is a photographic diagram showing the localization of DNR in HepG2 that has been either not treated (No treatment: upper left) or reacted with DaunoXome® (VA-: upper right), DaunoXome® + retinol (VA+: lower left), or DaunoXome® + retinoic acid (Retinoic acid +: lower right). The magnification is 400 times.
    • FIG. 14 is a graph showing the result of evaluation of the growth inhibitory activity of VA-lip-siRNA toward CAFs or normal fibroblasts. The ordinate denotes the percentage viable cell count after treatment when the viable cell count prior to treatment is 100.
    • FIG. 15 is a graph showing the result of evaluation of the growth inhibitory activity of VA-lip-DNR toward CAFs or normal fibroblasts. The ordinate denotes the percentage viable cell count after treatment when the viable cell count prior to treatment is 100.
    • FIG. 16 is a photographic diagram showing the intracellular localization state of liposomal DNR (VA-) or VA-bound liposomal DNR (VA+) in the human fibrosarcoma-derived cell line HT-1080. The upper section shows the localization of DNR, the lower section shows cells that have been subjected to nuclear staining with DAPI, and the figures show the time after addition.
    • FIG. 17 is a photographic diagram showing the intracellular localization state of liposomal DNR (VA-) or VA-bound liposomal DNR (VA+) in the human fibrosarcoma-derived cell line HS913T. The upper section shows the localization of DNR, the lower section shows cells that have been subjected to nuclear staining with DAPI, and the figures show the time after addition.
    • FIG. 18 is a photographic diagram showing the intracellular localization state of liposomal DNR (VA-) or VA-bound liposomal DNR (VA+) in the human fibrosarcoma-derived cell line Sw684. The upper section shows the localization of DNR, the lower section shows cells that have been subjected to nuclear staining with DAPI, and the figures show the time after addition.
    • FIG. 19 is a photographic diagram showing the intracellular localization state of liposomal DNR (VA (-)) or VA-bound liposomal DNR (VA (+)) in HT-1080, HS913T, Sw684, Huh7, MCF7, and Saos2 cells (15 min after addition). Blank denotes a microscopic image when neither liposomal DNR or VA-bound liposomal DNR were added.
    • FIG. 20 is a graph of the evaluation of the growth-inhibitory activity of liposomal DNR or VA-bound liposomal DNR toward the human fibrosarcoma-derived cell lines HT-1080, HS913T, and Sw684.
    • FIG. 21 is a photographic diagram showing the localization of siRNA in the tumor tissue of a tumor-bearing mouse to which VA-lip-siRNA or lip-siRNA had been intravenously administered. The right-hand side shows an individual to which VA-lip-siRNA had been administered, the left-hand side shows an individual to which lip-siRNA had been administered, the top shows an FAM image, and the bottom shows a merged FAM and Cy3 image. The magnification is 200 times.
    • FIG. 22 is a photographic diagram showing the localization of siRNA in the tumor tissue of a tumor-bearing mouse to which VA-lip-siRNA had been intravenously administered. The upper left shows an FAM image, the upper right shows a Cy3 image, the lower left shows a merged FAM and Cy3 image, and the lower right shows a merged FAM, Cy3, and DAPI image. The magnification is 200 times.
    • FIG. 23 is a graph showing the results of evaluating the in vivo antitumor activity of VA-lip-DNR (administered twice a week). The ordinate denotes the tumor mass volume (mm3), and the abscissa denotes the number of days after starting the treatment.
    Best Mode for Carrying Out the Invention
  • The present invention is explained in detail below.
  • In the present invention, a cancer-associated fibroblast (CAF) means an α-SMA (smooth muscle actin) positive fibroblast present in the interior and/or the periphery of a cancer lesion. The presence of a CAF is confirmed with respect to various cancers such as colon carcinoma, lung carcinoma, prostate carcinoma, breast carcinoma, stomach carcinoma, bile duct carcinoma, and basal cell carcinoma.
  • In the present invention, whether or not given cell is CAF is determined by the following method. That is, a cell present in the interior and/or the periphery of the cancer lesion is immunostained with a labeled antibody for α-SMA, which is a CAF marker, for example, FITC-labeled anti α-SMA antibody or Cy3-labeled anti α-SMA antibody, and that detected by α-SMA is determined to be a CAF.
  • Cancer accompanied by CAF in the present invention is not particularly limited, and examples thereof include solid carcinomas such as brain tumor, head and neck carcinoma, breast carcinoma, lung carcinoma, esophageal carcinoma, stomach carcinoma, duodenal carcinoma, appendiceal carcinoma, colon carcinoma, rectal carcinoma, hepatic carcinoma, pancreatic carcinoma, gallbladder carcinoma, bile duct carcinoma, anal carcinoma, kidney carcinoma, ureteral carcinoma, bladder carcinoma, prostate carcinoma, penile carcinoma, testicular carcinoma, uterine carcinoma, ovarian carcinoma, vulvar carcinoma, vaginal carcinoma, and skin carcinoma. Furthermore, a CAF typically accompanies a carcinoma, but as long as similar properties are possessed, it may accompany a malignant solid tumor other than a carcinoma, for example, a sarcoma such as fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, synovial sarcoma, chondrosarcoma, or osteosarcoma, and they are included in the scope of the present invention.
  • In one embodiment of the present invention, a CAF is preferably present at sites other than the liver and pancreas. Therefore, in this embodiment, the CAF is present in, for example, the brain, head and neck, breast, limbs, lung, heart, thymus, esophagus, stomach, small intestine (duodenum, jejunum, ileum), large intestine (colon, cecum, appendix, rectum), gallbladder, anus, kidney, ureter, bladder, prostate, penis, testis, uterus, ovary, vulva, vagina, skin, striated muscle, smooth muscle, synovial membrane, cartilage, bone, thyroid, adrenal gland, peritoneum, mesentery, etc.
  • A retinoid is a member of the class of compounds having a skeleton in which four isoprenoid units are bonded in a head-to-tail manner. See G. P. Moss, "Biochemical Nomenclature and Related Documents," 2nd Ed. Portland Press, pp. 247-251 (1992). Vitamin A is a generic descriptor for a retinoid qualitatively showing the biological activity of retinol. Retinoid in the present invention promotes specific substance delivery to a cancer cell and a CAF (that is, the substance is targeted at these cells). Such a retinoid is not particularly limited, and examples thereof include retinoid derivatives such as retinol, retinal, retinoic acid, an ester of retinol and a fatty acid, an ester of an aliphatic alcohol and retinoic acid, etretinate, tretinoin, isotretinoin, adapalene, acitretine, tazarotene, and retinol palmitate, and vitamin A analogues such as fenretinide (4-HPR), and bexarotene.
  • In the present invention, retinoid has the same meaning as retinoid derivative and/or vitamin A analogue. Although the mechanism by which a retinoid promotes specific substance delivery to a cancer cell and a CAF has not been completely elucidated, it is surmised that uptake via a certain type of receptor on the surface of a CAF is involved.
  • Among them, retinol, retinal, retinoic acid, an ester of retinol and a fatty acid (e.g. retinyl acetate, retinyl palmitate, retinyl stearate, and retinyl laurate) and an ester of an aliphatic alcohol and retinoic acid (e.g. ethyl retinoate) are preferable from the viewpoint of efficiency of specific delivery of a substance to a cancer cell and a CAF.
  • All retinoid isomers, such as cis-trans, are included in the scope of the present invention. The retinoid may be substituted with one or more substituents. The retinoid in the present invention includes a retinoid in an isolated state as well as in a solution or mixture state with a medium that can dissolve or retain the retinoid.
  • The targeting referred to here means enabling a substance such as a drug or a drug carrier to be delivered to a specific target such as a specific cell or tissue (in the present invention a cell selected from the group consisting of cancer-associated fibroblasts) more rapidly, efficiently, and/or in a larger quantity than with non-target cell or tissue and a substance that is non-targeted, that is, it enables specific delivery to a target, and the targeting agent means a substance that can subject a substance to the above-mentioned targeting when it binds to or reacts with the substance. Therefore, in the present specification, for example, 'cancer cell-specific carrier or composition' has the same meaning as 'cancer cell-targeted carrier or composition'. When the targeting agent is in the configuration of a molecule, this has the same meaning as a targeting molecule.
  • The composition of the present invention may include a constituent element other than the retinoid, for example, an element for promoting or stabilizing binding between the targeting agent and a carrier or a drug, an element for protecting the retinoid during storage, during use in a production of a formulation, or during storage of a formulation, or a spacer for spatially separating the retinoid from a carrier or a drug. The targeting agent is bound to any carrier or drug, and can target this carrier or drug at a cell selected from the group consisting of a cancer cell and a cancer-associated fibroblast.
  • Furthermore, composition of the present invention employs a substance delivery carrier to a cancer-associated fibroblast, the carrier including the targeting agent. The carrier may be formed from the targeting agent on its own or may be formed by making the targeting agent bind to or be enclosed in another constituent component, other than the targeting agent, of the carrier. Therefore, the carrier may include a constituent component other than the targeting agent. Such a component is not particularly limited, and any component known in the medicinal and pharmaceutical fields may be used, but those that can enclose the targeting agent, and the retinoid in particular, or can bind thereto are preferable.
  • Examples of such a component include a lipid, for example, a phospholipid such as glycerophospholipid, a sphingolipid such as sphingomyelin, a sterol such as cholesterol, a vegetable oil such as soybean oil or poppy seed oil, a mineral oil, and a lecithin such as egg-yolk lecithin, but the examples are not limited thereto. Among them, those that can form a liposome are preferable, for example, a natural phospholipid such as lecithin, a semisynthetic phospholipid such as dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or distearoylphosphatidylcholine (DSPC), dioleylphosphatidylethanolamine (DOPE), dilauroylphosphatidylcholin (DLPC), and cholesterol.
  • A particularly preferred component is a component that can avoid capture by the reticuloendothelial system, and examples thereof include cationic lipids such as N-(α-trimethylammonioacetyl)-didodecyl-D-glutamate chloride (TMAG), N,N',N'',N'''-tetramethyl-N,N',N'',N'''-tetrapalmitylspermine (TMTPS), 2,3-dioleyloxy-N-[2 (sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA), N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA), dioctadecyldimethylammonium chloride (DODAC), didodecylammonium bromide (DDAB), 1,2-dioleyloxy-3-trimethylammoniopropane (DOTAP), 3p-[N-(N',N'-dimethylaminoethane)carbamoyl]cholesterol (DC-Chol), 1,2-dimyristoyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE), and O,O'-ditetradecanoyl-N-(α-trimethylammonioacetyl)diethanolamine chloride (DC-6-14).
  • The binding of the targeting agent to the carrier or the enclosing of it therein is also possible by binding or enclosing the targeting agent to or in a constituent component, other than the targeting agent, of the carrier by a chemical and/or physical method. Alternatively, the binding or enclosing the targeting agent to or in the carrier can also be carried out by mixing the targeting agent and a constituent component, other than the targeting agent, of the carrier when preparing the carrier. The amount of targeting agent bound to or enclosed in the carrier may be, as a weight ratio in the carrier constituent components including the targeting agent, 0.01% to 100%, preferably 0.2% to 20%, and more preferably 1% to 5%. The binding or enclosing of the targeting agent to or in the carrier may be carried out before a drug, etc. is supported on the carrier, may be carried out at the same time as mixing the carrier, the targeting agent, and a drug, etc., or may be carried out by mixing the targeting agent with a carrier on which a drug, etc. is already supported. Therefore, the present disclosure also relates to a process for producing a formulation targeted at a CAF, the process including a step of binding a targeting agent to any existing drug binding carrier or drug encapsulating carrier, for example, a liposomal formulation such as DaunoXome®, Doxil, Caelyx®, or Myocet®.
  • The configuration of the carrier contained in the composition present invention may be any configuration as long as a desired substance or body can be carried to a CAF, and although not limited thereto, examples thereof include a macromolecular micelle, a liposome, an emulsion, microspheres, and nanospheres. The size of the carrier can be changed according to the type, etc. of drug. Such a size is not particularly limited and, for example, the diameter is preferably 50 to 200 µm, and more preferably 75 to 150 µm. This is because such a size is suitable for exhibiting the EPR effect which promotes the accumulation in cancer tissue, and is also suitable for delivery of a drug that controls the activity or growth of a CAF, which is described later. Such a diameter is measured by a dynamic light scattering method.
  • In the carrier contained in the composition of the present invention, the molar ratio (abundance ratio) of the targeting agent to constituent components, other than the targeting agent, of the carrier when administered is preferably 8:1 to 1:4, more preferably 4:1 to 1:2, yet more preferably 3:1 to 1:1, and particularly preferably 2:1. Without being bound by theory, it is believed that such a molar ratio is effective in giving good binding or enclosing of the targeting agent to or in a carrier (that is, the targeting function of the targeting agent is not impaired) and in specifically delivering a substance to a CAF.
  • In the present invention, from the viewpoint of high delivery efficiency, wide selection of substances to be delivered, ease of making a formulation, etc., a liposomal configuration is preferable among the configurations, and a cationic liposome that includes a cationic lipid is particularly preferable.
  • The carrier contained in the composition of the present invention may contain a substance to be carried within its interior, may be attached to the exterior of a substance to be carried, or may be mixed with a substance to be carried, as long as the targeting agent contained therein is present in such a configuration that it can exhibit a targeting function. The 'exhibiting a targeting function' referred to here means that the carrier containing the targeting agent reaches and/or is taken up by the CAF more rapidly, efficiently and/or in a larger quantity than with a carrier not containing the targeting agent, and this may easily be confirmed by, for example, adding a labeled or label-containing carrier to cultured cancer cell and/or CAF, and analyzing sites where the label is present after a predetermined period of time. Unpredictably, the present inventors have found that specific substance delivery to a CAF is efficiently realized by at least partially exposing the targeting agent on the exterior of a formulation containing the carrier at the latest by the time it reaches the CAF. The present inventors consider this to be a phenomenon in which the targeting agent exposed on the exterior of the formulation containing the carrier is taken up by the CAF more efficiently than by normal diffusion, via a certain type of receptor on the surface of the CAF. A technique for exposing the targeting agent on the exterior of the formulation containing the carrier is not particularly limited; for example, when preparing a carrier, excess targeting agent may be added relative to constituent components, other than the targeting agent, of the carrier. More specifically, in order to efficiently expose the targeting agent on the exterior of a formulation containing the carrier, the molar ratio (compounding ratio) of the targeting agent to constituent components, other than the targeting agent, of the carrier when compounded is preferably 8:1 to 1:4, more preferably 4:1 to 1:2, yet more preferably 3:1 to 1:1, and particularly preferably 2:1.
  • The substance or body that is delivered by the present carrier is not particularly limited, and it preferably has a size such that it can physically move within the body of a living being from an administration site to a lesion site where a CAF is/are present. Therefore, the carrier can carry not only a substance such as an atom, a molecule, a compound, a protein, or a nucleic acid, but also a body such as a vector, a virus particle, a cell, a drug-releasing system formed from one or more elements, or a micromachine. The above substance or body is selected from drugs that control (e.g. increase or suppress) the activity and growth of a CAF.
  • Therefore, in the present invention, the substance that the carrier delivers is 'a drug controlling the activity or growth of a CAF'.
  • Furthermore, the activity of a CAF means various activities such as secretion, uptake, migration, etc. exhibited by CAF, and in the present invention it typically means activities involved in the onset and/or progression of a cancer in particular. Examples of such activities include the production/secretion of bioactive substances such as TGF-β, HGF, PDGF, VEGF, IGF (IFG1, IGF2, etc.), MMP (MMP1, 2, 3, 9, 11, 13, 14, etc.), FGF (FGF7, bFGF, etc.), uPA, cathepsin, and SDF-1, and extracellular matrix components such as collagen, proteoglycan, tenascin, fibronectin, thrombospondin, osteopontin, osteonectin, and elastin.
  • Moreover, the 'drug controlling the activity or growth of a CAF' referred to here may be any drug that directly or indirectly suppresses the physical, chemical, and/or physiological actions, etc. of a CAF related to the onset and/or progression of a cancer, and examples thereof include, without being limited thereto, drugs that inhibit the activity or production of the above bioactive substances, for example, TGF-β II receptors that antagonize TGF-β (truncated TGF-β II receptor, soluble TGF-β II receptor, etc.), MMP inhibitors such as batimastat, antibodies and antibody fragments that neutralize the above bioactive substances, substances that suppress the expression of the above bioactive substances, such as an siRNA, a ribozyme, an antisense nucleic acid (including RNA, DNA, PNA, and composites thereof), substances that have a dominant negative effect such as a dominant negative mutant, vectors expressing same, cell activation inhibitors such as a sodium channel inhibitor, cell-growth inhibitors such as alkylating agents (e.g. ifosfamide, nimustine hydrochloride, cyclophosphamide, dacarbazine, melphalan, ranimustine, etc.), antitumor antibiotics (e.g. idarubicin hydrochloride, epirubicin hydrochloride, daunorubicin hydrochloride, daunorubicin citrate, doxorubicin hydrochloride, pirarubicin hydrochloride, bleomycin hydrochloride, peplomycin sulfate, mitoxantrone hydrochloride, mitomycin C, etc.), antimetabolites (e.g. gemcitabine hydrochloride, enocitabine, cytarabine ocfosfate, a cytarabine formulation, tegafur/uracil, a tegafur/gimeracil/oteracil potassium mixture, doxifluridine, hydroxycarbamide, fluorouracil, methotrexate, and mercaptopurine, etc.), alkaloids such as etoposide, irinotecan hydrochloride, vinorelbine tartrate, docetaxel hydrate, paclitaxel, vincristine sulfate, vindesine sulfate, and vinblastine sulfate, and platinum complexes such as carboplatin, cisplatin, nedaplatin, etc., and apoptosis inducers such as compound 861 and gliotoxin. Furthermore, the 'drug controlling the activity or growth of a CAF' referred to in the present invention may be any drug that directly or indirectly promotes the physical, chemical, and/or physiological actions, etc. of a CAF directly or indirectly related to suppressing the onset and/or progression of a cancer.
  • Other examples of the 'drug controlling the activity or growth of a CAF' include drugs controlling the metabolism of an extracellular matrix, for example, collagen, and examples thereof include substances having an effect in suppressing the expression of a target molecule, such as an siRNA, a ribozyme, and an antisense nucleic acid (including RNA, DNA, PNA, or a composite thereof), which are targeted at an extracellular matrix constituent molecule produced by a CAF or targeted at one or more molecules involved in the production or secretion of the extracellular matrix constituent molecule, substances having a dominant negative effect such as a dominant negative mutant, and vectors expressing same.
  • An siRNA is a double strand RNA having a sequence specific to a target molecule such as an mRNA, and suppresses the expression of a substance, for example, a protein, formed by the target molecule, by promoting the decomposition of the target molecule (RNA interference). Since Fire et al. published the principle (Nature, 391: 806-811, 1998), a wide range of research has been carried out into the optimization of siRNAs, and a person skilled in the art is familiar with such techniques. Furthermore, intensive research has been carried out into substances, other than siRNAs, that cause RNA interference or a gene expression inhibition reaction, and at present there are a large number of such substances.
  • For example, JP 2003-219893 A discloses a double strand polynucleotide formed from DNA and RNA that inhibits the expression of a target gene. This polynucleotide may be either a DNA/RNA hybrid in which one of the double strands is DNA and the other is RNA, or a DNA/RNA chimera in which a portion of the same strand is DNA and the other portion is RNA. Such a polynucleotide is preferably formed from 19 to 25 nucleotides, more preferably 19 to 23 nucleotides, and yet more preferably 19 to 21 nucleotides; in the case of a DNA/RNA hybrid it is preferable that the sense strand is DNA and the antisense strand is RNA, and in the case of a DNA/RNA chimera it is preferable that portion on the upstream side of the double strand polynucleotide is RNA. Such a polynucleotide may be prepared so as to have any sequence by a standard procedure of a known chemical synthetic method.
  • The target molecule is preferably a molecule that can completely suppress the production and/or secretion of an extracellular matrix constituent molecule, for example, and examples thereof include, without being limited thereto, HSP47. The gene sequence of HSP47 or a homologue thereof is disclosed as, for example, GenBank accession No. AB010273 (human), X60676 (mouse), and M69246 (rat, gp46).
  • Therefore, as the drug controlling the activity or growth of a CAF contained in the composition of the present invention, for example, an siRNA, a DNA/RNA hybrid, a chimeric polynucleotide, an antisense nucleic acid, etc, that are targeted at HSP47 are preferable.
  • The substance or body delivered by the carrier of the present invention may or may not be labeled. Labeling enables the success or failure of transport, increases and decreases in CAFs, etc. to be monitored, and is particularly useful at the testing/research level. A label may be selected from any label known to a person skilled in the art such as, for example, any radioisotope, magnetic material, a substance that binds to a labeling substance (e.g. an antibody), a fluorescent substance, a fluorophore, a chemiluminescent substance, an enzyme, etc.
  • In the present invention, 'to a cancer-associated fibroblast' means that it is suitable to use cancer-associated fibroblasts as a target, and this includes it being possible to deliver a substance to a target cell, that is, a cancer-associated fibroblast, more rapidly, efficiently, and/or in a larger quantity than to other cells (non-target cells), for example, a noncancer cell or a normal fibroblast. For example, the carrier of the present invention can deliver a substance to a cancer-associated fibroblast at a rate and/or efficiency of at least 1.1 times, at least 1.2 times, at least 1.3 times, at least 1.5 times, at least 2 times, or even at least 3 times compared with other cells. The 'efficiency' referred to here means the proportion of cells to which a substance is delivered relative to all the cells of the evaluation target.
  • The present invention relates to a composition that includes the targeting agent or carrier, and one or more types of the above-mentioned drugs controlling the activity or growth of a CAF, the composition being for for controlling the activity or growth of a CAF (anti-CAF composition), or for treating a cancer in which CAF is involved, and use of the targeting agent or carrier in the production of these compositions.
  • In the present invention, the cancer is any malignant tumor, and examples thereof include fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, synovial sarcoma, chondrosarcoma, osteosarcoma and, furthermore, brain tumor, head and neck carcinoma, breast carcinoma, lung carcinoma, esophageal carcinoma, stomach carcinoma, duodenal carcinoma, appendiceal carcinoma, colon carcinoma, rectal carcinoma, hepatic carcinoma, pancreatic carcinoma, gallbladder carcinoma, bile duct carcinoma, anal carcinoma, kidney carcinoma, ureteral carcinoma, bladder carcinoma, prostate carcinoma, penile carcinoma, testicular carcinoma, uterine carcinoma, ovarian carcinoma, vulvar carcinoma, vaginal carcinoma, skin carcinoma, leukemia, and malignant lymphoma as long as the cancer is accompanied by a CAF. In one embodiment of the present invention, the cancer is preferably a cancer other than hepatic carcinoma or pancreatic carcinoma.
  • Furthermore, the cancer in which CAF is involved in the present invention is not only a 'CAF-accompanied cancer' for which CAF is present in the interior or the periphery of the cancer, but also includes a cancer from which CAF is spatially separated but whose growth and activity are promoted by the above-mentioned bioactive substances released from CAF. Therefore, the cancer in which CAF is involved broadly means a malignant tumor, and includes any carcinoma, which is an epithelial malignant tumor, such as for example brain tumor, head and neck carcinoma, breast carcinoma, lung carcinoma, esophageal carcinoma, stomach carcinoma, duodenal carcinoma, appendiceal carcinoma, colon carcinoma, rectal carcinoma, hepatic carcinoma, pancreatic carcinoma, gallbladder carcinoma, bile duct carcinoma, anal carcinoma, kidney carcinoma, ureteral carcinoma, bladder carcinoma, prostate carcinoma, penile carcinoma, testicular carcinoma, uterine carcinoma, ovarian carcinoma, vulvar carcinoma, vaginal carcinoma, and skin carcinoma and, furthermore, any other malignant solid tumor, which is a nonepithelial malignant tumor, such as for example fibrosarcoma, malignant fibrous histiocytoma, liposarcoma, rhabdomyosarcoma, leiomyosarcoma, angiosarcoma, Kaposi's sarcoma, lymphangiosarcoma, synovial sarcoma, chondrosarcoma, and osteosarcoma. In the present invention, a cancer in which CAF is involved, selected from colorectal carcinoma, lung carcinoma, breast carcinoma, prostate carcinoma, stomach carcinoma, bile duct carcinoma, and a skin carcinoma such as basal cell carcinoma, can advantageously be treated due to a high degree of contribution of CAF to the growth. In one embodiment of the present invention, the cancer in which CAF is involved does not include hepatic carcinoma or pancreatic carcinoma. Furthermore, in another embodiment, the treatment of a cancer in which CAF is involved does not include the prevention of hepatic carcinoma or pancreatic carcinoma.
  • One embodiment of the anticancer composition of the present invention includes the targeting agent or the carrier, and a drug controlling the activity or growth of a CAF, and delivering this to a CAF and controlling the activity or growth thereof allows an anticancer action to be exhibited indirectly. Yet another embodiment of the anticancer composition of the present invention includes the targeting agent or the carrier, and a drug controlling the activity or growth of a cancer cell and a drug controlling the activity or growth of a CAF, and since the drug controlling the activity or growth of a cancer cell acts on a cancer cell, and the drug controlling the activity or growth of a CAF acts on a CAF, the anticancer action is doubled. In this embodiment, the drug controlling the activity or growth of a cancer cell and the drug controlling the activity or growth of a CAF may be identical to each other or different from each other.
  • In the composition of the present invention, as long as the targeting agent is present in a mode that allows a targeting function to be exhibited, the carrier may contain a substance to be carried within its interior, may be attached to the exterior of a substance to be carried, or may be mixed with a substance to be carried. Therefore, depending on the administration route, the manner in which the drug is released, etc., the composition may be covered with an appropriate material such as, for example, an enteric coating or a material that disintegrates over time, or may be incorporated into an appropriate drug release system.
  • The composition of the present invention may be administered via various routes including both oral and parenteral, and examples thereof include, but are not limited to, oral, intravenous, intramuscular, subcutaneous, local, rectal, intraarterial, intraportal, intraventricular, transmucosal, percutaneous, intranasal, intraperitoneal, intratumoral, intrapulmonary, and intrauterine routes, and it may be formulated into a dosage form suitable for each administration route. Such a dosage form and formulation method may be selected as appropriate from any known forms and methods (see e.g. Hyojun Yakuzaigaku (Standard Pharmaceutics), Ed. by Yoshiteru Watanabe et al., Nankodo, 2003).
  • Examples of dosage forms suitable for oral administration include, but are not limited to, powder, granules, tablet, capsule, liquid, suspension, emulsion, gel, and syrup, and examples of the dosage form suitable for parenteral administration include injections such as an injectable solution, an injectable suspension, an injectable emulsion, and an injection in a form that is prepared at the time of use. Formulations for parenteral administration may be a configuration such as an aqueous or nonaqueous isotonic aseptic solution or suspension.
  • The targeting agent, the carrier, or the composition of the present invention may be supplied in any configuration, but from the viewpoint of storage stability, it is preferably provided in a configuration that can be prepared at the time of use, for example in a configuration that allows a doctor and/or a pharmacist, a nurse, another paramedic, etc. to prepare it at the place of treatment or in the vicinity thereof. In this case, the targeting agent, the carrier, or the composition of the present invention is provided as one or more containers containing at least one essential constituent element therefor, and it is prepared prior to use, for example, within 24 hours prior to use, preferably within 3 hours prior to use, and more preferably immediately prior to use. When carrying out the preparation, a reagent, a solvent, preparation equipment, etc. that are normally available in a place of preparation may be used as appropriate.
  • The present invention therefore also relates to a preparation kit for the composition, the kit including one or more containers containing singly or in combination a targeting agent, and a substance to be carried, and a carrier-constituting substance other than the targeting agent, and also to a constituent element necessary for the carrier or the composition provided in the form of such a kit. The kit of the present invention may contain, in addition to the above, instructions, an electronic recording medium such as a CD or DVD related to a process for preparing the targeting agent, the carrier, and the composition of the present invention, or an administration method, etc. Furthermore, the kit of the present invention may include all of the constituent elements for completing the targeting agent, the carrier, or the composition of the present invention, but need not always include all of the constituent elements. Therefore, the kit of the present invention need not include a reagent or a solvent that is normally available at a place of medical treatment, an experimental facility, etc. such as, for example, sterile water, physiological saline, or a glucose solution.
  • The present disclosure further relates to a method for controlling the activity or growth of a CAF or treating a cancer in which CAF is involved, the method including administering an effective amount of the composition to a subject that requires it. The effective amount referred to here is, in a method for treating a cancer, for example, an amount that suppresses the onset of a cancer, alleviates the symptoms, or delays or stops progression of the cancer, and is preferably an amount that prevents the onset of a cancer or cures a cancer. It is also preferably an amount that does not cause an adverse effect that exceeds the benefit from administration. Such an amount may be determined as appropriate by an in vitro test using cultured cells or by a test in a model animal such as a mouse, a rat, a dog, or a pig, and such test methods are well known to a person skilled in the art. Moreover, the dose of the targeting agent contained in the carrier and the dose of the drug used in the method of the present disclosure are known to a person skilled in the art, or may be determined as appropriate by the above-mentioned test, etc.
  • One embodiment of the cancer treatment method involves administering the anticancer composition that includes a targeting agent or a carrier and a drug controlling the activity or growth of a CAF, and delivering the drug to a CAF so as to control the activity or growth thereof, thus indirectly treating the cancer. Yet another embodiment of the cancer treatment method includes administering the anticancer composition that includes a targeting agent or a carrier and a drug controlling the activity or growth of a cancer cell and a drug controlling the activity or growth of a CAF, and delivering the drug controlling the activity or growth of a cancer cell to a cancer cell and the drug controlling the activity or growth of a CAF to a CAF respectively, thus treating the cancer via two routes. In this embodiment, the drug controlling the activity or growth of a cancer cell and the drug controlling the activity or growth of a CAF may be identical to each other or different from each other.
  • In the method of the present disclosure, the specific dose of the composition administered may be determined while taking into consideration various conditions with respect to a subject that requires the treatment, such as for example the severity of the symptoms, general health condition of the subject, age, weight, gender of the subject, diet, the timing and frequency of administration, a medicine used in combination, reaction to the treatment, compliance with the treatment, etc.
  • As the administration route, there are various routes including both oral and parenteral administrations, and examples thereof include oral, intravenous, intramuscular, subcutaneous, local, rectal, intraarterial, intraportal, intraventricular, transmucosal, percutaneous, intranasal, intraperitoneal, intratumoral, intrapulmonary, and intrauterine routes.
  • The frequency of administration depends on the properties of the composition used and the above-mentioned condition of the subject, and may be a plurality of times per day (that is, 2, 3, 4, 5, or more times per day), once a day, every few days (that is, every 2, 3, 4, 5, 6, or 7 days, etc.), a few times per week (e.g. 2, 3, 4 times, etc. per week), every other week, or every few weeks (that is, every 2, 3, 4 weeks, etc.).
  • In the method of the present disclosuse, the term 'subject' means any living individual, preferably an animal, more preferably a mammal, and yet more preferably a human individual. In the present disclosure, the subject may be healthy or affected by some disorder, and when treatment of a cancer is intended, it typically means a subject affected by a cancer or having a risk of being affected.
  • Furthermore, the term 'treatment' includes all types of medically acceptable preventive and/or therapeutic intervention for the purpose of the cure, temporary remission, or prevention of a disorder. For example, the term 'treatment' includes medically acceptable intervention for various purposes, including delaying or stopping the progression of a cancer, involution or disappearance of lesions, prevention of onset of a cancer, and prevention of recurrence.
  • The present invention also relates to a method for delivering a drug to a cancer cell and/or a CAF, utilizing the above carrier. This method includes, but is not limited to, for example, a step of supporting a substance to be carried on the carrier, and a step of administering or adding the carrier having the substance to be carried supported thereon to a living being or a medium, for example a culture medium, containing a cancer cell and/or a CAF. These steps may be achieved as appropriate in accordance with any known method or a method described in the present specification, etc. The above delivery method may be combined with another delivery method, for example, a delivery method targeted at an organ in which a cancer cell and/or a CAF is/are present. Moreover, the above method includes a mode carried out in vitro and a mode in which a cancer cell and/or a CAF inside the body is/are targeted.
  • The present invention is explained more specifically by reference to Examples below, but the scope of the present invention as defined by the appended claims is not limited by these Examples.
  • Example 1 Separation of CAFs
  • Cancer tissue or peripheral normal tissue (normal tissue separated from a site spaced from cancer tissue by at least 2 cm) removed from a colon cancer patient was finely cut into 1 x 1 x 1 mm, then centrifugally washed with PBS twice, and the pellets were cultured in a culture liquid (DMEM (Dulbecco's Modified Eagle Medium) containing collagenase type I (225 U/ml), hyaluronidase (125 U/ml), 10% FBS (fetal bovine serum), streptomycin/penicillin) for 24 hours. Subsequently, the supernatant was aspirated, and culturing was continued after changing the liquid culture for 10% FBS/DMEM. When the cultured cells were immunostained with an FITC labeled antibody with respect to α-SMA, which is a marker for CAFs, and vimentin, which is a marker for mesenchymal cells, α-SMA was detected only in cancer tissue-derived cells, and it was confirmed that these cells were CAFs (see FIG. 1). Vimentin was positive for cells derived from either tissue, and desmin, which is a marker for epithelial cells, was negative.
  • Example 2 CAF tumor growth activity
  • A 6-well plate was seeded with CAFs or normal fibroblasts obtained in Example 1 at a density of 1 x 105 cells/well and cultured with 10% FBS/DMEM, the liquid culture was replaced with 0.5% FBS/DMEM in a confluent state on the third day, and the liquid culture was seeded with colon cancer cell line M7609 cells (2 x 105 cells), and coculturing was carried out for 7 days. The number of M7609 cells was counted with a Coulter counter (Beckman) at 0 days and on the 3rd and 5th days. The results are given in FIG. 2. This shows that CAFs promote the growth of cancer cells.
  • Example 3 Preparation of siRNA
  • Three types of siRNA targeted at gp46 (GenBank Accession No. M69246), which is a rat homologue of human HSP47, and a random siRNA control were purchased from Hokkaido System Science Co., Ltd. Each siRNA consists of 27 bases overhanging on the 3' side, and the sequences are as follows.
    • Sequence A: 5'-GUUCCACCAUAAGAUGGUAGACAACAG-3' (sense, SEQ ID NO: 1)
      5'-GUUGUCUACCAUCUUAUGGUGGAACAU-3' (antisense, SEQ ID NO: 2)
    • Sequence B: 5'-CCACAAGUUUUAUAUCCAAUCUAGCAG-3' (sense, SEQ ID NO: 3)
      5'-GCUAGAUUGGAUAUAAAACUUGUGGAU-3' (antisense, SEQ ID NO: 4)
    • Sequence C: 5'-CUAGAGCCAUUACAUUACAUUGACAAG-3' (sense, SEQ ID NO: 5)
      5'-UGUCAAUGUAAUGUAAUGGCUCUAGAU-3' (antisense, SEQ ID NO: 6)
    • Random siRNA: 5'-CGAUUCGCUAGACCGGCUUCAUUGCAG-3' (sense, SEQ ID NO: 7)
      5'-GCAAUGAAGCCGGUCUAGCGAAUCGAU-3' (antisense, SEQ ID NO: 8)
  • Furthermore, siRNA labeled on the 5' side with the fluorescent dye 6'-carboxyfluorescein (6-FAM) was also prepared.
  • Example 4 Preparation of siRNA-containing VA-bound liposome
  • As a liposome, a cationic liposome containing DC-6-14, cholesterol, and DOPE at a molar ratio of 4:3:3 (Lipotrust, Hokkaido System Science Co., Ltd.) was used. 10 nmol of liposome and 20 nmol of all-trans retinol (hereinafter, referred to as 'VA') were mixed in DMSO using a 1.5 mL tube, then dissolved in chloroform, evaporated once, and then suspended in PBS. Subsequently, the siRNA (10 µg/mL) obtained in Example 3 and the liposome suspension were mixed at a ratio of 1:1 (w/w). Free VA and siRNA contained in the liposome suspension thus obtained were removed by a micropartition system (Sartorion VIVASPIN 5000MWCO PES), thus giving an siRNA-containing VA-bound liposome (VA-lip-siRNA). The amount of VA added and the amount of VA contained in the purified liposome were measured by HPLC, and when the proportion of VA bound to the liposome was examined, it was found that the majority of the VA (95.6 ± 0.42%) was bound to the liposome. Furthermore, when the efficiency of uptake of siRNA into the liposome was measured by RiboGreen assay (Molecular Probes), it was 94.4 ± 3.0%, which is high. Part of the VA was exposed on the surface of the liposome.
  • In the same manner as above, siRNA-containing liposome (lip-siRNA) and VA-bound liposome (VA-lip) were prepared.
  • Example 5 Uptake of VA-lip-siRNA
  • A 6-well plate was seeded with CAFs or normal fibroblasts at a density of 5 x 105 cells/well, and culturing was carried out in 10% FBS/DMEM. After 2 days it was washed with serum-free medium in a subconfluent state, and the medium was replaced with serum-containing OPTI-MEM. Subsequently, the liposome suspension containing siRNA (final concentration 50 pmol/mL) obtained in Example 4 was added to the medium, and reacted at 37°C for 24 hours. When the VA-bound liposome was added, the final concentration of VA was adjusted to 40 nmol/mL. Furthermore, as siRNA, 6-FAM labeled random siRNA was used. 0, 0.5, 1, 3, 6, 12, 18, and 24 hours after the reaction was started, the uptake of siRNA into each cell species was evaluated by flow cytometry (FIG. 3). After the reaction was complete, the cells were stained with DAPI (Molecular Probe) and Cy3-labeled anti α-SMA antibody, and the localization of siRNA was analyzed (FIG. 4 to 5).
  • As is clear from FIG. 3, it has been found that when the VA-containing carrier was used, the rate of transfer of siRNA into CAFs was at least 3 times the transfer rate into normal fibroblasts, the uptake by CAFs when 24 hours had elapsed was maintained at almost 100%, and the specificity and transfer efficiency were very high. Furthermore, FIG. 4 shows a representative field of vision used in evaluating the localization of siRNA, and according to this, when the VA-bound liposome (VA-lip-siRNA-FAM) was used, siRNA was incorporated into all of the CAFs in the field of vision, but when the liposome containing no VA (lip-siRNA-FAM) was used, siRNA was incorporated into only 1 CAF among 5 CAFs in the field of vision. Moreover, FIG. 5 shows that siRNA is not localized within the CAF cell for the liposome containing no VA (lip-siRNA-FAM), but most of the siRNA is localized within the cell for the VA-bound liposome (VA-lip-siRNA-FAM), and high efficiency transfer of siRNA into the CAF is VA dependent. From the above results, it is clear that the VA-containing carrier specifically and markedly promotes the uptake of a substance into CAF.
  • Example 6 Uptake of VA-lip-DNR
  • Uptake by CAFs was examined using VA-bound liposome containing daunorubicin (DNR) instead of siRNA.
  • Liposome encapsulated DNR (lip-DNR, DaunoXome®, hereinafter also called liposomal DNR) and VA were mixed in DMSO at a molar ratio of liposome:VA = 1:2, then dissolved in chloroform, evaporated once, and then suspended in PBS. Free VA contained in the liposome suspension thus obtained was removed by a micropartition system (Sartorion VIVASPIN 5000MWCO PES), thus giving DNR-containing VA-bound liposome (VA-lip-DNR, hereinafter also called VA-bound liposomal DNR) . The amount of VA added and the amount of VA contained in the purified liposome were measured by HPLC, and when the proportion of VA bound to the liposome was examined, it was found that the majority of the VA (98%) was bound to the liposome. Part of the VA was exposed on the surface of the liposome. In DaunoXome®, daunorubicin citrate is encapsulated in a liposome formed from distearoyl phosphatidylcholine (DSPC) and cholesterol (Chol), and the molar ratio of DSPC:Chol:daunorubicin citrate is 10:5:1.
  • A chamber slide was seeded with the CAFs obtained in Example 1, normal fibroblasts, or commercial fibroblasts (skin fibroblast, Cells System, product No. CS-2FO-101) respectively at a density of 2 x 104 cells/chamber, cultured with 10% FBS/DMEM overnight, then washed with serum-free medium once in a subconfluent state, and the medium was replaced with serum-containing OPTI-MEM. Subsequently, a liposome suspension containing lip-DNR or the VA-lip-DNR obtained above at 5 µg/mL as a DaunoXome® concentration was added to medium and reacted at 37°C. Furthermore, nuclei were stained with DAPI. The localization of DNR, which exhibited a red color, was examined under a fluorescence microscope before the reaction started (0 min), and 5 minutes, 15 minutes, and 30 minutes after the reaction started. The results are given in FIGS. 6 to 9.
  • In CAFs to which VA-lip-DNR was added, a red color was already observed within the cell at 15 minutes after the addition, but in a group to which lip-DNR was added localization of DNR into the cells was not observed (FIG. 6 and 9). Furthermore, in normal fibroblasts (FIG. 7) and skin fibroblasts (FIG. 8), localization of DNR was not observed either in the group to which VA-lip-DNR was added or in the group to which lip-DNR was added. These results show that the VA-bound carrier causes CAF-specific drug delivery.
  • Example 7 Targeting of the VA derivative retinoic acid (RA) at cancer cells and CAFs (1) Cultured cells
  • CAF cells were established by cloning from a clinical sample of a human cancer patient. HT-1080 human fibrosarcoma cells (fibrosarcoma), and HepG2 human hepatic cancer-derived cells were purchased from American Type Culture Collection. All cells were cultured with a DMEM medium (Sigma Aldrich) to which 10% fetal bovine serum (FBS) was added. They were trypsinized, a 4-well culture slide (BD Falcon #354114) was then seeded therewith at 2 x 105 cells/mL, and cultured overnight under conditions of 37°C and 5% CO2.
  • (2) Preparation of VA-containing liposomal formulation
  • As a model drug, DaunoXome® (Gilead Sciences, Inc.), which is a liposome encapsulated daunorubicin formulation, was used. DaunoXome® contains the drug daunorubicin at a concentration of 2 mg/mL. 990 µL of 10% FBS-containing DMEM was added to 10 µL of DaunoXome®, thus giving a 20 µg/mL solution. This was mixed with 7.14 µL of all-trans retinol (VA) and all-trans retinoic acid (Retinoic acid, RA) dissolved in dimethylsulfoxide (DMSO) to give 100 mM, thus giving a VA-containing liposomal formulation (VA+) and an RA-containing liposomal formulation (retinoic acid+) respectively. At least part of the VA and the RA was exposed on the surface of the liposome. In addition to these liposomal formulations, as a control group a formulation (VA-), which was a DaunoXome® solution containing no VA or RA, was prepared.
  • (3) Administration of VA and RA liposomal formulations
  • The medium was removed from the culture slide, and 750 µL of fresh 10% FBS-containing DMEM was added thereto. Except for the culture slide that had no treatment (No treatment), 250 µL of formulation (VA-), which was the DaunoXome® solution containing no VA or RA, the VA-containing liposomal formulation (VA+), and the RA-containing liposomal formulation (retinoic acid+) respectively were added and incubated under conditions of 37°C and 5% CO2 for 15 minutes. The medium was removed from each of the culture slides, they were washed with 1 mL of PBS twice, subsequently 1 mL of a 4% paraformaldehyde solution (Wako Pure Chemical Industries, Ltd.) was added thereto, and the cells were fixed at room temperature for 5 minutes. The fixing solution was then removed, and the cells were washed with PBS three times. The slide glass was taken out from each culture slide, Prolong Gold (Invitrogen) was added dropwise, and the slide glass was sealed with a cover glass.
  • (4) Microscopic examination
  • The slide glass was examined using a fluorescence microscope (Keyence BZ8000). It is known that daunorubicin is incorporated into the nucleus of a cell and emits red fluorescence under green excitation light (FIG. 10 upper left). Furthermore, the Prolong Gold used when sealing contains the fluorescent dye DAPI. DAPI binds to the nucleus of a cell and exhibits blue fluorescence under UV excitation light (FIG. 10 upper right). Therefore, in microscopic examination, when there is uptake of a liposomal formulation, both red and blue fluorescence is observed, and as a result a purple color is exhibited when superimposing the two images (FIG. 10 lower). On the other hand, when a liposomal formulation is not incorporated into a cell, only blue fluorescence due to DAPI is detected.
  • The slide glass was examined by a phase contrast microscope and the fluorescence microscope. An image of the slide glass taken by the phase contrast microscope under bright field, an image taken by the fluorescence microscope under green excitation light, and an image taken under UV excitation light were electronically merged (merge). Merged images are shown in FIGS. 11 to 13, and the observation results are shown in Tables 1 to 3. In the tables, + denotes that fluorescence was observed, and - denotes that fluorescence was not observed. Table 1 Uptake of liposomal formulation in CAFs (FIG. 11)
    DAPI (blue fluorescence) Daunorubicin (red fluorescence)
    No treatment (No treatment) + -
    DaunoXome® (VA-) + -
    DaunoXome® + retinol (VA+) + +
    DaunoXome® + retinoic acid (Retinoic acid+) + +
    Table 2 Uptake of liposomal formulation in HT-1080 (Comparative) (FIG. 12)
    DAPI (blue fluorescence) Daunorubicin (red fluorescence)
    No treatment (No treatment) + -
    DaunoXome® (VA-) + -
    DaunoXome® + retinol (VA+) + +
    DaunoXome® + retinoic acid (Retinoic acid+) + +
    Table 3 Uptake of liposomal formulation in HepG2 (Comparative) (FIG. 13)
    DAPI (blue fluorescence) Daunorubicin (red fluorescence)
    No treatment (No treatment) + -
    DaunoXome® (VA-) + -
    DaunoXome® + retinol (VA+) + +
    DaunoXome® + retinoic acid (Retinoic acid+) + +
  • As is clear from these results, the presence of cell nuclei was confirmed for all the slide glasses due to the blue fluorescence of DAPI. The red fluorescence of daunorubicin showed that in the slide glasses employing VA and RA, localization of daunorubicin in cell nuclei was observed even after an incubation of as little as 15 minutes. In contrast thereto, in the slide glass employing no VA or RA, there was no localization of daunorubicin in the cell nucleus. This suggests that a retinoid can be used as a targeting agent to a CAF or a cancer cell.
  • Example 8 CAF-specific growth inhibition by VA-bound liposome encapsulated drug
  • The CAF growth inhibitory activity of VA-bound liposome containing siRNA toward gp46 or DNR was examined.
  • (1) Growth inhibition by VA-lip-siRNA
  • As the siRNA, sequence A described in Example 3 was used. A 24-well dish was seeded with CAFs and normal fibroblasts respectively at 1 x 104 cells and cultured with 10% FBS/DMEM for 24 hours, VA-lip-siRNA was added at a final concentration of 50 pmol/mL, incubation was carried out for 1 hour, and subsequently the cells were washed. The viable cell count was measured by the WST-1 method after culturing with 10% FBS/DMEM for 48 hours. As a control, lip-siRNA- and random siRNA-containing VA-bound and nonbound liposomes (VA-lip-siRNA (ran) and lip-siRNA (ran)) were used, and evaluation of significant difference was carried out by the U test. The results are given in FIG. 14. From this figure, it can be seen that in CAFs to which VA-lip-siRNA was added the viable cell count greatly decreased to less than 50% of that prior to the treatment, but in the other treatment groups there was hardly any change in the viable cell count.
  • (2) Growth inhibition by VA-lip-DNR
  • A 96-well dish was seeded with CAFs or normal fibroblasts respectively at 2 x 103 cells, and cultured with 10% FBS/DMEM for 24 hours, subsequently the VA-lip-DNR obtained in Example 6 or lip-DNR was added at a final DaunoXome® concentration of 5 µg/mL and after exposing for 15 minutes, the cells were washed. Culturing was carried out with 10% FBS/DMEM for 24 hours, and the viable cell count was measured by the WST-1 method. Evaluation of significant difference was carried out by the U test. The results are shown in FIG. 15. From this figure, it can be seen that in CAFs to which VA-lip-DNR was added the viable cell count greatly decreased to about 40% of that prior to the treatment, but in the CAFs to which lip-DNR was added or normal fibroblasts there was hardly any change in the viable cell count.
  • The above results suggest that a drug supported on a VA-bound carrier exhibits a CAF-specific growth inhibitory activity.
  • Example 9 (Comparative) Examination of efficiency of incorporating VA-lip-DNR into cancer cells
  • Chamber slides (Falcon) were seeded with human fibrosarcoma-derived cell lines HT-1080, HS913T, and Sw684, human breast cancer-derived cell line MCF7, human osteosarcoma-derived cell line Saos2 (all purchased from ATCC), and human hepatic cancer-derived cell line Huh7 (purchased from JCRB Cell Bank) at a cell density of 1 x 104 cells/well, cultured overnight, and washed with 10% FBS-containing DMEM. Subsequently, 5 µg/ml (8.85 µM as daunorubicin, 89.25 µM as liposome) of lip-DNR (DaunoXome®) or 5 µg/mL of the VA-lip-DNR (containing 178.5 µM of retinol) obtained in Example 6 was added thereto, the cells were washed 15 minutes and/or 30 minutes after the addition, and fixed by 4% formaldehyde. After washing with PBS, sealing was carried out with Prolong Gold (Invitrogen), and localization of DNR was examined by a fluorescence microscope.
  • From the results shown in FIGS. 16 to 18, in all of the cells, in the VA-lip-DNR addition group, DNR, which exhibits a red color under a fluorescence microscope, was localized in the interior of the majority of cells only 15 minutes after the addition, whereas hardly any lip-DNR was incorporated even after 30 minutes had elapsed. This suggests that binding of VA greatly promotes the uptake of liposomal DNR into a cell. Furthermore, from the result shown in FIG. 19, it becomes clear that the above-mentioned promoting effect is observed in various cancer cells, including sarcoma and carcinoma cells.
  • Example 10 (Comparative) Examination of antitumor effect of VA-bound liposomal daunorubicin
  • A 96-well plate was seeded with human fibrosarcoma-derived cell lines HT-1080, HS913T, and Sw684 at a cell density of 2 x 103 cells/well and cultured overnight, subsequently 5 µg/mL of lip-DNR or 5 µg/mL of the VA-lip-DNR used in Example 6 was added, and culturing was carried out for 15 minutes. Following this, the cells were washed so as to remove drug that was outside the cells, and then cultured with 10% FBS-containing DMEM for 22 hours. 2 hours after WST-1 Cell Proliferation Assay Kit (Cayman Chemical) was added thereto, the absorbance was measured, and the proportion relative to the number of cells when the treatment was not carried out was calculated. From the result shown in FIG. 20, it can be seen that the binding of VA remarkably increases the antitumor activity of liposomal DNR.
  • Example 11 in vivo CAF-specific delivery
  • NOD-scid mice (6 weeks old, female, n = 8, purchased from Sankyo Labo Service Corporation) were subcutaneously inoculated with stomach cancer cell line KATO-III at 2 x 106 cells, thus making tumor-bearing mice. On the 28th day after inoculation, VA-bound liposome (VA-lip-siRNA-FAM) or liposome containing no VA (lip-siRNA-FAM) used in Example 5 were administered via the tail vein at doses of 200 nmol of VA, 100 nmol of lip, and 100 µg of siRNA. In this VA-bound liposome, part of the VA was already exposed on the surface of liposome when administered. 24 hours after administration, tumor tissue was collected, a tissue specimen was prepared, this was stained with DAPI (Molecular Probe) and Cy3-labeled anti α-SMA antibody, and the localization of siRNA was analyzed. The results are shown in FIGS. 21 and 22.
  • As is clear from FIG. 21, in the liposome containing no VA, in spite of the presence of CAFs in the tissue shown by the red color due to Cy3, there was hardly any siRNA shown by the green color due to FAM, whereas in the VA-bound liposome, colocalization of CAF and siRNA was observed.
  • Example 12 (Comparative) in vivo VA-lip-DNR antitumor activity
  • Nude mice (6 weeks old, female, n = 10, purchased from Sankyo Labo Service Corporation) were subcutaneously inoculated with colon cancer cell line M7609 cells at 2 x 106 cells, thus giving tumor-bearing mice. From the 14th day after inoculation, VA-lip-DNR or lip-DNR was administered via the tail vein twice a week at a dose 1/40 (0.05 µg per g weight of the mouse) of the normal anticancer administration amount of DaunoXome®. In this VA-lip-DNR, part of the VA was already exposed on the surface of liposome when administered. The change in volume of the tumor after starting administration is shown in FIG. 23. It can be seen from this figure that the drug supported on the VA-bound carrier remarkably suppressed the growth of the tumor.
  • The above results show that the composition of the present invention is extremely effective in treatment of a cancer.

Claims (7)

  1. A composition for use in treating cancer in which cancer-associated fibroblasts are involved, characterized in that the composition comprises a substance delivery carrier comprising a retinoid that promotes specific substance delivery to a cancer-associated fibroblast, and a drug that controls the activity or growth of a cancer-associated fibroblast.
  2. The composition for use according to Claim 1, characterized in that the retinoid comprises retinol.
  3. The composition for use according to Claim 1, characterized in that the content of the agent that promotes specific substance delivery to a cancer-associated fibroblast is 0.2 to 20 wt % of the entire carrier.
  4. The composition for use according to Claim 3, characterized in that the molar ratio of the agent that promotes specific substance delivery to a cancer-associated fibroblast to constituent components of the carrier other than the agent that promotes specific substance delivery to a cancer-associated fibroblast is 8:1 to 1:4.
  5. The composition for use according to any one of Claims 1 to 4, characterized in that the drug that controls the activity or growth of a cancer-associated fibroblast is selected from the group consisting of an inhibitor of activity or production of a bioactive substance selected from the group consisting of TGF-β, HGF, PDGF, VEGF, IGF, MMP, FGF, uPA, cathepsin, and SDF-1, a cell activity suppressor, a growth inhibitor, an apoptosis inducer, and an siRNA, ribozyme, antisense nucleic acid, DNA/RNA chimeric polynucleotide, or vector expressing same that targets one or more molecules from among an extracellular matrix constituent molecule produced by cancer-associated fibroblasts and a molecule involved in the production or secretion of the extracellular matrix constituent molecule.
  6. The composition for use according to Claim 5, characterized in that the molecule involved in the production or secretion of the extracellular matrix constituent molecule is HSP47.
  7. A preparation kit for the composition for use according to any one of Claims 1 to 6, characterized in that it comprises one or more containers comprising singly or in combination the drug, the agent that promotes specific substance delivery to a cancer-associated fibroblast, and carrier constituent substances other than the agent that promotes specific substance delivery to a cancer-associated fibroblast.
EP08739842.6A 2007-03-30 2008-03-28 Targeting agent for cancer cell or cancer-associated fibroblast Active EP2135600B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007091808 2007-03-30
JP2007261202 2007-10-04
JP2007324459 2007-12-17
PCT/JP2008/056735 WO2008120815A1 (en) 2007-03-30 2008-03-28 Targeting agent for cancer cell or cancer-associated fibroblast

Publications (3)

Publication Number Publication Date
EP2135600A1 EP2135600A1 (en) 2009-12-23
EP2135600A4 EP2135600A4 (en) 2013-10-16
EP2135600B1 true EP2135600B1 (en) 2020-04-29

Family

ID=39808395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08739842.6A Active EP2135600B1 (en) 2007-03-30 2008-03-28 Targeting agent for cancer cell or cancer-associated fibroblast

Country Status (11)

Country Link
US (2) US8686052B2 (en)
EP (1) EP2135600B1 (en)
JP (4) JP5302187B2 (en)
KR (1) KR101585947B1 (en)
CN (1) CN101674810B (en)
AR (1) AR065878A1 (en)
AU (1) AU2008233550B2 (en)
CA (1) CA2682493A1 (en)
ES (1) ES2793673T3 (en)
TW (1) TWI407971B (en)
WO (1) WO2008120815A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7685050B2 (en) * 2001-12-13 2010-03-23 Bgc Partners, Inc. Systems and methods for improving the liquidity and distribution network for luxury and other illiquid items
US7358223B2 (en) * 2004-10-04 2008-04-15 Nitto Denko Corporation Biodegradable cationic polymers
CN101102795B (en) 2004-12-22 2011-12-07 日东电工株式会社 Drug carrier and drug carrier kit for inhibiting fibrosis
US20120269886A1 (en) 2004-12-22 2012-10-25 Nitto Denko Corporation Therapeutic agent for pulmonary fibrosis
JP2009221164A (en) * 2008-03-17 2009-10-01 Nitto Denko Corp Drug for treating pulmonary fibrosis
US9572886B2 (en) 2005-12-22 2017-02-21 Nitto Denko Corporation Agent for treating myelofibrosis
JP5342834B2 (en) * 2008-09-05 2013-11-13 日東電工株式会社 Treatment agent for myelofibrosis
TWI407971B (en) * 2007-03-30 2013-09-11 Nitto Denko Corp Cancer cells and tumor-related fibroblasts
US20080312174A1 (en) * 2007-06-05 2008-12-18 Nitto Denko Corporation Water soluble crosslinked polymers
WO2009036368A2 (en) * 2007-09-14 2009-03-19 Nitto Denko Corporation Drug carriers
TW201630627A (en) * 2008-09-12 2016-09-01 日東電工股份有限公司 Imaging agents of fibrotic diseases
JP2012020995A (en) * 2010-06-17 2012-02-02 Nitto Denko Corp Agent for treating renal fibrosis
JP5950428B2 (en) 2010-08-05 2016-07-13 日東電工株式会社 Composition for regenerating normal tissue from fibrotic tissue
CA2817982C (en) 2010-11-15 2020-06-30 The Regents Of The University Of Michigan Controlled release mucoadhesive systems
KR101786905B1 (en) 2011-06-21 2017-10-19 닛토덴코 가부시키가이샤 Apoptosis-inducing agent
RU2637372C2 (en) * 2011-11-18 2017-12-04 Нитто Денко Корпорейшн Means for intestinal fibrosis treatment
JP6340162B2 (en) 2012-12-20 2018-06-06 日東電工株式会社 Apoptosis inducer
JP6076076B2 (en) 2012-12-21 2017-02-08 日東電工株式会社 Tissue regeneration promoter
BR112015026298A8 (en) * 2013-04-19 2019-12-24 Univ Saskatchewan dispensing vehicle for dispensing an aromatase inhibitor
US10556117B2 (en) 2013-05-06 2020-02-11 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US10471267B2 (en) 2013-05-06 2019-11-12 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US10668270B2 (en) 2013-05-06 2020-06-02 Medtronic, Inc. Substernal leadless electrical stimulation system
CN104374918B (en) * 2013-08-17 2016-11-09 复旦大学 Heat shock protein 47 glioma associated tumor antigen and application
JP6602034B2 (en) * 2014-04-02 2019-11-06 日東電工株式会社 Targeted molecules and uses thereof
CN106133024B (en) 2014-04-07 2019-07-05 日东电工株式会社 The novel hydrotrote based on polymer for hydrophobic drug delivering
CN106573062B (en) 2014-06-17 2020-08-25 日东电工株式会社 Apoptosis inducer
US10792299B2 (en) 2014-12-26 2020-10-06 Nitto Denko Corporation Methods and compositions for treating malignant tumors associated with kras mutation
US11045488B2 (en) 2014-12-26 2021-06-29 Nitto Denko Corporation RNA interference agents for GST-π gene modulation
US10264976B2 (en) 2014-12-26 2019-04-23 The University Of Akron Biocompatible flavonoid compounds for organelle and cell imaging
US20180002702A1 (en) 2014-12-26 2018-01-04 Nitto Denko Corporation Methods and compositions for treating malignant tumors associated with kras mutation
CN104825394B (en) * 2015-04-17 2018-08-17 北京大学 The liposome drug-loading system of target tumor associated fibroblast cell
WO2017062990A1 (en) * 2015-10-09 2017-04-13 Case Western Reserve University Compositions and methods for the delivery of nucleic acids
PT3386519T (en) 2015-12-13 2021-04-27 Nitto Denko Corp Sirna structures for high activity and reduced off target
US11260132B2 (en) 2017-03-16 2022-03-01 Children's Medical Center Corporation Engineered liposomes as cancer-targeted therapeutics
EP3848050A4 (en) * 2018-08-22 2022-06-08 Nitto Denko Corporation Medicine using hsp47 inhibitor to enhance sensitivity to chemotherapeutic agent
KR102173702B1 (en) 2018-11-27 2020-11-03 가톨릭대학교 산학협력단 Peptides for targeting skin cells and use thereof
RU2733230C1 (en) * 2019-12-16 2020-09-30 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова" Министерства здравоохранения Российской Федерации Human bladder cancer cell line 198 blcan rla
RU2742244C1 (en) * 2020-05-20 2021-02-04 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова" Министерства здравоохранения Российской Федерации Human bladder cancer cell line 587 blcan tvv
RU2742245C1 (en) * 2020-05-20 2021-02-04 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова" Министерства здравоохранения Российской Федерации Human bladder cancer cell line 398 blcan kae
CA3184767A1 (en) * 2020-06-26 2021-12-30 Raqualia Pharma Inc. Method for selecting cancer patients for whom combination therapy with retinoid and cancer therapeutic agent is effective, and combination medicament with retinoid and cancer therapeutic agent
KR20230072259A (en) 2021-11-17 2023-05-24 사회복지법인 삼성생명공익재단 Pharmaceutical composition for preventing or treating for cancer comprising PRRX1 inhibitor

Family Cites Families (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665913A (en) * 1983-11-17 1987-05-19 Lri L.P. Method for ophthalmological surgery
US4669466A (en) * 1985-01-16 1987-06-02 Lri L.P. Method and apparatus for analysis and correction of abnormal refractive errors of the eye
US4911928A (en) 1987-03-13 1990-03-27 Micro-Pak, Inc. Paucilamellar lipid vesicles
US5811119A (en) * 1987-05-19 1998-09-22 Board Of Regents, The University Of Texas Formulation and use of carotenoids in treatment of cancer
US5585112A (en) * 1989-12-22 1996-12-17 Imarx Pharmaceutical Corp. Method of preparing gas and gaseous precursor-filled microspheres
US5733572A (en) * 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
US6610841B1 (en) 1997-12-18 2003-08-26 Gilead Sciences, Inc. Nucleotide-based prodrugs
US5258791A (en) * 1990-07-24 1993-11-02 General Electric Company Spatially resolved objective autorefractometer
US5668117A (en) 1991-02-22 1997-09-16 Shapiro; Howard K. Methods of treating neurological diseases and etiologically related symptomology using carbonyl trapping agents in combination with previously known medicaments
US6746678B1 (en) 1991-02-22 2004-06-08 Howard K. Shapiro Method of treating neurological diseases and etiologically related symptomology using carbonyl trapping agents in combination with medicaments
US5144630A (en) * 1991-07-29 1992-09-01 Jtt International, Inc. Multiwavelength solid state laser using frequency conversion techniques
CA2073802C (en) * 1991-08-16 2003-04-01 John Shimmick Method and apparatus for combined cylindrical and spherical eye corrections
US5472954A (en) 1992-07-14 1995-12-05 Cyclops H.F. Cyclodextrin complexation
DE4232915A1 (en) * 1992-10-01 1994-04-07 Hohla Kristian Device for shaping the cornea by removing tissue
US5583020A (en) * 1992-11-24 1996-12-10 Ribozyme Pharmaceuticals, Inc. Permeability enhancers for negatively charged polynucleotides
US5520679A (en) * 1992-12-03 1996-05-28 Lasersight, Inc. Ophthalmic surgery method using non-contact scanning laser
US5753261A (en) * 1993-02-12 1998-05-19 Access Pharmaceuticals, Inc. Lipid-coated condensed-phase microparticle composition
US5820879A (en) * 1993-02-12 1998-10-13 Access Pharmaceuticals, Inc. Method of delivering a lipid-coated condensed-phase microparticle composition
US5785976A (en) * 1993-03-05 1998-07-28 Pharmacia & Upjohn Ab Solid lipid particles, particles of bioactive agents and methods for the manufacture and use thereof
US5460627A (en) * 1993-05-03 1995-10-24 O'donnell, Jr.; Francis E. Method of evaluating a laser used in ophthalmological surgery
CO4230054A1 (en) * 1993-05-07 1995-10-19 Visx Inc METHOD AND SYSTEMS FOR LASER TREATMENT OF REFRACTIVE ERRORS USING TRAVELING IMAGES FORMATION
US6214345B1 (en) 1993-05-14 2001-04-10 Bristol-Myers Squibb Co. Lysosomal enzyme-cleavable antitumor drug conjugates
US5942230A (en) * 1994-05-06 1999-08-24 The United States Of America As Represented By The Department Of Health And Human Services Composition of immunotoxins and retinoids and use thereof
JPH08180824A (en) * 1994-12-22 1996-07-12 Hitachi Ltd Electron beam source, manufacture thereof, electron beam source apparatus and electron beam apparatus using thereof
US5646791A (en) * 1995-01-04 1997-07-08 Visx Incorporated Method and apparatus for temporal and spatial beam integration
US5534261A (en) * 1995-01-17 1996-07-09 University Of Southern California Retinoid-based compositions and method for preventing adhesion formation using the same
US6187315B1 (en) 1995-03-03 2001-02-13 Atajje, Inc. Compositions and methods of treating cancer with tannin complexes
US5666117A (en) * 1995-08-31 1997-09-09 The United State Of American As Represented By The Secretary Of The Navy Non-Return to Zero Level to Bi-Phase signal converter
US6120794A (en) 1995-09-26 2000-09-19 University Of Pittsburgh Emulsion and micellar formulations for the delivery of biologically active substances to cells
US5782822A (en) * 1995-10-27 1998-07-21 Ir Vision, Inc. Method and apparatus for removing corneal tissue with infrared laser radiation
US6441025B2 (en) 1996-03-12 2002-08-27 Pg-Txl Company, L.P. Water soluble paclitaxel derivatives
ATE314843T1 (en) 1996-03-12 2006-02-15 Pg Txl Co Lp WATER SOLUBLE PACLITAXEL PRODRUGS
US6238917B1 (en) 1996-04-02 2001-05-29 Commonwealth Scientific Industrial Research Organizaion Asymmetric hammerhead ribozymes
US5742626A (en) * 1996-08-14 1998-04-21 Aculight Corporation Ultraviolet solid state laser, method of using same and laser surgery apparatus
US6056973A (en) 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
US6331289B1 (en) 1996-10-28 2001-12-18 Nycomed Imaging As Targeted diagnostic/therapeutic agents having more than one different vectors
US6271914B1 (en) * 1996-11-25 2001-08-07 Autonomous Technologies Corporation Objective measurement and correction of optical systems using wavefront analysis
US20010041884A1 (en) * 1996-11-25 2001-11-15 Frey Rudolph W. Method for determining and correcting vision
US5777719A (en) * 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
US6090102A (en) * 1997-05-12 2000-07-18 Irvision, Inc. Short pulse mid-infrared laser source for surgery
FR2763853B1 (en) 1997-05-28 2000-01-07 Oreal ASSOCIATION OF A RETINOIDE WITH A POLYAMINE POLYMER
US6656734B1 (en) 1997-07-01 2003-12-02 Transgene S.A. Compositions for the delivery of polynucleotides to cells
US6037481A (en) * 1997-08-08 2000-03-14 Industria E Comercio De Cosmeticos Natura Ltda Process for stabilizing levogyre ascorbic acid (LAA), a stable aqueous LAA composition, a process for preparing a stable topical solution, an emulsion, a vitamin product, and a method for cosmetic, pharmaceutical or nutritional treatment
US6072101A (en) * 1997-11-19 2000-06-06 Amcol International Corporation Multicomponent superabsorbent gel particles
CA2329147A1 (en) 1998-05-20 1999-11-25 Feng Liu A hepatocyte targeting polyethylene glyco-grafted poly-l-lysine polymeric gene carrier
US6000800A (en) * 1998-06-22 1999-12-14 Schepens Eye Research Institute Coaxial spatially resolved refractometer
US6099125A (en) * 1998-12-07 2000-08-08 Schepens Eye Research Foundation Coaxial spatially resolved refractometer
US6004313A (en) * 1998-06-26 1999-12-21 Visx, Inc. Patient fixation system and method for laser eye surgery
GB9814527D0 (en) 1998-07-03 1998-09-02 Cyclacel Ltd Delivery system
US6347549B1 (en) * 1998-07-09 2002-02-19 Ryan International Corporation Enhancement of storm location from a single moving platform
TR200100254T2 (en) 1998-07-13 2001-06-21 Expression Genetics, Inc. A poly-l-lysine-like polyester as a fusible and bacteria-degradable gene delivery carrier.
JP4790123B2 (en) 1998-07-24 2011-10-12 ヨー、セオ、ホン Dispensing clear aqueous solution with bile acid
KR100274842B1 (en) 1998-10-01 2001-03-02 김효근 Sustained-release Drug Release System of Retinoic Acid Using Microspheres
US7223724B1 (en) 1999-02-08 2007-05-29 Human Genome Sciences, Inc. Use of vascular endothelial growth factor to treat photoreceptor cells
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
FR2790405B1 (en) 1999-03-02 2001-04-20 Oreal NANOCAPSULES BASED ON DENDRITIC POLYMERS
US6245059B1 (en) * 1999-04-07 2001-06-12 Visx, Incorporated Offset ablation profiles for treatment of irregular astigmation
US6328988B1 (en) 1999-04-23 2001-12-11 Rutgers, The State University Of New Jersey Hyperbranched polymeric micelles for encapsulation and delivery of hydrophobic molecules
CN101073668A (en) 1999-04-28 2007-11-21 德克萨斯大学董事会 Antibody compositions for selectively inhibiting vegf
US7276348B2 (en) 1999-04-30 2007-10-02 Regents Of The University Of Michigan Compositions and methods relating to F1F0-ATPase inhibitors and targets thereof
US6395300B1 (en) 1999-05-27 2002-05-28 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US6050687A (en) * 1999-06-11 2000-04-18 20/10 Perfect Vision Optische Geraete Gmbh Method and apparatus for measurement of the refractive properties of the human eye
US7098030B2 (en) 1999-12-31 2006-08-29 Mirus Bio Corporation Polyampholytes for delivering polyions to a cell
US20020041898A1 (en) 2000-01-05 2002-04-11 Unger Evan C. Novel targeted delivery systems for bioactive agents
US6234631B1 (en) * 2000-03-09 2001-05-22 Lasersight Technologies, Inc. Combination advanced corneal topography/wave front aberration measurement
KR20010100194A (en) 2000-03-13 2001-11-14 박호군 Composition and formulation for solubilization of various compounds and preparation method thereof
DE10012151A1 (en) 2000-03-13 2001-09-27 Gsf Forschungszentrum Umwelt Aerosol inhalant containing vitamin A compound in liposomes based on phosphatidylcholine, useful for treatment of tracheo-bronchial illnesses, especially chronic obstructive pulmonary disease
US6673062B2 (en) * 2000-03-14 2004-01-06 Visx, Inc. Generating scanning spot locations for laser eye surgery
AU2001247924A1 (en) 2000-03-29 2001-10-08 Aradigm Corporation Cationic liposomes
JP4515687B2 (en) * 2000-04-19 2010-08-04 アルコン・レフラクティヴ・ホライズンズ・インク. Eye registration and astigmatism alignment control system and method
US6338559B1 (en) * 2000-04-28 2002-01-15 University Of Rochester Apparatus and method for improving vision and retinal imaging
AU6897701A (en) 2000-05-02 2001-11-12 Hoffmann La Roche New gamma selective retinoids
US6896890B2 (en) 2000-05-05 2005-05-24 R.P. Scherer Technologies, Inc. Oil-in-water emulsion formulation containing free and entrapped hydroquinone and retinol
US6460997B1 (en) * 2000-05-08 2002-10-08 Alcon Universal Ltd. Apparatus and method for objective measurements of optical systems using wavefront analysis
US6471968B1 (en) 2000-05-12 2002-10-29 Regents Of The University Of Michigan Multifunctional nanodevice platform
EP1341923A2 (en) * 2000-08-29 2003-09-10 Genentech, Inc. Methods for enhancing the efficacy of cancer therapy
US6696038B1 (en) 2000-09-14 2004-02-24 Expression Genetics, Inc. Cationic lipopolymer as biocompatible gene delivery agent
US20040142474A1 (en) 2000-09-14 2004-07-22 Expression Genetics, Inc. Novel cationic lipopolymer as a biocompatible gene delivery agent
US7276249B2 (en) 2002-05-24 2007-10-02 Elan Pharma International, Ltd. Nanoparticulate fibrate formulations
US6696483B2 (en) * 2000-10-03 2004-02-24 Oncopharmaceutical, Inc. Inhibitors of angiogenesis and tumor growth for local and systemic administration
US6998115B2 (en) 2000-10-10 2006-02-14 Massachusetts Institute Of Technology Biodegradable poly(β-amino esters) and uses thereof
US7427394B2 (en) 2000-10-10 2008-09-23 Massachusetts Institute Of Technology Biodegradable poly(β-amino esters) and uses thereof
US20020143062A1 (en) 2000-10-17 2002-10-03 Board Of Regents, The University Of Texas System Method to incorporate N-(4-hydroxyphenyl) retinamide in liposomes
US7265186B2 (en) 2001-01-19 2007-09-04 Nektar Therapeutics Al, Corporation Multi-arm block copolymers as drug delivery vehicles
TWI246524B (en) 2001-01-19 2006-01-01 Shearwater Corp Multi-arm block copolymers as drug delivery vehicles
JP2004523236A (en) 2001-02-16 2004-08-05 インサイト・ゲノミックス・インコーポレイテッド Neurotransmission-related proteins
US6652886B2 (en) 2001-02-16 2003-11-25 Expression Genetics Biodegradable cationic copolymers of poly (alkylenimine) and poly (ethylene glycol) for the delivery of bioactive agents
EP1243276A1 (en) 2001-03-23 2002-09-25 Franciscus Marinus Hendrikus De Groot Elongated and multiple spacers containing activatible prodrugs
US20030096739A1 (en) 2001-04-13 2003-05-22 Morris Patricia L. Nuclear receptor-mediated introduction of a PNA into cell nuclei
US6472954B1 (en) * 2001-04-23 2002-10-29 Agilent Technologies, Inc. Controlled effective coupling coefficients for film bulk acoustic resonators
US6572230B2 (en) * 2001-06-05 2003-06-03 Metrologic Instruments, Inc. Ophthalmic instrument having an integral wavefront sensor and display device that displays a graphical representation of high order aberrations of the human eye measured by the wavefront sensor
JP4547696B2 (en) 2001-06-07 2010-09-22 第一三共株式会社 Cirrhosis prevention / treatment agent
JP2002371006A (en) 2001-06-11 2002-12-26 Mochida Pharmaceut Co Ltd Prophylactic and/or progress inhibitor against pulmonary fibrosis
KR20040029359A (en) 2001-07-12 2004-04-06 루트거스, 더 스테이트 유니버시티 오브 뉴 저지 Amphiphilic Star-Like Macromolecules for Drug Delivery
US6586524B2 (en) 2001-07-19 2003-07-01 Expression Genetics, Inc. Cellular targeting poly(ethylene glycol)-grafted polymeric gene carrier
US7101995B2 (en) 2001-08-27 2006-09-05 Mirus Bio Corporation Compositions and processes using siRNA, amphipathic compounds and polycations
AU2002334939A1 (en) 2001-10-12 2003-04-22 Eugene R. Cooper Compositions having a combination of particles for immediate release and for controlled release
US7297515B1 (en) 2001-10-26 2007-11-20 Myriad Genetics, Inc. Zinc finger proteins
JP2005507934A (en) 2001-10-30 2005-03-24 ネクター セラピューティックス エイエル,コーポレイション Water-soluble polymer conjugate of retinoic acid
ES2401326T3 (en) 2001-11-21 2013-04-18 Astellas Pharma Inc. Procedure to inhibit gene expression
JP3803318B2 (en) 2001-11-21 2006-08-02 株式会社RNAi Gene expression inhibition method
US7060498B1 (en) 2001-11-28 2006-06-13 Genta Salus Llc Polycationic water soluble copolymer and method for transferring polyanionic macromolecules across biological barriers
US6637884B2 (en) * 2001-12-14 2003-10-28 Bausch & Lomb Incorporated Aberrometer calibration
US20030147958A1 (en) 2002-01-29 2003-08-07 Cheol-Hee Ahn Biodegradable multi-block copolymers of poly(amino acid)s and poly(ethylene glycol) for the delivery of bioactive agents
CN100403998C (en) * 2002-02-11 2008-07-23 维思克斯公司 Closed loop system and method for ablating lenses with aberrations
US20040106125A1 (en) 2002-02-15 2004-06-03 Duggan Brendan M Neurotransmission-associated proteins
US7018655B2 (en) 2002-03-18 2006-03-28 Labopharm, Inc. Amphiphilic diblock, triblock and star-block copolymers and their pharmaceutical compositions
US6740676B2 (en) 2002-03-19 2004-05-25 Allergan, Inc. 4-[(8-ethynyl, 8-vinyl or 8-ethynyl-methyl)-6-chromanoyl]-benzoic and 2-[4-[(8-ethynyl, 8-vinyl or 8-ethynyl-methyl)-6-chromanoyl]-phenyl]-acetic acid, their esters and salts having cytochrome p450rai inhibitory activity
US7101576B2 (en) 2002-04-12 2006-09-05 Elan Pharma International Limited Nanoparticulate megestrol formulations
US20030215395A1 (en) 2002-05-14 2003-11-20 Lei Yu Controllably degradable polymeric biomolecule or drug carrier and method of synthesizing said carrier
DE60326833D1 (en) * 2002-05-15 2009-05-07 Endocyte Inc VITAMIN MITOMYCIN CONJUGATES
DE60335022D1 (en) 2002-06-19 2010-12-30 Raven Biotechnologies Inc Internalizing antibodies specific for the RAAG10 cell surface target
AU2003244922A1 (en) 2002-06-28 2004-01-19 The Administrators Of The Tulane Educational Fund 4-(4-methylpiperazin-1-ylmethyl)-n-(4-methyl-3-(4-pyridin-3-yl)pyrimidin-2-ylamino)phenyl)-benzamide for treating pulmonary fibrosis
EP1526865A4 (en) 2002-08-05 2009-09-02 Mirus Bio Corp Compounds for targeting hepatocytes
JP2004083436A (en) 2002-08-23 2004-03-18 Minofuaagen Seiyaku:Kk Astrocyte activation inhibitor and prophylactic or therapeutic agent for organ fibrosis
AU2003259381A1 (en) 2002-08-29 2004-03-19 University Of Southampton Use of apoptosis inducing agents in the preparation of a medicament for the treatment of liver diseases
US6740336B2 (en) 2002-10-04 2004-05-25 Mirus Corporation Process for generating multilayered particles
US7405061B2 (en) 2002-11-13 2008-07-29 Raven Biotechnologies, Inc. Antigen PIPA and antibodies that bind thereto
CA2508015C (en) 2002-12-30 2012-04-03 Nektar Therapeutics Al, Corporation Multi-arm polypeptide-poly(ethylene glycol) block copolymers as drug delivery vehicles
US20040138154A1 (en) 2003-01-13 2004-07-15 Lei Yu Solid surface for biomolecule delivery and high-throughput assay
WO2004090108A2 (en) 2003-04-03 2004-10-21 Alnylam Pharmaceuticals Irna conjugates
US20050002999A1 (en) * 2003-06-04 2005-01-06 Rahul Mehta Long-circulating liposomal compositions
EP1663171B9 (en) 2003-08-26 2009-08-19 SmithKline Beecham Corporation Heterofunctional copolymers of glycerol and polyethylene glycol, their conjugates and compositions
WO2005028498A2 (en) 2003-09-18 2005-03-31 Raven Biotechnologies, Inc. Kid3 and kid3 antibodies that bind thereto
US7064127B2 (en) 2003-12-19 2006-06-20 Mount Sinai School Of Medicine Of New York University Treatment of hepatic fibrosis with imatinib mesylate
US20070077286A1 (en) 2003-12-24 2007-04-05 Tsutomu Ishihara Drug-containing nanoparticle, process for producing the same and parenterally administered preparation from the nanoparticle
US7297786B2 (en) 2004-07-09 2007-11-20 University Of Iowa Research Foundation RNA interference in respiratory epitheial cells
US7358223B2 (en) 2004-10-04 2008-04-15 Nitto Denko Corporation Biodegradable cationic polymers
DE602005012155D1 (en) 2004-11-03 2009-02-12 Liplasome Pharma As LIPID BASED DRUG DISPOSAL SYSTEMS USING UNSATURATIVE PHOSPHOLIPASE-A2 ABBAUBARANT LIPID DERIVATIVES AND THEIR THERAPEUTIC USE
US8057821B2 (en) 2004-11-03 2011-11-15 Egen, Inc. Biodegradable cross-linked cationic multi-block copolymers for gene delivery and methods of making thereof
US7964571B2 (en) 2004-12-09 2011-06-21 Egen, Inc. Combination of immuno gene therapy and chemotherapy for treatment of cancer and hyperproliferative diseases
CN101102795B (en) * 2004-12-22 2011-12-07 日东电工株式会社 Drug carrier and drug carrier kit for inhibiting fibrosis
US20120269886A1 (en) 2004-12-22 2012-10-25 Nitto Denko Corporation Therapeutic agent for pulmonary fibrosis
JP4533420B2 (en) 2004-12-22 2010-09-01 日東電工株式会社 Drug carrier and drug carrier kit for suppressing fibrosis
JP2009221164A (en) 2008-03-17 2009-10-01 Nitto Denko Corp Drug for treating pulmonary fibrosis
US7404969B2 (en) 2005-02-14 2008-07-29 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
US8246983B2 (en) * 2005-09-02 2012-08-21 Northwestern University Encapsulated arsenic drugs
JP5342834B2 (en) 2008-09-05 2013-11-13 日東電工株式会社 Treatment agent for myelofibrosis
US7700541B2 (en) 2006-04-06 2010-04-20 Nitto Denko Corporation Biodegradable cationic polymers
WO2007143659A2 (en) 2006-06-05 2007-12-13 Massachusetts Institute Of Technology Crosslinked, degradable polymers and uses thereof
TWI407971B (en) 2007-03-30 2013-09-11 Nitto Denko Corp Cancer cells and tumor-related fibroblasts
US20080312174A1 (en) 2007-06-05 2008-12-18 Nitto Denko Corporation Water soluble crosslinked polymers
WO2009036368A2 (en) 2007-09-14 2009-03-19 Nitto Denko Corporation Drug carriers
AU2008359989A1 (en) 2008-07-30 2010-02-04 Nitto Denko Corporation Drug carriers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2135600A4 (en) 2013-10-16
JP2015134789A (en) 2015-07-27
US8686052B2 (en) 2014-04-01
CN101674810B (en) 2014-07-16
EP2135600A1 (en) 2009-12-23
JP2013224311A (en) 2013-10-31
JP5302187B2 (en) 2013-10-02
US20140127187A1 (en) 2014-05-08
JPWO2008120815A1 (en) 2010-07-15
US20100144659A1 (en) 2010-06-10
CA2682493A1 (en) 2008-10-09
CN101674810A (en) 2010-03-17
KR101585947B1 (en) 2016-01-15
AU2008233550A1 (en) 2008-10-09
ES2793673T3 (en) 2020-11-16
KR20090130010A (en) 2009-12-17
AR065878A1 (en) 2009-07-08
JP2017048225A (en) 2017-03-09
TW200846022A (en) 2008-12-01
TWI407971B (en) 2013-09-11
AU2008233550B2 (en) 2013-02-21
WO2008120815A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
EP2135600B1 (en) Targeting agent for cancer cell or cancer-associated fibroblast
KR101720851B1 (en) Nanovesicles derived from cell membrane and use thereof
EP3050965B1 (en) Agent for treating myelofibrosis
US9926561B2 (en) Composition for regenerating normal tissue from fibrotic tissue
US11752219B2 (en) Substrate delivery of embedded liposomes
US9572886B2 (en) Agent for treating myelofibrosis
CN102711454B (en) Methods and compositions for enhancing delivery, expression or activity of RNA interference agents
JP6023824B2 (en) Composition for regenerating normal tissue from fibrotic tissue

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20130917

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 31/704 20060101ALI20130910BHEP

Ipc: A61K 48/00 20060101ALI20130910BHEP

Ipc: A61K 9/127 20060101AFI20130910BHEP

Ipc: A61K 9/50 20060101ALI20130910BHEP

Ipc: A61K 47/08 20060101ALI20130910BHEP

Ipc: A61K 9/51 20060101ALI20130910BHEP

Ipc: A61K 9/107 20060101ALI20130910BHEP

Ipc: A61K 31/713 20060101ALI20130910BHEP

Ipc: A61P 43/00 20060101ALI20130910BHEP

Ipc: A61P 35/00 20060101ALI20130910BHEP

Ipc: A61K 45/00 20060101ALI20130910BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008062591

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1262262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200429

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200730

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200829

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200831

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1262262

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200429

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2793673

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008062591

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230208

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080328

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230213

Year of fee payment: 16

Ref country code: GB

Payment date: 20230202

Year of fee payment: 16

Ref country code: DE

Payment date: 20230131

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230404

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200429