EP2100337A2 - Solar cell and method for producing a solar cell - Google Patents
Solar cell and method for producing a solar cellInfo
- Publication number
- EP2100337A2 EP2100337A2 EP07847986A EP07847986A EP2100337A2 EP 2100337 A2 EP2100337 A2 EP 2100337A2 EP 07847986 A EP07847986 A EP 07847986A EP 07847986 A EP07847986 A EP 07847986A EP 2100337 A2 EP2100337 A2 EP 2100337A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- holes
- solar cell
- front side
- regions
- diffusion mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000758 substrate Substances 0.000 claims abstract description 35
- 239000004065 semiconductor Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000009792 diffusion process Methods 0.000 claims description 87
- 238000005530 etching Methods 0.000 claims description 18
- 239000002019 doping agent Substances 0.000 claims description 15
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 238000001465 metallisation Methods 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000011574 phosphorus Substances 0.000 claims description 5
- 238000000608 laser ablation Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 238000007650 screen-printing Methods 0.000 claims description 2
- 238000002679 ablation Methods 0.000 claims 1
- 210000001520 comb Anatomy 0.000 claims 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims 1
- 230000000717 retained effect Effects 0.000 claims 1
- 238000009736 wetting Methods 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/022441—Electrode arrangements specially adapted for back-contact solar cells
- H01L31/022458—Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0682—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to a solar cell and method for producing a solar cell.
- An emitter wrap-through (EWT) solar cell has no metallization on the front.
- the emitter is passed through a large number of small holes (d ⁇ 100 microns) on the back of the cell and contacted there.
- the light-generated current is conducted via the emitter and the holes on the back of the cell to contacts arranged there and tapped there.
- the strength of emitter doping plays an important role. On the one hand, a higher doping results in a smaller sheet resistance and thus contributes to the reduction of ohmic losses. In addition, the contact resistance between emitter and metallization at a high emitter doping is significantly lower. On the other hand, high doping reduces the ability of the cell, in particular, to convert short-wave light into current (so-called blue sensitivity). Accordingly, a compromise between good conductivity and blue sensitivity must be chosen for the doping.
- US Pat. No. 7,144,751 B1 describes a solar cell in which a higher doping is present in the inner wall of the holes of the solar cell and along a grid on the front side of the solar cell.
- the present invention is based on the object to provide a solar cell with a low effective sheet resistance at the same time high blue sensitivity and methods for producing such a solar cell.
- the present invention provides a solar cell having a plurality of holes in which the front side has highly doped regions and lightly doped regions of a first doping type such that the holes of the solar cell each lie in a highly doped region or adjoin one another.
- the highly doped regions are arranged locally around the holes of the solar cell.
- the individual local highly doped regions are spatially separated from one another and thus do not form a coherent structure on the front side of the solar cell. It is thus provided that the front-side emitter has no homogeneous doping, but rather is highly doped in the immediate vicinity of the holes. Due to this special doping, the majority of the front side, which is lightly doped, has an emitter with high blue sensitivity.
- the heavily doped regions simultaneously reduce series resistance and contact resistance.
- the strength of the doping of the areas of the front side in the immediate vicinity of the holes is decisive for the series resistance of a solar cell.
- the reason for this is that the current in these areas flows approximately radially to the hole and thus in these areas the highest current density occurs. If the radius of the holes is thus heavily doped, the disadvantageous electrical resistance decreases.
- the circumference of the holes, which experiences a high doping, for example, has a radius of between a few 100 microns.
- the solar cell according to the invention is, for example, an EWT solar cell or a metallization wrap-through (MWT) solar cell.
- the front side forms highly doped regions which are substantially circular.
- the highly doped regions form a circular ring with an inner radius and an outer radius, wherein the inner radius corresponds to the radius of the hole which the respective circular ring surrounds. gives.
- the difference in radius between outer radius and inner radius is, for example, between 50 ⁇ m and 300 ⁇ m, in particular between 100 ⁇ m and 200 ⁇ m.
- the front side forms highly doped regions which radiate star-shaped or fan-shaped from the respective holes.
- the highly doped regions, which radiate star-shaped or fan-shaped from the respective holes in one embodiment each comprise finger-shaped regions.
- the semiconductor substrate and thus the front side of the solar cell have areas without holes.
- bus bars solder joints or bus bars
- EWT solar cells always make a compromise regarding the number of holes. If, as by the present invention, a low series resistance can be realized even with a comparatively small number of holes, the holes may have a relatively large distance from one another, so that larger areas without holes lie between the holes.
- the heavily doped regions of the front comprise regions which extend into the hole-free regions.
- These finger-shaped, heavily doped areas are well-conducting current paths that transport the current collected in the hole-free areas to a hole. This reduces the finger-shaped, highly doped rich the series resistance. At the same time, their transparency ensures good light utilization.
- the highly doped regions as a whole, and in particular the finger-shaped regions which extend into hole-free regions, may in one embodiment be formed in trenches in the semiconductor substrate.
- a method according to the invention for producing an emitter-wrap-through (EWT) solar cell comprises the following steps: providing a planar semiconductor substrate having a front side and a rear side,
- Another method according to the invention for producing an emitter-wrap-through (EWT) solar cell comprises the following steps:
- planar semiconductor substrate having a front side and a rear side
- the entire front side is first heavily doped.
- the diffusion mask is patterned complementary to the diffusion mask of the method of claim 24. Outside the structured diffusion mask, the high doping is removed again. There is then a low doping in these areas. Finally, a complete removal of the diffusion mask takes place at least from the front side.
- Figure 1 shows the top of an EWT solar cell with locally formed highly doped areas.
- FIG. 2 shows a section through a partial region of the EWT solar cell of FIG. 1;
- 4 shows a plan view of a further embodiment of an EWT solar cell with locally highly doped regions
- 5 shows a diffusion mask applied to a semiconductor substrate for masking a strong diffusion, wherein the diffusion mask has circular, local recesses in the area of holes of the semiconductor substrate;
- FIG. 6 shows a diffusion mask applied to a semiconductor substrate for masking a strong diffusion, the diffusion mask having linear recesses, each containing a row of holes;
- Fig. 7 is a known in the prior art structure of current-collecting electrical contacts on the back of an EWT solar cell.
- FIGS 1 and 2 show an EWT solar cell with selectively formed on the top highly doped areas.
- the solar cell 10 includes a semiconductor substrate 13, for example, a silicon wafer, having a top 1 1 and a bottom 12.
- a plurality of through holes 14 are formed connecting the top 11 to the bottom 12.
- the holes 14 are arranged like a grid, wherein the distance between two holes in one direction is between 0.2 and 0.8 mm and in the direction perpendicular thereto, for example 2 mm.
- the hole diameters are typically between 30 and 100 ⁇ m.
- the holes 14 are made, for example, by laser drilling. However, other manufacturing methods such. B. etching or mechanical drilling conceivable.
- the front side 1 1 of the semiconductor substrate 13 has a doping of a first type, for example an n-type doping.
- the semiconductor substrate 13 itself also has a doping of a second, opposite type, for example a p-doping.
- a second, opposite type for example a p-doping.
- the n-doping is formed on the front side 1 1 and extends through the inner wall of the holes 14 to the bottom 12 of the semiconductor substrate 13.
- the bottom side 12 has, in addition to the n-doped regions 121 further, second regions 122, which have a p-type doping. This is the p-doping of the semiconductor substrate 13, which can optionally be locally reinforced by additional doping.
- the n-doped regions 121 of the underside 12 are connected to first electrical contacts 31 in the form of a finger contact.
- the p-doped regions 122 of the underside 12 are connected to second electrical contacts 32, also in the form of a finger contact.
- the electrical contacts 31, 32 are electrically isolated from each other, for example, by means of a diffusion barrier (not shown).
- the contacts for both poles are on the back of the cell.
- the n-type emitter region is passed through many of the tiny holes in the cell from the front to the back and only then contacted there.
- FIG. 1 and 2 do not show all the elements of a complete EWT solar cell. Only those elements are shown which are necessary for the understanding of the present invention.
- an EWT solar cell in addition to the elements shown on the upper side 1 1 for reflection reduction texturing and one or more passivation layers, such as a SiN x layer may have.
- passivation layers and / or diffusion barriers for the electrical separation of the first and second electrical contacts 31, 32 can also be provided on the rear side 12.
- the provided electrical contacts 31, 32 may, for example, aluminum and silver or consist exclusively of silver.
- the front side 1 1, which forms the emitter adjacent to the holes 14 local highly doped regions 21 which thus have, for example, an n ++ - doping.
- These highly doped regions 21 have, for example, the shape of a circular ring, as shown in FIG. However, they can also assume other shapes, for example star-shaped or spiral-shaped. In this case, the heavily doped regions 21 are local in the sense that they do not touch and do not overlap one another.
- the surface is lightly doped (n + doping).
- the Sheet resistance is preferably less than 30 ohms / sq, preferably less than 15 ohms / sq, and in a preferred embodiment, about 5 ohms / sq.
- the area of the remaining surface 22 there is a weak doping with a sheet resistance of, for example, more than 80 ohms / sq.
- FIG. 4 shows an alternative embodiment of an EWT solar cell in which certain local areas are heavily doped on the upper side 11 of the solar cell.
- highly doped regions 23 formed in rows, highly doped regions 24 formed in rows and elongate, finger-shaped narrow regions 25 are provided.
- the holes 14 are arranged, so that the front side in the immediate vicinity of the holes 14 as well as in the embodiment of Figures 1, 2 is highly doped.
- the fingers 25 extend, starting from a hole 14, fan-shaped into a hole-free region 15.
- a hole-free region arises, for example, in that a current busbar (busbar), a soldering point or the like (see also FIG and therefore no holes can be formed in this area.
- busbar current busbar
- soldering point soldering point
- the formation of highly doped fingers 25 ensures that the conductor carriers generated in the hole-free region 15 can be conducted via well-conducting current paths to the holes 14 and from these to the cell rear side 11 to the corresponding contacts 31, 32.
- Corresponding fingers can also be formed, for example, at edge regions of the solar cell 10 or in each case between two holes 14 of a grid, if a small number of holes are present in the solar cell and the grid is correspondingly large. It will also be pointed out that corresponding fingers which extend into hole-free regions can be realized in combination with the embodiment of FIG.
- the fingers 25 have a width less than or equal to 50 ⁇ m. In one embodiment, the fingers 25 have a variable width, whereby they preferably taper towards their end facing away from the associated hole.
- the highly doped regions may also have a different geometry, for example, be arranged quadrangular or oval around the individual holes around.
- the finger-like regions 25 may each comprise only one finger, which is straight or curved (also helical).
- FIG. 5 shows a diffusion mask 40 applied to the semiconductor substrate 13, which has circular local recesses 41 in the region of the holes 14.
- FIG. 6 shows a diffusion mask 40 applied to the semiconductor substrate 13, which has line-shaped or strip-shaped recesses 42, each of which comprises a row of holes.
- the mask 40 serves in each case to mask a strong diffusion, for example with phosphorus.
- the mask of Figure 6 is compared to the mask of Figure 5 easier to manufacture, but leads to an EWT solar cell with a lower efficiency due to a lower sensitivity to blue.
- a mask according to FIGS. 5 or 6 is produced, for example, by initially applying a diffusion mask 40 to the semiconductor substrate 13 over the whole area.
- the semiconductor substrate 13 is oxidized, for example, so that an SiO 2 layer is formed.
- a diffusion barrier can also be produced in another way.
- the existing example of silicon dioxide diffusion mask 40 has a thickness of, for example, 200 nm. This layer is not penetrated by the dopants within the usual diffusion conditions: since oxide impedes diffusion, the natural surface oxide also has a disturbing effect and prevents a uniform penetration of the dopant into the silicon crystal.
- the diffusion mask 40 is applied at least on the front side of the solar cell, but preferably both on the front and on the back.
- a selective removal of the diffusion mask in the subregions 41 and 42 of FIGS. 5 and 6 takes place.
- the selective removal of the diffusion mask in these regions can take place in various ways.
- a first embodiment for this provides that an etching paste is applied in the corresponding areas on the front side.
- etching paste is applied in round areas 41, which each contain a hole 14.
- the etching paste is applied in strips, with each strip 42 containing a row of holes. The etching paste removes the diffusion mask in the applied areas.
- the removal of the mask material in the regions 41, 42 in question takes place by laser ablation.
- a line or punctiform laser spot is used.
- the diffusion mask is etched through a patterned etch layer.
- the structured etching layer is applied, for example, by screen printing, by an inkjet method or by dispensing.
- a fourth embodiment uses the capillary effect.
- the underside 12 of the solar cell 10 is immersed in an etching solution. Due to the capillary effect, the etching solution is pulled through the holes 14 to the front 1 1.
- a local area around the holes 14 is etched, with some etching solution flowing out of the holes and / or etching through the vapors of the solution.
- a strong diffusion of a dopant now takes place. For example, there is a strong diffusion with phosphorus.
- the diffusion takes place in the throughflow method, wherein a carrier gas (Ar, N 2 ) is enriched to a desired extent with dopant from a source and passed into a quartz tube, in which the semiconductor substrate is located.
- a carrier gas Ar, N 2
- a dopant source for example, PH 3 is used.
- a liquid dopant source such as POCl 3, is used.
- the respective liquid is then in a tempered bubbler vessel, which is purged by the carrier gas. With the carrier gas, the dopant passes into the quartz tube for diffusion.
- the diffusion mask 40 is completely removed from the cell front side 1 1. Subsequently, a slight diffusion takes place to provide lightly doped regions on the front side of the solar cell. The light diffusion takes place for example also by means of phosphorus.
- FIG. 7 shows a typical structure of a current-collecting back contact of an EWT solar cell.
- the rear side has first finger contacts 31 of a positive polarity, second finger contacts 32 of a negative polarity, and a total of four current bus bars (busbars) 33, 34, of which two are each of the same polarity.
- the currents collected via the finger contacts 31, 32 are picked off from the solar cell via the busbars 33, 34.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Sustainable Energy (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09165787A EP2107615A3 (en) | 2006-12-08 | 2007-12-07 | Solar cell and its method for manufacturing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006058267A DE102006058267A1 (en) | 2006-12-08 | 2006-12-08 | Emitter wrap-through solar cell and method of making an emitter wrap-through solar cell |
PCT/EP2007/063537 WO2008068336A2 (en) | 2006-12-08 | 2007-12-07 | Solar cell and method for producing a solar cell |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09165787A Division EP2107615A3 (en) | 2006-12-08 | 2007-12-07 | Solar cell and its method for manufacturing |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2100337A2 true EP2100337A2 (en) | 2009-09-16 |
Family
ID=39363235
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09165787A Pending EP2107615A3 (en) | 2006-12-08 | 2007-12-07 | Solar cell and its method for manufacturing |
EP07847986A Pending EP2100337A2 (en) | 2006-12-08 | 2007-12-07 | Solar cell and method for producing a solar cell |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09165787A Pending EP2107615A3 (en) | 2006-12-08 | 2007-12-07 | Solar cell and its method for manufacturing |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120266947A1 (en) |
EP (2) | EP2107615A3 (en) |
DE (1) | DE102006058267A1 (en) |
WO (1) | WO2008068336A2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1993142A1 (en) * | 2007-05-14 | 2008-11-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Semiconductor element with reflective coating, method for its manufacture and its application |
ES2402779T3 (en) * | 2007-12-14 | 2013-05-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Thin film solar cell and manufacturing process |
KR100997113B1 (en) * | 2008-08-01 | 2010-11-30 | 엘지전자 주식회사 | Solar Cell and Method for Manufacturing thereof |
KR101072543B1 (en) * | 2009-04-28 | 2011-10-11 | 현대중공업 주식회사 | Method for sollar cell |
KR20110089497A (en) * | 2010-02-01 | 2011-08-09 | 삼성전자주식회사 | Method for doping impurities into a substrate, method for manufacturing a solar cell using the same and solar cell manufactured by using the method |
US8524524B2 (en) * | 2010-04-22 | 2013-09-03 | General Electric Company | Methods for forming back contact electrodes for cadmium telluride photovoltaic cells |
TWI626757B (en) * | 2013-07-09 | 2018-06-11 | 英穩達科技股份有限公司 | Back contact solar cell |
DE102013218738A1 (en) * | 2013-09-18 | 2015-04-02 | Solarworld Industries Sachsen Gmbh | Solar cell with contact structure and process for its preparation |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3903428A (en) * | 1973-12-28 | 1975-09-02 | Hughes Aircraft Co | Solar cell contact design |
US6842457B1 (en) | 1999-05-21 | 2005-01-11 | Broadcom Corporation | Flexible DMA descriptor support |
US7170001B2 (en) * | 2003-06-26 | 2007-01-30 | Advent Solar, Inc. | Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias |
US7144751B2 (en) * | 2004-02-05 | 2006-12-05 | Advent Solar, Inc. | Back-contact solar cells and methods for fabrication |
-
2006
- 2006-12-08 DE DE102006058267A patent/DE102006058267A1/en not_active Ceased
-
2007
- 2007-12-07 US US12/517,935 patent/US20120266947A1/en not_active Abandoned
- 2007-12-07 WO PCT/EP2007/063537 patent/WO2008068336A2/en active Application Filing
- 2007-12-07 EP EP09165787A patent/EP2107615A3/en active Pending
- 2007-12-07 EP EP07847986A patent/EP2100337A2/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2008068336A2 * |
Also Published As
Publication number | Publication date |
---|---|
DE102006058267A1 (en) | 2008-06-12 |
WO2008068336A3 (en) | 2008-09-04 |
EP2107615A2 (en) | 2009-10-07 |
US20120266947A1 (en) | 2012-10-25 |
EP2107615A3 (en) | 2009-10-28 |
WO2008068336A2 (en) | 2008-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3131727C2 (en) | ||
DE69837143T2 (en) | A method for producing a solar cell | |
EP0948820B1 (en) | Solar cell with reduced shading and method of producing the same | |
DE102011122252B4 (en) | Solar cell and process for its production | |
EP2100337A2 (en) | Solar cell and method for producing a solar cell | |
DE102009034953B4 (en) | Semiconductor device and method of manufacturing the same | |
DE102008033632B4 (en) | Solar cell and solar cell module | |
DE102008044910A1 (en) | Solar cell and solar cell module with one-sided interconnection | |
DE3015355A1 (en) | BARRIER PHOTO SEMICONDUCTOR DEVICE AND METHOD FOR THEIR PRODUCTION | |
DE19522539A1 (en) | Solar cell with an emitter having a surface texture and method for producing the same | |
WO2009074469A2 (en) | Rear-contact solar cell having large rear side emitter regions and method for producing the same | |
DE3446885A1 (en) | MEASURED SOLAR CELL WITH LASER | |
DE102007059486A1 (en) | Rear contact solar cell with elongated, interleaved emitter and base regions at the back and manufacturing method thereof | |
EP0286917A2 (en) | Solar cell | |
DE102011000753A1 (en) | Solar cell, solar module and method for producing a solar cell | |
DE1810322C3 (en) | Bipolar transistor for high currents and high current amplification | |
DE102011115581B4 (en) | Process for the production of a solar cell | |
DE102016116192B3 (en) | Photovoltaic module with integrated series-connected stacked solar cells and process for its production | |
EP2345084B1 (en) | Solar cell and method for producing the same | |
EP2956966A1 (en) | Busbarless rear contact solar cell, method of manufacture therefor and solar module having such solar cells | |
WO1998047184A1 (en) | Method for making a system comprised of single sequentially arranged solar cells, and the system | |
DE102006057328A1 (en) | Solar cell has laminar semiconductor substrate, and dielectric layer with oblong openings, where oblong metallic contacts are arranged transverse to those oblong openings | |
DE102021129460A1 (en) | Solar cell and method for manufacturing a solar cell | |
DE102010060303A1 (en) | Process for producing a solar cell | |
EP2559075B1 (en) | Method for producing a solar cell, and solar cell produced according to this method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090630 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WADE, ROBERT Inventor name: HLUSIAK, MARKUS Inventor name: MUELLER, JOERG |
|
DAX | Request for extension of the european patent (deleted) | ||
RTI1 | Title (correction) |
Free format text: SOLAR CELL AND METHOD FOR PRODUCING HIGH DOPED REGIONS ON THE FRONT SURFACE OF A SOLAR CELL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
18D | Application deemed to be withdrawn |
Effective date: 20120703 |
|
19U | Interruption of proceedings before grant |
Effective date: 20120701 |
|
19W | Proceedings resumed before grant after interruption of proceedings |
Effective date: 20140303 |
|
R18D | Application deemed to be withdrawn (corrected) |
Effective date: 20120703 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
D18D | Application deemed to be withdrawn (deleted) | ||
INTC | Intention to grant announced (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120702 |