EP2050841B1 - Alkaline electroplating bath with a filtration membrane - Google Patents
Alkaline electroplating bath with a filtration membrane Download PDFInfo
- Publication number
- EP2050841B1 EP2050841B1 EP09152660.8A EP09152660A EP2050841B1 EP 2050841 B1 EP2050841 B1 EP 2050841B1 EP 09152660 A EP09152660 A EP 09152660A EP 2050841 B1 EP2050841 B1 EP 2050841B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bath
- filtration membrane
- electroplating bath
- zinc
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/565—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/02—Tanks; Installations therefor
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/002—Cell separation, e.g. membranes, diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/06—Filtering particles other than ions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/16—Regeneration of process solutions
- C25D21/22—Regeneration of process solutions by ion-exchange
Definitions
- the invention relates to an alkaline electroplating bath for applying zinc alloys to substrates, in which the anode space and the cathode space are separated from one another by a filtration membrane.
- zinc alloys can be deposited on substrates in a consistently high quality.
- the electroplating bath is operated with zinc alloy baths containing organic additives such as brighteners and wetting agents and complexing agents in addition to soluble zinc salts and optionally other metal salts selected from iron, nickel, cobalt and tin salts as defined in claim 1.
- Bath dilution reduces the concentration of impurities in proportion to the degree of dilution.
- a dilution is easy to carry out, but has the disadvantage that the amount of electrolyte removed from the bath has to be supplied to cost-intensive disposal.
- a complete new approach of the bath can be considered in this context as a special case of Badver Mednung.
- Alkaline Zn baths contain a factor of 5 to 10 lower proportion of organic additives as acidic baths. Accordingly, contamination by decomposition products is generally less critical. In the case of alkaline alloy baths, however, the addition of significant amounts of organic complexing agents is required to complex the alloying additive (Fe, Co, Ni, Sn). These are oxidatively degraded at the anode and the accumulated decomposition products have a negative effect on the production process.
- the EP 1 369 505 A2 discloses a method for purifying a zinc-nickel electrolyte in a galvanic process in which a portion of the process bath used in the process is evaporated until phase separation into a lower phase, at least one middle phase and an upper phase occurs, and the lower one and the upper phase are separated. This process requires several stages and is disadvantageous in terms of its energy requirements from a cost point of view.
- the WO 00/06807 and WO 01/96631 describe electroplating baths for applying zinc-nickel coatings. To avoid the undesirable decomposition of additives at the anode, it is proposed to separate the anode from the alkaline electrolyte through an ion exchange membrane.
- the baths known in the prior art have the disadvantage that in the anodic decomposition of the nitrogen-containing complexing agent cyanide is formed and accumulates in non-negligible concentration.
- the WO 2005/073438 which belongs to the prior art according to Article 54 (3) EPC, describes an apparatus for the electrolytic deposition of zinc or alloys of zinc with at least one other metal selected from iron, cobalt, nickel and manganese on a workpiece comprising: (a) a basin divided by a separator into a cathode compartment and an anode compartment; (b) the workpiece immersed in an aqueous alkaline-pH cathode liquid contained in the cathode compartment and comprising zincate ions and optionally ions of the metal other than zinc; and (c) an alkaline pH aqueous anode liquid contained in the anode compartment and surrounding an anode of the anode liquid insoluble metal; wherein the separator is made of an open-cell material and satisfies the following three tests: (1) the pore diameters have a dimension between 10 nm and 50 ⁇ m; (2) In a basin containing an aqueous solution of 120 g / l NaOH,
- the invention has for its object to provide an alkaline electroplating bath, which does not have the aforementioned disadvantages.
- the life of the bath is to be increased, the anodic decomposition of organic constituents of the bath to be minimized and, when it is used, a layer thickness of consistently high quality to be obtained on the coated substrate.
- the invention relates to an alkaline electroplating bath for applying zinc alloys on substrates having a cathode and an anode, comprising a zinc alloy bath, wherein the anode space and the cathode space are separated from each other by a filtration membrane, wherein the size of the pores of the filtration membrane in the range of 0.001 to 1 , 0 microns and wherein the zinc alloy bath comprises the following components: 80-250 g / l NaOH or KOH; 5-20 g / l zinc in the form of the soluble zinc salt; 0.02-10 g / l of the alloying metal Ni, Fe, Co, Sn in the form of the soluble metal salts; 2-200 g / l complexing agent selected from polyalkenylamines, alkanolamines, polyhydroxycarboxylates; 0.1-5 g / l aromatic or heteroaromatic brightener.
- filtration membranes are used.
- the size of the pores of this Filtration membranes is in a range of 0.001 to 1.0 microns, depending on the type of membrane (nano- or ultrafiltration membrane).
- filtration membranes are used with a pore size in the range of 0.05 to 0.5 microns.
- the pore size is in a range of 0.1 to 0, 3 microns.
- the filtration membrane contained in the alkaline electroplating bath according to the invention may consist of various organic or inorganic, alkali-resistant materials. These materials are, for example, ceramics, polytetrafluoroethylene (PTFE), polysulfones and polypropylene.
- PTFE polytetrafluoroethylene
- polysulfones polysulfones
- polypropylene polypropylene
- filtration membranes made of polypropylene.
- the filtration membrane in the alkaline electroplating bath according to the invention is designed as a flat membrane.
- the alkaline electroplating bath according to the invention can also be realized with other membrane forms, examples being hoses, capillaries and hollow fibers.
- Such baths are for example in US 5,417,840 .
- US 4,421,611 US 4,877,496 or US 6,652,728 described.
- the alkaline electroplating bath according to the invention has the advantage that in it also baths for the deposition of zinc alloys can be used, which are suitable for use in the from WO 00/06807 and WO 01/96631 known alkaline zinc-nickel bath with an ion exchange membrane are not suitable.
- sold by the applicant bath "Protedur Ni-75" to call which is characterized by a particularly high efficiency.
- the previously used anodes can be used further. These are mostly nickel anodes.
- the use of these anodes is less expensive than that from the WO 00/06807 known electroplating bath, in which special platinum-plated titanium anodes must be used in addition.
- the anode space is preferably made smaller than the cathode space, since the essential processes take place there.
- Both baths were operated with and without filtration membrane in 5-liter tanks.
- the filtration membrane used was the Abwa-Tec polymer membrane P150F, which has a pore size of 0.12 ⁇ m.
- the membrane was placed in the anode to cathode bath with the anolyte and catholyte being identical, ie, no special anolyte was added.
- iron sheets (7 ⁇ 10 cm), which are usually used for Hull cell tests, were used as workpieces to be coated and coated at a current density of 2 A / dm 2 .
- the baths were operated in serial connection. The movement of the iron sheets was mechanical, at a speed of 1.4 m / min.
- Table 2 shows the Hull cell layer thickness in a new approach and old approach depending on the throughput with and without filtration membrane. The layer thickness measurements were made after adjustment of the baths.
- the dots are on the Hullzellenblechen 3 cm from the bottom edge and 2.5 cm from the left or right side edge. On the left side is the high current density (point A) and on the right the low current density (point B).
- the average layer thickness is about 35% higher in a new batch in the high current density range and about 19% higher in the low current density range as if one had not used a filtration membrane. In the old batch, it is on average 17% and 12% higher than without filtration membrane.
- a filtration membrane is produced after a throughput of> 1000 Ah / l introduced after a short time comparable to a new approach current efficiency.
- composition of the aforementioned baths were analyzed according to the tests described above. Of particular interest was their cyanide content. This was much lower when using the baths according to the invention with a filtration membrane as baths without membrane. As shown in Table 4 below, a bath without the membrane had a cyanide content of 680 mg / L (new batch) and 790 mg / L (bath of> 1000 Ah / L), respectively, while the corresponding membrane baths contained a cyanide Content of 96 mg / L or 190 mg / L.
- the cyanide content of an old batch ie a bath with> 1000 Ah / l can be reduced when it is provided with a filtration membrane and operated.
- the cyanide content was reduced from 670 mg / l to 190 mg / l.
- the color of the baths was also evaluated. It was found that the color of a freshly prepared bath without membrane changed from initially violet-orange to brown within 15 Ah / l, whereby it remained purple or violet-orange over the entire time when using a filtration membrane. The old batch remained brown without using a membrane and the color changed to orange-brown after 15 Ah / l using a filtration membrane. Violet is also the color of freshly applied baths, which then turn to orange (after a few Ah / l) and at high throughput in brown.
- the voltage between anode and cathode was measured. It was about 3 V and was only about 50-100 mV higher in both approaches using a filtration membrane. Is used instead of the filtration membrane an ion exchange membrane, as in the WO 00/06807 described is, the voltage is higher by at least 500 mV. This again shows the advantage of using a filtration membrane instead of an ion exchange membrane.
- the use of filtration membranes over the use of ion exchange membranes offers many advantages.
- the coating process carried out therewith is more cost-effective, since no platinized anodes have to be used, catholyte and anolyte can have the same composition, and thus no circulation for the anolyte is required.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
Die Erfindung betrifft ein alkalisches Galvanikbad zum Aufbringen von Zinklegierungen auf Substraten, bei dem der Anodenraum und der Kathodenraum voneinander durch eine Filtrationsmembran getrennt sind. Mit dem erfindungsgemäßen alkalischen Galvanikbad können Zinklegierungen in gleichbleibend hoher Qualität auf Substraten abgeschieden werden. Das Galvanikbad wird mit Zinklegierungsbädern betrieben, die organische Zusätze wie Glanzmittel und Netzmittel sowie Komplexbildner neben löslichen Zinksalzen und gegebenenfalls weiteren Metallsalzen, ausgewählt aus Eisen-, Nickel-, Kobalt- und Zinnsalzen, enthalten, wie in Anspruch 1 definiert.The invention relates to an alkaline electroplating bath for applying zinc alloys to substrates, in which the anode space and the cathode space are separated from one another by a filtration membrane. With the alkaline electroplating bath according to the invention, zinc alloys can be deposited on substrates in a consistently high quality. The electroplating bath is operated with zinc alloy baths containing organic additives such as brighteners and wetting agents and complexing agents in addition to soluble zinc salts and optionally other metal salts selected from iron, nickel, cobalt and tin salts as defined in
Um die Abscheidung funktionaler Schichten aus Zinkbädern zu ermöglichen, werden dem Bad organische Glanzbildner und Netzmittel zugesetzt. Des Weiteren enthält das Bad Komplexbilder, um die Abscheidung weiterer Metalle der Zinklegierung zu ermöglichen. Der Komplexbildner dient dazu das Potenzial zu regulieren und die Metalle in Lösung zu halten, so dass die gewünschte Legierungszusammensetzung erreicht wird. Die Verwendung der vorgenannten organischen Bestandteile führt jedoch bei Betrieb der Bäder zu Problemen, wie sie beispielsweise in der
Mit der Phasentrennung und mit steigendem Gehalt organischer Verunreinigungen treten zunehmende dekorative Probleme bei der Beschichtung auf und führen zu verminderter Produktivität. Zur Verminderung der dekorativen Probleme werden in der Regel erhöhte Dosierungen der organischen Badzusätze vorgenommen, wodurch der Gehalt an Abbauprodukten weiter ansteigt.With phase separation and increasing content of organic contaminants, increasing decorative problems of coating occur and result in decreased productivity. To reduce the decorative problems usually increased dosages of organic bath additives are made, whereby the content of degradation products continues to increase.
Als Abhilfemaßnahmen sind mehrere Methoden bekannt, die nachstehend beschrieben sind:Remedies are several methods that are described below:
Eine Badverdünnung vermindert die Konzentration der Verunreinigungen proportional dem Verdünnungsgrad. Eine Verdünnung ist einfach durchführbar, hat jedoch den Nachteil, dass die dem Bad entnommene Elektrolytmenge der kostenintensiven Entsorgung zugeführt werden muss. Ein kompletter Neuansatz des Bades kann in diesem Zusammenhang als Spezialfall der Badverdünnung betrachtet werden.Bath dilution reduces the concentration of impurities in proportion to the degree of dilution. A dilution is easy to carry out, but has the disadvantage that the amount of electrolyte removed from the bath has to be supplied to cost-intensive disposal. A complete new approach of the bath can be considered in this context as a special case of Badverdünnung.
Eine Aktivkohlebehandlung durch Einrühren von 0,5-2 g/l Aktivkohle ins Bad und anschließende Filtration vermindert die Konzentration an Verunreinigungen durch Adsorption an der Kohle. Nachteil dieser Methode ist, dass sie arbeitsaufwendig ist und nur eine relativ geringe Absenkung bewirkt.Activated carbon treatment by stirring 0.5-2 g / l activated charcoal into the bath followed by filtration reduces the concentration of impurities due to adsorption the coal. Disadvantage of this method is that it is laborious and causes only a relatively small reduction.
Alkalische Zn-Bäder enthalten einen um den Faktor 5 bis 10 geringeren Anteil organischer Zusätze als saure Bäder. Entsprechend ist die Verunreinigung durch Abbauprodukte in der Regel weniger kritisch. Im Falle alkalischer Legierungsbäder ist allerdings zur Komplexierung des Legierungszusatzes (Fe, Co, Ni, Sn) die Zugabe erheblicher Mengen organischer Komplexbildner erforderlich. Diese werden an der Anode oxidativ abgebaut und die akkumulierten Zersetzungsprodukte wirken sich negativ auf den Produktionsprozess aus.Alkaline Zn baths contain a factor of 5 to 10 lower proportion of organic additives as acidic baths. Accordingly, contamination by decomposition products is generally less critical. In the case of alkaline alloy baths, however, the addition of significant amounts of organic complexing agents is required to complex the alloying additive (Fe, Co, Ni, Sn). These are oxidatively degraded at the anode and the accumulated decomposition products have a negative effect on the production process.
Die
Die
Die Erfindungen haben jedoch den Nachteil, dass der Einsatz solcher Membranen kostenintensiv und wartungsanfällig ist.However, the inventions have the disadvantage that the use of such membranes is cost-intensive and maintenance-prone.
Weiterhin müssen die aus der
Des Weiteren weisen die im Stand der Technik bekannten Bäder den Nachteil auf, dass bei der anodischen Zersetzung der stickstoffhaltigen Komplexbildner Cyanid entsteht und sich in nicht vernachlässigbarer Konzentration anreichert.Furthermore, the baths known in the prior art have the disadvantage that in the anodic decomposition of the nitrogen-containing complexing agent cyanide is formed and accumulates in non-negligible concentration.
Die
Der Erfindung liegt die Aufgabe zugrunde ein alkalisches Galvanikbad bereitzustellen, das die vorgenannten Nachteile nicht aufweist. Insbesondere soll die Lebensdauer des Bades erhöht, die anodische Zersetzung organischer Bestandteile des Bades minimiert und bei seiner Verwendung eine Schichtdicke von gleichbleibend hoher Qualität auf dem beschichteten Substrat erhalten werden.The invention has for its object to provide an alkaline electroplating bath, which does not have the aforementioned disadvantages. In particular, the life of the bath is to be increased, the anodic decomposition of organic constituents of the bath to be minimized and, when it is used, a layer thickness of consistently high quality to be obtained on the coated substrate.
Gegenstand der Erfindung ist ein alkalisches Galvanikbad zum Aufbringen von Zinklegierungen auf Substraten mit einer Kathode und einer Anode, umfassend ein Zinklegierungsbad, wobei der Anodenraum und der Kathodenraum voneinander durch eine Filtrationsmembran getrennt sind, wobei die Größe der Poren der Filtrationsmembran im Bereich von 0,001 bis 1,0 µm liegt und wobei das Zinklegierungsbad die folgenden Komponenten umfasst: 80-250 g/l NaOH bzw. KOH; 5-20 g/l Zink in Form des löslichen Zinksalzes; 0,02-10 g/l des Legierungsmetalls Ni, Fe, Co, Sn in Form der löslichen Metallsalze; 2-200 g/l Komplexbildner ausgewählt aus Polyalkenylaminen, Alkanolaminen, Polyhydroxycarboxylaten; 0,1-5 g/l aromatischer bzw. heteroaromatischer Glanzbildner.The invention relates to an alkaline electroplating bath for applying zinc alloys on substrates having a cathode and an anode, comprising a zinc alloy bath, wherein the anode space and the cathode space are separated from each other by a filtration membrane, wherein the size of the pores of the filtration membrane in the range of 0.001 to 1 , 0 microns and wherein the zinc alloy bath comprises the following components: 80-250 g / l NaOH or KOH; 5-20 g / l zinc in the form of the soluble zinc salt; 0.02-10 g / l of the alloying metal Ni, Fe, Co, Sn in the form of the soluble metal salts; 2-200 g / l complexing agent selected from polyalkenylamines, alkanolamines, polyhydroxycarboxylates; 0.1-5 g / l aromatic or heteroaromatic brightener.
Bei dem erfindungsgemäßen Bad werden an sich bekannte Filtrationsmembranen eingesetzt. Die Größe der Poren dieser Filtrationsmembranen liegt in Abhängigkeit von der Art der Membran (Nano- bzw. Ultrafiltrationsmembran) in einem Bereich von 0,001 bis 1,0 µm. Vorzugsweise werden bei dem alkalischen Galvanikbad Filtrationsmembranen mit einer Porengröße im Bereich von 0,05 bis 0,5 µm eingesetzt. Besonders bevorzugt liegt die Porengröße in einem Bereich von 0,1 bis 0, 3 µm.In the bath according to the invention known filtration membranes are used. The size of the pores of this Filtration membranes is in a range of 0.001 to 1.0 microns, depending on the type of membrane (nano- or ultrafiltration membrane). Preferably, in the alkaline electroplating bath filtration membranes are used with a pore size in the range of 0.05 to 0.5 microns. Particularly preferably, the pore size is in a range of 0.1 to 0, 3 microns.
Die in dem erfindungsgemäßen alkalischen Galvanikbad enthaltenen Filtrationsmembran kann aus verschiedenen organischen oder anorganischen, alkalibeständigen Materialien bestehen. Diese Materialien sind beispielsweise Keramik, Polytetrafluorethylen (PTFE), Polysulfone und Polypropylen.The filtration membrane contained in the alkaline electroplating bath according to the invention may consist of various organic or inorganic, alkali-resistant materials. These materials are, for example, ceramics, polytetrafluoroethylene (PTFE), polysulfones and polypropylene.
Besonders bevorzugt ist die Verwendung von Filtrationsmembranen aus Polypropylen.Particularly preferred is the use of filtration membranes made of polypropylene.
Im Allgemeinen ist die Filtrationsmembran in dem erfindungsgemäßen alkalischen Galvanikbad als Flachmembran ausgestaltet. Das erfindungsgemäße alkalische Galvanikbad kann jedoch auch mit anderen Membranformen realisiert werden, wobei beispielsweise Schläuche, Kapillaren und Hohlfasern zu nennen sind.In general, the filtration membrane in the alkaline electroplating bath according to the invention is designed as a flat membrane. However, the alkaline electroplating bath according to the invention can also be realized with other membrane forms, examples being hoses, capillaries and hollow fibers.
In dem erfindungsgemäßen alkalischen Galvanikbad werden übliche Zinklegierungsbäder eingesetzt. Diese sind wie folgt zusammengesetzt:
- 80-250 g/l NaOH bzw. KOH
- 5-20 g/l Zink in Form des löslichen Zinksalzes
- 0,02-10 g/l des Legierungsmetalls Ni, Fe, Co, Sn in Form der löslichen Metallsalze
- 2-200 g/l Komplexbildner ausgewählt aus Polyalkenylaminen, Alkanolaminen, Polyhydroxycarboxylaten
- 0,1-5 g/l aromatischer bzw. heteroaromatischer Glanzbildner
- 80-250 g / l NaOH or KOH
- 5-20 g / l zinc in the form of the soluble zinc salt
- 0.02-10 g / l of the alloying metal Ni, Fe, Co, Sn in the form of the soluble metal salts
- 2-200 g / l complexing agent selected from polyalkenylamines, alkanolamines, polyhydroxycarboxylates
- 0.1-5 g / l aromatic or heteroaromatic brightener
Solche Bäder sind beispielsweise in
Das erfindungsgemäße alkalische Galvanikbad weist den Vorteil auf, dass in ihm auch Bäder zur Abscheidung von Zinklegierungen verwendet werden können, die zur Verwendung in dem aus der
Mit einer-üblicherweise verwendeten Ionenaustauschermembran und einem Anolyten aus 100g/l Schwefelsäurelösung ließen sich aus einem Neuansatz des Bads Protedur Ni-75 keine funktionellen Schichten abscheiden. Ein bereits 50 Ah/l betriebener Ansatz ließ sich nach weiteren 10 Ah/l nicht mehr betreiben. Der Prozess benötigt offensichtlich eine gewisse Menge anodisch produzierter Abbauprodukte, die durch den Einsatz von Ionentauschermembranen verhindert werden.With a commonly used ion exchange membrane and an anolyte of 100 g / l sulfuric acid solution could be deposited from a new batch of the bath Protedur Ni-75 no functional layers. An already 50 Ah / l powered approach could no longer operate after another 10 Ah / l. The process obviously requires a certain amount of anodically produced degradation products, which are prevented by the use of ion exchange membranes.
Bei Versuchen mit Filtrationsmembran wurde festgestellt, dass ab einer Porengröße von 0,2 µm auch bei diesem Badtypen noch genügend Abbauprodukte gebildet werden, um einen problemlosen Betrieb zu ermöglichen. Dabei war der Wirkungsgrad noch höher als ohne Filtrationsmembran und der Verbrauch der organischen Zusätze deutlich geringer. Vergleiche hierzu Tabelle 1.
In dem erfindungsgemäßen alkalischen Galvanikbad können die bisher eingesetzten Anoden weiter verwendet werden. Dies sind zumeist Nickelanoden. Der Einsatz dieser Anoden ist kostengünstiger gegenüber dem aus der
Die Erfindung wird durch die als Anlage beigefügten Figuren näher erläutert:
-
zeigt schematisch das erfindungsgemäße Galvanikbad. Hierin bedeutet (1) das Bad, (2) die Anoden und (3) die Kathode bzw. das zu beschichtende Werkstück. Weiter dargestellt sind der die Anode umgebende Anolyt (4) und der die Kathode umgebende Katholyt (5). Anolyt und Katholyt sind durch eine Filtrationsmembran (6) voneinander getrennt. Die Filtrationsmembran ermöglicht den Betrieb des Bades, begrenzt aber gleichzeitig die Zersetzung der in dem Katholyten befindlichen organischen Bestandteile, insbesondere des Komplexbildners, durch Wanderung an die Anode bzw. in den Anodenraum. Die Komplexbildner können nur vermindert an der Anode reagieren, d.h. sie werden begrenzt zu Carbonaten, Oxalaten, Nitrilen bzw. Cyaniden umgesetzt. Daher beobachtet man bei Betrieb des erfindungsgemäßen Galvanikbads auch keine Phasentrennung. Eine kontinuierliche Reinigung des Bades ist mithin nicht erforderlich.Figur 1
-
FIG. 1 shows schematically the galvanic bath according to the invention. Here, (1) means the bath, (2) the anodes, and (3) the cathode or the workpiece to be coated. Also shown are the anolyte (4) surrounding the anode and the catholyte (5) surrounding the cathode. Anolyte and catholyte are separated by a filtration membrane (6). The filtration membrane allows the operation of the bath, but at the same time limits the decomposition of the organic constituents present in the catholyte, in particular of the complexing agent, by migration to the anode or into the anode space. The complexing agents can only be reduced at the Anode react, ie they are limited to carbonates, oxalates, nitriles or cyanides implemented. Therefore, no phase separation is observed during operation of the electroplating bath according to the invention. A continuous cleaning of the bath is therefore not required.
Bei dem erfindungsgemäßen Bad ist der Anodenraum vorzugsweise kleiner ausgestaltet als der Kathodenraum, da dort die wesentlichen Prozesse ablaufen.In the case of the bath according to the invention, the anode space is preferably made smaller than the cathode space, since the essential processes take place there.
Die Erfindung wird durch die nachfolgenden Ausführungsbeispiele näher erläutert.The invention will be explained in more detail by the following embodiments.
Zunächst wurde ein Bad der zur Abscheidung von Zink-Nickel-Legierungen, mit untenstehender Zusammensetzung mit einem Durchsatz von 5 Ah/l betrieben, sodass sich der zunächst höhere Verbrauch nach Beginn des Betriebs des Bades stabilisierte. Hierdurch werden unerwünschte Abscheidungsprozesse vermieden. Dieses Bad wird im Folgenden als "Neuansatz" bezeichnet.Initially, a bath of zinc-nickel alloy composition having the composition below was operated at a rate of 5 Ah / l, so that the initially higher consumption stabilized after the start of the operation of the bath. As a result, unwanted deposition processes are avoided. This bath is hereafter referred to as a "new approach".
Es besteht aus folgenden Komponenten:
- Zink 10,4 g/l (als lösliches ZnO)
Nickel 1,2 g/l (als Nickelsulfat)- NaOH 120 g/l
- Quadrol 35 g/l
- Pyridinium-N-propan-3-
sulfonsäure 1,25 g/l - Polyethylenimin 5 g/l
- Zinc 10.4 g / l (as soluble ZnO)
- Nickel 1.2 g / l (as nickel sulphate)
- NaOH 120 g / l
- Quadrol 35 g / l
- Pyridinium N-propane-3-sulfonic acid 1.25 g / l
- Polyethyleneimine 5 g / l
Des Weiteren wurde ein Bad des gleichen Typs verwendet, das bereits länger betrieben worden war, d.h. einen Durchsatz von > 1000 Ah/l aufwies. Dieses Bad wird im Folgenden als Altansatz" bezeichnet.Furthermore, a bath of the same type was used, which had already been operated for a long time, i. a throughput of> 1000 Ah / l showed. This bath is hereafter referred to as "Old Approach".
Beide Bäder wurden jeweils mit und ohne Filtrationsmembran in 5-1-Tanks betrieben Als Filtrationsmembran wurde die von Abwa-Tec erhältlich Polymer-Membran P150F, die eine Porengröße von 0.12 µm aufweist, verwendet. Die Membran wurde in das Bad zwischen Anode und Kathode eingebracht, wobei Anolyt und Katholyt stofflich identisch waren, d.h. es wurde kein spezieller Anolyt zugegeben. Anschließend wurden Eisenbleche (7 x 10 cm), die üblicherweise für Hullzellen-Tests verwendet werden, als zu beschichtende Werkstücke eingesetzt und bei einer Stromdichte von 2 A/dm2 beschichtet. Die Bäder wurden in Seriellschaltung betrieben. Die Bewegung der Eisenbleche erfolgte mechanisch, mit einer Geschwindigkeit von 1,4 m/min.Both baths were operated with and without filtration membrane in 5-liter tanks. The filtration membrane used was the Abwa-Tec polymer membrane P150F, which has a pore size of 0.12 μm. The membrane was placed in the anode to cathode bath with the anolyte and catholyte being identical, ie, no special anolyte was added. Subsequently, iron sheets (7 × 10 cm), which are usually used for Hull cell tests, were used as workpieces to be coated and coated at a current density of 2 A / dm 2 . The baths were operated in serial connection. The movement of the iron sheets was mechanical, at a speed of 1.4 m / min.
Anschließend wurden die Bäder analysiert und regelmäßig ergänzt. Die Nachdosierung der Bäder erfolgte gemäß den Ergebnissen von Hullzellen-Tests jeweils nach ca. 5 Ah/l. Eine bei Produktionsbädern übliche Verschleppung von 12 l Bad/10.000 Ah wurde ebenfalls berücksichtigt und die Badbestandteile entsprechend ergänzt.Subsequently, the baths were analyzed and supplemented regularly. The replenishment of the baths was carried out according to the results of Hull cell tests after about 5 Ah / l. A carry-over of 12 l bath / 10,000 Ah, which was common in production baths, was also taken into account and the bath components were supplemented accordingly.
Die Tabelle 2 zeigt die Hullzellen-Schichtdicke bei einem Neuansatz und Altansatz in Abhängigkeit des Durchsatzes mit und ohne Filtrationsmembran. Die Schichtdickenmessungen erfolgten nach Einstellung der Bäder.Table 2 shows the Hull cell layer thickness in a new approach and old approach depending on the throughput with and without filtration membrane. The layer thickness measurements were made after adjustment of the baths.
Es wurde sowohl an Punkten hoher als auch niedriger Stromdichte gemessen. Die Punkte liegen auf den Hullzellenblechen 3 cm vom unteren Rand und 2,5 cm vom linken bzw. rechten seitlichen Rand. Hierbei ist links die hohe Stromdichte (Punkt A) und rechts die niedrige Stromdichte (Punkt B).
Überraschenderweise wurde gefunden, dass die Schichtdicke beim Neuansatz ohne Filtrationsmembran abnimmt, während sie beim Altansatz mit Filtrationsmembran stetig zunimmt.Surprisingly, it was found that the layer thickness decreases in the new batch without filtration membrane, while it steadily increases in the old batch with filtration membrane.
So liegt bei Verwendung einer Filtrationsmembran die durchschnittliche Schichtdicke bei einem Neuansatz im hohen Stromdichtebereich um ca. 35% und im niedrigen Stromdichtebereich um ca. 19% höher als hätte man keine Filtrationsmembran verwendet. Beim Altansatz liegt sie um durchschnittlich 17% bzw. 12% höher als ohne Filtrationsmembran.Thus, when using a filtration membrane, the average layer thickness is about 35% higher in a new batch in the high current density range and about 19% higher in the low current density range as if one had not used a filtration membrane. In the old batch, it is on average 17% and 12% higher than without filtration membrane.
Erstaunlicherweise stellt sich bei einem Altansatz, in den nach einem Durchsatz von > 1000 Ah/l eine Filtrationsmembran eingebracht wurde nach kurzer Zeit eine mit einem Neuansatz vergleichbare Stromausbeute ein.Surprisingly, in the case of an old batch, a filtration membrane is produced after a throughput of> 1000 Ah / l introduced after a short time comparable to a new approach current efficiency.
Die Tabelle 3 zeigt den Durchschnittsverbrauch (l/10.000 Ah) des in dem Bad befindlichen Elektrolyten für erfindungsgemäße Galvanikbäder mit Filtrationsmembran und solche Bäder, die diese Membran nicht aufweisen. Durch den Einsatz der Filtrationsmembrane wurde der Organikverbrauch je nach Zusatz zwischen 12 und 29% verringert.
- Komplexbildner: Quadrol, Polyethylenimin
- Glanzzusatz: Pyridin-N-propan-3-sulfonsäure
- Complexing agent: quadrol, polyethylenimine
- Brilliant addition: pyridine-N-propane-3-sulfonic acid
Die Zusammensetzung der vorgenannten Bäder wurden nach den oben beschriebenen Tests analysiert. Von besonderem Interesse war dabei ihr Cyanid-Gehalt. Dieser war bei Verwendung der erfindungsgemäßen Bäder mit einer Filtrationsmembran viel geringer als bei Bädern ohne Membran. Ausweislich der nachstehenden Tabelle 4 wies ein Bad ohne die Membran einen Cyanid-Gehalt von 680 mg/l (Neuansatz) bzw. 790 mg/l (Bad mit > 1000 Ah/l), während die entsprechenden, mit einer Membran versehenen Bäder einen Cyanid-Gehalt von 96 mg/l bzw. 190 mg/l aufwiesen.The composition of the aforementioned baths were analyzed according to the tests described above. Of particular interest was their cyanide content. This was much lower when using the baths according to the invention with a filtration membrane as baths without membrane. As shown in Table 4 below, a bath without the membrane had a cyanide content of 680 mg / L (new batch) and 790 mg / L (bath of> 1000 Ah / L), respectively, while the corresponding membrane baths contained a cyanide Content of 96 mg / L or 190 mg / L.
Überraschenderweise wurde gefunden, dass der Cyanid-Gehalt eines Altansatzes, d.h. eines Bades mit > 1000 Ah/l verringert werden kann, wenn dieses mit einer Filtrationsmembran versehen und betrieben wird. Bei einem solchen Bad wurde beispielsweise der Cyanid-Gehalt von 670 mg/l auf 190 mg/l verringert.
Bei der Durchführung der vorbeschriebenen Tests wurde auch die Farbe der Bäder beurteilt. Dabei wurde festgestellt, dass sich die Farbe eines frisch angesetzten Bades ohne Membran von anfangs violett-orange in braun innerhalb von 15 Ah/l änderte, wobei sie bei Verwendung einer Filtrationsmembran über die gesamte Zeit hin violett bzw. violett-orange blieb. Der Altansatz blieb ohne Verwendung einer Membran braun und die Farbe schlug nach orange-braun nach 15 Ah/l bei Verwendung einer Filtrationsmembran um. Violett ist auch die Farbe frisch angesetzter Bäder, die dann nach orange (nach einigen Ah/l) und bei hohem Durchsatz in braun umschlägt.In carrying out the above tests, the color of the baths was also evaluated. It was found that the color of a freshly prepared bath without membrane changed from initially violet-orange to brown within 15 Ah / l, whereby it remained purple or violet-orange over the entire time when using a filtration membrane. The old batch remained brown without using a membrane and the color changed to orange-brown after 15 Ah / l using a filtration membrane. Violet is also the color of freshly applied baths, which then turn to orange (after a few Ah / l) and at high throughput in brown.
Schließlich wurde die Spannung zwischen Anode und Kathode gemessen. Sie betrug etwa 3 V und lag bei beiden Ansätzen nur etwa 50-100 mV höher bei Verwendung einer Filtrationsmembran. Verwendet man anstelle der Filtrationsmembran eine Ionenaustauschermembran, wie sie in der
Zusammenfassend lässt sich feststellen, dass die Verwendung von Filtrationsmembranen gegenüber der Verwendung von Ionenaustauschermembranen zahlreiche Vorteile bietet. So ist das damit durchgeführte Beschichtungsverfahren kostengünstiger, da keine platinierten Anoden verwendet werden müssen, Katholyt und Anolyt die gleiche Zusammensetzung aufweisen können und somit auch kein Kreislauf für den Anolyten erforderlich ist.In summary, the use of filtration membranes over the use of ion exchange membranes offers many advantages. Thus, the coating process carried out therewith is more cost-effective, since no platinized anodes have to be used, catholyte and anolyte can have the same composition, and thus no circulation for the anolyte is required.
Im Vergleich zu dem Betrieb eines Galvanikbads ohne Membran ist die Stromausbeute höher und der Verbrauch geringer. Schließlich können Zersetzungsprodukte und insbesondere Cyanide verringert bzw. deren Konzentration herabgesetzt und die Qualität der aus dem Bad abgeschiedenen Schichten verbessert werden.Compared to the operation of a plating bath without a membrane, the current efficiency is higher and the consumption is lower. Finally, decomposition products and in particular cyanides can be reduced or their concentration lowered and the quality of the layers deposited from the bath can be improved.
- (1) Alkalisches Galvanikbad(1) Alkaline electroplating bath
- (2) Anode(2) anode
- (3) Kathode(3) cathode
- (4) Anolyt(4) anolyte
- (5) Katholyt(5) catholyte
- (6) Filtrationsmembran(6) filtration membrane
Claims (9)
- An alkaline electroplating bath for depositing zinc alloys on substrates having an anode and a cathode comprising a zinc alloy bath, characterized in that the anode region and the cathode region are separated from each other by a filtration membrane, the size of the filtration membrane pores is in the range of 0.001 to 1.0 µm, and said zinc alloy bath comprising the following components:- 80-250 g/l NaOH or KOH- 5-20 g/l zinc in form of the soluble zinc salt- 0.02-10 g/l of alloy metal Ni, Fe, Co, Sn in form of soluble metal salts- 2-200 g/l complexing agent selected from polyalkenylamines, alkanolamines, polyhydroxycarboxylates,- 0.1-5 g/l aromatic or heteroaromatic brightening agent.
- The alkaline electroplating bath of claim 1, characterized in that the size of the filtration membrane pores is in the range of 0.1 to 0.3 µm.
- The alkaline electroplating bath of claim 1, characterized in that the filtration membrane consists of a material, selected from ceramics, PTFE, polysulfones or polypropylene.
- The alkaline electroplating bath of claim 1, characterized in that the filtration membrane is formed as a flat membrane.
- The alkaline electroplating bath of claim 1, characterized in that the anolyte being in the anode region has the same composition as the catholyte being in the cathode region.
- Use of a filtration membrane for separating an alkaline electroplating bath having an anode and a cathode in an anode region and cathode region to increase the lifetime of the bath, for preventing anodic decomposition of organic ingredients of the bath and to obtain layers of constant high quality, the size of the filtration membrane pores are in the range 0.001 to 1.0 µm, and said electroplating bath comprising the following components:- 80-250 g/l NaOH or KOH- 5-20 g/l zinc in form of the soluble zinc salt- 0.02-10 g/l of alloy metal Ni, Fe, Co, Sn in form of soluble metal salts- 2-200 g/l complexing agent selected from polyalkenylamines, alkanolamines, polyhydroxycarboxylates- 0.1-5 g/l aromatic or heteroaromatic brightening agent.
- A method of depositing zinc alloys on substrates, characterized in that the substrate is placed as a cathode in an alkaline electroplating bath according to claims 1 to 5, and the substrate is galvanically plated with the zinc alloy.
- The method of claim 7, characterized in that the plating is performed at a temperature of 10° to 60°C, preferably 20° to 30°C.
- The method of claim 7, characterized in that the bath is operated at a current density of 0.25 to 10 A/dm2, preferably 1 to 3 A/dm2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES09152660.8T ES2574158T3 (en) | 2005-04-26 | 2005-04-26 | Galvanic alkaline bath with a filtration membrane |
EP09152660.8A EP2050841B1 (en) | 2005-04-26 | 2005-04-26 | Alkaline electroplating bath with a filtration membrane |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05009127A EP1717353B1 (en) | 2005-04-26 | 2005-04-26 | Alkaline galvanizing bath comprising a filtration membrane |
EP09152660.8A EP2050841B1 (en) | 2005-04-26 | 2005-04-26 | Alkaline electroplating bath with a filtration membrane |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05009127A Division EP1717353B1 (en) | 2005-04-26 | 2005-04-26 | Alkaline galvanizing bath comprising a filtration membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2050841A1 EP2050841A1 (en) | 2009-04-22 |
EP2050841B1 true EP2050841B1 (en) | 2016-05-11 |
Family
ID=35530823
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09152660.8A Revoked EP2050841B1 (en) | 2005-04-26 | 2005-04-26 | Alkaline electroplating bath with a filtration membrane |
EP05009127A Active EP1717353B1 (en) | 2005-04-26 | 2005-04-26 | Alkaline galvanizing bath comprising a filtration membrane |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05009127A Active EP1717353B1 (en) | 2005-04-26 | 2005-04-26 | Alkaline galvanizing bath comprising a filtration membrane |
Country Status (11)
Country | Link |
---|---|
US (1) | US8293092B2 (en) |
EP (2) | EP2050841B1 (en) |
JP (1) | JP4955657B2 (en) |
KR (1) | KR101301275B1 (en) |
CN (3) | CN104911676B (en) |
AT (1) | ATE429528T1 (en) |
BR (1) | BRPI0610765B1 (en) |
CA (1) | CA2600273C (en) |
DE (1) | DE502005007138D1 (en) |
ES (2) | ES2574158T3 (en) |
WO (1) | WO2006114305A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090107545A1 (en) * | 2006-10-09 | 2009-04-30 | Soltaix, Inc. | Template for pyramidal three-dimensional thin-film solar cell manufacturing and methods of use |
ITTO20070704A1 (en) * | 2007-10-05 | 2009-04-06 | Create New Technology S R L | SYSTEM AND METHOD OF PLATING METAL ALLOYS BY GALVANIC TECHNOLOGY |
US8177944B2 (en) | 2007-12-04 | 2012-05-15 | Ebara Corporation | Plating apparatus and plating method |
DE102008056776A1 (en) | 2008-11-11 | 2010-05-12 | Enthone Inc., West Haven | Galvanic bath and method for the deposition of zinciferous layers |
EP2384800B1 (en) | 2010-05-07 | 2013-02-13 | Dr.Ing. Max Schlötter GmbH & Co. KG | Regeneration of alkaline zinc nickel electrolytes by removing cyanide ions |
IT1405319B1 (en) * | 2010-12-27 | 2014-01-03 | Fontana R D S R L | COATING PROCESS OF THREADED METAL PARTS |
KR101420865B1 (en) * | 2012-10-12 | 2014-07-18 | 주식회사 익스톨 | Metal Plating Device |
EP2784189A1 (en) | 2013-03-28 | 2014-10-01 | Coventya SAS | Electroplating bath for zinc-iron alloys, method for depositing zinc-iron alloy on a device and such a device |
US11649558B2 (en) | 2015-03-13 | 2023-05-16 | Okuno Chemical Industries Co., Ltd. | Electrolytic stripping agent for jig |
JP5830202B1 (en) * | 2015-07-22 | 2015-12-09 | ディップソール株式会社 | Zinc alloy plating method |
JP5830203B1 (en) * | 2015-07-22 | 2015-12-09 | ディップソール株式会社 | Zinc alloy plating method |
WO2017205473A1 (en) * | 2016-05-24 | 2017-11-30 | Coventya, Inc. | Ternary zinc-nickel-iron alloys and alkaline electrolytes for plating such alloys |
WO2018018161A1 (en) * | 2016-07-29 | 2018-02-01 | Simon Fraser University | Methods of electrochemical deposition |
EP3358045A1 (en) * | 2017-02-07 | 2018-08-08 | Dr.Ing. Max Schlötter GmbH & Co. KG | Method for the galvanic deposition of zinc and zinc alloy layers from an alkaline coating bath with reduced degradation of organic bath additives |
PL3415665T3 (en) | 2017-06-14 | 2024-03-25 | Dr.Ing. Max Schlötter Gmbh & Co. Kg | Method for the galvanic deposition of zinc-nickel alloy layers from an alkaline zinc-nickel alloy bath with reduced degradation of additives |
PL3461933T3 (en) | 2017-09-28 | 2020-03-31 | Atotech Deutschland Gmbh | Method for electrolytically depositing a zinc-nickel alloy layer on at least a substrate to be treated |
US11165091B2 (en) | 2018-01-23 | 2021-11-02 | City University Of Hong Kong | Battery system and a method of forming a battery |
EP4219801A1 (en) * | 2019-01-24 | 2023-08-02 | Atotech Deutschland GmbH & Co. KG | Membrane anode system for electrolytic zinc-nickel alloy deposition |
JP6582353B1 (en) | 2019-02-15 | 2019-10-02 | ディップソール株式会社 | Zinc or zinc alloy electroplating method and system |
RU2712582C1 (en) * | 2019-07-16 | 2020-01-29 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" | Electrolyte for electrodeposition of zinc-iron coatings |
EP4273303A1 (en) * | 2022-05-05 | 2023-11-08 | Atotech Deutschland GmbH & Co. KG | Method for depositing a zinc-nickel alloy on a substrate, an aqueous zinc-nickel deposition bath, a brightening agent and use thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945900A (en) | 1972-05-02 | 1976-03-23 | Dorr-Oliver Incorporated | Electro ultrafiltration process and apparatus |
EP0649918A1 (en) | 1993-10-21 | 1995-04-26 | Mcgean-Rohco, Inc. | Alkaline zinc-nickel alloy plating baths |
US5616246A (en) | 1990-10-30 | 1997-04-01 | Minnestoa Mining & Manufacturing Company | Hydrophilic membranes for electrochemical devices and method for preparing same |
US6383352B1 (en) | 1998-11-13 | 2002-05-07 | Mykrolis Corporation | Spiral anode for metal plating baths |
EP1553211A1 (en) | 2002-07-25 | 2005-07-13 | Shinryo Electronics Co., Ltd. | Tin-silver-copper plating solution, plating film containing the same, and method for forming the plating film |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB381931A (en) * | 1931-07-11 | 1932-10-11 | Mond Nickel Co Ltd | Improvements relating to electro-plating and the electrodeposition of metals |
IE39814B1 (en) * | 1973-08-03 | 1979-01-03 | Parel Sa | Electrochemical process and apparatus |
US4250002A (en) * | 1979-09-19 | 1981-02-10 | Hooker Chemicals & Plastics Corp. | Polymeric microporous separators for use in electrolytic processes and devices |
US4421611A (en) | 1982-09-30 | 1983-12-20 | Mcgean-Rohco, Inc. | Acetylenic compositions and nickel plating baths containing same |
JPS6353285A (en) | 1986-08-22 | 1988-03-07 | Nippon Hyomen Kagaku Kk | Zinc-nickel alloy plating solution |
JPH01116094A (en) * | 1987-10-28 | 1989-05-09 | Eagle Ind Co Ltd | Diaphragm plating method |
JPH02141596A (en) * | 1988-11-21 | 1990-05-30 | Yuken Kogyo Kk | Zincate-type zinc alloy plating bath |
JPH0444375A (en) * | 1990-06-12 | 1992-02-14 | Zexel Corp | Alignment device for laser oscillator |
US5082538A (en) | 1991-01-09 | 1992-01-21 | Eltech Systems Corporation | Process for replenishing metals in aqueous electrolyte solutions |
CN2175238Y (en) * | 1993-09-29 | 1994-08-24 | 北京科技大学 | Positive plate of electroplating bath made of zinc-nickel alloy |
US5631102A (en) * | 1996-02-12 | 1997-05-20 | Wilson Greatbatch Ltd. | Separator insert for electrochemical cells |
JPH11200099A (en) * | 1998-01-08 | 1999-07-27 | Toyo Kohan Co Ltd | Plating method and plating apparatus using insoluble anode |
DE19834353C2 (en) | 1998-07-30 | 2000-08-17 | Hillebrand Walter Gmbh & Co Kg | Alkaline zinc-nickel bath |
DE19840019C1 (en) | 1998-09-02 | 2000-03-16 | Atotech Deutschland Gmbh | Aqueous alkaline cyanide-free bath for the electrodeposition of zinc or zinc alloy coatings and method |
JP2000087299A (en) * | 1998-09-08 | 2000-03-28 | Ebara Corp | Substrate plating apparatus |
JP4060012B2 (en) * | 1999-07-19 | 2008-03-12 | 日本エレクトロプレイテイング・エンジニヤース株式会社 | Cup type plating equipment |
EP1292724B2 (en) | 2000-06-15 | 2015-12-23 | Coventya, Inc. | Zinc-nickel electroplating |
FR2839729B1 (en) * | 2002-05-16 | 2005-02-11 | Univ Toulouse | METHOD FOR PROTECTING AN ALUMINUM STEEL OR ALLOY SUBSTRATE AGAINST CORROSION ENABLING IT TO PROVIDE TRIBOLOGICAL PROPERTIES, AND SUBSTRATE OBTAINED |
DE10225203A1 (en) | 2002-06-06 | 2003-12-18 | Goema Ag | Method and device for returning rinsing water and cleaning a process bath |
EP1639155B1 (en) | 2003-06-03 | 2016-11-02 | Coventya, Inc. | Zinc and zinc-alloy electroplating |
JP4120497B2 (en) * | 2003-06-27 | 2008-07-16 | Jfeスチール株式会社 | Electro-galvanized steel sheet |
FR2864553B1 (en) * | 2003-12-31 | 2006-09-01 | Coventya | INSTALLATION OF ZINC DEPOSITION OR ZINC ALLOYS |
US7442286B2 (en) * | 2004-02-26 | 2008-10-28 | Atotech Deutschland Gmbh | Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys |
-
2005
- 2005-04-26 EP EP09152660.8A patent/EP2050841B1/en not_active Revoked
- 2005-04-26 AT AT05009127T patent/ATE429528T1/en not_active IP Right Cessation
- 2005-04-26 DE DE502005007138T patent/DE502005007138D1/en active Active
- 2005-04-26 ES ES09152660.8T patent/ES2574158T3/en active Active
- 2005-04-26 ES ES05009127T patent/ES2324169T3/en active Active
- 2005-04-26 EP EP05009127A patent/EP1717353B1/en active Active
-
2006
- 2006-04-26 CN CN201510173898.7A patent/CN104911676B/en active Active
- 2006-04-26 CN CN201510173915.7A patent/CN104911651A/en active Pending
- 2006-04-26 JP JP2008508150A patent/JP4955657B2/en active Active
- 2006-04-26 CN CNA2006800094924A patent/CN101146934A/en active Pending
- 2006-04-26 WO PCT/EP2006/003883 patent/WO2006114305A1/en active Application Filing
- 2006-04-26 US US11/912,591 patent/US8293092B2/en active Active
- 2006-04-26 CA CA2600273A patent/CA2600273C/en active Active
- 2006-04-26 KR KR1020077019889A patent/KR101301275B1/en active IP Right Grant
- 2006-04-26 BR BRPI0610765A patent/BRPI0610765B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945900A (en) | 1972-05-02 | 1976-03-23 | Dorr-Oliver Incorporated | Electro ultrafiltration process and apparatus |
US5616246A (en) | 1990-10-30 | 1997-04-01 | Minnestoa Mining & Manufacturing Company | Hydrophilic membranes for electrochemical devices and method for preparing same |
EP0649918A1 (en) | 1993-10-21 | 1995-04-26 | Mcgean-Rohco, Inc. | Alkaline zinc-nickel alloy plating baths |
US6383352B1 (en) | 1998-11-13 | 2002-05-07 | Mykrolis Corporation | Spiral anode for metal plating baths |
EP1553211A1 (en) | 2002-07-25 | 2005-07-13 | Shinryo Electronics Co., Ltd. | Tin-silver-copper plating solution, plating film containing the same, and method for forming the plating film |
Also Published As
Publication number | Publication date |
---|---|
EP1717353B1 (en) | 2009-04-22 |
US8293092B2 (en) | 2012-10-23 |
JP2008539329A (en) | 2008-11-13 |
BRPI0610765A2 (en) | 2010-07-20 |
JP4955657B2 (en) | 2012-06-20 |
KR20070122454A (en) | 2007-12-31 |
CN104911676A (en) | 2015-09-16 |
WO2006114305A1 (en) | 2006-11-02 |
ES2324169T3 (en) | 2009-07-31 |
ES2574158T3 (en) | 2016-06-15 |
CN104911676B (en) | 2017-11-17 |
KR101301275B1 (en) | 2013-08-29 |
CN101146934A (en) | 2008-03-19 |
ATE429528T1 (en) | 2009-05-15 |
CA2600273C (en) | 2014-08-12 |
DE502005007138D1 (en) | 2009-06-04 |
EP1717353A1 (en) | 2006-11-02 |
EP2050841A1 (en) | 2009-04-22 |
US20090107845A1 (en) | 2009-04-30 |
CA2600273A1 (en) | 2006-11-02 |
BRPI0610765B1 (en) | 2017-04-04 |
CN104911651A (en) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2050841B1 (en) | Alkaline electroplating bath with a filtration membrane | |
EP0862665B1 (en) | Process for the electrolytic deposition of metal layers | |
EP2116634B1 (en) | Modified copper-tin electrolyte and method of depositing bronze layers | |
EP3666931A1 (en) | Process of fabricating a metal band having a chromium and chromium oxide coating using a trivalent chromium containing electrolyte | |
DE4023444A1 (en) | Cyanide-free copper plating process - where a portion of the plating bath is electrolysed by an independently-controlled insol. anode to reduce bath impurities | |
EP3481976B1 (en) | Method for the galvanic deposition of zinc and zinc alloy layers from an alkaline coating bath with reduced degradation of organic bath additives | |
DE102010044551A1 (en) | Anode and their use in an alkaline electroplating bath | |
EP2635724B1 (en) | Process for electroplating hard chromium from a cr(vi) free electrolyte | |
DE2208327A1 (en) | Process for electroplating metal | |
EP3250733B1 (en) | Production of chromium layers on intaglio printing cylinders | |
EP3415665B1 (en) | Method for the galvanic deposition of zinc-nickel alloy layers from an alkaline zinc-nickel alloy bath with reduced degradation of additives | |
DE3029364A1 (en) | PROCESS FOR THE MANUFACTURE OF LOW HYDROGEN OVERVOLTAGE CATHODE AND THEIR USE | |
EP1080252B1 (en) | Method for electro copperplating substrates | |
DE2646697A1 (en) | METHOD FOR TREATMENT OF GALVANIZED METAL STRIP | |
DE2929305C2 (en) | Process and device for the continuous electrodeposition of manganese on steel | |
DE102019202899B3 (en) | Aqueous formulation for producing a layer of gold and silver | |
DE3423690A1 (en) | AQUEOUS BATH FOR DEPOSITING GOLD AND USING IT IN A GALVANIC PROCESS | |
EP2431500B1 (en) | Regeneration of zinc nickel alkali electrolytes by removing cyanide ions by using soluble quarternary ammonium compounds | |
EP2878711A1 (en) | Method for the galvanic deposition of nickel and corresponding electrolyte | |
AT222969B (en) | Method and solution for the electrolytic deposition of an alloy on metal surfaces | |
DE10060127B4 (en) | Electrolytic iron deposition bath and method for electrodepositing iron and applications of the method | |
EP4402305A1 (en) | Chromium-indium, chromium-bismuth and chromium-antimony coatings, method for the production and use thereof | |
DD159268A3 (en) | PROCESS FOR THE GALVANIC DEPOSITION OF COPPER LAYERS ON PCB | |
DE2165329A1 (en) | Fast nickel plating - using a nickel salt acid electrolyte | |
DE102020131371A1 (en) | Ruthenium alloy layer and their layer combinations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1717353 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
17P | Request for examination filed |
Effective date: 20090923 |
|
17Q | First examination report despatched |
Effective date: 20091022 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ATOTECH DEUTSCHLAND GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151216 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 1717353 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 798744 Country of ref document: AT Kind code of ref document: T Effective date: 20160515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2574158 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160615 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005015224 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160912 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502005015224 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
26 | Opposition filed |
Opponent name: CONVENTYA HOLDING SAS Effective date: 20170208 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170426 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 798744 Country of ref document: AT Kind code of ref document: T Effective date: 20170426 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170426 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160911 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20210426 Year of fee payment: 17 Ref country code: DE Payment date: 20210420 Year of fee payment: 17 Ref country code: IT Payment date: 20210427 Year of fee payment: 17 Ref country code: FR Payment date: 20210423 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210621 Year of fee payment: 17 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 502005015224 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 502005015224 Country of ref document: DE |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MGE |
|
27W | Patent revoked |
Effective date: 20211029 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MA03 Ref document number: 798744 Country of ref document: AT Kind code of ref document: T Effective date: 20211029 |