EP1928558B1 - Jet pipe unit and method for producing an extinguishing agent mist - Google Patents

Jet pipe unit and method for producing an extinguishing agent mist Download PDF

Info

Publication number
EP1928558B1
EP1928558B1 EP06793884A EP06793884A EP1928558B1 EP 1928558 B1 EP1928558 B1 EP 1928558B1 EP 06793884 A EP06793884 A EP 06793884A EP 06793884 A EP06793884 A EP 06793884A EP 1928558 B1 EP1928558 B1 EP 1928558B1
Authority
EP
European Patent Office
Prior art keywords
extinguishing agent
jet
jet pipe
pipe unit
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06793884A
Other languages
German (de)
French (fr)
Other versions
EP1928558A1 (en
Inventor
Wolfgang Krumm
Hubert Schulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airmatic Gesellschaft fur Umwelt und Technik Mbh
Original Assignee
Airmatic Gesellschaft fur Umwelt und Technik Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200510047299 external-priority patent/DE102005047299A1/en
Priority claimed from DE200520015600 external-priority patent/DE202005015600U1/en
Application filed by Airmatic Gesellschaft fur Umwelt und Technik Mbh filed Critical Airmatic Gesellschaft fur Umwelt und Technik Mbh
Publication of EP1928558A1 publication Critical patent/EP1928558A1/en
Application granted granted Critical
Publication of EP1928558B1 publication Critical patent/EP1928558B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • A62C31/05Nozzles specially adapted for fire-extinguishing with two or more outlets

Definitions

  • the invention relates to an extinguishing agent dispensing jet tube unit, comprising at least one spray tube which can be acted upon with extinguishant under pressure and having a tube body having an extinguishing agent inlet opening and an extinguishing agent outlet formed from at least one nozzle of the extinguishing agent outlet.
  • extinguishing mists are also known from permanently installed, so-called sprinkler from buildings, ships or the like.
  • sprinkler systems an atomization of the extinguishing water by the extinguishing agent conductive internals in the outlet nozzles, so that the exiting extinguishing agent jet is formed from individual droplets and the extinguishing agent jet is formed with the largest possible opening angle cone-shaped.
  • a disadvantage of these prior art extinguishing equipment is also the consumption of extinguishing agent, which is problematic in a fire fighting, in which no continuous fire water supply (hydrant, fire water pond) can be built, as typically forest fires.
  • WO 94/06517 A a method and apparatus for firefighting is described.
  • the method described in this document alternately generates a liquid mist and a jet of liquid for firefighting.
  • the alternate formation of the extinguishing agent jet serves the purpose that in a first step, a fire fighting from a greater distance to the fire with a conventional high-pressure extinguishing agent jet is combated. If the fire to be combated has cooled down far enough, you can approach the fire and then fire at close range with an extinguishing agent.
  • the nozzle head of the device described in this document has a plurality of outlets, each with a swirling element.
  • This swirling element is set in motion by the pending extinguishing medium pressure and serves the purpose of forming the desired liquid mist. Therefore, the generated liquid mist exits directly on the nozzle head. Effective firefighting by extinguishing agent sufficiently distant from the source of the fire can not be achieved even with the method described in this document or with the device described in this document.
  • the invention is therefore based on the object to propose a Loschstoffabgabe-ray tube unit and a method for forming a extinguishing agent mist, with which device or by which method a targeted effective fire fighting with relatively low extinguishing agent consumption and especially with a greater distance to the source of fire can take place.
  • extinguishing agent dispensing jet tube unit having the features of claim 1.
  • Such a beam tube unit is designed to form a bundled extinguishing agent jet which rotates about its longitudinal axis for its bundling and for stabilizing its trajectory.
  • the rotating extinguishing agent jet is expediently produced by the at least one nozzle of the jet tube or the jet tube unit and / or the at least one jet tube of the jet tube unit and / or the entire jet tube unit being set into a rotary rotational movement about its longitudinal axis.
  • a drive device for example a hydraulic motor
  • extinguishing means can also be used to generate the rotating extinguishing agent jet in the jet pipe.
  • the webs projecting from the inner wall thereof or grooves introduced into the inner wall thereof can be used which are designed to be spiral-like following the longitudinal extent of the jet pipe.
  • the liquid extinguishing agent used to produce the extinguishing agent jet is supplied under pressure to the jet pipe.
  • the pressure with which the extinguishing agent is supplied to the jet pipe adjustable, so that the jet pipe according to the respective requirements applied to the under suitable pressure extinguishing agent is.
  • the respective set pressure of the jet pipe supplied extinguishing agent determines the exit velocity of the extinguishing agent jet from the jet pipe or the jet pipe unit in the axial direction. Since the emerging extinguishing agent jet is rotating at the same time, the pressure of the vectoring component of the extinguishing agent jet velocity pointing in the longitudinal direction of the extinguishing agent jet is determined.
  • the extinguishing agent jet emerging from the jet pipe or the jet pipe unit can be set correspondingly to the respective requirements in the case of fire fighting with reference to the two parameters pressure and rotation. It is assumed that the effective throw of the extinguishing agent jet and the speed of rotation can be used to set the distance of the formation of the extinguishing agent mist desired for fire fighting from the jet pipe unit via the pressure of the extinguishing agent supplied to the jet pipe or the jet pipe unit. It is further assumed that the two aforementioned parameters are in a certain context. By varying the extinguishing agent jet pressure and / or the rotational speed of the jet pipe or of the jet pipe unit, the desired extinguishing agent jet can be readily adjusted by anyone according to the respective requirements.
  • the extinguishing agent jet generated by such a jet pipe unit is to be addressed as a bundled extinguishing agent jet over a first throwing distance.
  • the desired extinguishing agent mist then forms from the extinguishing agent jet at this first throwing distance over a short distance.
  • the tube unit is suitable for the aforementioned reason, especially for combating such fires that can not be controlled from close proximity.
  • the liquid extinguishing agent is typically introduced under high pressure in the jet pipe unit.
  • the pressure actually set depends on the design of the jet tube unit and the desired extinguishing agent jet formation. Although the above-described extinguishant jet configuration can be realized at lower pressures, the jet tube unit will typically be pressurized to pressures of 200 bar, 500 bar, 1000 bar or more.
  • extinguishing agent acted on jet tube unit can achieve high extinguishing jet throwing distances, which can be up to 100 m or even more, before the actual extinguishing agent spray spatially forms or propagates almost explosively over a short distance.
  • the rotational speed of the extinguishing agent jet By setting the rotational speed of the extinguishing agent jet, the extinguishing agent jet can be set up with regard to the design, for example the stability of its trajectory. Due to the rotation of the extinguishing agent beam undergoes stabilization as a result of the twist. By changing the rotational speed, it is possible with constant pressure, to determine the point in which after the first throw of the extinguishing agent beam as a focused beam, this unfolds to form the extinguishing agent fog.
  • the opening width of the at least one nozzle of a jet pipe of such a jet pipe unit is small in diameter and is typically less than 2 mm.
  • a nozzle cross-section of about 1 mm is preferred and considered sufficient.
  • other nozzle cross-sectional widths may be provided.
  • the small diameter nozzles result in lower extinguishing agent consumption.
  • the at least one nozzle of the jet pipe unit is formed as an acceleration nozzle and has a first gradually tapered convergent section, which is followed by the smallest diameter of the nozzle. At this portion of the smallest opening width of the nozzle may be followed by a diameter-increasing section.
  • the nozzles may be formed, for example, as Laval nozzles.
  • the at least one nozzle of the jet pipe or of the jet pipe unit can have transverse bores via which additives which are supplied via a suitable rotary feedthrough or which are present at the nozzle can be added to the extinguishing agent.
  • a suitable rotary feedthrough or which are present at the nozzle can be added to the extinguishing agent.
  • the majority of the jet pipes is typically arranged at a distance from the axis of rotation of the jet pipe unit. Since the extinguishing agent is typically supplied via a rotational feedthrough defining the axis of rotation, the extinguishing agent experiences an acceleration as a result of centrifugal force, so that in this way the extinguishing agent pressure prevailing at the outlet nozzle (s) can be increased. This is dependent on the rotational speed of the jet pipe unit.
  • the nozzle upstream tube body may also extend at an angle to the longitudinal axis of the nozzle.
  • Such a tubular body thus extends in the radial direction to the rotational movement of such a jet tube unit and typically connects the axially arranged rotary feedthrough with the nozzle arranged at a distance from the rotational axis.
  • the jet pipe units can be accommodated in an open, for example, drum-like housing in the throwing direction of the extinguishing agent jet in order to avoid a possible risk of injury to the rotating jet pipes.
  • a jet pipe unit 1 comprises a jet pipe 2, consisting in the illustrated embodiment of a cylindrical tube body 3 and an output side, torque-connected to the tubular body 3 connected nozzle 4.
  • the tubular body 3 has an extinguishing agent inlet opening. Embodiments with a plurality of extinguishing agent inlet openings are possible.
  • the jet pipe 2 is rotatably supported about its longitudinal axis 5 in a manner not shown.
  • a hydraulic motor 6 with a pulley 7 is used on its drive shaft.
  • a belt 8 serves to transmit the rotational movement of the pulley 7 to the jet pipe 2, for which purpose a belt guide 9 is arranged in the rear region of the tubular body 3 of the jet pipe 2.
  • a belt guide 9 is arranged in the rear region of the tubular body 3 of the jet pipe 2.
  • the rotary feedthrough 10 is used for supplying a liquid extinguishing agent, typically water from the stator side into the interior 11 of the tubular body 3 rotatable about its longitudinal axis.
  • the nozzle 4 has a section 12, which gradually tapers in a convergent manner towards the nozzle exit, with a circular cross-sectional area, to which the section of the nozzle 4 adjoins, in which the latter has its smallest opening width.
  • This section is identified by the reference numeral 13.
  • a short-held, slightly widening section as a nozzle exit.
  • nozzles with a different nozzle configuration for example, be used with a longer Düsenausgangsumble.
  • the jet pipe unit 1 is connected to a non-illustrated high-pressure extinguishing agent supply 14, through which the extinguishing agent - water - with a pressure of more than 500 bar input side of the rotary feedthrough 10 is present.
  • the extinguishant pressure is adjustable to the respective desired formation of the extinguishing agent jet.
  • the extinguishing agent loaded jet pipe unit 1 is rotated for its operation to produce a rotating extinguishing agent jet.
  • the formation of the rotating extinguishing agent jet is supported by the length of the tubular body 3, since due to the internal wall friction, the supplied extinguishing agent is already set in the cylindrical portion of the tubular body 3 in rotation.
  • the rotational speed of the jet pipe 2 is dependent on the desired extinguishing jet configuration, for example its bundling, and may be about 2,000 revolutions per minute. Depending on the fire to be combated and in particular its distance from the jet pipe unit 1, this can also be driven with a lower or higher rotational speed.
  • the jet pipe unit 1 is typically hinged to a vehicle, with both the extinguishing jet direction and the extinguishing jet discharge angle being adjustable.
  • FIG. 2 shows in a further embodiment, a jet pipe unit 1 ', which is constructed as the to FIG. 1 described jet pipe unit 1, which differs from the jet pipe unit 1 in terms of their nozzle arrangement.
  • the nozzle 4 'of the jet tube unit 1' is arranged eccentrically to the longitudinal axis 5 'of the jet tube 2', so that the nozzle constriction 13 'describes a circular path movement as a result of rotation of the jet tube 2' about the longitudinal axis 5 '.
  • the extinguishing jet emerging from the jet pipe unit 1 ' is to be regarded as hollow-beam-like by its helical configuration.
  • FIG. 3 shows a further nozzle configuration 15 for a jet pipe unit, such as the jet pipe unit 1 or 1 'or for one of the jet pipe units described below.
  • the nozzle configuration 15 is a double nozzle with two individual nozzles 16, 16 '.
  • the nozzles 16, 16 ' are basically designed like the nozzle 4 and have a first, gradually convergent tapered portion, which is followed by the Düsenengste with circular cross-sectional area. Both nozzles 16, 16 'are arranged at the same radial distance from the longitudinal axis 17 of the jet pipe 18.
  • a hollow jet or a hollow jet-like extinguishing jet is generated.
  • nozzles which accelerate the in the jet pipe through the rotary feedthrough 10 guided extinguishing agent is used. Due to the high pressure applied by the extinguishing agent supply 14, but also due to the extinguishing agent acceleration within the respective nozzle 4, 4 'or 15, the respective extinguishing jet exits the nozzle or the jet pipe at high speed. The exit velocity depends on the applied pressure and the configuration of the respective nozzle.
  • the respective emerging extinguishing agent jet may have supersonic speeds. The exit of the extinguishing agent jet at such a high speed supports the extinguishing jet bundling and ensures that the escaping extinguishing agent jet remains concentrated over a longer distance before the desired extinguishing agent mist is formed.
  • FIG. 4 shows a jet pipe unit 19 according to a further embodiment, which is constructed with respect to the drive and the extinguishing agent supply as the previously described jet pipe unit 1.
  • the jet pipe unit 19 includes a connected to the rotary feedthrough 20 collector 21, at the multiple individual nozzles 22 with their respective Tubular body are connected. Overall, seven individual nozzles 22 are connected to the collector 21, as this in the front view of FIG. 5 the jet pipe unit 19 can be seen.
  • the jet pipes 22 of the jet pipe unit 19 are designed in this embodiment as to FIG. 1 2. From the illustration of the jet pipe unit 19 according to FIG. 5 It is clear that the jet pipe unit 19 has a central jet pipe 22 and six, each with the same angular distance at a radial distance from the central jet pipe 22 arranged further jet pipes 22.
  • the entire unit consisting of the collector 21 and the jet pipes 22 is driven in rotation. Due to the radial distance of the outer jet tubes 22 from the axis of rotation of the jet tubes 22, which axis of rotation corresponds to the longitudinal axis of the centric jet tube 22, an extinguishing agent jet is generated with a larger beam diameter than that in the to FIGS. 2 and 3 described eccentrically arranged nozzles is the case.
  • the provision of several jet pipes, each with the same radial distance from the centric jet pipe also allows the transport of a larger amount of extinguishing agent. Due to the radial distance of the outer radiant tubes 22 from the axis of rotation is the Rotation speed of the discharged extinguishing agent jet correspondingly high.
  • FIG. 6 shows a in this respect the jet pipe arrangement of FIG. 5 modified arrangement of jet pipes 22 'of a further jet pipe unit 19'. Also in this embodiment, the individual beam tubes 22 are arranged at the same angular distance from each other. In contrast to the arrangement of FIG. 5 concerning the jet tube unit 19, two jet tubes 22 'are arranged at the jet tube unit 19' at a mean distance from the axis of rotation of the unit.
  • the individual jet pipes 22, 22' can have an outlet valve in order to be able to block the extinguishing agent outlet of individual jet pipes if necessary. In this way, a further modification and adaptation of the extinguishing agent jet is possible.
  • FIG. 7 shows a jet pipe unit 23 according to yet another embodiment, which is constructed in principle as to FIGS. 4 to 6 described jet pipe unit.
  • the outer jet pipes 24 are adjustable relative to the collector 25, as in FIG FIG. 7 indicated.
  • an extinguishing agent jet can be generated, which rotates about its longitudinal axis and also has a certain conicity.
  • the jet pipe unit 23 is in FIG.
  • the jet pipe unit 23 has a telescopic housing 26, which on the one hand serves to protect the jet pipes 24 and, on the other hand, supports the jet pipes 24 which are articulated in the area of their rear end relative to the collector 25.
  • the outer jet pipes 24 are based on centrifugal force on the inside of the telescopic housing 26 with rotating unit. This carries on its outer part 27 for this purpose inside a support ring 28.
  • the outer part 27 is opposite the fixed part 27 'of the telescopic housing 26, as indicated by the arrow in FIG. 7 indicated, adjustable by means of a thread, by a rotational movement of the two parts 27, 27 'against each other.
  • the support ring 28 is segmented in a manner not shown.
  • Each segment of the support ring 28 is movable via a plunger 29 in the radial direction to the axis of rotation.
  • the plunger 29 is pressed in the longitudinal direction of the jet pipe unit 23 in the outer part 27 'in accordance with the slope of between the parts 27 and 27' located thread and consequently the support ring segments, the back of the abut other end of the plunger 29 with a slope moves.
  • An active provision of the support ring segments 28 is not necessary.
  • To secure the two parts 27, 27 'of the telescopic housing 26 against each other serves a non-illustrated in the figures rotation.
  • FIG. 8 shows a Strahlrohong 30 according to another embodiment.
  • the jet pipe unit 30 is basically constructed like the jet pipe unit 19 of FIG. 4 ,
  • the jet pipe unit 30 has, in addition to the jet pipe unit 19 of FIG. 4 via a connection and disconnection device 31, which is arranged in the collector 32.
  • the supply and shutdown device 31 is used to connect and / or shutdown of individual jet pipes 33.
  • the use of such a supply and disconnection device for connecting or disconnecting individual jet pipes 33 is particularly useful when the jet pipes have at least partially different nozzle shapes.
  • the jet pipe unit 30 further has a housing 34, which is also provided in the illustrated embodiment as a protective measure.
  • the formed from the two annular cylindrical housing parts 35, 36 housing 34 is coupled to the rotational movement of the collector 32.
  • the housing part 36 is opposite the housing part 35, as indicated by the arrow in FIG FIG. 8 indicated, movable.
  • the housing part 35 has a feed channel 37, via which an additional medium, for example a gas, such as compressed air, can be injected into the interior of the outer cylindrical housing part 36.
  • an additional medium for example a gas, such as compressed air
  • the supply of such a carrier gas is preferably swirl-shaped.
  • Such a gas for example compressed air
  • the collector 32 can in principle also be supplied via the collector 32, for which purpose the supply channel has a connection to a gas line arranged in the collector for this purpose.
  • the collector itself carries openings for the gas outlet.
  • these gas outlet openings can also be tubes fastened to the collector, which are arranged between the jet tubes 33.
  • FIG. 9 shows a development of the jet pipe unit 30.
  • the in FIG. 9 illustrated jet pipe unit 38 is constructed as well as the jet pipe unit 30, but in contrast to the jet pipe unit 30, the housing 39 of the jet pipe unit 38 is decoupled against a rotational movement of the collector with the jet pipes, as schematized by the ball bearings 40 in FIG. 9 is shown.
  • FIG. 10 shows in a highly schematic and not to scale representation of the jet pipe unit 19 of FIG. 4 when dispensing an extinguishing agent jet 41.
  • the extinguishing agent jet 41 rotates on its exit from the jet pipe unit 19 about its longitudinal axis, which thus represents the extension of the axis of rotation of the jet pipe unit 19.
  • the extinguishing agent jet remains concentrated due to the high exit velocity and the impressed rotation due to the pressure of the pending liquid extinguishing agent.
  • This portion of the extinguishing agent jet 41 is in FIG. 10 designated by the reference numeral 42.
  • extinguishing agent jet 42 explosively increases its cross-sectional area over a short distance with a rapid decrease in velocity. This takes place with formation or distribution of smallest extinguishing agent droplets, so that an extinguishing agent mist 43 is formed.
  • the extinguishing agent mist formation is also supported by the dynamic pressure acting as a result of the high exit velocity of the extinguishing agent jet.
  • the described design of the jet pipe unit requires only a small extinguishing agent consumption, which is lower compared to an operation of previously known jet pipe units with formation of an extinguishing agent jet by a multiple. Therefore, equipped with such a nozzle unit fire-fighting vehicles based on the entrained extinguishing agent amount significantly longer by extinguishing an active fire fighting support without the extinguishing agent supply would have to be refilled.
  • the low extinguishing agent consumption is also advantageous in the event that instead of water as extinguishing agent, another liquid extinguishing agent or water are used with an extinguishing agent additive, since the area of the source of fire only by a small amount of the extinguishing agent used - should it not be water - is charged ,

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Nozzles (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

A jet pipe unit for delivering extinguishing agent comprises at least one jet pipe (2) which is supplied with a pressurised extinguishing agent and provided with a tubular body (3) comprising an extinguishing agent input orifice and extinguishing agent output orifice formed by at least one nozzle (4), which, according to said invention, is rotatably movable around the longitudinal axis (5) thereof and/or a circular path which surrounds the axis of rotation in a concentric manner. Said invention also relates to a method for producing the extinguishing agent mist consisting in compressing a extinguishing agent, for example water, in supplying said extinguishing agent to a jet pipe unit (1) comprising at least one jet pipe (2) which is provided with one or several nozzles (4) in the form of the extinguishing agent output orifice, in forming the extinguishing agent jet (41) with the aid of a first jet unit section (42) embodied in the form of a beam substantially defining the jet width and a subsequent section in a jet through direction, wherein the jet, when the speed is rapidly reduced at a short distance, multiplies the cross-section surface in such a way that the extinguishing agent mist (43) is formed. The extinguishing agent jet rotatable about the longitudinal axis thereof is formed by rotationally displacing the jet pipe unit nozzle and/or the jet pipe unit at a value of an axis of rotation corresponding to the extension of the extinguishing agent jet longitudinal axis.

Description

Die Erfindung betrifft eine Löschmittetabgabestrahlrohreinheit, umfassend zumindest ein mit unter Druck stehendem Löschmittel beaufschlagbares Strahlrohr mit einem Rohrkörper aufweisend eine Löschmitteleintrittsöffnung und mit einem aus zumindest einer Düse des Löschmittelaustritts gebildeten Löschmittelaustritt.The invention relates to an extinguishing agent dispensing jet tube unit, comprising at least one spray tube which can be acted upon with extinguishant under pressure and having a tube body having an extinguishing agent inlet opening and an extinguishing agent outlet formed from at least one nozzle of the extinguishing agent outlet.

Zur Brandbekämpfung wird in vielen Fällen Wasser als Löschmittel eingesetzt. Dieses ist mitunter mit einem Löschmittelzusatz versehen. Bei der Brandbekämpfung gilt es, mit dem Löschmittel den Brandherd zu kühlen und das Feuer zu ersticken. Zur Verfügung stehen einem Feuerwehnnann hierzu unterschiedliche Strahlrohre oder Strahlrohreinheiten, die je nach ihrer Ausbildung einen unterschiedlichen Löschmittelstrahl erzeugen. Bekannt sind beispielsweise Vollstrahl- oder Hohlstrahlrohre. Es ist ferner bekannt, dass eine Brandbekämpfung unter Verwendung eines flüssigen Löschmittels, beispielsweise Wasser mit kleinen Löschmitteltröpfchen in Form eines Löschmlfteinebeis effektiver ist als eine Brandbekämpfung mit einem Löschmittelvoll- oder -hohlstrahl. Um einen solchen Löschmittelnebel zu erzeugen wird - wie in DE 295 22 033 U1 beschrieben - neben dem Löschmittel ein gasförmiges Treibmittel benötigt. Das Treibmittel dient zum Zerstäuben des wässrigen Löschmittels, beispielsweise des Wassers beim Austritt aus dem Strahlrohr. Zusätzlich verfügt diese vorbekannte Strahlrohreinheit über ein schnell reagierendes Schließelement zum Zerhacken des aus dem Strahlrohr austretenden Löschmittelstrahls. Aus dieser vorbekannten Strahlrohreinheit treten somit aus dem Strahlrohr zu einem Strahl gebündelte Wassertröpfchen aus. Bereits nach einer Wurfweite von nur wenigen Metern breitet sich der Löschmitteinebel aus. Daher eignen sich diese Strahlrohreinheiten nur zur Feuemahbekämpfung, wenn man mit der Strahlrohreinheit nahe genug an den Brandherd gelangen kann. Derartige Strahlrohreinheiten und das entsprechend vorbekannte Verfahren sind somit zum Ausbilden eines Löschmittelnebels zur Brandbekämpfung von Brandherden, in deren unmittelbarer Nähe man nicht gelangen kann, wie dieses beispielsweise bei einem Waldbrand der Fall ist, ungeeignet. Das Einsatzgebiet von Strahlrohren, die zur Brandbekämpfung einen wässrigen Löschmittelnebel erzeugen, werden daher herkömmlich zumeist nur in Handfeuerlöschgeräten eingesetzt.For firefighting, water is used as extinguishing agent in many cases. This is sometimes provided with an extinguishing agent additive. When fighting fires, it is necessary to use the extinguishing agent to cool the fire and smother the fire. Available to a Feuerwehnnann are different jet pipes or jet pipe units that produce a different extinguishing agent jet depending on their training. For example, full jet or hollow jet pipes are known. It is also known that fire fighting using a liquid extinguishing agent, for example water with small extinguishing droplets in the form of a fire extinguishing agent, is more effective than fire fighting with an extinguishing agent full or hollow jet. To produce such an extinguishing agent mist is - as in DE 295 22 033 U1 described - next to the extinguishing agent requires a gaseous propellant. The propellant is used to atomize the aqueous extinguishing agent, for example, the water at the exit from the jet pipe. In addition, this previously known jet pipe unit has a fast-reacting closing element for chopping the extinguishing agent jet emerging from the jet pipe. From this previously known beam tube unit thus emerge from the jet pipe to a beam bundled water droplets. Already after a throw of only a few meters, the Löstreitteinebel spreads. Therefore, these jet pipe units are only suitable for fighting firefighting, if you can get close enough to the fire with the jet pipe unit. Such radiant tube units and the corresponding prior art method are thus unsuitable for forming a fire extinguishing agent for firefighting fire sources in the immediate vicinity you can not get, as this is the case for example in a forest fire. The application of radiant tubes for fire fighting To produce an aqueous extinguishing agent mist, therefore, are conventionally used mostly only in hand-held fire extinguishers.

Die Ausbildung von Löschmittelnebeln ist auch von fest installierten, so genannten Sprinklereinrichtungen aus Gebäuden, Schiffen oder dergleichen bekannt. Bei solchen Sprinkleranlagen erfolgt eine Zerstäubung des Löschwassers durch das Löschmittel leitende Einbauten in den Austrittsdüsen, so dass der austretende Löschmittelstrahl aus einzelnen Tröpfchen gebildet ist und der Löschmittelstrahl mit einem möglichst großen Öffnungswinkel kegelförmig ausgebildet ist. Schließlich möchte man eine möglichst große Fläche mit dem austretenden Löschmittel benetzen können.The formation of extinguishing mists is also known from permanently installed, so-called sprinkler from buildings, ships or the like. In such sprinkler systems, an atomization of the extinguishing water by the extinguishing agent conductive internals in the outlet nozzles, so that the exiting extinguishing agent jet is formed from individual droplets and the extinguishing agent jet is formed with the largest possible opening angle cone-shaped. Finally, you want to be able to moisten the largest possible area with the escaping extinguishing agent.

Bekannt geworden ist zur Brandbekämpfung bei Flächenbränden auch der Einsatz von Düsentriebwerken als Turbinen, um Löschmittel als Löschmittelnebel zur Brandstelle zu blasen. Dabei dient die Turbine zum Erzeugen des Löschmittelnebels aus dem wässrigen Löschmittel, beispielsweise dem Wasser, sowie zum Transportieren des Löschmittelnebels zum Brandherd. Bei dieser Feuenöscheinrichtung wird das Ziel verfolgt, mit der Energie eines starken Luftstroms den erzeugten Löschmittelnebel - die einzelnen Tröpfchen - möglichst weit zu transportieren. Auch wenn mit einer solchen Feuerlöscheinrichtung und der als Turbine ausgebildeten Strahlrohreinheit die erzeugten Löschmitteltröpfchen mitunter bis zu 80 m weit geschossen werden können, bildet sich der Löschmittelnebel als solcher bereits nach wenigen Metern mit der Folge aus, dass nur ein kleiner Anteil der erzeugten Löschmitteltröpfchen tatsächlich über die vorgenannte Wurfstrecke transportiert werden. Daher eignet sich auch diese Feuerlöscheinrichtung trotz hohem Energieeinsatzes nur zum Bekämpfen von Brandherden in einer Entfernung von etwa 50 m. Überdies ist mit einer solchen Einrichtung eine gezielte Brandbekämpfung kaum möglich.It has become known for firefighting in wildfires also the use of jet engines as turbines to blow extinguishing agent as extinguishing agent mist to the point of fire. The turbine is used to generate the extinguishing agent mist from the aqueous extinguishing agent, such as water, as well as for transporting the extinguishing agent to the fire. In this fire extinguishing device, the goal is pursued, with the energy of a strong air flow, the generated extinguishing agent mist - the individual droplets - to transport as far as possible. Even if the extinguishing agent droplets produced can sometimes be shot up to 80 m with such a fire-extinguishing device and the jet pipe unit designed as a turbine, the extinguishing agent mist itself forms after a few meters, with the result that only a small proportion of the extinguishing agent droplets actually produced the aforementioned throwing distance are transported. Therefore, this fire-fighting equipment is suitable despite high energy use only for fighting fire sources at a distance of about 50 m. Moreover, targeted fire fighting is hardly possible with such a device.

Von Nachteil bei diesen vorbekannten Löscheinrichtungen ist ferner der Löschmittelverbrauch, was bei einer Brandbekämpfung problematisch ist, bei der keine kontinuierliche Löschwasserversorgung (Hydrant, Löschwasserteich) aufgebaut werden kann, wie typischerweise bei Waldbränden.A disadvantage of these prior art extinguishing equipment is also the consumption of extinguishing agent, which is problematic in a fire fighting, in which no continuous fire water supply (hydrant, fire water pond) can be built, as typically forest fires.

In WO 94/06517 A ist ein Verfahren und eine Vorrichtung zur Brandbekämpfung beschrieben. Bei dem in diesem Dokument beschriebenen Verfahren wird zur Brandbekämpfung wechselweise ein Flüssigkeitsnebel und ein Flüssigkeitsstrahl generiert. Die wechselweise Ausbildung des Löschmittelstrahls dient dem Zweck, dass in einem ersten Schritt eine Brandbekämpfung von einer größeren Entfernung zum Brand mit einem herkömmlichen Hochdrucklöschmittelstrahl bekämpft wird. Wenn das zu bekämpfende Feuer weit genug herabgekühlt ist, kann man sich dem Feuer nähern und dann von kurzer Distanz eine wirksame Brandbekämpfung mit einem Löschmittelnebel vornehmen. Zum Erzeugen des Löschmittelnebels verfügt der Düsenkopf der in diesem Dokument beschriebenen Vorrichtung über mehrere Ausgänge mit jeweils einem Verwirbelungselement. Dieses Verwirbelungselement wird durch den anstehenden Löschmitteldruck in Bewegung versetzt und dient dem Zweck, den gewünschten Flüssigkeitsnebel auszubilden. Daher tritt der gebildete Flüssigkeitsnebel unmittelbar am Düsenkopf aus. Eine wirksame Brandbekämpfung mittels eines Löschmittelnebels in ausreichender Entfernung zum Brandherd kann auch mit dem in diesem Dokument beschriebenen Verfahren oder der in diesem Dokument beschriebenen Vorrichtung nicht vorgenommen werden.In WO 94/06517 A a method and apparatus for firefighting is described. The method described in this document alternately generates a liquid mist and a jet of liquid for firefighting. The alternate formation of the extinguishing agent jet serves the purpose that in a first step, a fire fighting from a greater distance to the fire with a conventional high-pressure extinguishing agent jet is combated. If the fire to be combated has cooled down far enough, you can approach the fire and then fire at close range with an extinguishing agent. To generate the extinguishing agent mist, the nozzle head of the device described in this document has a plurality of outlets, each with a swirling element. This swirling element is set in motion by the pending extinguishing medium pressure and serves the purpose of forming the desired liquid mist. Therefore, the generated liquid mist exits directly on the nozzle head. Effective firefighting by extinguishing agent sufficiently distant from the source of the fire can not be achieved even with the method described in this document or with the device described in this document.

In US 3 931 930 wird eine Löschmittelabgabestrahlrohreinheit beschrieben, bei der die Strahlrohreinheit ein um seine Längsachse rotierendes Strahlrohr oder die Strahlrohreinheit mehrere, mit Abstand zur Rotationsachse und zweckmäßigerweise in gleichem Winkelabstand zueinander angeordnete Strahlrohre aufweist, wobei die Rotation durch den Wasserdruck ohne Antriebseinheit erzeugt wird.In US 3,931,930 An extinguishing agent dispensing jet tube unit is described, in which the jet tube unit has a jet tube rotating about its longitudinal axis or the jet tube unit having a plurality of jet tubes spaced apart from the axis of rotation and expediently at the same angular distance from one another, the rotation being produced by the water pressure without drive unit.

Ausgehend von diesem diskutierten Stand der Technik liegt der Erfindung daher die Aufgabe zugrunde, eine Loschmittelabgabe-strahlrohreinheit sowie ein Verfahren zum Ausbilden eines Löschmittelnebels vorzuschlagen, mit welcher Vorrichtung bzw. mit welchem Verfahren eine gezielte effektive Brandbekämpfung mit relativ geringem Löschmittelverbrauch und vor allem mit größerer Entfernung zum Brandherd erfolgen kann.Based on this discussed prior art, the invention is therefore based on the object to propose a Loschmittelabgabe-ray tube unit and a method for forming a extinguishing agent mist, with which device or by which method a targeted effective fire fighting with relatively low extinguishing agent consumption and especially with a greater distance to the source of fire can take place.

Die auf die Löschmittelabgabestrahlrohreinheit bezogene Aufgabe wird erfindungsgemäß durch eine Löschmittelabgabestrahlrohreinheit mit den Merkmalen des Anspruchs 1 gelöst.The object relating to the extinguishing agent dispensing jet tube unit is achieved according to the invention by an extinguishing agent dispensing jet tube unit having the features of claim 1.

Das erfindungsgemäße Verfahren zum Ausbilden eines Löschmittelnebels ist gekennzeichnet durch:

  • Bereitstellen eines unter Hochdruck anstehenden flüssigen Löschmittels, beispielsweise Wasser,
  • Zuführen des Löschmittels an eine Strahlrohreinheit, umfassend zumindest ein Strahlrohr mit einer oder mehreren Düsen als Löschmittelaustrittsöffnung,
  • Erzeugen eines Löschmittelstrahls mit einem ersten, im wesentlichen die Wurfweite definierenden Strahlabschnitt in Form eines gebündelten Strahls und mit einem sich in Wurfrichtung anschließenden Abschnitt, in dem der Strahl bei rascher Geschwindigkeitsabnahme auf kurzer Strecke seine Querschnittsfläche zur Ausbildung des Löschnebels um ein Vielfaches vergrößert, indem ein um seine Längsachse rotierender Löschmittelstrahl durch In-Rotation-Versetzen der zumindest einen Düse der Strahlrohreinheit und/oder der Strahlrohreinheit um eine der Verlängerung der Längsachse des Löschmittelstrahls entsprechenden Rotationsachse erzeugt wird.
The method according to the invention for forming an extinguishing agent mist is characterized by:
  • Providing a high-pressure liquid extinguishing agent, for example water,
  • Supplying the extinguishing agent to a jet pipe unit, comprising at least one jet pipe with one or more nozzles as an extinguishing agent outlet opening,
  • Generating an extinguishing agent jet with a first, substantially the throw defining beam portion in the form of a focused beam and with a subsequent casting in section, in which the beam with rapid decrease in velocity over a short distance its cross-sectional area for forming the Löschnebel increased many times by a is generated about its longitudinal axis rotating extinguishing agent jet by rotating the at least one nozzle of the jet pipe unit and / or the nozzle unit by a rotation axis corresponding to the extension of the longitudinal axis of the extinguishing agent jet.

Eine solche Strahlrohreinheit ist konzipiert, um einen gebündelten Löschmittelstrahl auszubilden, der zu seiner Bündelung und zur Stabilisierung seiner Flugbahn um seine Längsachse rotiert. Der rotierende Löschmittelstrahl wird zweckmäßigerweise erzeugt, indem die zumindest eine Düse des Strahlrohrs bzw. der Strahlrohreinheit und/oder das zumindest eine Strahlrohr der Strahlrohreinheit und/oder die gesamte Strahlrohreinheit in eine rotatorische Drehbewegung um ihre Längsachse versetzt wird. Zum rotatorischen Antreiben des Strahlrohrs oder der Strahlrohreinheit kann eine Antriebseinrichtung, beispielsweise ein Hydraulikmotor dienen. In Ergänzung zu vorgenanntem Antrieb können zum Erzeugen des rotierenden Löschmittelstrahls auch in dem Strahlrohr vorhandene, Löschmittel lenkende Einbauten dienen. Zum Lenken bzw. Leiten des Löschmittells innerhalb des Strahlrohrs können beispielsweise von der Innenwand desselben abragende Stege oder in die Innenwand desselben eingebrachte Nuten dienen, die der Längserstreckung des Strahlrohrs folgend spiralartig konzipiert sind.Such a beam tube unit is designed to form a bundled extinguishing agent jet which rotates about its longitudinal axis for its bundling and for stabilizing its trajectory. The rotating extinguishing agent jet is expediently produced by the at least one nozzle of the jet tube or the jet tube unit and / or the at least one jet tube of the jet tube unit and / or the entire jet tube unit being set into a rotary rotational movement about its longitudinal axis. For rotationally driving the jet pipe or the jet pipe unit, a drive device, for example a hydraulic motor, can be used. In addition to the aforementioned drive, extinguishing means can also be used to generate the rotating extinguishing agent jet in the jet pipe. For guiding or directing the extinguishing agent within the jet pipe, for example, the webs projecting from the inner wall thereof or grooves introduced into the inner wall thereof can be used which are designed to be spiral-like following the longitudinal extent of the jet pipe.

Das zum Erzeugen des Löschmittelstrahls verwendete flüssige Löschmittel wird unter Druck stehend dem Strahlrohr zugeführt. Typischerweise ist der Druck, mit dem das Löschmittel dem Strahlrohr zugeführt wird, einstellbar, so dass das Strahlrohr den jeweiligen Anforderungen entsprechend mit dem unter einem geeigneten Druck stehenden Löschmittel beaufschlagt ist. Der jeweils eingestellte Druck des dem Strahlrohr zugeführten Löschmittels bestimmt die Austrittsgeschwindigkeit des Löschmittelstrahls aus dem Strahlrohr bzw. der Strahlrohreinheit in axialer Richtung. Da der austretende Löschmittelstrahl gleichzeitig rotiert, wird durch den Druck der in Längsrichtung des Löschmittelstrahls weisende vektorielle Anteil der Löschmittelstrahlgeschwindigkeit bestimmt. Der aus dem Strahlrohr bzw. der Strahlrohreinheit austretende Löschmittelstrahl kann bezüglich seiner Ausbildung anhand der beiden Parameter Druck und Rotation den jeweiligen Anforderungen bei einer Brandbekämpfung entsprechend eingestellt werden. Dabei wird davon ausgegangen, dass über den Druck des dem Strahlrohr bzw. der Strahlrohreinheit zugeführten Löschmittels die effektive Wurfweite des Löschmittelstrahls und mit der Rotationsgeschwindigkeit maßgeblich der Abstand der Ausbildung des für die Brandbekämpfung gewünschten Löschmittelnebels von der Strahlrohreinheit eingestellt werden können. Es wird ferner davon ausgegangen, dass die beiden vorgenannten Parameter in einem bestimmten Zusammenhang stehen. Durch Variieren des Löschmittelstrahldruckes und/oder der Rotationsgeschwindigkeit des Strahlrohrs bzw. der Strahlrohreinheit kann der gewünschte Löschmittelstrahl den jeweiligen Anforderungen entsprechend von jedermann ohne weiteres eingestellt werden.The liquid extinguishing agent used to produce the extinguishing agent jet is supplied under pressure to the jet pipe. Typically, the pressure with which the extinguishing agent is supplied to the jet pipe, adjustable, so that the jet pipe according to the respective requirements applied to the under suitable pressure extinguishing agent is. The respective set pressure of the jet pipe supplied extinguishing agent determines the exit velocity of the extinguishing agent jet from the jet pipe or the jet pipe unit in the axial direction. Since the emerging extinguishing agent jet is rotating at the same time, the pressure of the vectoring component of the extinguishing agent jet velocity pointing in the longitudinal direction of the extinguishing agent jet is determined. With regard to its design, the extinguishing agent jet emerging from the jet pipe or the jet pipe unit can be set correspondingly to the respective requirements in the case of fire fighting with reference to the two parameters pressure and rotation. It is assumed that the effective throw of the extinguishing agent jet and the speed of rotation can be used to set the distance of the formation of the extinguishing agent mist desired for fire fighting from the jet pipe unit via the pressure of the extinguishing agent supplied to the jet pipe or the jet pipe unit. It is further assumed that the two aforementioned parameters are in a certain context. By varying the extinguishing agent jet pressure and / or the rotational speed of the jet pipe or of the jet pipe unit, the desired extinguishing agent jet can be readily adjusted by anyone according to the respective requirements.

Der von einer solchen Strahlrohreinheit erzeugte Löschmittelstrahl ist über eine erste Wurfstrecke als gebündelter Löschmittelstrahl anzusprechen. In seiner volumenmäßigen Ausdehnung bildet sich aus dem Löschmittelstrahl an diese erste Wurfstrecke anschließend auf kurzer Strecke der gewünschte Löschmittelnebel aus. Somit wird bei dieser Strahlrohreinheit bzw. bei Anwendung des vorgenannten Verfahrens das zur Brandbekämpfung eingesetzte Löschmittel über die erste Wurfstrecke gebündelt und weitestgehend verlustfrei an den Ort der Brandbekämpfung transportiert, wobei sich der Löschmitteinebel selbst erst an dem Ort der Brandbekämpfung durch eine auf kurzer Strecke stattfindende quasi explosionsartige volumenmäßige Vergrößerung des Löschmittelstrahls ausbildet bzw. ausbreitet.The extinguishing agent jet generated by such a jet pipe unit is to be addressed as a bundled extinguishing agent jet over a first throwing distance. In its volumetric extent, the desired extinguishing agent mist then forms from the extinguishing agent jet at this first throwing distance over a short distance. Thus, in this jet pipe unit or when using the aforementioned method used for fire fighting extinguishing agent over the first lane and transported largely lossless to the place of fire fighting, with the Lömititteinebel itself only at the place of fire fighting by taking place over a short distance quasi explodes explosive volume enlargement of the extinguishing agent jet or propagates.

Die Strahrohreinheit eignet sich aus vorgenanntem Grunde vor allem für eine Bekämpfung solcher Brände, die nicht von unmittelbarer Nähe aus bekämpft werden können. Um dem Löschmittelstrahl eine ausreichende Wurfweite zu verleihen, wird das flüssige Löschmittel typischerweise unter Hochdruck stehend in die Strahlrohreinheit eingebracht. Der tatsächlich eingestellte Druck hängt ab von der Konzeption der Strahlrohreinheit und der gewünschten Löschmittelstrahlausbildung. Auch wenn sich die vorbeschriebene Löschmittelstrahlkonfiguration bei niedrigerem Drücken realisieren lässt, wird man die Strahlrohreinheit typischerweise mit Drücken von 200 bar, 500 bar, 1000 bar oder mehr beaufschlagen. Mit einer solchen, unter Hochdruck stehenden Löschmittel beaufschlagten Strahlrohreinheit lassen sich hohe Löschstrahlwurfweiten erzielen, die bis 100 m oder auch mehr betragen können, bevor sich der eigentliche Löschmittelnebel räumlich auf kurzer Strecke quasi explosionsartig ausbildet bzw. ausbreitet. Über die Einstellung der Rotationsgeschwindigkeit des Löschmittelstrahls ist der Löschmittelstrahl hinsichtlich der Ausbildung, beispielsweise der Stabilität seiner Flugbahn einrichtbar. Durch die Rotation erfährt der Löschmittelstrahl infolge des Dralls eine Stabilisierung. Durch Ändern der Rotationsgeschwindigkeit ist es bei gleichbleibendem Druck möglich, diejenige Stelle zu bestimmen, in der nach der ersten Wurfstrecke des Löschmittelstrahls als gebündelter Strahl sich dieser zur Ausbildung des Löschmittelnebels entfaltet.The tube unit is suitable for the aforementioned reason, especially for combating such fires that can not be controlled from close proximity. To the extinguishing agent beam sufficient To impart throw, the liquid extinguishing agent is typically introduced under high pressure in the jet pipe unit. The pressure actually set depends on the design of the jet tube unit and the desired extinguishing agent jet formation. Although the above-described extinguishant jet configuration can be realized at lower pressures, the jet tube unit will typically be pressurized to pressures of 200 bar, 500 bar, 1000 bar or more. With such, under high pressure extinguishing agent acted on jet tube unit can achieve high extinguishing jet throwing distances, which can be up to 100 m or even more, before the actual extinguishing agent spray spatially forms or propagates almost explosively over a short distance. By setting the rotational speed of the extinguishing agent jet, the extinguishing agent jet can be set up with regard to the design, for example the stability of its trajectory. Due to the rotation of the extinguishing agent beam undergoes stabilization as a result of the twist. By changing the rotational speed, it is possible with constant pressure, to determine the point in which after the first throw of the extinguishing agent beam as a focused beam, this unfolds to form the extinguishing agent fog.

Die Öffnungsweite der zumindest einen Düse eines Strahlrohrs einer solchen Strahlrohreinheit ist im Durchmesser klein und beträgt typischerweise weniger als 2 mm. Ein Düsenquerschnitt von etwa 1 mm ist bevorzugt und wird als ausreichend angesehen. Gleichwohl können auch andere Düsenquerschnittsweiten vorgesehen sein. Die im Durchmesser kleinen Düsen haben einen geringeren Löschmittelverbrauch zur Folge. Vorzugsweise ist die zumindest eine Düse der Strahlrohreinheit als Beschleunigungsdüse ausgebildet und verfügt über einen ersten sich allmählich verjüngenden konvergenten Abschnitt, an den sich der kleinste Durchmesser der Düse anschließt. An diesen Abschnitt der geringsten Öffnungsweite der Düse kann sich ein im Durchmesser vergrößernder Abschnitt anschließen. Die Düsen können beispielsweise als Laval-Düsen ausgebildet sein.The opening width of the at least one nozzle of a jet pipe of such a jet pipe unit is small in diameter and is typically less than 2 mm. A nozzle cross-section of about 1 mm is preferred and considered sufficient. However, other nozzle cross-sectional widths may be provided. The small diameter nozzles result in lower extinguishing agent consumption. Preferably, the at least one nozzle of the jet pipe unit is formed as an acceleration nozzle and has a first gradually tapered convergent section, which is followed by the smallest diameter of the nozzle. At this portion of the smallest opening width of the nozzle may be followed by a diameter-increasing section. The nozzles may be formed, for example, as Laval nozzles.

Bei einem Einsatz derartiger Düsen ist es möglich, einen aus der Düse mit Überschallgeschwindigkeit austretenden Löschmittelstrahl zu erzeugen. Wird ein solcher Hochgeschwindigkeitslöschmittelstrahl erzeugt, wird gemäß dem derzeitigen Kenntnisstand angenommen, dass der Übergang zwischen dem laminar strömenden Löschmittelstrahl zu einer turbulenten Strömung die Tröpfchenbildung und damit die Ausbildung des Löschmittelnebels auf kurzer Strecke unterstützt.When using such nozzles, it is possible to produce an extinguishing agent jet emerging from the nozzle at supersonic speed. If such a high-speed extinguishing agent jet is generated, according to the current state of knowledge assumes that the transition between the laminar-flowing extinguishing agent jet to a turbulent flow supports the droplet formation and thus the formation of the extinguishing agent mist over a short distance.

Die zumindest eine Düse des Strahlrohrs bzw. der Strahlrohreinheit kann über Querbohrungen verfügen, über die infolge des sich ausbildenden Saugstrahls Zusätze, die über eine geeignete Drehdurchführung zugeführt werden bzw. an der Düse anstehend, dem Löschmittel beigemengt werden können. Bei einer Strahlrohreinheit mit mehreren Düsen kann vorgesehen sein, dass nur einige Düsen über einen derartigen Zulauf verfügen.The at least one nozzle of the jet pipe or of the jet pipe unit can have transverse bores via which additives which are supplied via a suitable rotary feedthrough or which are present at the nozzle can be added to the extinguishing agent. In the case of a jet pipe unit with a plurality of nozzles, it may be provided that only a few nozzles have such an inlet.

Bei Strahlrohreinheiten mit mehreren Strahlrohren ist typischerweise die Mehrzahl der Strahlrohre mit Abstand zur Rotationsachse der Strahlrohreinheit angeordnet. Da das Löschmittel typischerweise über eine die Rotationsachse definierende Drehdurchführung zugeführt wird, erfährt das Löschmittel fliehkraftbedingt eine Beschleunigung, so dass auf diese Weise der an der bzw. den Austrittsdüsen anstehende Löschmitteldruck erhöht werden kann. Dieses ist abhängig von der Rotationsgeschwindigkeit der Strahlrohreinheit.In the case of jet pipe units with a plurality of jet pipes, the majority of the jet pipes is typically arranged at a distance from the axis of rotation of the jet pipe unit. Since the extinguishing agent is typically supplied via a rotational feedthrough defining the axis of rotation, the extinguishing agent experiences an acceleration as a result of centrifugal force, so that in this way the extinguishing agent pressure prevailing at the outlet nozzle (s) can be increased. This is dependent on the rotational speed of the jet pipe unit.

Bei den vorangegangenen beschriebenen Strahlrohren waren deren Rohrkörper und die die Löschmittelaustrittsöffnung bildenden Düsen implizit in axialer Richtung hintereinander angeordnet. Dieses ist jedoch nicht zwingend notwendig. Der der Düse vorgeschaltete Rohrkörper kann ebenfalls winklig zu der Längsachse der Düse verlaufen. Ein solcher Rohrkörper verläuft somit in radialer Richtung zur Rotationsbewegung einer solchen Strahlrohreinheit und verbindet typischerweise die axial angeordnete Drehdurchführung mit der mit Abstand von der Drehachse angeordneten Düse.In the previously described jet pipes, their tubular bodies and the nozzles forming the extinguishing agent outlet opening were implicitly arranged one behind the other in the axial direction. However, this is not mandatory. The nozzle upstream tube body may also extend at an angle to the longitudinal axis of the nozzle. Such a tubular body thus extends in the radial direction to the rotational movement of such a jet tube unit and typically connects the axially arranged rotary feedthrough with the nozzle arranged at a distance from the rotational axis.

Die Strahlrohreinheiten können in einem in Wurfrichtung des Löschmittelstrahls offenen, beispielsweise trommelartigen Gehäuse aufgenommen sein, um eine mögliche Verletzungsgefahr an den rotierenden Strahlrohren zu vermeiden.The jet pipe units can be accommodated in an open, for example, drum-like housing in the throwing direction of the extinguishing agent jet in order to avoid a possible risk of injury to the rotating jet pipes.

Nachfolgend ist die Erfindung anhand von Ausführungsbeispielen unterThe invention is based on embodiments below

Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen:

Fig. 1:
eine schematisierte, zum Teil geschnittene Seitenansicht einer Strahlrohreinheit zur Löschmittelabgabe gemäß einem ersten Ausführungsbeispiel,
Fig. 2:
die Strahlrohreinheit der Figur 1 mit einer geänderten Düsen- ausgestaltung,
Fig. 3:
noch eine weitere Düsenausgestaltung für eine Strahlrohrein- heit,
Fig. 4:
eine schematisierte Seitenansicht einer Strahlrohreinheit zur Löschmittelabgabe gemäß einer weiteren Ausgestaltung,
Fig. 5:
eine Ansicht auf die Öffnungsseite der Strahlrohre der Strahl- rohreinheit der Figur 4,
Fig. 6:
eine Ansicht auf eine weitere Strahlrohreinheit entsprechend derjenigen zur Figur 4 gezeigten mit einer demgegenüber an- deren Strahlrohranordnung,
Fig. 7:
in einer schematisierten An- und Einsicht eine Strahlrohrein- heit zur Löschmittelabgabe gemäß noch einem weiteren Aus- führungsbeispiel,
Fig. 8:
eine Strahlroheinheit gemäß einem weiteren Ausführungsbei- spiel,
Fig. 9:
eine Strahlrohreinheit gemäß noch einem weiteren Ausfüh- rungsbeispiel und
Fig. 10:
eine schematisierte Darstellung des durch die Strahlrohrein- heit gemäß Figur 4 abgegebenen Löschmittelstrahls und dem sich daraus bildenden Löschmittelnebel.
With reference to the accompanying figures. Show it:
Fig. 1:
a schematic, partially sectioned side view of a jet pipe unit for extinguishing agent delivery according to a first embodiment,
Fig. 2:
the jet pipe unit of FIG. 1 with a modified nozzle design,
3:
Yet another nozzle design for a radiant tube unit,
4:
a schematic side view of a jet pipe unit for extinguishing agent delivery according to another embodiment,
Fig. 5:
a view of the opening side of the jet pipes of the blasting tube unit of FIG. 4 .
Fig. 6:
a view of a further jet pipe unit corresponding to that for FIG. 4 shown with a different jet pipe arrangement,
Fig. 7:
in a schematic view and insight, a radiant tube unit for extinguishing agent delivery according to yet another exemplary embodiment,
Fig. 8:
a jet roughness unit according to a further exemplary embodiment,
Fig. 9:
a jet pipe unit according to still another embodiment, and
Fig. 10:
a schematic representation of the through the Strahlrohrein- unit according to FIG. 4 discharged extinguishing agent jet and the resulting extinguishing agent mist.

Eine Strahlrohreinheit 1 gemäß einem ersten Ausführungsbeispiel umfasst ein Strahlrohr 2, bestehend bei dem dargestellten Ausführungsbeispiel aus einem zylindrischen Rohrkörper 3 und einer ausgangsseitig angeordneten, drehmomentschlüssig mit dem Rohrkörper 3 verbundene Düse 4. Der Rohrkörper 3 verfügt über eine Löschmitteleintrittsöffnung. Ausgestaltungen mit mehreren Löschmitteleintrittsöffnungen sind möglich. Das Strahlrohr 2 ist in nicht näher dargestellten Art und Weise um seine Längsachse 5 drehbar gelagert. Zum rotatorischen Antreiben der bei diesem Ausführungsbeispiel allein aus dem Strahlrohr 2 bestehenden Strahlrohreinheit 1 dient ein Hydraulikmotor 6 mit einem Riemenrad 7 auf seiner Antriebswelle. Ein Riemen 8 dient zur Übertragung der Rotationsbewegung des Riemenrades 7 auf das Strahlrohr 2, zu welchem Zweck im hinteren Bereich des Rohrkörpers 3 des Strahlrohrs 2 eine Riemenführung 9 angeordnet ist. In seinem rückwärtigen Bereich ist der Rohrkörper 3 an eine insgesamt mit dem Bezugszeichen 10 gekennzeichnete Drehdurchführung angeschlossen. Die Drehdurchführung 10 dient zum Zuführen eines flüssigen Löschmittels, typischerweise Wasser von der Statorseite in das Innere 11 des um seine Längsachse drehbaren Rohrkörpers 3.A jet pipe unit 1 according to a first embodiment comprises a jet pipe 2, consisting in the illustrated embodiment of a cylindrical tube body 3 and an output side, torque-connected to the tubular body 3 connected nozzle 4. The tubular body 3 has an extinguishing agent inlet opening. Embodiments with a plurality of extinguishing agent inlet openings are possible. The jet pipe 2 is rotatably supported about its longitudinal axis 5 in a manner not shown. For rotationally driving the jet pipe unit 1, which in this embodiment consists solely of the jet pipe 2, a hydraulic motor 6 with a pulley 7 is used on its drive shaft. A belt 8 serves to transmit the rotational movement of the pulley 7 to the jet pipe 2, for which purpose a belt guide 9 is arranged in the rear region of the tubular body 3 of the jet pipe 2. In its rear region of the tubular body 3 is connected to a designated generally by the reference numeral 10 rotary feedthrough. The rotary feedthrough 10 is used for supplying a liquid extinguishing agent, typically water from the stator side into the interior 11 of the tubular body 3 rotatable about its longitudinal axis.

Die Düse 4 weist einen sich zum Düsenausgang hin allmählich konvergent verjüngenden Abschnitt 12 mit kreisrunder Querschnittsfläche auf, an den sich derjenige Abschnitt der Düse 4 anschließt, in dem diese ihre kleinste Öffnungsweite aufweist. Dieser Abschnitt ist mit dem Bezugszeichen 13 gekennzeichnet. An diesem Abschnitt 13 schließt sich bei dem dargestellten Ausführungsbeispiel ein kurz gehaltener, sich geringfügig erweiternder Abschnitt als Düsenausgang an. Selbstverständlich können an dieser Stelle auch Düsen mit einer anderen Düsenkonfiguration, beispielsweise mit einer längeren Düsenausgangsstrecke eingesetzt werden.The nozzle 4 has a section 12, which gradually tapers in a convergent manner towards the nozzle exit, with a circular cross-sectional area, to which the section of the nozzle 4 adjoins, in which the latter has its smallest opening width. This section is identified by the reference numeral 13. At this section 13 is followed in the illustrated embodiment, a short-held, slightly widening section as a nozzle exit. Of course, at this point, nozzles with a different nozzle configuration, for example, be used with a longer Düsenausgangsstrecke.

Die Strahlrohreinheit 1 ist angeschlossen an eine nicht näher dargestellte Hochdrucklöschmittelversorgung 14, durch die das Löschmittel - Wasser - mit einem Druck von mehr als 500 bar eingangsseitig an der Drehdurchführung 10 ansteht. Der Löschmitteldruck ist zur jeweils gewünschten Ausbildung des Löschmittelstrahls einstellbar. Die löschmittelbeaufschlagte Strahlrohreinheit 1 wird für ihren Betrieb in Rotation versetzt, um einen rotierenden Löschmittelstrahl zu erzeugen. Die Ausbildung des rotierenden Löschmittelstrahls wird unterstützt durch die Länge des Rohrkörpers 3, da infolge der Innenwandreibung das zugeführte Löschmittel bereits in dem zylindrischen Abschnitt des Rohrkörpers 3 in Rotation versetzt wird. Die Rotationsgeschwindigkeit des Strahlrohrs 2 ist abhängig von der gewünschten Löschstrahlkonfiguration, beispielsweise seiner Bündelung und kann etwa 2.000 Umdrehung pro Minute betragen. In Abhängigkeit von dem zu bekämpfenden Brandherd und insbesondere seiner Entfernung von der Strahlrohreinheit 1 kann dieses auch mit einer geringeren oder auch einer höheren Rotationsgeschwindigkeit angetrieben sein.The jet pipe unit 1 is connected to a non-illustrated high-pressure extinguishing agent supply 14, through which the extinguishing agent - water - with a pressure of more than 500 bar input side of the rotary feedthrough 10 is present. The extinguishant pressure is adjustable to the respective desired formation of the extinguishing agent jet. The extinguishing agent loaded jet pipe unit 1 is rotated for its operation to produce a rotating extinguishing agent jet. The formation of the rotating extinguishing agent jet is supported by the length of the tubular body 3, since due to the internal wall friction, the supplied extinguishing agent is already set in the cylindrical portion of the tubular body 3 in rotation. The rotational speed of the jet pipe 2 is dependent on the desired extinguishing jet configuration, for example its bundling, and may be about 2,000 revolutions per minute. Depending on the fire to be combated and in particular its distance from the jet pipe unit 1, this can also be driven with a lower or higher rotational speed.

Die Strahlrohreinheit 1 ist typischerweise auf einem Fahrzeug gelenkig montiert, wobei sowohl die Löschstrahlrichtung als auch der Löschstrahlabwurfwinkel einstellbar sind.The jet pipe unit 1 is typically hinged to a vehicle, with both the extinguishing jet direction and the extinguishing jet discharge angle being adjustable.

Figur 2 zeigt in einem weiteren Ausführungsbeispiel eine Strahlrohreinheit 1', die aufgebaut ist wie die zur Figur 1 beschriebene Strahlrohreinheit 1, die sich jedoch hinsichtlich ihrer Düsenanordnung von der Strahlrohreinheit 1 unterscheidet. Die Düse 4' der Strahlrohreinheit 1' ist im Gegensatz zur Düse 4 exzentrisch zur Längsachse 5' des Strahlrohrs 2' angeordnet, so dass die Düsenverengung 13' infolge einer Rotation des Strahlrohrs 2' um die Längsachse 5' eine Kreisbahnbewegung beschreibt. Der aus der Strahlrohreinheit 1' austretende Löschstrahl ist durch seine schraubenlinienförmige Konfiguration als hohlstrahlähnlich anzusprechen. FIG. 2 shows in a further embodiment, a jet pipe unit 1 ', which is constructed as the to FIG. 1 described jet pipe unit 1, which differs from the jet pipe unit 1 in terms of their nozzle arrangement. In contrast to the nozzle 4, the nozzle 4 'of the jet tube unit 1' is arranged eccentrically to the longitudinal axis 5 'of the jet tube 2', so that the nozzle constriction 13 'describes a circular path movement as a result of rotation of the jet tube 2' about the longitudinal axis 5 '. The extinguishing jet emerging from the jet pipe unit 1 'is to be regarded as hollow-beam-like by its helical configuration.

Figur 3 zeigt eine weitere Düsenkonfiguration 15 für eine Strahlrohreinheit, etwa die Strahlrohreinheit 1 oder 1' oder auch für eine der nachfolgend beschriebenen Strahlrohreinheiten. Bei der Düsenkonfiguration 15 handelt es sich um eine Doppeldüse mit zwei individuelle Düsen 16, 16'. Die Düsen 16, 16' sind grundsätzlich konzipiert wie die Düse 4 und verfügen über einen ersten, sich allmählich konvergent verjüngenden Abschnitt, an den sich das Düsenengste mit kreisrunder Querschnittsfläche anschließt. Beide Düsen 16, 16' sind mit gleichem radialen Abstand zur Längsachse 17 des Strahlrohrs 18 angeordnet. Bei einem Betrieb des Strahlrohrs 18 wird ebenso wie bei einem Betrieb der Strahlrohreinheit 1' ein Hohlstrahl bzw. ein hohlstrahlähnlicher Löschstrahl erzeugt. FIG. 3 shows a further nozzle configuration 15 for a jet pipe unit, such as the jet pipe unit 1 or 1 'or for one of the jet pipe units described below. The nozzle configuration 15 is a double nozzle with two individual nozzles 16, 16 '. The nozzles 16, 16 'are basically designed like the nozzle 4 and have a first, gradually convergent tapered portion, which is followed by the Düsenengste with circular cross-sectional area. Both nozzles 16, 16 'are arranged at the same radial distance from the longitudinal axis 17 of the jet pipe 18. During operation of the jet pipe 18, as well as during operation of the jet pipe unit 1 ', a hollow jet or a hollow jet-like extinguishing jet is generated.

Bei den beschriebenen Düsen handelt es sich um beispielhaft dargestellte Düsen, die zur Beschleunigung des in das Strahlrohr durch die Drehdurchführung 10 geführten Löschmittels dient. Der jeweils austretende Löschstrahl tritt aufgrund des hohen anliegenden Druckes durch die Löschmittelversorgung 14 aber auch infolge der Löschmittelbeschleunigung innerhalb der jeweiligen Düse 4, 4' oder 15 mit hoher Geschwindigkeit aus der Düse bzw. dem Strahlrohr aus. Die Austrittsgeschwindigkeit ist abhängig von dem anliegenden Druck und der Konfiguration der jeweiligen Düse. Der jeweils austretende Löschmittelstrahl kann Überschallgeschwindigkeiten aufweisen. Der Austritt des Löschmittelstrahls mit einer derart hohen Geschwindigkeit unterstützt die Löschstrahlbündelung und gewährleistet, dass der austretende Löschmittelstrahl über eine längere Strecke gebündelt bleibt, bevor sich der gewünschte Löschmittelnebel ausbildet.In the described nozzles are exemplified nozzles, which accelerate the in the jet pipe through the rotary feedthrough 10 guided extinguishing agent is used. Due to the high pressure applied by the extinguishing agent supply 14, but also due to the extinguishing agent acceleration within the respective nozzle 4, 4 'or 15, the respective extinguishing jet exits the nozzle or the jet pipe at high speed. The exit velocity depends on the applied pressure and the configuration of the respective nozzle. The respective emerging extinguishing agent jet may have supersonic speeds. The exit of the extinguishing agent jet at such a high speed supports the extinguishing jet bundling and ensures that the escaping extinguishing agent jet remains concentrated over a longer distance before the desired extinguishing agent mist is formed.

Figur 4 zeigt eine Strahlrohreinheit 19 gemäß einem weiteren Ausführungsbeispiel, die bezüglich des Antriebes und der Löschmittelzufuhr aufgebaut ist wie die zuvor beschriebene Strahlrohreinheit 1. Die Strahlrohreinheit 19 umfasst einen an die Drehdurchführung 20 angeschlossenen Sammler bzw. Verteiler 21, an dem mehrere einzelne Strahlrohre 22 mit ihrem jeweiligen Rohrkörper angeschlossen sind. Insgesamt sind an dem Sammler 21 sieben einzelne Strahlrohre 22 angeschlossen, wie diese in der Frontansicht der Figur 5 der Strahlrohreinheit 19 erkennbar ist. Die Strahlrohre 22 der Strahlrohreinheit 19 sind bei diesem Ausführungsbeispiel konzipiert wie die zu Figur 1 beschriebenen Strahlrohre 2. Aus der Darstellung der Strahlrohreinheit 19 gemäß Figur 5 wird deutlich, dass die Strahlrohreinheit 19 ein zentrisches Strahlrohr 22 und sechs, mit jeweils gleichem Winkelabstand in radialen Abstand zu dem zentralen Strahlrohr 22 angeordnete weitere Strahlrohre 22 aufweist. Bei der Strahlrohreinheit 19 wird die gesamte Einheit bestehend aus dem Sammler 21 und den Strahlrohren 22 rotatorisch angetrieben. Infolge des radialen Abstandes der äußeren Strahlrohre 22 von der Drehachse der Strahlrohre 22, welche Drehachse der Längsachse des zentrischen Strahlrohrs 22 entspricht, wird ein Löschmittelstrahl mit einem größeren Strahldurchmesser erzeugt als dieses bei den zu den Figuren 2 und 3 beschriebenen exzentrisch angeordneten Düsen der Fall ist. Das Vorsehen mehrerer Strahlrohre mit jeweils gleichem radialem Abstand zu dem zentrischen Strahlrohr ermöglicht zudem den Transport einer größeren Löschmittelmenge. Infolge des radialen Abstands der äußeren Strahlrohre 22 von der Drehachse ist die Rotationsgeschwindigkeit des abgegebenen Löschmittelstrahls entsprechend hoch. FIG. 4 shows a jet pipe unit 19 according to a further embodiment, which is constructed with respect to the drive and the extinguishing agent supply as the previously described jet pipe unit 1. The jet pipe unit 19 includes a connected to the rotary feedthrough 20 collector 21, at the multiple individual nozzles 22 with their respective Tubular body are connected. Overall, seven individual nozzles 22 are connected to the collector 21, as this in the front view of FIG. 5 the jet pipe unit 19 can be seen. The jet pipes 22 of the jet pipe unit 19 are designed in this embodiment as to FIG. 1 2. From the illustration of the jet pipe unit 19 according to FIG. 5 It is clear that the jet pipe unit 19 has a central jet pipe 22 and six, each with the same angular distance at a radial distance from the central jet pipe 22 arranged further jet pipes 22. In the jet pipe unit 19, the entire unit consisting of the collector 21 and the jet pipes 22 is driven in rotation. Due to the radial distance of the outer jet tubes 22 from the axis of rotation of the jet tubes 22, which axis of rotation corresponds to the longitudinal axis of the centric jet tube 22, an extinguishing agent jet is generated with a larger beam diameter than that in the to FIGS. 2 and 3 described eccentrically arranged nozzles is the case. The provision of several jet pipes, each with the same radial distance from the centric jet pipe also allows the transport of a larger amount of extinguishing agent. Due to the radial distance of the outer radiant tubes 22 from the axis of rotation is the Rotation speed of the discharged extinguishing agent jet correspondingly high.

Figur 6 zeigt eine diesbezüglich der Strahlrohranordnung der Figur 5 abgewandelte Anordnung von Strahlrohren 22' einer weiteren Strahlrohreinheit 19'. Auch bei diesem Ausführungsbeispiel sind die einzelnen Strahlrohre 22 im gleichen Winkelabstand zueinander angeordnet. Im Unterschied zu der Anordnung der Figur 5 betreffend die Strahlrohreinheit 19 sind bei der Strahlrohreinheit 19' zwei Strahlrohre 22' mit einem mittleren Abstand zur Drehachse der Einheit angeordnet. FIG. 6 shows a in this respect the jet pipe arrangement of FIG. 5 modified arrangement of jet pipes 22 'of a further jet pipe unit 19'. Also in this embodiment, the individual beam tubes 22 are arranged at the same angular distance from each other. In contrast to the arrangement of FIG. 5 concerning the jet tube unit 19, two jet tubes 22 'are arranged at the jet tube unit 19' at a mean distance from the axis of rotation of the unit.

Bei Strahlrohreinheiten, die mehrere Strahlrohre aufweisen, wie dieses beispielhaft zu den Strahlrohreinheiten 19, 19' beschrieben ist, können die einzelnen Strahlrohre 22, 22' über ein Austrittsventil verfügen, um gegebenenfalls den Löschmittelaustritt einzelner Strahlrohre sperren zu können. Auf diese Weise ist eine weitere Modifikation und Anpassung des Löschmittelstrahls möglich.In the case of jet pipe units which have a plurality of jet pipes, as is described by way of example with respect to the jet pipe units 19, 19 ', the individual jet pipes 22, 22' can have an outlet valve in order to be able to block the extinguishing agent outlet of individual jet pipes if necessary. In this way, a further modification and adaptation of the extinguishing agent jet is possible.

Figur 7 zeigt eine Strahlrohreinheit 23 gemäß noch einer weiteren Ausgestaltung, die prinzipiell aufgebaut ist wie die zu Figuren 4 bis 6 beschriebene Strahlrohreinheit. Im Unterschied zu der Strahlrohreinheit 19, 19' sind bei der Strahlrohreinheit 23 die äußeren Strahlrohre 24 gegenüber dem Sammler 25 verstellbar, wie dieses in Figur 7 kenntlich gemacht ist. Durch Verstellen der äußeren Strahlrohre 24, bei welcher Verstellung die Längsachse der Strahlrohre 24 gegenüber der Rotationsachse der Strahlrohreinheit 23 um einige Winkelgrade gekippt wird, kann ein Löschmittelstrahl erzeugt werden, der um seine Längsachse rotiert und zudem eine gewisse Konizität aufweist. Die Strahlrohreinheit 23 ist in Figur 7 in einer Stellung gezeigt, in der die äußeren Strahlrohre 24 geringfügig nach außen zur Erzeugung eines sich geringfügig vergrößernden Löschmittelstrahls eingestellt sind. Gleichfalls ist es möglich, die Strahlrohre 24 nach innen hin gegenüber der Rotationsachse zu neigen. FIG. 7 shows a jet pipe unit 23 according to yet another embodiment, which is constructed in principle as to FIGS. 4 to 6 described jet pipe unit. In contrast to the jet pipe unit 19, 19 ', in the case of the jet pipe unit 23, the outer jet pipes 24 are adjustable relative to the collector 25, as in FIG FIG. 7 indicated. By adjusting the outer beam tubes 24, in which adjustment the longitudinal axis of the jet tubes 24 is tilted by a few degrees with respect to the axis of rotation of the jet tube unit 23, an extinguishing agent jet can be generated, which rotates about its longitudinal axis and also has a certain conicity. The jet pipe unit 23 is in FIG. 7 shown in a position in which the outer beam tubes 24 are set slightly outwardly to produce a slightly enlarging extinguishing agent jet. Likewise, it is possible to incline the jet pipes 24 inwardly with respect to the axis of rotation.

Die Strahlrohreinheit 23 verfügt über ein Teleskopgehäuse 26, das zum einen zum Schutze der Strahlrohre 24 und zum anderen zum Abstützen der bezüglich des Sammlers 25 gelenkig im Bereich ihres rückwärtigen Endes an diesem gelagerten Strahlrohre 24 dient. Die äußeren Strahlrohre 24 stützen sich bei rotierender Einheit fliehkraftbedingt an der Innenseite des Teleskopgehäuses 26 ab. Dieses trägt an seinem äußeren Teil 27 zu diesem Zwecke innenseitig einen Stützring 28. Das äußere Teil 27 ist gegenüber dem feststehende Teil 27' des Teleskopgehäuses 26, wie durch den Pfeil in Figur 7 angedeutet, mittels eines Gewindes verstellbar, und zwar durch eine Drehbewegung der beiden Teile 27, 27' gegeneinander. Der Stützring 28 ist in nicht näher dargestellter Art und Weise segmentiert. Jedes Segment des Stützringes 28 ist über einen Stößel 29 in radialer Richtung zur Rotationsachse hin bewegbar. Durch Ausüben einer Drehbewegung auf das äußere Teil 27 des Teleskopgehäuses 26 wird entsprechend der Steigung des zwischen den Teilen 27 und 27' befindlichen Gewindes der Stößel 29 in Längsrichtung der Strahlrohreinheit 23 in das äußere Teil 27' hineingedrückt und demzufolge die Stützringsegmente, die rückseitig an dem anderen Ende des Stößels 29 mit einer Schräge anliegen, bewegt. Eine aktive Rückstellung der Stützringsegmente 28 ist nicht notwendig. Zum Sichern der beiden Teile 27, 27' des Teleskopgehäuses 26 gegeneinander dient eine in den Figuren nicht dargestellte Drehsicherung.The jet pipe unit 23 has a telescopic housing 26, which on the one hand serves to protect the jet pipes 24 and, on the other hand, supports the jet pipes 24 which are articulated in the area of their rear end relative to the collector 25. The outer jet pipes 24 are based on centrifugal force on the inside of the telescopic housing 26 with rotating unit. This carries on its outer part 27 for this purpose inside a support ring 28. The outer part 27 is opposite the fixed part 27 'of the telescopic housing 26, as indicated by the arrow in FIG FIG. 7 indicated, adjustable by means of a thread, by a rotational movement of the two parts 27, 27 'against each other. The support ring 28 is segmented in a manner not shown. Each segment of the support ring 28 is movable via a plunger 29 in the radial direction to the axis of rotation. By applying a rotational movement to the outer part 27 of the telescopic housing 26, the plunger 29 is pressed in the longitudinal direction of the jet pipe unit 23 in the outer part 27 'in accordance with the slope of between the parts 27 and 27' located thread and consequently the support ring segments, the back of the abut other end of the plunger 29 with a slope moves. An active provision of the support ring segments 28 is not necessary. To secure the two parts 27, 27 'of the telescopic housing 26 against each other serves a non-illustrated in the figures rotation.

Figur 8 zeigt eine Strahlroheinheit 30 gemäß einem weiteren Ausführungsbeispiel. Die Strahlrohreinheit 30 ist prinzipiell aufgebaut wie die Strahlrohreinheit 19 der Figur 4. Die Strahlrohreinheit 30 verfügt zusätzlich zu der Strahlrohreinheit 19 der Figur 4 über eine Zu- und Abschaltvorrichtung 31, die in dem Sammler 32 angeordnet ist. Die Zu- und Abschaltvorrichtung 31 dient zum Zu- und/oder Abschalten von einzelnen Strahlrohren 33. Somit kann bei der Strahlrohreinheit 30 der zu bildende Löschmittelstrahl zusätzlich durch Zu- und/oder Abschalter einzelner Strahlrohre 33 moduliert bzw. eingestellt werden. Der Einsatz einer solchen Zu- und Abschaltvorrichtung zum Zu- bzw. Abschalten einzelner Strahlrohre 33 ist vor allem dann sinnvoll, wenn die Strahlrohre zumindest teilweise unterschiedliche Düsenformen aufweisen. Dieses erweitert die Möglichkeiten einer Ausbildung des Löschmittelstrahls in Abhängigkeit davon, welche Strahlrohre zu- und/oder abgeschaltet sind. Ein solches Zu- und Abschalten kann auch während des laufenden Betriebes erfolgen, so dass beim Vorgang der Löschmittelstrahlerzeugung dieser auch diesbezüglich geändert werden kann. FIG. 8 shows a Strahlroheinheit 30 according to another embodiment. The jet pipe unit 30 is basically constructed like the jet pipe unit 19 of FIG FIG. 4 , The jet pipe unit 30 has, in addition to the jet pipe unit 19 of FIG FIG. 4 via a connection and disconnection device 31, which is arranged in the collector 32. The supply and shutdown device 31 is used to connect and / or shutdown of individual jet pipes 33. Thus, in the jet pipe unit 30 to be formed extinguishing agent beam additionally modulated or adjusted by supply and / or cut-off individual jet pipes 33. The use of such a supply and disconnection device for connecting or disconnecting individual jet pipes 33 is particularly useful when the jet pipes have at least partially different nozzle shapes. This expands the possibilities of forming the extinguishing agent jet as a function of which jet pipes are switched on and / or off. Such switching on and off can also be done during operation, so that in the process of the extinguishing agent beam generation this can also be changed in this regard.

Die Strahlrohreinheit 30 verfügt ferner über ein Gehäuse 34, welches bei dem dargestellten Ausführungsbeispiel ebenfalls als Schutzmaßnahme vorgesehen ist. Das aus den beiden ringzylindrischen Gehäuseteilen 35, 36 gebildete Gehäuse 34 ist an die Drehbewegung des Sammlers 32 gekoppelt. Das Gehäuseteil 36 ist gegenüber dem Gehäuseteil 35, wie durch den Pfeil in Figur 8 angedeutet, bewegbar. Das Gehäuseteil 35 verfügt über einen Zufuhrkanal 37, über den in das Innere des äußeren zylindrischen Gehäuseteils 36 ein zusätzliches Medium, beispielsweise ein Gas, wie etwa Druckluft injiziert werden kann. Durch eine solche Maßnahme kann die Form des austretenden Löschmittelstrahls beeinflusst werden. Insbesondere kann dieser hierdurch eine zusätzliche Stabilisierung erfahren. Die Zuführung eines solchen Trägergases erfolgt vorzugsweise drallförmig. Ein solches Gas, beispielsweise Druckluft kann grundsätzlich auch über den Sammler 32 zugeführt werden, wozu zu diesem Zweck der Zufuhrkanal eine Verbindung mit einer in dem Sammler angeordneten Gasleitung aufweist. Grundsätzlich ist ebenfalls eine Ausgestaltung möglich, bei der der Sammler selbst Öffnungen zum Gasaustritt trägt. Diese Gasaustrittsöffnungen können grundsätzlich auch am Sammler befestigte Rohre, die zwischen den Strahlrohren 33 angeordnet sind, sein.The jet pipe unit 30 further has a housing 34, which is also provided in the illustrated embodiment as a protective measure. The formed from the two annular cylindrical housing parts 35, 36 housing 34 is coupled to the rotational movement of the collector 32. The housing part 36 is opposite the housing part 35, as indicated by the arrow in FIG FIG. 8 indicated, movable. The housing part 35 has a feed channel 37, via which an additional medium, for example a gas, such as compressed air, can be injected into the interior of the outer cylindrical housing part 36. By such a measure, the shape of the exiting extinguishing agent jet can be influenced. In particular, this can thereby undergo additional stabilization. The supply of such a carrier gas is preferably swirl-shaped. Such a gas, for example compressed air, can in principle also be supplied via the collector 32, for which purpose the supply channel has a connection to a gas line arranged in the collector for this purpose. In principle, an embodiment is also possible in which the collector itself carries openings for the gas outlet. Basically, these gas outlet openings can also be tubes fastened to the collector, which are arranged between the jet tubes 33.

Figur 9 zeigt eine Weiterbildung der Strahlrohreinheit 30. Die in Figur 9 dargestellte Strahlrohreinheit 38 ist ebenso aufgebaut wie die Strahlrohreinheit 30, wobei jedoch im Unterschied zu der Strahlrohreinheit 30 das Gehäuse 39 der Strahlrohreinheit 38 gegenüber einer Drehbewegung des Sammlers mit den Strahlrohren entkoppelt ist, wie diese schematisiert durch die Kugellager 40 in Figur 9 dargestellt ist. FIG. 9 shows a development of the jet pipe unit 30. The in FIG. 9 illustrated jet pipe unit 38 is constructed as well as the jet pipe unit 30, but in contrast to the jet pipe unit 30, the housing 39 of the jet pipe unit 38 is decoupled against a rotational movement of the collector with the jet pipes, as schematized by the ball bearings 40 in FIG. 9 is shown.

Figur 10 zeigt in einer stark schematisierten und nicht maßstabsgerechten Darstellung die Strahlrohreinheit 19 der Figur 4 beim Abgeben eines Löschmittelstrahls 41. Infolge der Rotation der Strahlrohre 22 rotiert der Löschmittelstrahl 41 beim Austritt aus der Strahlrohreinheit 19 um seine Längsachse, die somit die Verlängerung der Rotationsachse der Strahlrohreinheit 19 darstellt. In einer ersten Wurfstrecke des Löschmittelstrahls bleibt infolge der durch den Druck des anstehenden flüssigen Löschmittels hohen Austrittsgeschwindigkeit und der aufgeprägten Rotation der Löschmittelstrahl gebündelt. Dieser Abschnitt des Löschmittelstrahls 41 ist in Figur 10 mit dem Bezugszeichen 42 gekennzeichnet. An diesen Abschnitt 42 des Löschmittelstrahls schließt sich ein Abschnitt an, in dem auf kurzer Strecke unter rascher Geschwindigkeitsabnahme der Löschmittelstrahl 42 seine Querschnittsfläche explosionsartig vergrößert. Dieses vollzieht sich unter Ausbildung bzw. Verteilung kleinster Löschmitteltröpfchen, so dass sich ein Löschmittelnebel 43 ausbildet. Unterstützt wird die Löschmittelnebelausbildung auch durch den sich infolge der hohen Austrittsgeschwindigkeit des Löschmittelstrahls entgegenwirkenden Staudrucks. FIG. 10 shows in a highly schematic and not to scale representation of the jet pipe unit 19 of FIG. 4 when dispensing an extinguishing agent jet 41. As a result of the rotation of the jet pipes 22, the extinguishing agent jet 41 rotates on its exit from the jet pipe unit 19 about its longitudinal axis, which thus represents the extension of the axis of rotation of the jet pipe unit 19. In a first throw of the extinguishing agent jet, the extinguishing agent jet remains concentrated due to the high exit velocity and the impressed rotation due to the pressure of the pending liquid extinguishing agent. This portion of the extinguishing agent jet 41 is in FIG. 10 designated by the reference numeral 42. At this section 42 of the extinguishing agent beam is followed by a section in which the extinguishing agent jet 42 explosively increases its cross-sectional area over a short distance with a rapid decrease in velocity. This takes place with formation or distribution of smallest extinguishing agent droplets, so that an extinguishing agent mist 43 is formed. The extinguishing agent mist formation is also supported by the dynamic pressure acting as a result of the high exit velocity of the extinguishing agent jet.

Es wird für möglich erachtet, dass bei der Erzeugung eines Überschalllöschmittelstrahls die vorbeschriebene Ausbreitung bzw. Entstehung des Löschmittelnebels durch den Übergang laminarer Strömungsverhältnisse in turbulente Strömungsverhältnisse förderlich ist.It is considered possible that the generation of a supersonic extinguishing agent jet promotes the above-described spread or formation of the extinguishing agent mist by the transition from laminar flow conditions to turbulent flow conditions.

Die beschriebene Konzeption der Strahlrohreinheit bedingt einen nur geringen Löschmittelverbrauch, der gegenüber einem Betrieb vorbekannter Strahlrohreinheiten unter Ausbildung eines Löschmittelstrahls um ein Vielfaches geringer ist. Daher können mit einer solchen Strahlrohreinheit ausgerüstete Löschfahrzeuge unter Zugrundelegung der mitgeführten Löschmittelmenge erheblich länger durch Löschen eine aktive Brandbekämpfung unterstützen, ohne dass der Löschmittelvorrat nachgefüllt werden müsste. Der geringe Löschmittelverbrauch ist auch vorteilhaft für den Fall, dass anstelle von Wasser als Löschmittel ein anderes flüssiges Löschmittel oder Wasser mit einem Löschmittelzusatz eingesetzt werden, da der Bereich des Brandherdes nur durch eine geringe Menge des eingesetzten Löschmittels - sollte dieses nicht Wasser sein - belastet wird.The described design of the jet pipe unit requires only a small extinguishing agent consumption, which is lower compared to an operation of previously known jet pipe units with formation of an extinguishing agent jet by a multiple. Therefore, equipped with such a nozzle unit fire-fighting vehicles based on the entrained extinguishing agent amount significantly longer by extinguishing an active fire fighting support without the extinguishing agent supply would have to be refilled. The low extinguishing agent consumption is also advantageous in the event that instead of water as extinguishing agent, another liquid extinguishing agent or water are used with an extinguishing agent additive, since the area of the source of fire only by a small amount of the extinguishing agent used - should it not be water - is charged ,

Die Erfindung ist vorangehend anhand von einigen möglichen Ausführungsbeispielen beschrieben worden. Ohne den Gegenstand der Erfindung zu verlassen, offenbaren sich einem Fachmann zahlreiche weitere Ausgestaltungen, ohne den Gegenstand der Erfindung zu verlassen.The invention has been described above with reference to some possible embodiments. Without departing from the subject matter of the invention, numerous further embodiments will be apparent to a person skilled in the art without departing from the subject matter of the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1, 1'1, 1 '
Strahlrohreinheitlance unit
22
Strahlrohrlance
33
Rohrkörperpipe body
4, 4'4, 4 '
Düsejet
5,5'5.5 '
Längsachselongitudinal axis
66
Hydraulikmotorhydraulic motor
77
Riemenradpulley
88th
Riemenbelt
99
Riemenführungbelt guide
1010
DrehdurchführungRotary union
1111
Innere des RohrkörpersInterior of the tubular body
1212
konvergenter Abschnittconvergent section
13, 13'13, 13 '
Abschnitt mit kleinstem DüsendurchmesserSection with smallest nozzle diameter
1414
LöschmittelversorgungExtinguishing agent supply
1515
Düsenkonfigurationnozzle configuration
16, 16'16, 16 '
Düsejet
1717
Längsachselongitudinal axis
1818
Strahlrohrlance
19, 19'19, 19 '
Strahlrohreinheitlance unit
2020
DrehdurchführungRotary union
2121
Sammlercollector
22, 22'22, 22 '
Strahlrohrlance
2323
Strahlrohreinheitlance unit
2424
Strahlrohrlance
2525
Sammlercollector
2626
Teleskopgehäusetelescopic housing
2727
äußeres Teilouter part
27'27 '
feststehendes Teilfixed part
2828
Stützringsupport ring
2929
Stößeltappet
3030
Strahlrohreinheitlance unit
3131
Zu- und AbschaltvorrichtungConnection and disconnection device
3232
Sammlercollector
3333
Strahlrohrlance
3434
Gehäusecasing
3535
Gehäuseteilhousing part
3636
Gehäuseteilhousing part
3737
Zufuhrkanalsupply channel
3838
Strahlrohreinheitlance unit
3939
Gehäusecasing
4040
Kugellagerball-bearing
4141
LöschmittelstrahlExtinguishing jet
4242
gebündelter Abschnittbundled section
4343
LöschmittelnebelExtinguishing agent mist

Claims (14)

  1. Extinguishing agent output jet pipe unit, comprising at least one jet pipe (2, 2', 18, 22, 22', 24), which can be acted upon with pressurised extinguishing agent, with a pipe body (3) having an extinguishing agent inlet opening and with an extinguishing agent outlet formed from at least one nozzle (4, 4', 16, 16'), wherein the at least one nozzle (4, 4', 16, 16') is rotationally movable around its longitudinal axis (5) and/or along a circular path concentrically enclosing the rotational axis, characterised in that
    - the at least one nozzle (4, 4', 16, 16') is connected to the pipe body (3) of the jet pipe (2, 2', 18, 22, 22', 24) in a torque-locking manner,
    - a drive apparatus is provided for rotational driving of the jet pipe (2, 2', 18, 22, 22', 24) and a rotational passage (10, 20), through which the extinguishing agent is guided, is provided for supply of the extinguishing agent into the pipe body and
    - the jet pipe unit (1, 1') has a jet pipe (2, 2') rotationally driven around its longitudinal axis or the jet pipe unit (19, 19', 23) has a plurality of jet pipes (22, 22', 24) arranged at a distance to the rotational axis and expediently at the same angular distance to one another.
  2. Extinguishing agent output jet pipe unit according to claim 1, characterised in that
    the extinguishing agent is present with a pressure of more than 200 bar, in particular of more than 500 bar at the extinguishing agent inlet opening of the jet pipe (2, 2', 18, 22, 22', 24).
  3. Extinguishing agent output jet pipe unit according to claim 1 or 2, characterised in that
    the at least one nozzle (4, 4', 16, 16') forming the extinguishing agent outlet opening of the jet pipe is an acceleration nozzle.
  4. Extinguishing agent output jet pipe unit according to claim 3, characterised in that
    the nozzle (4, 4', 16, 16') has, in a first portion in the direction of flow of the extinguishing agent flowing through it, a convergent taper (12), which tapering portion (12) adjoins the smallest diameter of the nozzle (4, 4', 16, 16'), which smallest diameter is less than 2 mm, in particular approximately 1 mm.
  5. Extinguishing agent output jet pipe unit according to one of claims 1 to 4, characterised in that
    the jet pipe (2') has at least one nozzle (4') arranged eccentrically to the longitudinal axis (5') of the jet pipe (2').
  6. Extinguishing agent output jet pipe unit according to one of claims 1 to 4, characterised in that
    the jet pipes (22, 22', 24) are connected with their water inlet opening to a collector (21, 25) connected to a rotational passage (20) through which extinguishing agent is guided.
  7. Extinguishing agent output jet pipe unit according to one of claims 1 to 6, characterised in that
    one or more of the jet pipes (24) arranged at a distance to the rotational axis are adjustable in order to set the diameter of the extinguishing agent jet with regard to the alignment of their longitudinal axis to the rotational axis of the jet pipe unit (23).
  8. Extinguishing agent output jet pipe unit according to one of claims 1 to 7, characterised in that
    the individual jet pipes (33) are connected to an activation and deactivation device (31) by means of which an inflow of extinguishing agent into the jet pipe (33) can be activated or deactivated.
  9. Extinguishing agent output jet pipe unit according to one of claims 1 to 7, characterised in that
    the jet pipe unit has a housing which closes in the individual jet pipes (24, 33).
  10. Extinguishing agent output jet pipe unit according to claim 9, characterised in that
    the housing (34, 39) comprises two housing parts (35, 36) which are movable relative to one another.
  11. Extinguishing agent output jet pipe unit according to claim 9 or 10, characterised in that
    the housing (34, 39) has a delivery duct (37).
  12. Method for forming an extinguishing agent fog, characterised by
    - providing a pressurised liquid extinguishing agent, for example water,
    - supplying the extinguishing agent to a jet pipe unit, comprising at least one jet pipe with one or more nozzles as an extinguishing agent outlet opening,
    - generating an extinguishing agent jet (41) with a first jet portion (42), which substantially defines the throw, in the form of a directed jet and with a portion adjacent in the throw direction in which the jet increases the size of its cross-sectional surface by a multiple factor alongside a rapid reduction in speed over a short distance for formation of the extinguishing fog (43) by generating an extinguishing agent jet rotating around its longitudinal axis by bringing into rotation the at least one nozzle of the jet pipe unit and/or of the jet pipe unit around a rotational axis corresponding to the extension of the longitudinal axis of the extinguishing agent jet.
  13. Method according to claim 12, characterised in that
    the extinguishing agent is provided with a pressure of at least 200 bar, in particular of more than 500 bar.
  14. Method according to claim 12 or 13, characterised in that
    the extinguishing agent exits from the at least one nozzle at high speed, in particular at ultrasonic speed.
EP06793884A 2005-09-30 2006-09-28 Jet pipe unit and method for producing an extinguishing agent mist Not-in-force EP1928558B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200510047299 DE102005047299A1 (en) 2005-09-30 2005-09-30 Jet pipe e.g. hollow jet pipe, unit for use by firefighter for delivering e.g. water, to fire area, has nozzle movable around its longitudinal axis and/or along circular path that encloses extension of longitudinal axis of agent
DE200520015600 DE202005015600U1 (en) 2005-09-30 2005-09-30 Jet pipe unit for discharge of extinguishing agent e.g. water, has jet pipe with outlet formed from nozzle, where unit drives nozzle about its longitudinal axis/along path concentrically enclosing extension of longitudinal axis of agent jet
PCT/EP2006/066846 WO2007036554A1 (en) 2005-09-30 2006-09-28 Jet pipe unit and method for producing an extinguishing agent mist

Publications (2)

Publication Number Publication Date
EP1928558A1 EP1928558A1 (en) 2008-06-11
EP1928558B1 true EP1928558B1 (en) 2009-09-30

Family

ID=37740463

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06793884A Not-in-force EP1928558B1 (en) 2005-09-30 2006-09-28 Jet pipe unit and method for producing an extinguishing agent mist

Country Status (6)

Country Link
EP (1) EP1928558B1 (en)
AT (1) ATE444100T1 (en)
DE (1) DE502006004998D1 (en)
ES (1) ES2332329T3 (en)
PT (1) PT1928558E (en)
WO (1) WO2007036554A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007032323A1 (en) 2007-07-11 2009-01-15 Airmatic Gesellschaft für Umwelt und Technik mbH Tracked vehicle's hydraulic power utilization method for driving relieving device for pressure reduction, involves increasing primary operating pressure in hydraulic oil circuit upto maximum pressure of hydraulic oil pump permanently
DE102008049815A1 (en) 2008-09-30 2010-04-01 Airmatic Gesellschaft für Umwelt und Technik mbH Variable-pressure extinguishing method for discharging water through rotary injector by fire service expert, involves providing low and high pressure radiant tubes with extinguishing agent in low and/or high pressure pumps
DE202008013016U1 (en) 2008-09-30 2008-12-18 Airmatic Gesellschaft für Umwelt und Technik mbH Vario-pressure extinguishing device
CN102202742B (en) 2008-10-14 2012-11-21 H·舒特 Method for producing a swirl spray and spray device capable of forming a swirl spray
DE202010009584U1 (en) 2010-06-26 2010-09-16 Airmatic Gesellschaft für Umwelt und Technik mbH Fire fighting monitor
DE102017113424A1 (en) 2017-06-19 2018-12-20 protectismundi GmbH Method and device for producing a rotating hollow jet
WO2018234293A2 (en) 2017-06-19 2018-12-27 protectismundi GmbH Method and device for producing a rotating hollow jet
DE202017103616U1 (en) 2017-06-19 2018-06-20 protectismundi GmbH Liquid hollow jet generating jet pipe unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3931930A (en) * 1975-03-06 1976-01-13 Amchem Products, Inc. Variable spray apparatus and method
US4715539A (en) * 1986-12-11 1987-12-29 Steele Curtis C High-pressure water jet tool and seal
US4821961A (en) * 1988-03-31 1989-04-18 Nlb Corp. Self-rotating nozzle

Also Published As

Publication number Publication date
EP1928558A1 (en) 2008-06-11
DE502006004998D1 (en) 2009-11-12
ATE444100T1 (en) 2009-10-15
ES2332329T3 (en) 2010-02-02
PT1928558E (en) 2010-01-07
WO2007036554A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
EP1928558B1 (en) Jet pipe unit and method for producing an extinguishing agent mist
EP1035947B1 (en) Blasting method for cleaning pipes
DE3903887A1 (en) DEVICE FOR FLAME SPRAYING POWDERED MATERIALS BY MEANS OF AUTOGENIC FLAME
EP1946854A1 (en) Method and device for cleaning a pipe
EP3107689B1 (en) Nozzle head
EP0822849B1 (en) Portable fire extinguishing nozzle arrangement
DE69516262T2 (en) SPRAY NOZZLE FOR Fogging Water
EP3275508A1 (en) Nozzle for water, in particular for a water gun
WO2010043555A1 (en) Method for producing a rotating hollow jet, and jet pipe unit for producing a hollow jet
DE10393218B4 (en) Device for producing a gas-liquid mixture in the range of cutting tools
AT411482B (en) WATER MIST FUELING SYSTEM, ESPECIALLY FOR PARTIAL CUTTING MACHINES IN SECTOR DRIVING
DE102005047299A1 (en) Jet pipe e.g. hollow jet pipe, unit for use by firefighter for delivering e.g. water, to fire area, has nozzle movable around its longitudinal axis and/or along circular path that encloses extension of longitudinal axis of agent
DE2757522C2 (en) Round or ring jet nozzle for generating and blasting a mist or aerosol for coating objects
DE10033395A1 (en) Fire fighting method and fire fighting equipment
WO2003022525A2 (en) Blasting method and device
CH683323A5 (en) An apparatus for flame spraying of materials.
DE202005015600U1 (en) Jet pipe unit for discharge of extinguishing agent e.g. water, has jet pipe with outlet formed from nozzle, where unit drives nozzle about its longitudinal axis/along path concentrically enclosing extension of longitudinal axis of agent jet
DE102014112757B4 (en) Flat fan nozzle and its use
DE102017130744B4 (en) Apparatus and method for thermal spraying
EP1112107B1 (en) Method and device for fighting fires
EP1078653A1 (en) Device for inserting an inert gas in a fire extinguishing agent
EP1112108B1 (en) Extinguishing nozzle head for discharging an extinguishing liquid
DE2916087C2 (en)
DE948745C (en) Device for spraying liquid, in which the liquid is introduced into the exhaust gases of an internal combustion engine
DE516833C (en) Method and device for spraying

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006004998

Country of ref document: DE

Date of ref document: 20091112

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20091229

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090403201

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2332329

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100925

Year of fee payment: 5

Ref country code: TR

Payment date: 20100921

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20100915

Year of fee payment: 5

BERE Be: lapsed

Owner name: AIRMATIC G.- FUR UMWELT UND TECHNIK MBH

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100928

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20120328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006004998

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110928

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100928

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 444100

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110928

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PROTECTISMUNDI GMBH, DE

Effective date: 20181005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006004998

Country of ref document: DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006004998

Country of ref document: DE

Representative=s name: DR. ROTH PATENTANWALTSKANZLEI, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006004998

Country of ref document: DE

Owner name: PROTECTISMUNDI GMBH, DE

Free format text: FORMER OWNER: AIRMATIC GESELLSCHAFT FUER UMWELT UND TECHNIK MBH, 58675 HEMER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20200918

Year of fee payment: 15

Ref country code: FR

Payment date: 20200921

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20201016

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211224

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006004998

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20221102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006004998

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401