EP1843457B1 - Method for the operation of a traction converter circuit - Google Patents
Method for the operation of a traction converter circuit Download PDFInfo
- Publication number
- EP1843457B1 EP1843457B1 EP06405150A EP06405150A EP1843457B1 EP 1843457 B1 EP1843457 B1 EP 1843457B1 EP 06405150 A EP06405150 A EP 06405150A EP 06405150 A EP06405150 A EP 06405150A EP 1843457 B1 EP1843457 B1 EP 1843457B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- converter
- converter unit
- signal
- clk
- wave signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000004804 winding Methods 0.000 claims abstract description 30
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 description 6
- 230000010355 oscillation Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L9/00—Electric propulsion with power supply external to the vehicle
- B60L9/16—Electric propulsion with power supply external to the vehicle using ac induction motors
- B60L9/30—Electric propulsion with power supply external to the vehicle using ac induction motors fed from different kinds of power-supply lines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/75—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/757—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
- H02M7/758—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
Definitions
- the invention relates to the field of power electronics. It is based on a method for operating a Tratechnischsumrichterscnies for coupling to a DC electrical network according to the preamble of the independent claim.
- Traction converter circuits are now used in a wealth of power electronic applications, especially for rail vehicles, such as electric railways. Especially in cross-border use of rail-bound vehicles, the drive energy from different electrical supply networks, ie from different electrical DC networks and AC networks of different mains voltage must be removed or fed. This requires traction converter circuits which are connected both to an electrical supply network based on a DC voltage and to an electrical supply network based on an AC voltage can be coupled.
- Common electrical supply networks especially for railway networks, with an AC voltage source based on an AC voltage of 15kV with a frequency of 16 2 / 3Hz or 25kV and 50Hz.
- Popular electrical supply networks in particular for railway networks, with a DC voltage source based on a DC voltage of 1.5 kV or 3 kV.
- the Tratechnischematodescnies for coupling to a DC electrical network, for example, in DE 1 479 558 A1 specified.
- the Tratechnischematodescnies includes a network converter, which power converter is connected on the DC side with a DC circuit, the DC circuit is switchable to the DC electrical network.
- the traction converter circuit has a transformer with a primary winding and a secondary winding, wherein the power converter is connected on the AC side to the primary winding of the transformer.
- a converter unit is provided, which converter unit is connected to the secondary winding of the transformer on the alternating voltage side.
- the network converter is driven by means of a predeterminable Netzumrichteran Kunststoffsignals for setting the AC converter AC voltage, wherein the Netzumrichteran Kunststoffsignal is typically generated by pulse width modulation of a sinusoidal signal, usually a sinusoidal voltage signal with a triangular signal, which usually results in a switching frequency in the kilohertz range.
- the power converter generates at its AC side a voltage with a fundamental frequency of, for example, 100Hz.
- a double-frequency power oscillation of 200 Hz then arises, which must not be passed on to the DC side in the DC voltage circuit and thus in the electrical DC network.
- a filter circuit absorption circuit
- LC filter circuit LC filter on the DC circuit, which is tuned to substantially twice the fundamental frequency of the voltage on the AC side of the power converter, so that this double-frequency voltage component can be filtered out on the DC side of the power converter.
- a DC side filter circuit is very heavy, takes up a lot of space, is lossy, reduces the reliability of the traction converter circuit, and significantly increases hardware costs.
- the object of the invention is therefore to provide a method for operating a Tratechnischsumrichterscnies for coupling to a DC electrical network through which the Tratechnischsumrichterscnies can be simplified. This object is solved by the features of claim 1. In the dependent claims advantageous developments of the invention are given.
- the traction converter circuit comprises a network converter, which power converter DC voltage side is connected to a DC circuit, the DC circuit is switchable to the DC electrical network. Furthermore, the traction converter circuit comprises a transformer having a primary winding and a secondary winding, wherein the mains converter is connected on the AC side to the primary winding of the transformer, and a converter unit, which converter unit is connected on the AC side to the secondary winding of the transformer.
- the method of operation of the network converter is controlled by means of a predefinable Netzumrichteran tenusignals for setting the AC converter AC voltage.
- the Netzumrichteran tenusignal is a square wave signal, which follows a reference square wave signal.
- space and hardware costs can be significantly saved with respect to the Tratechnischsumrichterscnies, and losses are reduced and the reliability and availability of Tratechnischsumrichterscnies be increased.
- Utilization of the power semiconductor switches of the power converter also increases due to the square wave inverter drive signal, thereby reducing thermal stress.
- Fig. 1 an embodiment of a Tratechnischsumrichterscnies for coupling to a DC electrical network 1 is shown.
- the electrical DC network typically has a DC voltage of 1.5 kV or 3 kV.
- Traction converter circuit shown for coupling to the electrical DC network 1 includes a power converter 2, which power converter 2 is connected on the DC side with a DC voltage circuit 3, wherein the DC voltage circuit 3 is connected to the DC electrical network 1 switchable.
- the DC voltage circuit 3 has a capacitive energy store, but may also have a plurality of capacitive energy stores connected in particular in series.
- the traction converter circuit comprises a transformer 4 having a primary winding 5 and a secondary winding 6, wherein the power converter 2 is connected to the primary winding 5 of the transformer 4 on the alternating voltage side.
- the traction converter circuit has a converter unit 7, which converter unit 7 is connected to the secondary winding 6 of the transformer 4 on the alternating voltage side.
- a DC voltage circuit 8 may be connected, with which, for example, a drive converter 9 is connected, for example, a drive motor 10 feeds.
- the power converter 2 is controlled by means of a predefinable power converter drive signal S N for setting the power converter alternating voltage U G.
- the network converter drive signal S N is a square-wave signal which follows a reference square-wave signal S Clk .
- the reference rectangular signal S Clk and the Netzumrichteran Kunststoffsignal S N each have a periodic profile, wherein it has proved to be particularly advantageous that the period of the Netzumrichteran Kunststoffsignals S N between 5ms and 25ms is selected.
- Fig. 2 In an electrical energy flow from the power converter 3 to the inverter unit 7 shows Fig. 2 to the temporal course of the reference square wave signal S Clk and the Netzumrichteran Kunststoffsignals S N according to the inventive method and other physical quantities of Tratechnischsumrichterscnies, which will be described in detail.
- the Netzumrichteran Kunststoffsignal S N is a square wave signal, which follows a reference square wave signal S Clk , results in the DC side of the power converter 3 only a very low-frequency power oscillation with small amplitude, so that advantageous can be dispensed with a known from the prior art filter circuit on the DC voltage circuit 2 and the Trakomsumrichterscnies thus greatly simplified. From the saving of the filter circuit by the inventive method further weight, space and hardware costs can be significantly saved with respect to the Tratechnischsumrichterscnies, and reduced losses and the reliability and availability of traction converter circuit can be increased. In addition, the power semiconductor switch of the power converter 3 are advantageously better utilized by the rectangular Netzumrichteran Kunststoffsignal S N , which reduces the thermal load.
- a temporal course of the reference square wave signal S Clk and the Netzumrichteran Kunststoffsignals S N of Trakomsumrichterscnies is shown according to a variant of the inventive method, in particular in an electrical energy flow from the power converter 3 to the inverter unit 7.
- the square wave of the Netzumrichteran Kunststoffsignals S N at each polarity change time of the Netzumrichteran Kunststoffsignals S. N initially a zero value for an adjustable period of time t N , in which case after the settable time t N of the polarity change is completed.
- undesirable overvoltages on open transformer windings, which traction converter circuits may typically have Fig.
- a maximum of 10% of half the period of the reference rectangular signal S Clk is set as the time duration t N.
- Such a selected period of time t N advantageously corresponds to half the resonant cycle time of an equivalent damped RLC resonant circuit.
- FIG. 2 shows Fig. 2 the temporal course of the reference square wave signal S Clk and the Netzumrichteran Kunststoffsignal S N and other physical quantities of the Tralementsumrichterscnies in an electrical energy flow from the power converter 3 to the inverter unit 7.
- the electrical energy flow from the power converter 3 to the inverter unit 7 corresponds to a traction converter circuit which, for example, in a vehicle , Especially in a rail vehicle, use, the operating state "driving", since the inverter unit 7 feeds the DC voltage circuit 8 in this operating state, from which then the drive motor 10 is fed by the drive inverter 9.
- the power converter 2 as already described, by means of Netzumrichteran Kunststoffsignals S N for setting the AC converter AC voltage U G controlled so that the AC converter AC voltage U G , as in Fig. 2 shown having a Netzumrichteran Kunststoffsignal S N corresponding rectangular in-phase curve.
- the inverter unit 7 is driven according to an inverter unit current reference signal I gw .
- the inverter unit current reference signal I gw is preferably also a square wave signal.
- the Netzumrichteran Kunststoffsignal S N the in-phase square wave signal S Clk in- phase, ie with respect to the timing of the Netzumrichteran Kunststoffsignal S N is in phase with the reference square wave signal S Clk .
- the inverter unit current reference signal l gw is according to Fig. 2 then selected in phase opposition to the reference square wave signal S Clk , wherein the polarity change time of the inverter unit current reference signal I gw corresponds to the polarity change time of the reference square wave signal S Clk .
- the inverter unit current I g follows at the secondary winding 6 of the transformer 4 Fig.
- the converter unit current reference signal l gw ie the converter unit current l g is regulated in particular to the inverter unit current reference signal l gw , wherein the inverter unit current l g has a substantially trapezoidal shape due to the transformer leakage inductance.
- a current regulator is provided for the aforementioned compensation.
- the converter unit current I g is monitored for a threshold value X s of a tolerance range around the constant value of the converter unit current reference signal I gw .
- the tolerance band around the constant value of the inverter unit current reference signal I gw is in Fig.
- the timing of the inverter unit current reference signal l gw is indicated as a dashed line.
- the threshold value X s is first reached within half a period of the reference square wave signal S Clk , then the converter unit voltage U g at the secondary winding 6 of the transformer 4 is switched to the polarity of the reference square wave signal S Clk by corresponding control of the converter unit 7, as in FIG Fig. 2 shown.
- the converter unit current I g is preferably kept within the tolerance range by corresponding control of the converter unit 7 and thus advantageously retains its polarity, as in FIG Fig.
- the power semiconductor switches of the converter unit 7 can be utilized very efficiently by the check-shaped specification of the converter unit current reference signal I gw and the consequences of the converter unit current Ig and by the further measures described above. This reduces the losses of the power semiconductor switches of the inverter unit 7 and the reliability of the inverter unit 7 and thus the entire traction converter circuit is increased.
- Fig. 4 shows the timing of the reference square wave signal S Clk , the Netzumrichteran Kunststoffsignal S N , Umrichteröstromreferenzsignals I gw , Umrichterrittstroms Ig, the Netzumrichter circuitmechanical U G and the Umrichterü voltage U g in an electrical energy flow from the inverter unit 7 to the power converter 2.
- the electrical energy flow from the inverter unit 7 to the power converter 2 corresponds to a Trakomsumrichtersclien which, for example, in a vehicle, especially in a rail vehicle, use, the operating state "braking" because the drive motor 10 in this operating state the DC voltage circuit 8 via the drive inverter 9 feeds, which then electrical Energy is fed into the electrical DC network 1 via the inverter unit 7, the transformer 4 and the power converter 2.
- the network converter 2, as already described, is actuated by means of the line converter drive signal S N for setting the line converter switching voltage U G , so that the line converter alternating voltage U G , as described in US Pat Fig. 4 shown having a Netzumrichteran tenusignal S N corresponding rectangular in-phase curve. According to Fig.
- the inverter unit 7 is also driven in accordance with the inverter unit current reference signal I gw , the inverter unit current reference signal I gw preferably also being a square-wave signal.
- the inverter unit current reference signal l gw is selected in phase with the reference square wave signal S Clk , wherein the polarity change time of the inverter unit current reference signal I gw corresponds to the polarity change time of the reference square wave signal S Clk .
- the converter unit current I g at the secondary winding 6 of the transformer 4 follows the converter unit current reference signal I gw , ie the converter unit current I g is regulated in particular to the converter unit current reference signal I gw , wherein the converter unit current I g has a substantially trapezoidal profile due to the transformer leakage inductance.
- the inverter unit current Ig is monitored for a threshold value X s of a tolerance range around the constant value of the inverter unit current reference signal Igw .
- the tolerance band around the constant value of the inverter unit current reference signal I gw is in Fig. 4 as two dotted lines indicated, wherein the timing of the inverter unit current reference signal l gw is indicated as a dashed line.
- the converter unit voltage U g at the secondary winding 6 of the transformer 4 is switched to the polarity of the reference square wave signal S Clk by appropriate control of the converter unit 7 and the line converter drive signal S N to the polarity the reference square wave signal S Clk is switched as in Fig. 4 shown.
- the converter unit current I g is preferably kept within the tolerance range by corresponding control of the converter unit 7 and thus advantageously retains its polarity, as in FIG Fig. 4 shown until the next polarity change point.
- the power semiconductor switch of the inverter unit 7 can be very efficiently utilized by the rule-shaped specification of Umrichterrittstromreferenzsignals l gw and the consequences of Umrichterrittstrom Ig and by the other measures described above, even with an electrical energy flow from the inverter unit 7 to the power converter 2.
- the losses of the power semiconductor switches of the converter unit 7 are also reduced in this operating state of the traction converter circuit, and the reliability of the converter unit 7 and thus of the entire traction converter circuit is increased.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Transportation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dc-Dc Converters (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
- Control Of Direct Current Motors (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Description
Die Erfindung bezieht sich auf das Gebiet der Leistungselektronik. Sie geht aus von einem Verfahren zum Betrieb einer Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz gemäss dem Oberbegriff des unabhängigen Anspruchs.The invention relates to the field of power electronics. It is based on a method for operating a Traktionsumrichterschaltung for coupling to a DC electrical network according to the preamble of the independent claim.
Traktionsumrichterschaltungen werden heute in einer Fülle von leistungselektronischen Anwendungen insbesondere für schienengebundene Fahrzeuge, wie elektrische Bahnen eingesetzt. Besonders bei länderübergreifendem Einsatz schienengebundener Fahrzeuge muss die Antriebsenergie aus verschiedenen elektrischen Versorgungsnetzen, d.h. aus verschiedenen elektrischen Gleichspannungsnetzen und Wechselspannungsnetzen unterschiedlicher Netzspannung entnommen oder eingespeist werden können. Dazu sind Traktionsumrichterschaltungen nötig, die sowohl an ein elektrisches Versorgungsnetz basierend auf einer Gleichspannung als auch an ein elektrisches Versorgungsnetz basierend auf einer Wechselspannung ankoppelbar sind. Gängige elektrische Versorgungsnetze, insbesondere für Bahnnetze, mit einer Wechselspannungsquelle basieren auf einer Wechselspannung von 15kV mit einer Frequenz von 16 2/3Hz oder von 25kV und 50Hz. Gängige elektrische Versorgungsnetze, insbesondere für Bahnnetze, mit einer Gleichspannungsquelle basieren auf einer Gleichspannung von 1,5kV oder 3kV. Eine geeignete Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz ist beispielsweise in der
Der Netzumrichter erzeugt an seiner Wechselspannungsseite eine Spannung mit einer Grundfrequenz von beispielsweise 100Hz. Als Konsequenz entsteht eine doppeltfrequente Leistungsoszillation von dann 200Hz, die nicht an die Gleichspannungsseite in den Gleichspannungskreis und damit in das elektrische Gleichspannungsnetz weitergegeben werden darf. Zu diesem Zweck muss ein Filterkreis (Saugkreis) in Form eines LC-Filters am Gleichspannungskreis vorgesehen werden, welcher im wesentlichen auf die doppelte Grundfrequenz der Spannung an der Wechselspannungsseite des Netzumrichters abgestimmt ist, damit dieser doppeltfrequente Spannungsanteil auf der Gleichspannungsseite des Netzumrichters ausgefiltert werden kann. Ein solcher Filterkreis an der Gleichspannungsseite ist aber sehr schwer, benötigt sehr viel Platz, ist verlustbehaftet, verringert die Zuverlässigkeit der Traktionsumrichterschaltung und erhöht die Hardwarekosten signifikant.The power converter generates at its AC side a voltage with a fundamental frequency of, for example, 100Hz. As a consequence, a double-frequency power oscillation of 200 Hz then arises, which must not be passed on to the DC side in the DC voltage circuit and thus in the electrical DC network. For this purpose, a filter circuit (absorption circuit) must be provided in the form of an LC filter on the DC circuit, which is tuned to substantially twice the fundamental frequency of the voltage on the AC side of the power converter, so that this double-frequency voltage component can be filtered out on the DC side of the power converter. However, such a DC side filter circuit is very heavy, takes up a lot of space, is lossy, reduces the reliability of the traction converter circuit, and significantly increases hardware costs.
Eine gattungsgemässe Traktionsumrichterschaltung der eingangs beschriebenen Art ist beispielsweise in der
Aufgabe der Erfindung ist es deshalb, ein Verfahren zum Betrieb einer Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz anzugeben, durch welches die Traktionsumrichterschaltung vereinfacht werden kann. Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. In den abhängigen Ansprüchen sind vorteilhafte Weiterbildungen der Erfindung angegeben.The object of the invention is therefore to provide a method for operating a Traktionsumrichterschaltung for coupling to a DC electrical network through which the Traktionsumrichterschaltung can be simplified. This object is solved by the features of
Bei dem erfindungsgemässe Verfahren zum Betrieb einer Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz umfasst die Traktionsumrichterschaltung einen Netzumrichter, welcher Netzumrichter gleichspannungsseitig mit einem Gleichspannungskreis verbunden ist, wobei der Gleichspannungskreis an das elektrische Gleichspannungsnetz schaltbar ist. Weiterhin umfasst die Traktionsumrichterschaltung einen Transformator mit einer Primärwicklung und einer Sekundärwicklung, wobei der Netzumrichter wechselspannungsseitig mit der Primärwicklung des Transformators verbunden ist, sowie eine Umrichtereinheit, welche Umrichtereinheit wechselspannungsseitig mit der Sekundärwicklung des Transformators verbunden ist. Verfahrensmässig wird der Netzumrichter mittels eines vorgebbaren Netzumrichteransteuersignals zur Einstellung der Netzumrichterwechselspannung angesteuert. Erfindungsgemäss ist das Netzumrichteransteuersignal ein Rechtecksignal, welches einem Referenzrechtecksignal folgt. Dadurch ergibt sich auf der Gleichspannungsseite des Netzumrichters lediglich eine sehr niederfrequente Leistungsoszillation mit geringer Amplitude, so dass vorteilhaft auf einen aus dem Stand der Technik bekannten Filterkreis am Gleichspannungskreis verzichtet werden kann und sich die Traktionsumrichterschaltung damit stark vereinfacht. Aus der Einsparung des Filterkreises durch das erfindungsgemässe Verfahren können bezüglich der Traktionsumrichterschaltung ferner Gewicht, Platz und Hardwarekosten markant eingespart werden, sowie Verluste verringert und die Zuverlässigkeit und Verfügbarkeit der Traktionsumrichterschaltung erhöht werden. Die Ausnutzung der Leistungshalbleiterschalter des Netzstromrichters erhöht sich durch das rechteckförmige Netzumrichteransteuersignal ebenfalls, wobei sich die thermische Belastung verringert.In the inventive method for operating a Traktionsumrichterschaltung for coupling to a DC electrical network, the traction converter circuit comprises a network converter, which power converter DC voltage side is connected to a DC circuit, the DC circuit is switchable to the DC electrical network. Furthermore, the traction converter circuit comprises a transformer having a primary winding and a secondary winding, wherein the mains converter is connected on the AC side to the primary winding of the transformer, and a converter unit, which converter unit is connected on the AC side to the secondary winding of the transformer. The method of operation of the network converter is controlled by means of a predefinable Netzumrichteransteuersignals for setting the AC converter AC voltage. According to the invention the Netzumrichteransteuersignal is a square wave signal, which follows a reference square wave signal. This results in the DC side of the power converter only a very low-frequency power oscillation with low amplitude, so that advantageously can be dispensed with a known from the prior art filter circuit on the DC circuit and the traction converter circuit thus greatly simplified. From the saving of the filter circuit by the inventive method further weight, space and hardware costs can be significantly saved with respect to the Traktionsumrichterschaltung, and losses are reduced and the reliability and availability of Traktionsumrichterschaltung be increased. Utilization of the power semiconductor switches of the power converter also increases due to the square wave inverter drive signal, thereby reducing thermal stress.
Diese und weitere Aufgaben, Vorteile und Merkmale der vorliegenden Erfindung werden aus der nachfolgenden detaillierten Beschreibung bevorzugter Ausführungsformen der Erfindung in Verbindung mit der Zeichnung offensichtlich.These and other objects, advantages and features of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention taken in conjunction with the accompanying drawings.
Es zeigt:
- Fig. 1
- eine Ausführungsform einer Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz,
- Fig. 2
- zeitlicher Verlauf physikalischer Grössen der Traktionsumrichterschaltung bei einem elektrischen Energiefluss vom Netzumrichter der Traktionsumrichterschaltung zu der Umrichtereinheit der Traktionsumrichterschaltung nach dem erfindungsgemässen Verfahren,
- Fig. 3
- zeitlicher Verlauf des Referenzrechtecksignals und des Netzumrichteransteuersignals der Traktionsumrichterschaltung nach einer Variante des erfindungsgemässen Verfahrens und
- Fig. 4
- zeitlicher Verlauf physikalischer Grössen der Traktionsumrichterschaltung bei einem elektrischen Energiefluss vom Netzumrichter der Traktionsumrichterschaltung zu der Umrichtereinheit der Traktionsumrichterschaltung nach dem erfindungsgemässen Verfahren.
- Fig. 1
- an embodiment of a traction converter circuit for coupling to a DC electrical network,
- Fig. 2
- time course of physical quantities of the Traktionsumrichterschaltung in an electrical energy flow from the power converter of Traktionsumrichterschaltung to the inverter unit of Traktionsumrichterschaltung according to the inventive method,
- Fig. 3
- time course of the reference square wave signal and the Netzumrichteransteuersignals the Traktionsumrichterschaltung according to a variant of the inventive method and
- Fig. 4
- Time course of physical quantities of Traktionsumrichterschaltung in an electrical energy flow from the power converter of Traktionsumrichterschaltung to the inverter unit of Traktionsumrichterschaltung according to the inventive method.
Die in der Zeichnung verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefasst aufgelistet. Grundsätzlich sind in der Figur gleiche Teile mit gleichen Bezugszeichen versehen. Die beschriebenen Ausführungsformen stehen beispielhaft für den Erfindungsgegenstand und haben keine beschränkende Wirkung.The reference numerals used in the drawings and their meaning are listed in the list of reference numerals. Basically, the same parts are provided with the same reference numerals in the figure. The described embodiments are exemplary of the subject invention and have no limiting effect.
In
Dadurch, dass das Netzumrichteransteuersignal SN ein Rechtecksignal ist, welches einem Referenzrechtecksignal SClk folgt, ergibt sich auf der Gleichspannungsseite des Netzumrichters 3 nur eine sehr niederfrequente Leistungsoszillation mit kleiner Amplitude, so dass vorteilhaft auf einen aus dem Stand der Technik bekannten Filterkreis am Gleichspannungskreis 2 verzichtet werden kann und sich die Traktionsumrichterschaltung damit stark vereinfacht. Aus der Einsparung des Filterkreises durch das erfindungsgemässe Verfahren können bezüglich der Traktionsumrichterschaltung ferner Gewicht, Platz und Hardwarekosten deutlich eingespart werden, sowie Verluste verringert und die Zuverlässigkeit und Verfügbarkeit der Traktionsumrichterschaltung erhöht werden. Zudem werden die Leistungshalbleiterschalter des Netzstromrichters 3 durch das rechteckförmige Netzumrichteransteuersignal SN vorteilhaft besser ausgenutzt, wobei sich die thermische Belastung verringert.Characterized in that the Netzumrichteransteuersignal S N is a square wave signal, which follows a reference square wave signal S Clk , results in the DC side of the
In
Wie bereits erwähnt, zeigt
Für die vorstehend genannte Ausregelung ist insbesondere besagter Stromregler vorgesehen. Zudem wird der Umrichtereinheitstrom Ig auf einen Schwellwert Xs eines Toleranzbereichs um den konstanten Wert des Umrichtereinheitstromreferenzsignals lgw herum hin überwacht. Das Toleranzband um den konstanten Wert des Umrichtereinheitstromreferenzsignals lgw ist in
- 11
- elektrisches Gleichspannungsnetzelectrical DC network
- 22
- Netzumrichterline converter
- 33
- GleichspannungskreisDC circuit
- 44
- Transformatortransformer
- 55
- Primärwicklung des TransformatorsPrimary winding of the transformer
- 66
- Sekundärwicklung des TransformatorsSecondary winding of the transformer
- 77
- Umrichtereinheitinverter unit
- 88th
- GleichspannungskreisDC circuit
- 99
- Antriebsumrichterdrive
- 1010
- Antriebsmotordrive motor
Claims (11)
- Method for operating a traction converter circuit for coupling to an electrical DC voltage network (1), in which the traction converter circuit comprises
a network converter (2) which is connected, on the DC voltage side, to a DC voltage circuit (3), the DC voltage circuit (3) being able to be connected to the electrical DC voltage network (1),
a transformer (4) having a primary winding (5) and a secondary winding (6), the network converter (2) being connected, on the AC voltage side, to the primary winding (5) of the transformer (4),
a converter unit (7) which is connected, on the AC voltage side, to the secondary winding (6) of the transformer (4), and
in which the network converter (2) is driven by means of a predefinable network converter drive signal (SN) in order to set the network converter AC voltage (UG),
characterized in that
the network converter drive signal (SN) is a square-wave signal which follows a reference square-wave signal (SClk). - Method according to Claim 1, characterized in that the period duration of the network converter drive signal (SN) is selected to be between 5 ms and 25 ms.
- Method according to Claim 1 or 2, characterized in that, at each polarity change time of the network converter drive signal (SN), the square-wave signal of the network converter drive signal (SN) first of all has a zero value for an adjustable period of time (tN), and
in that the polarity is changed after the adjustable period of time (tN) has expired. - Method according to Claim 3, characterized in that at most 10% of half the period duration of the reference square-wave signal (SClk) is set as the period of time (tN).
- Method according to one of the preceding claims, characterized in that the converter unit (7) is driven according to a converter unit current reference signal (Igw).
- Method according to Claim 5, characterized in that the converter unit current reference signal (Igw) is a square-wave signal.
- Method according to Claim 6, characterized in that, when electrical energy flows from the network converter (2) to the converter unit (7), the network converter drive signal (SN) follows the reference square-wave signal (SClk) such that it is in phase with the latter, in that
the converter unit current reference signal (Igw) is selected to be in phase opposition to the reference square-wave signal (SClk), the polarity change time of the converter unit current reference signal (Igw) corresponding to the polarity change time of the reference square-wave signal (SClk), and
in that the converter unit current (Ig) at the secondary winding (6) of the transformer (4) follows the converter unit current reference signal (Igw). - Method according to Claim 7, characterized in that the converter unit current (Ig) is monitored for a threshold value (Xs) of a tolerance range around the constant value of the converter unit current reference signal (Igw),
in that the converter unit voltage (Ug) at the secondary winding (6) of the transformer (4) is switched to the polarity of the reference square-wave signal (SClk) by appropriately driving the converter unit (7) the first time the threshold value (Xs) is reached within half a period duration of the reference square-wave signal (SClk). - Method according to Claim 6, characterized in that, when electrical energy flows from the converter unit (7) to the network converter (2), the converter unit current reference signal (Igw) is selected to be in phase with the reference square-wave signal (SClk), the polarity change time of the converter unit current reference signal (Igw) corresponding to the polarity change time of the reference square-wave signal (SClk), and
in that the converter unit current (Ig) at the secondary winding (6) of the transformer (4) follows the converter unit current reference signal (Igw). - Method according to Claim 9, characterized in that the converter unit current (Ig) is monitored for a threshold value (Xs) of a tolerance range around the constant value of the converter unit current reference signal (Igw),
in that the converter unit voltage (Ug) at the secondary winding (6) of the transformer (4) is switched to the polarity of the reference square-wave signal (SClk) by appropriately driving the converter unit (7) and the network converter drive signal (SN) is switched to the polarity of the reference square-wave signal (SClk) the first time the threshold value (Xs) is reached within half a period duration of the reference square-wave signal (SClk). - Method according to Claim 8 or 10, characterized in that the converter unit current (Ig) is kept within the tolerance range by appropriately driving the converter unit (7) the first time the threshold value (Xs) is reached within half a period duration of the reference square-wave signal (SClk).
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE502006006933T DE502006006933D1 (en) | 2006-04-06 | 2006-04-06 | Method for operating a traction converter circuit |
AT06405150T ATE467946T1 (en) | 2006-04-06 | 2006-04-06 | METHOD FOR OPERATING A TRACTION CONVERTER CIRCUIT |
EP06405150A EP1843457B1 (en) | 2006-04-06 | 2006-04-06 | Method for the operation of a traction converter circuit |
CN200710093710.3A CN101071989B (en) | 2006-04-06 | 2007-04-05 | Method for operating a traction converter circuit for coupling to an electric DC voltage network |
JP2007100152A JP4991373B2 (en) | 2006-04-06 | 2007-04-06 | Method for operating a traction converter circuit for connection to a DC voltage network |
US11/783,203 US7830112B2 (en) | 2006-04-06 | 2007-04-06 | Method for operating a traction converter circuit for coupling to an electric DC voltage network |
HK08100458.7A HK1106878A1 (en) | 2006-04-06 | 2008-01-14 | Method for operating a traction converter circuit for coupling to a dc voltage network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06405150A EP1843457B1 (en) | 2006-04-06 | 2006-04-06 | Method for the operation of a traction converter circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1843457A1 EP1843457A1 (en) | 2007-10-10 |
EP1843457B1 true EP1843457B1 (en) | 2010-05-12 |
Family
ID=36950564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06405150A Active EP1843457B1 (en) | 2006-04-06 | 2006-04-06 | Method for the operation of a traction converter circuit |
Country Status (7)
Country | Link |
---|---|
US (1) | US7830112B2 (en) |
EP (1) | EP1843457B1 (en) |
JP (1) | JP4991373B2 (en) |
CN (1) | CN101071989B (en) |
AT (1) | ATE467946T1 (en) |
DE (1) | DE502006006933D1 (en) |
HK (1) | HK1106878A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117217427A (en) * | 2022-05-31 | 2023-12-12 | 株洲中车时代电气股份有限公司 | Control method, device, storage medium and control equipment for network pressing type switching |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3227569A1 (en) | 1982-07-23 | 1984-01-26 | Brown, Boveri & Cie Ag, 6800 Mannheim | Pulse-duration modulation method |
US5313381A (en) * | 1992-09-01 | 1994-05-17 | Power Integrations, Inc. | Three-terminal switched mode power supply integrated circuit |
US5420777A (en) * | 1993-06-07 | 1995-05-30 | Nec Corporation | Switching type DC-DC converter having increasing conversion efficiency at light load |
FR2752781B1 (en) * | 1996-09-03 | 1998-10-02 | Gec Alsthom Transport Sa | DEVICE AND METHOD FOR SUPPLYING A CONTINUOUS VOLTAGE TO A TRACTION CHAIN BY MEANS OF CONVERTERS FROM VARIOUS ALTERNATIVE OR CONTINUOUS VOLTAGES |
US5790391A (en) * | 1996-11-29 | 1998-08-04 | General Signal Corporation | Standby power system |
TW513850B (en) * | 2000-04-03 | 2002-12-11 | Shan Ken Oenki Kabushiki Kaish | Electric power converting apparatus |
JP3755424B2 (en) | 2001-05-31 | 2006-03-15 | トヨタ自動車株式会社 | AC motor drive control device |
JP2004096090A (en) * | 2002-07-09 | 2004-03-25 | Canon Inc | Solar power generation equipment, solar power generation system, and method for manufacturing solar power generation equipment |
EP1479558A1 (en) * | 2003-05-23 | 2004-11-24 | ABB Schweiz AG | Traction converter circuit for coupling to a electrical supply network |
JP2006025591A (en) * | 2004-06-08 | 2006-01-26 | Toshiba Corp | Vehicular power supply device |
-
2006
- 2006-04-06 AT AT06405150T patent/ATE467946T1/en active
- 2006-04-06 DE DE502006006933T patent/DE502006006933D1/en active Active
- 2006-04-06 EP EP06405150A patent/EP1843457B1/en active Active
-
2007
- 2007-04-05 CN CN200710093710.3A patent/CN101071989B/en active Active
- 2007-04-06 US US11/783,203 patent/US7830112B2/en active Active
- 2007-04-06 JP JP2007100152A patent/JP4991373B2/en active Active
-
2008
- 2008-01-14 HK HK08100458.7A patent/HK1106878A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN101071989A (en) | 2007-11-14 |
JP2007295789A (en) | 2007-11-08 |
CN101071989B (en) | 2011-03-30 |
JP4991373B2 (en) | 2012-08-01 |
ATE467946T1 (en) | 2010-05-15 |
DE502006006933D1 (en) | 2010-06-24 |
EP1843457A1 (en) | 2007-10-10 |
US20070236964A1 (en) | 2007-10-11 |
US7830112B2 (en) | 2010-11-09 |
HK1106878A1 (en) | 2008-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102008034109B4 (en) | Circuit for simulating an electrical load | |
DE4334592C1 (en) | High frequency generator | |
EP2895734B1 (en) | Ignition system for an internal combustion engine | |
DE102011113056A1 (en) | Motor driving device | |
EP2299572A1 (en) | Starting a DC/DC converter with high-frequency transformer | |
DE102008014571A1 (en) | Motor drive circuit for a rail vehicle and method for its operation | |
WO2015063683A1 (en) | Method for regulating the energy transmitted between resonators of a system for contactless energy transmission, and resonator arrangement | |
EP0868115B1 (en) | Circuit for ignition of a HID lamp | |
WO1984003672A1 (en) | Method for increasing the number of signals which may be transmitted from a ground station to a rail vehicle | |
EP2067227B1 (en) | Drive energy supply in rail vehicles | |
DE10200004A1 (en) | Electronic circuit and method for operating a high pressure lamp | |
EP1843457B1 (en) | Method for the operation of a traction converter circuit | |
WO2020025164A1 (en) | Method for operating a drive system, and drive system | |
EP2893603B1 (en) | Method for driving an active bridge rectifier in the event of load dump, rectifier arrangement and computer program product | |
EP2182626B1 (en) | Method for operating a frequency converter and frequency converter operating by the method | |
DE102019124214A1 (en) | Method for operating a motor vehicle with a permanently excited synchronous machine and motor vehicle | |
AT517686B1 (en) | Method for driving a multiphase synchronous converter | |
DE102008034989B4 (en) | Circuit arrangement and method for controlling the power consumption of lighting systems with AC power supply | |
EP1742516B1 (en) | Device and method for operating at least one lamp | |
EP1479558A1 (en) | Traction converter circuit for coupling to a electrical supply network | |
EP2389047B1 (en) | Switching device and method for the efficient operation of a capacitive load | |
DE102020105161B4 (en) | Method for operating an intermediate circuit for a motor vehicle and corresponding intermediate circuit | |
DE102020123983A1 (en) | Circuit for discharging an energy store of a drive system | |
AT402133B (en) | Control device for supplying power to a load circuit of a DC load, and a method for operating such a control device | |
DE102008024420A1 (en) | Method for determining a switching time of an electrical switching device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080314 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20090202 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502006006933 Country of ref document: DE Date of ref document: 20100624 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100512 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100823 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100912 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100813 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100913 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006006933 Country of ref document: DE Effective date: 20110214 |
|
BERE | Be: lapsed |
Owner name: ABB SCHWEIZ A.G. Effective date: 20110430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 467946 Country of ref document: AT Kind code of ref document: T Effective date: 20110406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100512 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240418 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240501 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240424 Year of fee payment: 19 Ref country code: FR Payment date: 20240426 Year of fee payment: 19 |