EP1843457B1 - Method for the operation of a traction converter circuit - Google Patents

Method for the operation of a traction converter circuit Download PDF

Info

Publication number
EP1843457B1
EP1843457B1 EP06405150A EP06405150A EP1843457B1 EP 1843457 B1 EP1843457 B1 EP 1843457B1 EP 06405150 A EP06405150 A EP 06405150A EP 06405150 A EP06405150 A EP 06405150A EP 1843457 B1 EP1843457 B1 EP 1843457B1
Authority
EP
European Patent Office
Prior art keywords
converter
converter unit
signal
clk
wave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06405150A
Other languages
German (de)
French (fr)
Other versions
EP1843457A1 (en
Inventor
Peter Daehler
Beat Guggisberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Priority to DE502006006933T priority Critical patent/DE502006006933D1/en
Priority to AT06405150T priority patent/ATE467946T1/en
Priority to EP06405150A priority patent/EP1843457B1/en
Priority to CN200710093710.3A priority patent/CN101071989B/en
Priority to JP2007100152A priority patent/JP4991373B2/en
Priority to US11/783,203 priority patent/US7830112B2/en
Publication of EP1843457A1 publication Critical patent/EP1843457A1/en
Priority to HK08100458.7A priority patent/HK1106878A1/en
Application granted granted Critical
Publication of EP1843457B1 publication Critical patent/EP1843457B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/30Electric propulsion with power supply external to the vehicle using ac induction motors fed from different kinds of power-supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/758Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Definitions

  • the invention relates to the field of power electronics. It is based on a method for operating a Tratechnischsumrichterscnies for coupling to a DC electrical network according to the preamble of the independent claim.
  • Traction converter circuits are now used in a wealth of power electronic applications, especially for rail vehicles, such as electric railways. Especially in cross-border use of rail-bound vehicles, the drive energy from different electrical supply networks, ie from different electrical DC networks and AC networks of different mains voltage must be removed or fed. This requires traction converter circuits which are connected both to an electrical supply network based on a DC voltage and to an electrical supply network based on an AC voltage can be coupled.
  • Common electrical supply networks especially for railway networks, with an AC voltage source based on an AC voltage of 15kV with a frequency of 16 2 / 3Hz or 25kV and 50Hz.
  • Popular electrical supply networks in particular for railway networks, with a DC voltage source based on a DC voltage of 1.5 kV or 3 kV.
  • the Tratechnischematodescnies for coupling to a DC electrical network, for example, in DE 1 479 558 A1 specified.
  • the Tratechnischematodescnies includes a network converter, which power converter is connected on the DC side with a DC circuit, the DC circuit is switchable to the DC electrical network.
  • the traction converter circuit has a transformer with a primary winding and a secondary winding, wherein the power converter is connected on the AC side to the primary winding of the transformer.
  • a converter unit is provided, which converter unit is connected to the secondary winding of the transformer on the alternating voltage side.
  • the network converter is driven by means of a predeterminable Netzumrichteran Kunststoffsignals for setting the AC converter AC voltage, wherein the Netzumrichteran Kunststoffsignal is typically generated by pulse width modulation of a sinusoidal signal, usually a sinusoidal voltage signal with a triangular signal, which usually results in a switching frequency in the kilohertz range.
  • the power converter generates at its AC side a voltage with a fundamental frequency of, for example, 100Hz.
  • a double-frequency power oscillation of 200 Hz then arises, which must not be passed on to the DC side in the DC voltage circuit and thus in the electrical DC network.
  • a filter circuit absorption circuit
  • LC filter circuit LC filter on the DC circuit, which is tuned to substantially twice the fundamental frequency of the voltage on the AC side of the power converter, so that this double-frequency voltage component can be filtered out on the DC side of the power converter.
  • a DC side filter circuit is very heavy, takes up a lot of space, is lossy, reduces the reliability of the traction converter circuit, and significantly increases hardware costs.
  • the object of the invention is therefore to provide a method for operating a Tratechnischsumrichterscnies for coupling to a DC electrical network through which the Tratechnischsumrichterscnies can be simplified. This object is solved by the features of claim 1. In the dependent claims advantageous developments of the invention are given.
  • the traction converter circuit comprises a network converter, which power converter DC voltage side is connected to a DC circuit, the DC circuit is switchable to the DC electrical network. Furthermore, the traction converter circuit comprises a transformer having a primary winding and a secondary winding, wherein the mains converter is connected on the AC side to the primary winding of the transformer, and a converter unit, which converter unit is connected on the AC side to the secondary winding of the transformer.
  • the method of operation of the network converter is controlled by means of a predefinable Netzumrichteran tenusignals for setting the AC converter AC voltage.
  • the Netzumrichteran tenusignal is a square wave signal, which follows a reference square wave signal.
  • space and hardware costs can be significantly saved with respect to the Tratechnischsumrichterscnies, and losses are reduced and the reliability and availability of Tratechnischsumrichterscnies be increased.
  • Utilization of the power semiconductor switches of the power converter also increases due to the square wave inverter drive signal, thereby reducing thermal stress.
  • Fig. 1 an embodiment of a Tratechnischsumrichterscnies for coupling to a DC electrical network 1 is shown.
  • the electrical DC network typically has a DC voltage of 1.5 kV or 3 kV.
  • Traction converter circuit shown for coupling to the electrical DC network 1 includes a power converter 2, which power converter 2 is connected on the DC side with a DC voltage circuit 3, wherein the DC voltage circuit 3 is connected to the DC electrical network 1 switchable.
  • the DC voltage circuit 3 has a capacitive energy store, but may also have a plurality of capacitive energy stores connected in particular in series.
  • the traction converter circuit comprises a transformer 4 having a primary winding 5 and a secondary winding 6, wherein the power converter 2 is connected to the primary winding 5 of the transformer 4 on the alternating voltage side.
  • the traction converter circuit has a converter unit 7, which converter unit 7 is connected to the secondary winding 6 of the transformer 4 on the alternating voltage side.
  • a DC voltage circuit 8 may be connected, with which, for example, a drive converter 9 is connected, for example, a drive motor 10 feeds.
  • the power converter 2 is controlled by means of a predefinable power converter drive signal S N for setting the power converter alternating voltage U G.
  • the network converter drive signal S N is a square-wave signal which follows a reference square-wave signal S Clk .
  • the reference rectangular signal S Clk and the Netzumrichteran Kunststoffsignal S N each have a periodic profile, wherein it has proved to be particularly advantageous that the period of the Netzumrichteran Kunststoffsignals S N between 5ms and 25ms is selected.
  • Fig. 2 In an electrical energy flow from the power converter 3 to the inverter unit 7 shows Fig. 2 to the temporal course of the reference square wave signal S Clk and the Netzumrichteran Kunststoffsignals S N according to the inventive method and other physical quantities of Tratechnischsumrichterscnies, which will be described in detail.
  • the Netzumrichteran Kunststoffsignal S N is a square wave signal, which follows a reference square wave signal S Clk , results in the DC side of the power converter 3 only a very low-frequency power oscillation with small amplitude, so that advantageous can be dispensed with a known from the prior art filter circuit on the DC voltage circuit 2 and the Trakomsumrichterscnies thus greatly simplified. From the saving of the filter circuit by the inventive method further weight, space and hardware costs can be significantly saved with respect to the Tratechnischsumrichterscnies, and reduced losses and the reliability and availability of traction converter circuit can be increased. In addition, the power semiconductor switch of the power converter 3 are advantageously better utilized by the rectangular Netzumrichteran Kunststoffsignal S N , which reduces the thermal load.
  • a temporal course of the reference square wave signal S Clk and the Netzumrichteran Kunststoffsignals S N of Trakomsumrichterscnies is shown according to a variant of the inventive method, in particular in an electrical energy flow from the power converter 3 to the inverter unit 7.
  • the square wave of the Netzumrichteran Kunststoffsignals S N at each polarity change time of the Netzumrichteran Kunststoffsignals S. N initially a zero value for an adjustable period of time t N , in which case after the settable time t N of the polarity change is completed.
  • undesirable overvoltages on open transformer windings, which traction converter circuits may typically have Fig.
  • a maximum of 10% of half the period of the reference rectangular signal S Clk is set as the time duration t N.
  • Such a selected period of time t N advantageously corresponds to half the resonant cycle time of an equivalent damped RLC resonant circuit.
  • FIG. 2 shows Fig. 2 the temporal course of the reference square wave signal S Clk and the Netzumrichteran Kunststoffsignal S N and other physical quantities of the Tralementsumrichterscnies in an electrical energy flow from the power converter 3 to the inverter unit 7.
  • the electrical energy flow from the power converter 3 to the inverter unit 7 corresponds to a traction converter circuit which, for example, in a vehicle , Especially in a rail vehicle, use, the operating state "driving", since the inverter unit 7 feeds the DC voltage circuit 8 in this operating state, from which then the drive motor 10 is fed by the drive inverter 9.
  • the power converter 2 as already described, by means of Netzumrichteran Kunststoffsignals S N for setting the AC converter AC voltage U G controlled so that the AC converter AC voltage U G , as in Fig. 2 shown having a Netzumrichteran Kunststoffsignal S N corresponding rectangular in-phase curve.
  • the inverter unit 7 is driven according to an inverter unit current reference signal I gw .
  • the inverter unit current reference signal I gw is preferably also a square wave signal.
  • the Netzumrichteran Kunststoffsignal S N the in-phase square wave signal S Clk in- phase, ie with respect to the timing of the Netzumrichteran Kunststoffsignal S N is in phase with the reference square wave signal S Clk .
  • the inverter unit current reference signal l gw is according to Fig. 2 then selected in phase opposition to the reference square wave signal S Clk , wherein the polarity change time of the inverter unit current reference signal I gw corresponds to the polarity change time of the reference square wave signal S Clk .
  • the inverter unit current I g follows at the secondary winding 6 of the transformer 4 Fig.
  • the converter unit current reference signal l gw ie the converter unit current l g is regulated in particular to the inverter unit current reference signal l gw , wherein the inverter unit current l g has a substantially trapezoidal shape due to the transformer leakage inductance.
  • a current regulator is provided for the aforementioned compensation.
  • the converter unit current I g is monitored for a threshold value X s of a tolerance range around the constant value of the converter unit current reference signal I gw .
  • the tolerance band around the constant value of the inverter unit current reference signal I gw is in Fig.
  • the timing of the inverter unit current reference signal l gw is indicated as a dashed line.
  • the threshold value X s is first reached within half a period of the reference square wave signal S Clk , then the converter unit voltage U g at the secondary winding 6 of the transformer 4 is switched to the polarity of the reference square wave signal S Clk by corresponding control of the converter unit 7, as in FIG Fig. 2 shown.
  • the converter unit current I g is preferably kept within the tolerance range by corresponding control of the converter unit 7 and thus advantageously retains its polarity, as in FIG Fig.
  • the power semiconductor switches of the converter unit 7 can be utilized very efficiently by the check-shaped specification of the converter unit current reference signal I gw and the consequences of the converter unit current Ig and by the further measures described above. This reduces the losses of the power semiconductor switches of the inverter unit 7 and the reliability of the inverter unit 7 and thus the entire traction converter circuit is increased.
  • Fig. 4 shows the timing of the reference square wave signal S Clk , the Netzumrichteran Kunststoffsignal S N , Umrichteröstromreferenzsignals I gw , Umrichterrittstroms Ig, the Netzumrichter circuitmechanical U G and the Umrichterü voltage U g in an electrical energy flow from the inverter unit 7 to the power converter 2.
  • the electrical energy flow from the inverter unit 7 to the power converter 2 corresponds to a Trakomsumrichtersclien which, for example, in a vehicle, especially in a rail vehicle, use, the operating state "braking" because the drive motor 10 in this operating state the DC voltage circuit 8 via the drive inverter 9 feeds, which then electrical Energy is fed into the electrical DC network 1 via the inverter unit 7, the transformer 4 and the power converter 2.
  • the network converter 2, as already described, is actuated by means of the line converter drive signal S N for setting the line converter switching voltage U G , so that the line converter alternating voltage U G , as described in US Pat Fig. 4 shown having a Netzumrichteran tenusignal S N corresponding rectangular in-phase curve. According to Fig.
  • the inverter unit 7 is also driven in accordance with the inverter unit current reference signal I gw , the inverter unit current reference signal I gw preferably also being a square-wave signal.
  • the inverter unit current reference signal l gw is selected in phase with the reference square wave signal S Clk , wherein the polarity change time of the inverter unit current reference signal I gw corresponds to the polarity change time of the reference square wave signal S Clk .
  • the converter unit current I g at the secondary winding 6 of the transformer 4 follows the converter unit current reference signal I gw , ie the converter unit current I g is regulated in particular to the converter unit current reference signal I gw , wherein the converter unit current I g has a substantially trapezoidal profile due to the transformer leakage inductance.
  • the inverter unit current Ig is monitored for a threshold value X s of a tolerance range around the constant value of the inverter unit current reference signal Igw .
  • the tolerance band around the constant value of the inverter unit current reference signal I gw is in Fig. 4 as two dotted lines indicated, wherein the timing of the inverter unit current reference signal l gw is indicated as a dashed line.
  • the converter unit voltage U g at the secondary winding 6 of the transformer 4 is switched to the polarity of the reference square wave signal S Clk by appropriate control of the converter unit 7 and the line converter drive signal S N to the polarity the reference square wave signal S Clk is switched as in Fig. 4 shown.
  • the converter unit current I g is preferably kept within the tolerance range by corresponding control of the converter unit 7 and thus advantageously retains its polarity, as in FIG Fig. 4 shown until the next polarity change point.
  • the power semiconductor switch of the inverter unit 7 can be very efficiently utilized by the rule-shaped specification of Umrichterrittstromreferenzsignals l gw and the consequences of Umrichterrittstrom Ig and by the other measures described above, even with an electrical energy flow from the inverter unit 7 to the power converter 2.
  • the losses of the power semiconductor switches of the converter unit 7 are also reduced in this operating state of the traction converter circuit, and the reliability of the converter unit 7 and thus of the entire traction converter circuit is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Control Of Direct Current Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

The method involves connecting a network converter (2) on an alternating voltage side to a primary winding (5) of a transformer (4). A converter unit (7) on the alternating voltage side is connected to a secondary winding (6) of the transformer. The network converter is controlled by a predefined network converter control signal for setting a network converter alternating voltage. The converter unit is controlled in accordance with a converter unit current reference signal e.g. rectangular signal. The current reference signal is selected in-phase opposition to a reference rectangular signal.

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf das Gebiet der Leistungselektronik. Sie geht aus von einem Verfahren zum Betrieb einer Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz gemäss dem Oberbegriff des unabhängigen Anspruchs.The invention relates to the field of power electronics. It is based on a method for operating a Traktionsumrichterschaltung for coupling to a DC electrical network according to the preamble of the independent claim.

Stand der TechnikState of the art

Traktionsumrichterschaltungen werden heute in einer Fülle von leistungselektronischen Anwendungen insbesondere für schienengebundene Fahrzeuge, wie elektrische Bahnen eingesetzt. Besonders bei länderübergreifendem Einsatz schienengebundener Fahrzeuge muss die Antriebsenergie aus verschiedenen elektrischen Versorgungsnetzen, d.h. aus verschiedenen elektrischen Gleichspannungsnetzen und Wechselspannungsnetzen unterschiedlicher Netzspannung entnommen oder eingespeist werden können. Dazu sind Traktionsumrichterschaltungen nötig, die sowohl an ein elektrisches Versorgungsnetz basierend auf einer Gleichspannung als auch an ein elektrisches Versorgungsnetz basierend auf einer Wechselspannung ankoppelbar sind. Gängige elektrische Versorgungsnetze, insbesondere für Bahnnetze, mit einer Wechselspannungsquelle basieren auf einer Wechselspannung von 15kV mit einer Frequenz von 16 2/3Hz oder von 25kV und 50Hz. Gängige elektrische Versorgungsnetze, insbesondere für Bahnnetze, mit einer Gleichspannungsquelle basieren auf einer Gleichspannung von 1,5kV oder 3kV. Eine geeignete Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz ist beispielsweise in der DE 1 479 558 A1 angegeben. Darin umfasst die Traktionsumrichterschaltung einen Netzumrichter, welcher Netzumrichter gleichspannungsseitig mit einem Gleichspannungskreis verbunden ist, wobei der Gleichspannungskreis an das elektrische Gleichspannungsnetz schaltbar ist. Zudem weist die Traktionsumrichterschaltung einen Transformator mit einer Primärwicklung und einer Sekundärwicklung auf, wobei der Netzumrichter wechselspannungsseitig mit der Primärwicklung des Transformators verbunden ist. Weiterhin ist eine Umrichtereinheit vorgesehen, welche Umrichtereinheit wechselspannungsseitig mit der Sekundärwicklung des Transformators verbunden ist. Verfahrensmässig wird der Netzumrichter mittels eines vorgebbaren Netzumrichteransteuersignals zur Einstellung der Netzumrichterwechselspannung angesteuert wird, wobei das Netzumrichteransteuersignal typischerweise durch Pulsweitenmodulation eines sinusförmigen Signals, üblicherweise eines sinusförmigen Spannungssignals, mit einem Dreiecksignal erzeugt wird, wodurch sich gängigerweise eine Schaltfrequenz im Kilohertzbereich ergibt.Traction converter circuits are now used in a wealth of power electronic applications, especially for rail vehicles, such as electric railways. Especially in cross-border use of rail-bound vehicles, the drive energy from different electrical supply networks, ie from different electrical DC networks and AC networks of different mains voltage must be removed or fed. This requires traction converter circuits which are connected both to an electrical supply network based on a DC voltage and to an electrical supply network based on an AC voltage can be coupled. Common electrical supply networks, especially for railway networks, with an AC voltage source based on an AC voltage of 15kV with a frequency of 16 2 / 3Hz or 25kV and 50Hz. Popular electrical supply networks, in particular for railway networks, with a DC voltage source based on a DC voltage of 1.5 kV or 3 kV. A suitable Traktionsumrichterschaltung for coupling to a DC electrical network, for example, in DE 1 479 558 A1 specified. Therein, the Traktionsumrichterschaltung includes a network converter, which power converter is connected on the DC side with a DC circuit, the DC circuit is switchable to the DC electrical network. In addition, the traction converter circuit has a transformer with a primary winding and a secondary winding, wherein the power converter is connected on the AC side to the primary winding of the transformer. Furthermore, a converter unit is provided, which converter unit is connected to the secondary winding of the transformer on the alternating voltage side. The network converter is driven by means of a predeterminable Netzumrichteransteuersignals for setting the AC converter AC voltage, wherein the Netzumrichteransteuersignal is typically generated by pulse width modulation of a sinusoidal signal, usually a sinusoidal voltage signal with a triangular signal, which usually results in a switching frequency in the kilohertz range.

Der Netzumrichter erzeugt an seiner Wechselspannungsseite eine Spannung mit einer Grundfrequenz von beispielsweise 100Hz. Als Konsequenz entsteht eine doppeltfrequente Leistungsoszillation von dann 200Hz, die nicht an die Gleichspannungsseite in den Gleichspannungskreis und damit in das elektrische Gleichspannungsnetz weitergegeben werden darf. Zu diesem Zweck muss ein Filterkreis (Saugkreis) in Form eines LC-Filters am Gleichspannungskreis vorgesehen werden, welcher im wesentlichen auf die doppelte Grundfrequenz der Spannung an der Wechselspannungsseite des Netzumrichters abgestimmt ist, damit dieser doppeltfrequente Spannungsanteil auf der Gleichspannungsseite des Netzumrichters ausgefiltert werden kann. Ein solcher Filterkreis an der Gleichspannungsseite ist aber sehr schwer, benötigt sehr viel Platz, ist verlustbehaftet, verringert die Zuverlässigkeit der Traktionsumrichterschaltung und erhöht die Hardwarekosten signifikant.The power converter generates at its AC side a voltage with a fundamental frequency of, for example, 100Hz. As a consequence, a double-frequency power oscillation of 200 Hz then arises, which must not be passed on to the DC side in the DC voltage circuit and thus in the electrical DC network. For this purpose, a filter circuit (absorption circuit) must be provided in the form of an LC filter on the DC circuit, which is tuned to substantially twice the fundamental frequency of the voltage on the AC side of the power converter, so that this double-frequency voltage component can be filtered out on the DC side of the power converter. However, such a DC side filter circuit is very heavy, takes up a lot of space, is lossy, reduces the reliability of the traction converter circuit, and significantly increases hardware costs.

Eine gattungsgemässe Traktionsumrichterschaltung der eingangs beschriebenen Art ist beispielsweise in der EP 1 479 558 A1 angegeben.A generic Traktionsumrichterschaltung of the type described above is for example in the EP 1 479 558 A1 specified.

Darstellung der ErfindungPresentation of the invention

Aufgabe der Erfindung ist es deshalb, ein Verfahren zum Betrieb einer Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz anzugeben, durch welches die Traktionsumrichterschaltung vereinfacht werden kann. Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. In den abhängigen Ansprüchen sind vorteilhafte Weiterbildungen der Erfindung angegeben.The object of the invention is therefore to provide a method for operating a Traktionsumrichterschaltung for coupling to a DC electrical network through which the Traktionsumrichterschaltung can be simplified. This object is solved by the features of claim 1. In the dependent claims advantageous developments of the invention are given.

Bei dem erfindungsgemässe Verfahren zum Betrieb einer Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz umfasst die Traktionsumrichterschaltung einen Netzumrichter, welcher Netzumrichter gleichspannungsseitig mit einem Gleichspannungskreis verbunden ist, wobei der Gleichspannungskreis an das elektrische Gleichspannungsnetz schaltbar ist. Weiterhin umfasst die Traktionsumrichterschaltung einen Transformator mit einer Primärwicklung und einer Sekundärwicklung, wobei der Netzumrichter wechselspannungsseitig mit der Primärwicklung des Transformators verbunden ist, sowie eine Umrichtereinheit, welche Umrichtereinheit wechselspannungsseitig mit der Sekundärwicklung des Transformators verbunden ist. Verfahrensmässig wird der Netzumrichter mittels eines vorgebbaren Netzumrichteransteuersignals zur Einstellung der Netzumrichterwechselspannung angesteuert. Erfindungsgemäss ist das Netzumrichteransteuersignal ein Rechtecksignal, welches einem Referenzrechtecksignal folgt. Dadurch ergibt sich auf der Gleichspannungsseite des Netzumrichters lediglich eine sehr niederfrequente Leistungsoszillation mit geringer Amplitude, so dass vorteilhaft auf einen aus dem Stand der Technik bekannten Filterkreis am Gleichspannungskreis verzichtet werden kann und sich die Traktionsumrichterschaltung damit stark vereinfacht. Aus der Einsparung des Filterkreises durch das erfindungsgemässe Verfahren können bezüglich der Traktionsumrichterschaltung ferner Gewicht, Platz und Hardwarekosten markant eingespart werden, sowie Verluste verringert und die Zuverlässigkeit und Verfügbarkeit der Traktionsumrichterschaltung erhöht werden. Die Ausnutzung der Leistungshalbleiterschalter des Netzstromrichters erhöht sich durch das rechteckförmige Netzumrichteransteuersignal ebenfalls, wobei sich die thermische Belastung verringert.In the inventive method for operating a Traktionsumrichterschaltung for coupling to a DC electrical network, the traction converter circuit comprises a network converter, which power converter DC voltage side is connected to a DC circuit, the DC circuit is switchable to the DC electrical network. Furthermore, the traction converter circuit comprises a transformer having a primary winding and a secondary winding, wherein the mains converter is connected on the AC side to the primary winding of the transformer, and a converter unit, which converter unit is connected on the AC side to the secondary winding of the transformer. The method of operation of the network converter is controlled by means of a predefinable Netzumrichteransteuersignals for setting the AC converter AC voltage. According to the invention the Netzumrichteransteuersignal is a square wave signal, which follows a reference square wave signal. This results in the DC side of the power converter only a very low-frequency power oscillation with low amplitude, so that advantageously can be dispensed with a known from the prior art filter circuit on the DC circuit and the traction converter circuit thus greatly simplified. From the saving of the filter circuit by the inventive method further weight, space and hardware costs can be significantly saved with respect to the Traktionsumrichterschaltung, and losses are reduced and the reliability and availability of Traktionsumrichterschaltung be increased. Utilization of the power semiconductor switches of the power converter also increases due to the square wave inverter drive signal, thereby reducing thermal stress.

Diese und weitere Aufgaben, Vorteile und Merkmale der vorliegenden Erfindung werden aus der nachfolgenden detaillierten Beschreibung bevorzugter Ausführungsformen der Erfindung in Verbindung mit der Zeichnung offensichtlich.These and other objects, advantages and features of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention taken in conjunction with the accompanying drawings.

Kurze Beschreibung der ZeichnungShort description of the drawing

Es zeigt:

Fig. 1
eine Ausführungsform einer Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz,
Fig. 2
zeitlicher Verlauf physikalischer Grössen der Traktionsumrichterschaltung bei einem elektrischen Energiefluss vom Netzumrichter der Traktionsumrichterschaltung zu der Umrichtereinheit der Traktionsumrichterschaltung nach dem erfindungsgemässen Verfahren,
Fig. 3
zeitlicher Verlauf des Referenzrechtecksignals und des Netzumrichteransteuersignals der Traktionsumrichterschaltung nach einer Variante des erfindungsgemässen Verfahrens und
Fig. 4
zeitlicher Verlauf physikalischer Grössen der Traktionsumrichterschaltung bei einem elektrischen Energiefluss vom Netzumrichter der Traktionsumrichterschaltung zu der Umrichtereinheit der Traktionsumrichterschaltung nach dem erfindungsgemässen Verfahren.
It shows:
Fig. 1
an embodiment of a traction converter circuit for coupling to a DC electrical network,
Fig. 2
time course of physical quantities of the Traktionsumrichterschaltung in an electrical energy flow from the power converter of Traktionsumrichterschaltung to the inverter unit of Traktionsumrichterschaltung according to the inventive method,
Fig. 3
time course of the reference square wave signal and the Netzumrichteransteuersignals the Traktionsumrichterschaltung according to a variant of the inventive method and
Fig. 4
Time course of physical quantities of Traktionsumrichterschaltung in an electrical energy flow from the power converter of Traktionsumrichterschaltung to the inverter unit of Traktionsumrichterschaltung according to the inventive method.

Die in der Zeichnung verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefasst aufgelistet. Grundsätzlich sind in der Figur gleiche Teile mit gleichen Bezugszeichen versehen. Die beschriebenen Ausführungsformen stehen beispielhaft für den Erfindungsgegenstand und haben keine beschränkende Wirkung.The reference numerals used in the drawings and their meaning are listed in the list of reference numerals. Basically, the same parts are provided with the same reference numerals in the figure. The described embodiments are exemplary of the subject invention and have no limiting effect.

Wege zur Ausführung der ErfindungWays to carry out the invention

In Fig. 1 ist eine Ausführungsform einer Traktionsumrichterschaltung zur Ankopplung an ein elektrisches Gleichspannungsnetz 1 gezeigt. Das elektrische Gleichspannungsnetz weist typischerweise eine Gleichspannung von 1,5kV oder 3kV auf. Die in Fig. 1 dargestellte Traktionsumrichterschaltung zur Ankopplung an das elektrische Gleichspannungsnetz 1 umfasst einen Netzumrichter 2, welcher Netzumrichter 2 gleichspannungsseitig mit einem Gleichspannungskreis 3 verbunden ist, wobei der Gleichspannungskreis 3 an das elektrische Gleichspannungsnetz 1 schaltbar ist. Der Gleichspannungskreis 3 weist einen kapazitiven Energiespeicher auf, kann aber auch mehrere, insbesondere in Serie geschaltete kapazitive Energiespeicher aufweisen. Weiterhin umfasst die Traktionsumrichterschaltung einen Transformator 4 mit einer Primärwicklung 5 und einer Sekundärwicklung 6, wobei der Netzumrichter 2 wechselspannungsseitig mit der Primärwicklung 5 des Transformators 4 verbunden ist. Darüber hinaus weist die Traktionsumrichterschaltung eine Umrichtereinheit 7 auf, welche Umrichtereinheit 7 wechselspannungsseitig mit der Sekundärwicklung 6 des Transformators 4 verbunden ist. An die Gleichspannungsseite der Umrichtereinheit 7 kann, wie beispielhaft in Fig. 1 gezeigt, ein Gleichspannungskreis 8 angeschlossen sein, mit welchem beispielsweise ein Antriebsumrichter 9 verbunden ist, der beispielsweise einen Antriebsmotor 10 speist. Verfahrensmässig wird der Netzumrichter 2 mittels eines vorgebbaren Netzumrichteransteuersignals SN zur Einstellung der Netzumrichterwechselspannung UG angesteuert. Erfindungsgemäss ist das Netzumrichteransteuersignal SN ein Rechtecksignal, welches einem Referenzrechtecksignal SClk folgt. Insbesondere das Referenzrechtecksignal SClk und das Netzumrichteransteuersignal SN weisen jeweils einen periodischen Verlauf auf, wobei es sich als besonders vorteilhaft erwiesen hat, dass die Periodendauer des Netzumrichteransteuersignals SN zwischen 5ms und 25ms gewählt wird. Bei einem elektrischen Energiefluss vom Netzumrichter 3 zu der Umrichtereinheit 7 zeigt Fig. 2 dazu den zeitlichen Verlauf des Referenzrechtecksignals SClk und des Netzumrichteransteuersignals SN nach dem erfindungsgemässen Verfahren sowie weitere physikalischer Grössen der Traktionsumrichterschaltung, die noch detailliert beschrieben werden.In Fig. 1 an embodiment of a Traktionsumrichterschaltung for coupling to a DC electrical network 1 is shown. The electrical DC network typically has a DC voltage of 1.5 kV or 3 kV. In the Fig. 1 Traction converter circuit shown for coupling to the electrical DC network 1 includes a power converter 2, which power converter 2 is connected on the DC side with a DC voltage circuit 3, wherein the DC voltage circuit 3 is connected to the DC electrical network 1 switchable. The DC voltage circuit 3 has a capacitive energy store, but may also have a plurality of capacitive energy stores connected in particular in series. Furthermore, the traction converter circuit comprises a transformer 4 having a primary winding 5 and a secondary winding 6, wherein the power converter 2 is connected to the primary winding 5 of the transformer 4 on the alternating voltage side. In addition, the traction converter circuit has a converter unit 7, which converter unit 7 is connected to the secondary winding 6 of the transformer 4 on the alternating voltage side. To the DC side of the inverter unit 7 may, as exemplified in Fig. 1 shown, a DC voltage circuit 8 may be connected, with which, for example, a drive converter 9 is connected, for example, a drive motor 10 feeds. In terms of method, the power converter 2 is controlled by means of a predefinable power converter drive signal S N for setting the power converter alternating voltage U G. According to the invention, the network converter drive signal S N is a square-wave signal which follows a reference square-wave signal S Clk . In particular, the reference rectangular signal S Clk and the Netzumrichteransteuersignal S N each have a periodic profile, wherein it has proved to be particularly advantageous that the period of the Netzumrichteransteuersignals S N between 5ms and 25ms is selected. In an electrical energy flow from the power converter 3 to the inverter unit 7 shows Fig. 2 to the temporal course of the reference square wave signal S Clk and the Netzumrichteransteuersignals S N according to the inventive method and other physical quantities of Traktionsumrichterschaltung, which will be described in detail.

Dadurch, dass das Netzumrichteransteuersignal SN ein Rechtecksignal ist, welches einem Referenzrechtecksignal SClk folgt, ergibt sich auf der Gleichspannungsseite des Netzumrichters 3 nur eine sehr niederfrequente Leistungsoszillation mit kleiner Amplitude, so dass vorteilhaft auf einen aus dem Stand der Technik bekannten Filterkreis am Gleichspannungskreis 2 verzichtet werden kann und sich die Traktionsumrichterschaltung damit stark vereinfacht. Aus der Einsparung des Filterkreises durch das erfindungsgemässe Verfahren können bezüglich der Traktionsumrichterschaltung ferner Gewicht, Platz und Hardwarekosten deutlich eingespart werden, sowie Verluste verringert und die Zuverlässigkeit und Verfügbarkeit der Traktionsumrichterschaltung erhöht werden. Zudem werden die Leistungshalbleiterschalter des Netzstromrichters 3 durch das rechteckförmige Netzumrichteransteuersignal SN vorteilhaft besser ausgenutzt, wobei sich die thermische Belastung verringert.Characterized in that the Netzumrichteransteuersignal S N is a square wave signal, which follows a reference square wave signal S Clk , results in the DC side of the power converter 3 only a very low-frequency power oscillation with small amplitude, so that advantageous can be dispensed with a known from the prior art filter circuit on the DC voltage circuit 2 and the Traktionsumrichterschaltung thus greatly simplified. From the saving of the filter circuit by the inventive method further weight, space and hardware costs can be significantly saved with respect to the Traktionsumrichterschaltung, and reduced losses and the reliability and availability of traction converter circuit can be increased. In addition, the power semiconductor switch of the power converter 3 are advantageously better utilized by the rectangular Netzumrichteransteuersignal S N , which reduces the thermal load.

In Fig. 3 ist ein zeitlicher Verlauf des Referenzrechtecksignals SClk und des Netzumrichteransteuersignals SN der Traktionsumrichterschaltung nach einer Variante des erfindungsgemässen Verfahrens dargestellt, insbesondere bei einem elektrischen Energiefluss vom Netzumrichter 3 zu der Umrichtereinheit 7. Dabei weist das Rechtecksignal des Netzumrichteransteuersignals SN bei jedem Polaritätswechselzeitpunkt des Netzumrichteransteuersignals SN zunächst einen Nullwert für eine einstellbare Zeitdauer tN auf, wobei dann nach Ablauf der einstellbaren Zeitdauer tN der Polaritätswechsel vollzogen wird. Vorteilhaft können durch diese Massnahme unerwünschte Überspannungen an offenen Transformatorwicklungen, welche Traktionsumrichterschaltungen typischerweise aufweisen können, in Fig. 1 aber der Übersichtlichkeit halber nicht dargestellt sind, vermieden werden, da mit Vorteil eine Dämpfung der Spannung an der jeweiligen offenen Transformatorwicklung erfolgt. Vorzugsweise wird als Zeitdauer tN maximal 10% der halben Periodendauer des Referenzrechtecksignals SClk eingestellt. Eine derart gewählte Zeitdauer tN entspricht mit Vorteil der halben Resonanzzykluszeit eines äquivalenten gedämpften RLC-Schwingkreises.In Fig. 3 a temporal course of the reference square wave signal S Clk and the Netzumrichteransteuersignals S N of Traktionsumrichterschaltung is shown according to a variant of the inventive method, in particular in an electrical energy flow from the power converter 3 to the inverter unit 7. In this case, the square wave of the Netzumrichteransteuersignals S N at each polarity change time of the Netzumrichteransteuersignals S. N initially a zero value for an adjustable period of time t N , in which case after the settable time t N of the polarity change is completed. Advantageously, by this measure, undesirable overvoltages on open transformer windings, which traction converter circuits may typically have Fig. 1 but for the sake of clarity are not shown, be avoided, since there is an advantage of damping the voltage across the respective open transformer winding. Preferably, a maximum of 10% of half the period of the reference rectangular signal S Clk is set as the time duration t N. Such a selected period of time t N advantageously corresponds to half the resonant cycle time of an equivalent damped RLC resonant circuit.

Wie bereits erwähnt, zeigt Fig. 2 den zeitlichen Verlauf des Referenzrechtecksignals SClk und des Netzumrichteransteuersignal SN sowie weitere physikalischer Grössen der Traktionsumrichterschaltung bei einem elektrischen Energiefluss vom Netzumrichter 3 zu der Umrichtereinheit 7. Der elektrische Energiefluss vom Netzumrichter 3 zu der Umrichtereinheit 7 entspricht bei einer Traktionsumrichterschaltung, welche beispielsweise in einem Fahrzeug, insbesondere in einem schienengebundenen Fahrzeug, Verwendung findet, dem Betriebszustand "Fahren", da die Umrichtereinheit 7 in diesem Betriebszustand den Gleichspannungskreis 8 speist, aus welchem dann der Antriebsmotor 10 durch den Antriebsumrichter 9 gespeist wird. Verfahrensmässig wird der Netzumrichter 2, wie bereits beschrieben, mittels des Netzumrichteransteuersignals SN zur Einstellung der Netzumrichterwechselspannung UG angesteuert, so dass die Netzumrichterwechselspannung UG, wie in Fig. 2 gezeigt, einen dem Netzumrichteransteuersignal SN entsprechenden rechteckförmigen gleichphasigen Verlauf aufweist. Gemäss Fig. 2 wird die Umrichtereinheit 7 entsprechend einem Umrichtereinheitstromreferenzsignal Igw angesteuert. Das Umrichtereinheitstromreferenzsignal lgw ist vorzugsweise auch ein Rechtecksignal. Bei dem elektrischen Energiefluss vom Netzumrichter 2 zu der Umrichtereinheit 7 gemäss Fig. 2 folgt das Netzumrichteransteuersignal SN dem Referenzrechtecksignal SClk gleichphasig, d.h. bezüglich des zeitlichen Ablaufs ist das Netzumrichteransteuersignal SN in Phase mit dem Referenzrechtecksignal SClk. Weiterhin wird das Umrichtereinheitstromreferenzsignal lgw gemäss Fig. 2 dann gegenphasig zu dem Referenzrechtecksignal SClk gewählt, wobei der Polaritätswechselzeitpunkt des Umrichtereinheitstromreferenzsignal lgw dem Polaritätswechselzeitpunkt des Referenzrechtecksignals SClk entspricht. Ferner folgt der Umrichtereinheitstrom lg an der Sekundärwicklung 6 des Transformators 4 gemäss Fig. 2 dem Umrichtereinheitstromreferenzsignal lgw, d.h. der Umrichtereinheitstrom lg wird insbesondere auf das Umrichtereinheitstromreferenzsignal lgw geregelt, wobei der Umrichtereinheitstrom lg aufgrund der Transformatorstreuinduktivität einen im wesentlichen trapezförmigen Verlauf aufweist. Für die vorstehend genannte Ausregelung ist insbesondere ein Stromregler vorgesehen. Zudem wird der Umrichtereinheitstrom lg nach dem erfindungsgemässen Verfahren auf einen Schwellwert Xs eines Toleranzbereichs um den konstanten Wert des Umrichtereinheitstromreferenzsignals lgw herum hin überwacht. Das Toleranzband um den konstanten Wert des Umrichtereinheitstromreferenzsignals lgw ist in Fig. 2 als zwei gepunktete Linien angedeutet, wobei der zeitliche Verlauf des Umrichtereinheitstromreferenzsignals lgw als gestrichelte Linie angedeutet ist. Bei erstmaligem Erreichen des Schwellwertes Xs innerhalb einer halben Periodendauer des Referenzrechtecksignals SClk wird dann die Umrichtereinheitspannung Ug an der Sekundärwicklung 6 des Transformators 4 durch entsprechende Ansteuerung der Umrichtereinheit 7 auf die Polarität des Referenzrechtecksignals SClk geschaltet, wie in Fig. 2 dargestellt. Bei erstmaligem Erreichen des Schwellwertes Xs innerhalb einer halben Periodendauer des Referenzrechtecksignals SClk wird der Umrichtereinheitstrom lg durch entsprechende Ansteuerung der Umrichtereinheit 7 vorzugsweise innerhalb des Toleranzbereichs gehalten und behält damit vorteilhaft seine Polarität, wie in Fig. 2 gezeigt, bis zum nächsten Polaritätswechselzweitpunkt bei. Der Verlauf der Umrichtereinheitspannung Ug gemäss Fig. 2 ergibt sich aus der besagten Ansteuerung der Umrichtereinheit 7 bei erstmaligem Erreichen des Schwellwertes Xs und durch entsprechende Ansteuerung der Umrichtereinheit 7 damit der Umrichtereinheitstrom lg innerhalb des Toleranzbereichs gehalten wird. Insgesamt können die Leistungshalbleiterschalter der Umrichtereinheit 7 durch die recheckförmige Vorgabe des Umrichtereinheitstromreferenzsignals Igw und das Folgen des Umrichtereinheitstrom Ig sowie durch die weiteren vorstehend beschriebenen Massnahmen sehr effizient ausgenutzt werden. Dadurch reduzieren sich die Verluste der Leistungshalbleiterschalter der Umrichtereinheit 7 und die Zuverlässigkeit der Umrichtereinheit 7 und damit der gesamten Traktionsumrichterschaltung wird erhöht.As already mentioned, shows Fig. 2 the temporal course of the reference square wave signal S Clk and the Netzumrichteransteuersignal S N and other physical quantities of the Traktionsumrichterschaltung in an electrical energy flow from the power converter 3 to the inverter unit 7. The electrical energy flow from the power converter 3 to the inverter unit 7 corresponds to a traction converter circuit which, for example, in a vehicle , Especially in a rail vehicle, use, the operating state "driving", since the inverter unit 7 feeds the DC voltage circuit 8 in this operating state, from which then the drive motor 10 is fed by the drive inverter 9. In terms of method, the power converter 2, as already described, by means of Netzumrichteransteuersignals S N for setting the AC converter AC voltage U G controlled so that the AC converter AC voltage U G , as in Fig. 2 shown having a Netzumrichteransteuersignal S N corresponding rectangular in-phase curve. According to Fig. 2 the inverter unit 7 is driven according to an inverter unit current reference signal I gw . The inverter unit current reference signal I gw is preferably also a square wave signal. In the electrical energy flow from the power converter 2 to the inverter unit 7 according to Fig. 2 the Netzumrichteransteuersignal S N the in-phase square wave signal S Clk in- phase, ie with respect to the timing of the Netzumrichteransteuersignal S N is in phase with the reference square wave signal S Clk . Furthermore, the inverter unit current reference signal l gw is according to Fig. 2 then selected in phase opposition to the reference square wave signal S Clk , wherein the polarity change time of the inverter unit current reference signal I gw corresponds to the polarity change time of the reference square wave signal S Clk . Further, the inverter unit current I g follows at the secondary winding 6 of the transformer 4 Fig. 2 the converter unit current reference signal l gw , ie the converter unit current l g is regulated in particular to the inverter unit current reference signal l gw , wherein the inverter unit current l g has a substantially trapezoidal shape due to the transformer leakage inductance. For the aforementioned compensation, in particular a current regulator is provided. In addition, according to the method of the invention, the converter unit current I g is monitored for a threshold value X s of a tolerance range around the constant value of the converter unit current reference signal I gw . The tolerance band around the constant value of the inverter unit current reference signal I gw is in Fig. 2 as two dotted lines indicated, wherein the timing of the inverter unit current reference signal l gw is indicated as a dashed line. When the threshold value X s is first reached within half a period of the reference square wave signal S Clk , then the converter unit voltage U g at the secondary winding 6 of the transformer 4 is switched to the polarity of the reference square wave signal S Clk by corresponding control of the converter unit 7, as in FIG Fig. 2 shown. When the threshold value X s is first reached within half a period of the reference square wave signal S Clk , the converter unit current I g is preferably kept within the tolerance range by corresponding control of the converter unit 7 and thus advantageously retains its polarity, as in FIG Fig. 2 shown until the next polarity change point. The course of the converter unit voltage U g according to Fig. 2 results from the said control of the inverter unit 7 upon first reaching the threshold X s and by corresponding control of the inverter unit 7 so that the Umrichtereinheitstrom l g is maintained within the tolerance range. Overall, the power semiconductor switches of the converter unit 7 can be utilized very efficiently by the check-shaped specification of the converter unit current reference signal I gw and the consequences of the converter unit current Ig and by the further measures described above. This reduces the losses of the power semiconductor switches of the inverter unit 7 and the reliability of the inverter unit 7 and thus the entire traction converter circuit is increased.

Fig. 4 zeigt den zeitlichen Verlauf des Referenzrechtecksignals SClk, des Netzumrichteransteuersignal SN, des Umrichtereinheitstromreferenzsignals Igw, des Umrichtereinheitstroms Ig, der Netzumrichterwechselspannung UG und der Umrichtereinheitspannung Ug bei einem elektrischen Energiefluss von der Umrichtereinheit 7 zum Netzumrichter 2. Der elektrische Energiefluss von der Umrichtereinheit 7 zum Netzumrichter 2 entspricht bei einer Traktionsumrichterschaltung, welche beispielsweise in einem Fahrzeug, insbesondere in einem schienengebundenen Fahrzeug, Verwendung findet, dem Betriebszustand "Bremsen", da der Antriebsmotor 10 in diesem Betriebszustand den Gleichspannungskreis 8 über den Antriebsumrichter 9 speist, aus welchem dann elektrische Energie in das elektrische Gleichspannungsnetz 1 über die Umrichtereinheit 7, den Transformator 4 und den Netzumrichter 2 gespeist wird. Verfahrensmässig wird der Netzumrichter 2, wie bereits beschrieben, mittels des Netzumrichteransteuersignals SN zur Einstellung der Netzumrichtennrechselspannung UG angesteuert, so dass die Netzumrichterwechselspannung UG, wie in Fig. 4 gezeigt, einen dem Netzumrichteransteuersignal SN entsprechenden rechteckförmigen gleichphasigen Verlauf aufweist. Gemäss Fig. 4 wird die Umrichtereinheit 7 auch entsprechend dem Umrichtereinheitstromreferenzsignal Igw angesteuert, wobei das Umrichtereinheitstromreferenzsignal Igw vorzugsweise ebenfalls ein Rechtecksignal ist. Bei einem elektrischen Energiefluss von der Umrichtereinheit 7 zum Netzumrichter 2 gemäss Fig. 4 wird nun das Umrichtereinheitstromreferenzsignal lgw gleichphasig zu dem Referenzrechtecksignal SClk gewählt, wobei der Polaritätswechselzeitpunkt des Umrichtereinheitstromreferenzsignal Igw dem Polaritätswechselzeitpunkt des Referenzrechtecksignals SClk entspricht. Weiterhin folgt der Umrichtereinheitstrom Ig an der Sekundärwicklung 6 des Transformators 4 dem Umrichtereinheitstromreferenzsignal lgw, d.h. der Umrichtereinheitstrom lg wird insbesondere auf das Umrichtereinheitstromreferenzsignal lgw geregelt, wobei der Umrichtereinheitstrom lg aufgrund der Transformatorstreuinduktivität einen im wesentlichen trapezförmigen Verlauf aufweist. Fig. 4 shows the timing of the reference square wave signal S Clk , the Netzumrichteransteuersignal S N , Umrichtereinheitstromreferenzsignals I gw , Umrichtereinheitstroms Ig, the Netzumrichterwechselspannung U G and the Umrichtereinheit voltage U g in an electrical energy flow from the inverter unit 7 to the power converter 2. The electrical energy flow from the inverter unit 7 to the power converter 2 corresponds to a Traktionsumrichterschaltung which, for example, in a vehicle, especially in a rail vehicle, use, the operating state "braking" because the drive motor 10 in this operating state the DC voltage circuit 8 via the drive inverter 9 feeds, which then electrical Energy is fed into the electrical DC network 1 via the inverter unit 7, the transformer 4 and the power converter 2. The network converter 2, as already described, is actuated by means of the line converter drive signal S N for setting the line converter switching voltage U G , so that the line converter alternating voltage U G , as described in US Pat Fig. 4 shown having a Netzumrichteransteuersignal S N corresponding rectangular in-phase curve. According to Fig. 4 the inverter unit 7 is also driven in accordance with the inverter unit current reference signal I gw , the inverter unit current reference signal I gw preferably also being a square-wave signal. In an electrical energy flow from the inverter unit 7 to the power converter 2 according to Fig. 4 Now, the inverter unit current reference signal l gw is selected in phase with the reference square wave signal S Clk , wherein the polarity change time of the inverter unit current reference signal I gw corresponds to the polarity change time of the reference square wave signal S Clk . In addition, the converter unit current I g at the secondary winding 6 of the transformer 4 follows the converter unit current reference signal I gw , ie the converter unit current I g is regulated in particular to the converter unit current reference signal I gw , wherein the converter unit current I g has a substantially trapezoidal profile due to the transformer leakage inductance.

Für die vorstehend genannte Ausregelung ist insbesondere besagter Stromregler vorgesehen. Zudem wird der Umrichtereinheitstrom Ig auf einen Schwellwert Xs eines Toleranzbereichs um den konstanten Wert des Umrichtereinheitstromreferenzsignals lgw herum hin überwacht. Das Toleranzband um den konstanten Wert des Umrichtereinheitstromreferenzsignals lgw ist in Fig. 4 als zwei gepunktete Linien angedeutet, wobei der zeitliche Verlauf des Umrichtereinheitstromreferenzsignals lgw als gestrichelte Linie angedeutet ist. Bei erstmaligem Erreichen des Schwellwertes Xs innerhalb einer halben Periodendauer des Referenzrechtecksignals SClk wird dann die Umrichtereinheitspannung Ug an der Sekundärwicklung 6 des Transformators 4 durch entsprechende Ansteuerung der Umrichtereinheit 7 auf die Polarität des Referenzrechtecksignals SClk geschaltet und das Netzumrichteransteuersignal SN auf die Polarität des Referenzrechtecksignals SClk geschaltet, wie in Fig. 4 gezeigt. Bei erstmaligem Erreichen des Schwellwertes XS innerhalb einer halben Periodendauer des Referenzrechtecksignals SClk wird der Umrichtereinheitstrom lg durch entsprechende Ansteuerung der Umrichtereinheit 7 vorzugsweise innerhalb des Toleranzbereichs gehalten und behält damit vorteilhaft seine Polarität, wie in Fig. 4 gezeigt, bis zum nächsten Polaritätswechselzweitpunkt bei. Der Verlauf der Umrichtereinheitspannung Ug gemäss Fig. 4 ergibt sich aus der besagten Ansteuerung der Umrichtereinheit 7 bei erstmaligem Erreichen des Schwellwertes Xs und durch entsprechende Ansteuerung der Umrichtereinheit 7 damit der Umrichtereinheitstrom lg innerhalb des Toleranzbereichs gehalten wird. Insgesamt können die Leistungshalbleiterschalter der Umrichtereinheit 7 durch die recheckförmige Vorgabe des Umrichtereinheitstromreferenzsignals lgw und das Folgen des Umrichtereinheitstrom Ig sowie durch die weiteren vorstehend beschriebenen Massnahmen auch bei einem elektrischen Energiefluss von der Umrichtereinheit 7 zum Netzumrichter 2 sehr effizient ausgenutzt werden. Dadurch reduzieren sich auch in diesem Betriebszustand der Traktionsumrichterschaltung die Verluste der Leistungshalbleiterschalter der Umrichtereinheit 7 und die Zuverlässigkeit der Umrichtereinheit 7 und damit der gesamten Traktionsumrichterschaltung wird erhöht.For the aforementioned compensation, in particular said current controller is provided. In addition, the inverter unit current Ig is monitored for a threshold value X s of a tolerance range around the constant value of the inverter unit current reference signal Igw . The tolerance band around the constant value of the inverter unit current reference signal I gw is in Fig. 4 as two dotted lines indicated, wherein the timing of the inverter unit current reference signal l gw is indicated as a dashed line. When the threshold value X s is first reached within half a period of the reference square wave signal S Clk , the converter unit voltage U g at the secondary winding 6 of the transformer 4 is switched to the polarity of the reference square wave signal S Clk by appropriate control of the converter unit 7 and the line converter drive signal S N to the polarity the reference square wave signal S Clk is switched as in Fig. 4 shown. When the threshold value X S is first reached within half a period of the reference square wave signal S Clk , the converter unit current I g is preferably kept within the tolerance range by corresponding control of the converter unit 7 and thus advantageously retains its polarity, as in FIG Fig. 4 shown until the next polarity change point. The course of the converter unit voltage Ug according to Fig. 4 results from the said control of the inverter unit 7 upon first reaching the threshold value X s and by appropriate control of the inverter unit 7 so that the Umrichtereinheitstrom l g is maintained within the tolerance range. Overall, the power semiconductor switch of the inverter unit 7 can be very efficiently utilized by the rule-shaped specification of Umrichtereinheitstromreferenzsignals l gw and the consequences of Umrichtereinheitstrom Ig and by the other measures described above, even with an electrical energy flow from the inverter unit 7 to the power converter 2. As a result, the losses of the power semiconductor switches of the converter unit 7 are also reduced in this operating state of the traction converter circuit, and the reliability of the converter unit 7 and thus of the entire traction converter circuit is increased.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
elektrisches Gleichspannungsnetzelectrical DC network
22
Netzumrichterline converter
33
GleichspannungskreisDC circuit
44
Transformatortransformer
55
Primärwicklung des TransformatorsPrimary winding of the transformer
66
Sekundärwicklung des TransformatorsSecondary winding of the transformer
77
Umrichtereinheitinverter unit
88th
GleichspannungskreisDC circuit
99
Antriebsumrichterdrive
1010
Antriebsmotordrive motor

Claims (11)

  1. Method for operating a traction converter circuit for coupling to an electrical DC voltage network (1), in which the traction converter circuit comprises
    a network converter (2) which is connected, on the DC voltage side, to a DC voltage circuit (3), the DC voltage circuit (3) being able to be connected to the electrical DC voltage network (1),
    a transformer (4) having a primary winding (5) and a secondary winding (6), the network converter (2) being connected, on the AC voltage side, to the primary winding (5) of the transformer (4),
    a converter unit (7) which is connected, on the AC voltage side, to the secondary winding (6) of the transformer (4), and
    in which the network converter (2) is driven by means of a predefinable network converter drive signal (SN) in order to set the network converter AC voltage (UG),
    characterized in that
    the network converter drive signal (SN) is a square-wave signal which follows a reference square-wave signal (SClk).
  2. Method according to Claim 1, characterized in that the period duration of the network converter drive signal (SN) is selected to be between 5 ms and 25 ms.
  3. Method according to Claim 1 or 2, characterized in that, at each polarity change time of the network converter drive signal (SN), the square-wave signal of the network converter drive signal (SN) first of all has a zero value for an adjustable period of time (tN), and
    in that the polarity is changed after the adjustable period of time (tN) has expired.
  4. Method according to Claim 3, characterized in that at most 10% of half the period duration of the reference square-wave signal (SClk) is set as the period of time (tN).
  5. Method according to one of the preceding claims, characterized in that the converter unit (7) is driven according to a converter unit current reference signal (Igw).
  6. Method according to Claim 5, characterized in that the converter unit current reference signal (Igw) is a square-wave signal.
  7. Method according to Claim 6, characterized in that, when electrical energy flows from the network converter (2) to the converter unit (7), the network converter drive signal (SN) follows the reference square-wave signal (SClk) such that it is in phase with the latter, in that
    the converter unit current reference signal (Igw) is selected to be in phase opposition to the reference square-wave signal (SClk), the polarity change time of the converter unit current reference signal (Igw) corresponding to the polarity change time of the reference square-wave signal (SClk), and
    in that the converter unit current (Ig) at the secondary winding (6) of the transformer (4) follows the converter unit current reference signal (Igw).
  8. Method according to Claim 7, characterized in that the converter unit current (Ig) is monitored for a threshold value (Xs) of a tolerance range around the constant value of the converter unit current reference signal (Igw),
    in that the converter unit voltage (Ug) at the secondary winding (6) of the transformer (4) is switched to the polarity of the reference square-wave signal (SClk) by appropriately driving the converter unit (7) the first time the threshold value (Xs) is reached within half a period duration of the reference square-wave signal (SClk).
  9. Method according to Claim 6, characterized in that, when electrical energy flows from the converter unit (7) to the network converter (2), the converter unit current reference signal (Igw) is selected to be in phase with the reference square-wave signal (SClk), the polarity change time of the converter unit current reference signal (Igw) corresponding to the polarity change time of the reference square-wave signal (SClk), and
    in that the converter unit current (Ig) at the secondary winding (6) of the transformer (4) follows the converter unit current reference signal (Igw).
  10. Method according to Claim 9, characterized in that the converter unit current (Ig) is monitored for a threshold value (Xs) of a tolerance range around the constant value of the converter unit current reference signal (Igw),
    in that the converter unit voltage (Ug) at the secondary winding (6) of the transformer (4) is switched to the polarity of the reference square-wave signal (SClk) by appropriately driving the converter unit (7) and the network converter drive signal (SN) is switched to the polarity of the reference square-wave signal (SClk) the first time the threshold value (Xs) is reached within half a period duration of the reference square-wave signal (SClk).
  11. Method according to Claim 8 or 10, characterized in that the converter unit current (Ig) is kept within the tolerance range by appropriately driving the converter unit (7) the first time the threshold value (Xs) is reached within half a period duration of the reference square-wave signal (SClk).
EP06405150A 2006-04-06 2006-04-06 Method for the operation of a traction converter circuit Active EP1843457B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE502006006933T DE502006006933D1 (en) 2006-04-06 2006-04-06 Method for operating a traction converter circuit
AT06405150T ATE467946T1 (en) 2006-04-06 2006-04-06 METHOD FOR OPERATING A TRACTION CONVERTER CIRCUIT
EP06405150A EP1843457B1 (en) 2006-04-06 2006-04-06 Method for the operation of a traction converter circuit
CN200710093710.3A CN101071989B (en) 2006-04-06 2007-04-05 Method for operating a traction converter circuit for coupling to an electric DC voltage network
JP2007100152A JP4991373B2 (en) 2006-04-06 2007-04-06 Method for operating a traction converter circuit for connection to a DC voltage network
US11/783,203 US7830112B2 (en) 2006-04-06 2007-04-06 Method for operating a traction converter circuit for coupling to an electric DC voltage network
HK08100458.7A HK1106878A1 (en) 2006-04-06 2008-01-14 Method for operating a traction converter circuit for coupling to a dc voltage network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06405150A EP1843457B1 (en) 2006-04-06 2006-04-06 Method for the operation of a traction converter circuit

Publications (2)

Publication Number Publication Date
EP1843457A1 EP1843457A1 (en) 2007-10-10
EP1843457B1 true EP1843457B1 (en) 2010-05-12

Family

ID=36950564

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06405150A Active EP1843457B1 (en) 2006-04-06 2006-04-06 Method for the operation of a traction converter circuit

Country Status (7)

Country Link
US (1) US7830112B2 (en)
EP (1) EP1843457B1 (en)
JP (1) JP4991373B2 (en)
CN (1) CN101071989B (en)
AT (1) ATE467946T1 (en)
DE (1) DE502006006933D1 (en)
HK (1) HK1106878A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117217427A (en) * 2022-05-31 2023-12-12 株洲中车时代电气股份有限公司 Control method, device, storage medium and control equipment for network pressing type switching

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3227569A1 (en) 1982-07-23 1984-01-26 Brown, Boveri & Cie Ag, 6800 Mannheim Pulse-duration modulation method
US5313381A (en) * 1992-09-01 1994-05-17 Power Integrations, Inc. Three-terminal switched mode power supply integrated circuit
US5420777A (en) * 1993-06-07 1995-05-30 Nec Corporation Switching type DC-DC converter having increasing conversion efficiency at light load
FR2752781B1 (en) * 1996-09-03 1998-10-02 Gec Alsthom Transport Sa DEVICE AND METHOD FOR SUPPLYING A CONTINUOUS VOLTAGE TO A TRACTION CHAIN BY MEANS OF CONVERTERS FROM VARIOUS ALTERNATIVE OR CONTINUOUS VOLTAGES
US5790391A (en) * 1996-11-29 1998-08-04 General Signal Corporation Standby power system
TW513850B (en) * 2000-04-03 2002-12-11 Shan Ken Oenki Kabushiki Kaish Electric power converting apparatus
JP3755424B2 (en) 2001-05-31 2006-03-15 トヨタ自動車株式会社 AC motor drive control device
JP2004096090A (en) * 2002-07-09 2004-03-25 Canon Inc Solar power generation equipment, solar power generation system, and method for manufacturing solar power generation equipment
EP1479558A1 (en) * 2003-05-23 2004-11-24 ABB Schweiz AG Traction converter circuit for coupling to a electrical supply network
JP2006025591A (en) * 2004-06-08 2006-01-26 Toshiba Corp Vehicular power supply device

Also Published As

Publication number Publication date
CN101071989A (en) 2007-11-14
JP2007295789A (en) 2007-11-08
CN101071989B (en) 2011-03-30
JP4991373B2 (en) 2012-08-01
ATE467946T1 (en) 2010-05-15
DE502006006933D1 (en) 2010-06-24
EP1843457A1 (en) 2007-10-10
US20070236964A1 (en) 2007-10-11
US7830112B2 (en) 2010-11-09
HK1106878A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
DE102008034109B4 (en) Circuit for simulating an electrical load
DE4334592C1 (en) High frequency generator
EP2895734B1 (en) Ignition system for an internal combustion engine
DE102011113056A1 (en) Motor driving device
EP2299572A1 (en) Starting a DC/DC converter with high-frequency transformer
DE102008014571A1 (en) Motor drive circuit for a rail vehicle and method for its operation
WO2015063683A1 (en) Method for regulating the energy transmitted between resonators of a system for contactless energy transmission, and resonator arrangement
EP0868115B1 (en) Circuit for ignition of a HID lamp
WO1984003672A1 (en) Method for increasing the number of signals which may be transmitted from a ground station to a rail vehicle
EP2067227B1 (en) Drive energy supply in rail vehicles
DE10200004A1 (en) Electronic circuit and method for operating a high pressure lamp
EP1843457B1 (en) Method for the operation of a traction converter circuit
WO2020025164A1 (en) Method for operating a drive system, and drive system
EP2893603B1 (en) Method for driving an active bridge rectifier in the event of load dump, rectifier arrangement and computer program product
EP2182626B1 (en) Method for operating a frequency converter and frequency converter operating by the method
DE102019124214A1 (en) Method for operating a motor vehicle with a permanently excited synchronous machine and motor vehicle
AT517686B1 (en) Method for driving a multiphase synchronous converter
DE102008034989B4 (en) Circuit arrangement and method for controlling the power consumption of lighting systems with AC power supply
EP1742516B1 (en) Device and method for operating at least one lamp
EP1479558A1 (en) Traction converter circuit for coupling to a electrical supply network
EP2389047B1 (en) Switching device and method for the efficient operation of a capacitive load
DE102020105161B4 (en) Method for operating an intermediate circuit for a motor vehicle and corresponding intermediate circuit
DE102020123983A1 (en) Circuit for discharging an energy store of a drive system
AT402133B (en) Control device for supplying power to a load circuit of a DC load, and a method for operating such a control device
DE102008024420A1 (en) Method for determining a switching time of an electrical switching device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080314

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090202

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006006933

Country of ref document: DE

Date of ref document: 20100624

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100512

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100823

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100912

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100813

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100913

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006006933

Country of ref document: DE

Effective date: 20110214

BERE Be: lapsed

Owner name: ABB SCHWEIZ A.G.

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 467946

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100512

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240418

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240424

Year of fee payment: 19

Ref country code: FR

Payment date: 20240426

Year of fee payment: 19