EP1472722A2 - Herstellungsverfahren für speicherzelle - Google Patents
Herstellungsverfahren für speicherzelleInfo
- Publication number
- EP1472722A2 EP1472722A2 EP03737237A EP03737237A EP1472722A2 EP 1472722 A2 EP1472722 A2 EP 1472722A2 EP 03737237 A EP03737237 A EP 03737237A EP 03737237 A EP03737237 A EP 03737237A EP 1472722 A2 EP1472722 A2 EP 1472722A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- source
- layer
- produced
- trench
- drain regions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 27
- 239000004065 semiconductor Substances 0.000 claims abstract description 24
- 239000002019 doping agent Substances 0.000 claims abstract description 9
- 238000009413 insulation Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 239000002800 charge carrier Substances 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 abstract description 12
- 238000002513 implantation Methods 0.000 abstract description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 4
- 229920005591 polysilicon Polymers 0.000 abstract description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 239000002784 hot electron Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/30—EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/401—Multistep manufacturing processes
- H01L29/4011—Multistep manufacturing processes for data storage electrodes
- H01L29/40117—Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66833—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/792—Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
Definitions
- the present invention relates to a manufacturing method for an NROM memory cell.
- This memory cell requires relatively high voltages at the drain and gate for storage. This can lead to the so-called punch-through of the transistor if it is designed with a short channel length.
- the previous memory cells still have channel lengths of more than 250 n; the punch-through does not yet occur so strongly.
- the object of the present invention is to indicate how
- NROM cells with reduced channel length and reduced space requirements can be designed to be functional.
- the NROM memory cells are arranged in trenches which are etched into the semiconductor material.
- the storage layer which preferably consists of a nitride layer between oxide layers, is applied to the trench walls before the dopants for source and drain are implanted.
- the storage layer which preferably consists of a nitride layer between oxide layers, is applied to the trench walls before the dopants for source and drain are implanted.
- the electrical connection of the gate electrode of the memory transistor is conducted via an insulation layer, which isolates this conductor from the source-drain
- this insulation layer replaces an upper layer portion of the semiconductor material; in a second exemplary embodiment, the gate electrode is formed so as to protrude higher above the semiconductor material, an auxiliary layer applied to the semiconductor material being used. In the latter second exemplary embodiment, however, there is a step between the area of the memory cell array and the area of the drive periphery.
- Figures 1 to 4 show cross sections of intermediate products of a first embodiment of the manufacturing process.
- Figures 5 to 7 show cross sections of intermediate products of a second embodiment of the manufacturing process.
- FIG. 8 shows the layout of a memory cell array in supervision.
- a hard mask for example a first mask, is first applied to the upper side of a semiconductor body or a semiconductor layer structure.
- the cell field is defined with this hard mask.
- This is followed by a photo mask technique, with which a mask is formed which has a window in the region of a trench to be produced.
- a photo mask technique with which a mask is formed which has a window in the region of a trench to be produced.
- at least one trench is etched into the semiconductor material; a plurality of trenches aligned parallel to one another are preferably etched to form a memory cell array.
- the photoresist is removed.
- the storage layer is then applied to the trench walls.
- the storage layer u preferably comprises a first oxide layer 2, the nitride layer 3 provided as the actual storage medium and a second oxide layer 4.
- Material which is provided for the gate electrode 5, preferably polysilicon, is deposited in the trench. This material is etched back to the height shown in FIG. 1. The hard mask is removed.
- a cover layer is then deposited, which is preferably nitride. This cover layer is removed except for the portions of the cover layer 6 shown in FIG. 1. In the case of a nitride cover layer, this is preferably done by means of CMP (chemical mechanical polishing).
- CMP chemical mechanical polishing
- the semiconductor material preferably silicon
- spacers are produced on both sides of the trench filling, and a dopant provided for the source-drain regions is implanted in the semiconductor material located between the trenches.
- the semiconductor body preferably has a p-type basic doping. In this case, the implantation of the dopant for n + line is carried out.
- FIG. 2 shows the structure with the spacer elements 8 and the source-drain regions 7 produced by the implantation. These regions are also silicided.
- the insulation layer 9 is then produced, which can be done by applying TEOS and then CMP in a manner known per se.
- a multiplicity of memory cells arranged in a grid are produced, for which purpose the gate electrodes are interrupted at regular intervals transversely to the longitudinal direction of the trenches.
- the relevant portions of the cover layer 6 and the material of the gate electrodes 5 are removed by means of a further photomask technique. After the removal of the photoresist, these areas are filled with insulating material 10, preferably also by deposition of TEOS and CMP, in accordance with the structure shown in FIG. 3.
- the structures shown in FIG. 2 and in FIG. 3 correspond to cross sections through the component, which follow one another at uniform intervals in front of and behind the plane of the drawing.
- a word line 11 can be applied and structured over the remaining gate electrodes 5.
- the material provided for this can preferably Tungsten, which is siliconized on the polysilicon of the gate electrode.
- an auxiliary layer 12 is applied to the top of the semiconductor body 1 or a semiconductor layer structure.
- B. can be a pad nitride.
- a photomask technique then follows, with which a mask is produced which has openings in the region of the trenches to be produced.
- the auxiliary layer 12 is removed in these areas identified by the reference symbol T in FIG.
- the photoresist is then removed.
- the trenches are then etched into the semiconductor material.
- the storage layer is then applied to the trench walls, which here too is preferably a nitride layer 3 between a first oxide layer 2 and a second oxide layer 4. According to the illustration in FIG.
- the material provided for the gate electrodes 15, here also preferably polysilicon, is introduced into the trenches and, if necessary, removed and planarized on the surface.
- the auxiliary layer 12 is then removed in the area of the memory cell field to be produced, which is again done using suitable photomask technology.
- the spacer elements 8 shown in FIG. 6 are produced in a manner known per se, preferably by isotropic deposition and anisotropic etching back of a suitable material.
- the dopant is implanted for the source-drain regions 7, which are silicided as required.
- the insulation layer 9 is then applied, which can also be done here by deposition of TEOS and subsequent CMP.
- the structure shown in FIG. 6 thus results.
- the material of the gate electrodes 15 is removed in the longitudinal direction of the trenches between the individual memory cells and is insulated by material, preferably by deposition of TEOS.
- FIG. 7 shows the structure of the memory cell array after the electrical connection of the gate electrodes 15 has been applied.
- a word line 13 preferably made of tungsten, is applied and structured in parallel strips.
- the layout of the memory cell array is shown in a schematic plan view in FIG.
- the alignment of the word lines WL, which run parallel to one another, and the alignment of the bit lines BL, which also run parallel to one another, are shown here.
- the bit lines are formed by the doped regions of the source-drain regions 7 of the individual memory cells, which, however, are not interrupted in the longitudinal direction of the trenches. Since the areas are hidden under the insulation layer 9 in the plan view shown, their boundaries are drawn with hidden lines as hidden contours.
- the strip-shaped conductors 11/13 of the word lines are on the top.
- the respective gate electrodes of the individual memory cells are present below the strip-shaped conductors with the same lateral boundaries. In the trenches, the material of the gate electrodes is replaced by the insulating material 10 between the word lines.
- the hatched areas 14 are available for programming possible on both sides in each memory cell Available.
- charge carriers are injected into the nitride layer 3 of the memory layer sequence when programming the memory cell. In principle, it is therefore sufficient if the nitride layer is present at least in these regions of the pn junction.
- the programming of the memory cell on the left side can be carried out more typically by applying the following Voltages occur: 5 volts on the drain, 10 volts on the control gate and 0 volts on the source.
- the voltages at the source and drain must be interchanged. To erase the cell, 5 volts are typically applied to the source and drain, while minus 5 volts are applied to the control gate.
- a voltage of typically 0 volts is applied to the drain area, 2 volts to the control gate and 1.2 volts to the source.
- the voltages of the source and drain are interchanged.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
Die NROM-Speicherzellen werden in Gräben angeordnet, die in das Halbleitermaterial geätzt werden. Die Speicherschicht aus einer Nitridschicht (3) zwischen Oxidschichten (2, 4) wird an den Grabenwänden aufgebracht, bevor die Dotierstoffe für Source und Drain (7) implantiert werden. Auf diese Weise wird erreicht, dass die hohe Temperaturbelastung des Bauelementes bei der Herstellung der Speicherschicht die Implantationsgebiete von Source und Drain nicht beeinträchtigen kann, da der betreffende Dotierstoff erst nachträglich eingebracht wird. Gate-Elektroden (5) aus Polysilizium werden mit Wortleitungen (11) angeschlossen.
Description
Beschreibung
Herstellungsverfahren für Speicherzelle
Die vorliegende Erfindung betrifft ein Herstellungsverfahren für eine NROM-Speicherzelle .
In der Veröffentlichung von B. Eitan et al . : "NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell" in IEEE Electron Device Letters 21, 543 bis 545 (2000) ist eine nichtflüchtige Speicherzelle beschrieben, bei der zwischen dem Kanalbereich und der Gate-Elektrode, die einen Bestandteil der Wortleitung bildet, eine Oxid-Nitrid-Oxid-Schichtfolge als Speichermedium vorhanden ist. Diese Speicherzelle wird durch "Channel hot electron injection" programmiert und durch "tunneling enhanced hot hole injection" gelöscht. Beim Programmieren werden Ladungsträger in der Nitridschicht der Speicherschicht eingefangen (trapped) . Dieses Bauelement besitzt eine Speicherkapazität von 2 Bits, die jeweils am Über- gang von Source bzw. Drain zum Kanalbereich gespeichert werden.
Diese Speicherzelle benötigt relativ hohe Spannungen an Drain und Gate zum Speichern. Das kann zum so genannten Punch- through des Transistors führen, wenn dieser mit einer kurzen Kanallänge ausgebildet ist. Die bisherigen Speicherzellen haben noch Kanallängen von mehr als 250 n ; hierbei tritt der Punch-through noch nicht so stark auf.
Aufgabe der vorliegenden Erfindung ist es, anzugeben, wie
NROM-Zellen mit verringerter Kanallänge und verringertem Flächenbedarf funktionsfähig ausgebildet werden können.
Diese Aufgabe wird mit dem Verfahren zur Herstellung einer Speicherzelle mit den Merkmalen des Anspruches 1 bzw. 2 gelöst . Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
Bei dem angegebenen Verfahren werden die NROM-Speicherzellen in Gräben angeordnet, die in das Halbleitermaterial geätzt werden. Die Speicherschicht, die vorzugsweise aus einer Ni- tridschicht zwischen Oxidschichten besteht, wird an den Grabenwänden aufgebracht, bevor die Dotierstoffe für Source und Drain implantiert werden. Auf diese Weise wird erreicht, dass die hohe Temperaturbelastung des Bauelementes bei der Herstellung der Speicherschicht die Implantationsgebiete von Source und Drain nicht beeinträchtigen kann, da der betreffende Dotierstoff erst nachträglich eingebracht wird. Damit erhält man sehr scharfe pn-Übergänge als Junction der Source- Drain-Bereiche . Ein präziser Übergang zwischen den Source- Drain-Bereichen und dem Kanalbereich ist für eine effektive Programmierung mit "Channel hot electrons" erforderlich.
Der elektrische Anschluss der Gate-Elektrode des Speichertransistors, der vorzugsweise Bestandteil einer Wortleitung eines Speicherzellenfeldes ist, wird über eine Isolations- schicht geführt, die diesen Leiter von den Source-Drain-
Bereichen trennt. Diese Isolationsschicht ersetzt bei einer ersten Ausführungsform des Verfahrens einen oberen Schichtanteil des Halbleitermateriales; bei einem zweiten Ausführungsbeispiel wird die Gate-Elektrode über das Halbleitermaterial nach oben hinausragend höher ausgebildet, wobei eine auf das Halbleitermaterial aufgebrachte Hilfsschicht verwendet wird. Bei dem letztgenannten zweiten Ausführungsbeispiel ergibt sich allerdings eine Stufe zwischen dem Bereich des Speicherzellenfeldes und dem Bereich der Ansteuerperipherie.
Es folgt eine genauere Beschreibung von Beispielen des Herstellungsverfahrens anhand der Figuren 1 bis 8.
Die Figuren 1 bis 4 zeigen Querschnitte von Zwischenprodukten eines ersten Ausführungsbeispiels des Herstellungsverfahrens.
Die Figuren 5 bis 7 zeigen Querschnitte von Zwischenprodukten eines zweiten Ausführungsbeispiels des Herstellungsverfahrens .
Die Figur 8 zeigt das Layout eines Speicherzellenfeldes in Aufsicht .
Bei dem ersten Ausführungsbeispiel wird auf der Oberseite eines Halbleiterkδrpers oder einer Halbleiterschichtstruktur zunächst eine Hartmaske, z. B. ein Nitrid, aufgebracht. Mit dieser Hartmaske wird das Zellenfeld festgelegt. Danach folgt eine Fotomaskentechnik, mit der eine Maske ausgebildet wird, die ein Fenster im Bereich eines herzustellenden Grabens besitzt. Unter Verwendung dieser Maske wird zumindest ein Gra- ben in das Halbleitermaterial geätzt; vorzugsweise wird zur Ausbildung eines Speicherzellenfeldes eine Mehrzahl parallel zueinander ausgerichteter Gräben geätzt. Der Fotolack wird entfernt .
In der Figur 1 ist im Querschnitt ein Ausschnitt aus dem
Halbleiterkörper 1 dargestellt, in dem im Bereich der Bezugszeichen T zwei Gräben hergestellt sind. Auf die Grabenwände wird dann die Speicherschicht aufgebracht . Die Speicherschicht u fasst vorzugsweise eine erste Oxidschicht 2, die als eigentliches Speichermedium vorgesehene Nitridschicht 3 und eine zweite Oxidschicht 4. In den Graben wird Material, das für die Gate-Elektrode 5 vorgesehen ist, vorzugsweise Polysilizium, abgeschieden. Dieses Material wird auf die in der Figur 1 eingezeichnete Höhe rückgeätzt. Die Hartmaske wird entfernt.
Es wird dann eine Abdeckschicht abgeschieden, die vorzugsweise Nitrid ist. Diese Abdeckschicht wird bis auf die in der Figur 1 eingezeichneten Anteile der Abdeckschicht 6 entfernt. Das geschieht im Fall einer Abdeckschicht aus Nitrid vorzugsweise mittels CMP (chemical mechanical polishing) . Nachdem das Material der Gate-Elektrode 5 auf diese Weise abgedeckt
ist, wird das Halbleitermaterial, vorzugsweise Silizium, im Bereich zwischen den Gräben auf eine vorgesehene Tiefe hinab abgetragen. Danach werden beidseitig der Grabenfüllung Distanzelemente (Spacer) hergestellt, und es wird in das zwischen den Gräben befindliche Halbleitermaterial ein für die Source-Drain-Bereiche vorgesehener Dotierstoff implantiert. Der Halbleiterkörper besitzt vorzugsweise eine p-leitende Grunddotierung. In diesem Fall wird die Implantation des Dotierstoffes für n+-Leitung vorgenommen.
Die Figur 2 zeigt die Struktur mit den Distanzelementen 8 und den durch die Implantation hergestellten Source-Drain-Berei- chen 7. Es erfolgt noch eine Silizidierung dieser Bereiche. Danach wird die Isolationsschicht 9 hergestellt, was mittels Aufbringen von TEOS und anschließendem CMP in einer an sich bekannten Weise geschehen kann.
Bei der Ausbildung eines Speicherzellenfeldes werden eine in einem Raster angeordnete Vielzahl von Speicherzellen herge- stellt, wozu quer zur Längsrichtung der Gräben die Gate- Elektroden in regelmäßigen Abständen unterbrochen werden. In den in der Längsrichtung der Gräben zwischen den auszubildenden Speicherzellen vorhandenen Bereichen werden mittels einer weiteren Fotomaskentechnik die betreffenden Anteile der Ab- deckschicht 6 und das Material der Gate-Elektroden 5 entfernt. Nach dem Entfernen des Fotolacks werden diese Bereiche gemäß der in der Figur 3 dargestellten Struktur mit isolierendem Material 10, vorzugsweise ebenfalls durch Abscheiden von TEOS und CMP, aufgefüllt. Die in der Figur 2 und in der Figur 3 dargestellten Strukturen entsprechen Querschnitten durch das Bauelement, die in gleichmäßigen Abständen vor und hinter der Zeichenebene aufeinander folgen.
Über den verbleibenden Gate-Elektroden 5 kann entsprechend der Figur 4 eine Wortleitung 11 aufgebracht und strukturiert werden. Das dafür vorgesehene Material kann vorzugsweise
Wolfram sein, das auf das Polysilizium der Gate-Elektrode si- liziert wird.
Bei einem alternativen Ausführungsbeispiel wird zunächst ge- maß Figur 5 auf die Oberseite des Halbleiterkörpers 1 oder einer Halbleiterschichtstruktur eine Hilfsschicht 12 aufgebracht, die z. B. ein Pad-Nitrid sein kann. Es folgt dann eine Fotomaskentechnik, mit der eine Maske hergestellt wird, die Öffnungen im Bereich der herzustellenden Gräben aufweist. In diesen in der Figur 5 mit dem Bezugszeichen T gekennzeichneten Bereichen wird die Hilfsschicht 12 entfernt. Anschließend wird der Fotolack entfernt. Unter Verwendung der restlichen Anteile der Hilfsschicht 12 als Maske werden dann die Gräben in das Halbleitermaterial geätzt. Auf die Grabenwände wird dann die Speicherschicht aufgebracht, die auch hier vorzugsweise eine Nitridschicht 3 zwischen einer ersten Oxidschicht 2 und einer zweiten Oxidschicht 4 ist. Es wird entsprechend der Darstellung der Figur 5 das für die Gate- Elektroden 15 vorgesehene Material, auch hier vorzugsweise Polysilizium, in die Gräben eingebracht und gegebenenfalls auf der Oberfläche abgetragen und planarisiert . Die Hilfsschicht 12 wird dann im Bereich des herzustellenden Speicherzellenfeldes entfernt, was wieder mittels geeigneter Fotomaskentechnik geschieht .
Nach dem Entfernen des Fotolacks werden die in der Figur 6 dargestellten Distanzelemente 8 in einer an sich bekannten Weise hergestellt, vorzugsweise durch isotropes Abscheiden und anisotropes Rückätzen eines geeigneten Materials. Es wird der Dotierstoff für die Source-Drain-Bereiche 7 implantiert, die nach Bedarf silizidiert werden. Danach wird die Isolationsschicht 9 aufgebracht, was auch hier durch Abscheiden von TEOS und anschließendes CMP geschehen kann. Es ergibt sich so die in der Figur 6 dargestellte Struktur. Bei Ausbildung ei- nes Speicherzellenfeldes wird das Material der Gate-Elektroden 15 in der Längsrichtung der Gräben jeweils zwischen den einzelnen Speicherzellen entfernt und durch isolierendes Ma-
terial, vorzugsweise durch Abscheidung von TEOS, ersetzt. Die Struktur in diesen zwischen den Speicherzellen vorhandenen Bereichen entspricht aber mit Ausnahme des Materials in dem mit dem Bezugszeichen 15 versehenen Bereich der in der Figur 6 wiedergegebenen Struktur, weshalb hier auf eine weitere Zeichnung verzichtet wurde. Es ist ja nur das Material der Gate-Elektroden 15 in gleichmäßigen Abständen vor und hinter der Zeichenebene durch das isolierende Material ersetzt worden.
In der Figur 7 ist die Struktur des Speicherzellenfeldes nach dem Aufbringen des elektrischen Anschlusses der Gate-Elektroden 15 dargestellt . Auch bei diesem Beispiel wird hierzu eine Wortleitung 13, vorzugsweise aus Wolfram, aufgebracht und in parallele Streifen strukturiert.
In der Figur 8 ist das Layout des Speicherzellenfeldes in einer schematisierten Aufsicht dargestellt. Es ist hier die Ausrichtung der parallel zueinander geführten Wortleitungen WL sowie die dazu senkrecht verlaufende Ausrichtung der ebenfalls parallel zueinander verlaufenden Bitleitungen BL dargestellt. Die Bitleitungen werden durch die dotierten Bereiche der Source-Drain-Bereiche 7 der einzelnen Speicherzellen, die jedoch in der Längsrichtung der Gräben nicht unterbrochen sind, gebildet. Da die Bereiche in der gezeigten Aufsicht unter der Isolationsschicht 9 verborgen liegen, sind deren Grenzen mit gestrichelten Linien als verdeckte Konturen eingetragen. Die streifenförmigen Leiter 11/13 der Wortleitungen befinden sich auf der Oberseite. Unterhalb der streifenförmi- gen Leiter sind mit den gleichen seitlichen Abgrenzungen die jeweiligen Gate-Elektroden der einzelnen Speicherzellen vorhanden. In den Gräben ist zwischen den Wortleitungen das Material der Gate-Elektroden durch das isolierende Material 10 ersetzt .
Die schraffiert hervorgehobenen Bereiche 14 stehen für das in jeder Speicherzelle beidseitig mögliche Programmieren zur
Verfügung. In diesen Bereichen 14 werden in der Nähe des pn- Überganges zwischen den Source-Drain-Bereichen 7 und dem jeweiligen Kanalbereich beim Programmieren der Speicherzelle Ladungsträger in die Nitridschicht 3 der Speicherschichtfolge injiziert. Es genügt daher im Prinzip, wenn die Nitridschicht zumindest in diesen Bereichen des pn-Überganges vorhanden ist .
Wenn bei einer einzelnen Speicherzelle der dotierte Bereich 7 auf der in der Figur linken Seite des betreffenden Grabens als Drain und auf der in der Figur rechten Seite des betreffenden Grabens als Source bezeichnet wird, kann das Programmieren der Speicherzelle auf der linken Seite durch Anlegen folgender typischer Spannungen erfolgen: an Drain 5 Volt, an das Kontrollgate 10 Volt und an Source 0 Volt . Bei einer Programmierung auf der rechten Seite sind die Spannungen an Source und Drain miteinander zu vertauschen. Zum Löschen der Zelle werden an Source und Drain typisch je 5 Volt angelegt, während an das Kontrollgate minus 5 Volt angelegt werden. Zum Auslesen des linken Speicherinhaltes wird an den Drain- Bereich eine Spannung von typisch 0 Volt angelegt, an das Kontrollgate 2 Volt und an Source 1,2 Volt. Zum Auslesen des rechts vorhandenen Speicherinhaltes werden die Spannungen von Source und Drain vertauscht .
Bezugszeichenliste
1 Halbleiterkörper
2 erste Oxidschicht 3 Nitridschicht
4 zweite Oxidschicht
5 Gate-Elektrode
6 Abdeckschicht
7 Source-Drain-Bereiche 8 Distanzelement
9 Isolationsschicht
10 isolierendes Material
11 Wortleitung
12 Hilfsschicht 13 Wortleitung
14 hervorgehobener Bereich
15 Gate-Elektroden
Claims
1. Verfahren zur Herstellung einer Speicherzelle, bei dem an einer Oberseite eines Halbleiterkörpers (1) oder einer Halbleiterschichtstruktur über einem zwischen dotierten Sour- ce-Drain-Bereichen (7) vorgesehenen Kanalbereich eine Speicherschicht (2, 3, 4), die für eine Programmierung durch Ladungsträgereinfang ausgebildet ist, und eine von dem Halbleitermaterial elektrisch isolierte Gate-Elektrode (5) herge- stellt werden, d a d u r c h g e k e n n z e i c h n e t , dass in einem ersten Schritt mindestens ein Graben in der Oberseite hergestellt wird, in einem zweiten Schritt zumindest an die herzustellenden Source-Drain-Bereiche (7) angrenzende Anteile der Grabenwände mit der Speicherschicht (2, 3, 4) versehen werden, in einem dritten Schritt in den Graben ein für die Gate- Elektrode (5) vorgesehenes Material abgeschieden wird, in einem vierten Schritt die Gate-Elektrode (5) abgedeckt und beidseits des Grabens das Halbleitermaterial bis in eine vorgesehene Tiefe abgetragen sowie Dotierstoff zur Ausbildung der Source-Drain-Bereiche (7) implantiert wird und in einem fünften Schritt eine Isolationsschicht (9) auf die Source-Drain-Bereiche (7) aufgebracht wird und ein elektri- scher Anschluss für die Gate-Elektrode (5) hergestellt wird.
2. Verfahren zur Herstellung einer Speicherzelle, bei dem an einer Oberseite eines Halbleiterkörpers (1) oder einer Halbleiterschichtstruktur über einem zwischen dotierten Sour- ce-Drain-Bereichen (7) vorgesehenen Kanalbereich eine Speicherschicht (2, 3, 4), die für eine Programmierung durch Ladungsträgereinfang ausgebildet ist, und eine von dem Halbleitermaterial elektrisch isolierte Gate-Elektrode (15) hergestellt werden, d a d u r c h g e ke n n z e i c h n e t , dass in einem ersten Schritt eine Hilfsschicht (12) auf die Oberseite aufgebracht wird, in einem zweiten Schritt mindestens ein Graben in der Hilfsschicht und dem darunter vorhandenen Halbleitermaterial hergestellt wird, in einem dritten Schritt zumindest an die herzustellenden Source-Drain-Bereiche (7) angrenzende Anteile der Grabenwände mit der Speicherschicht (2, 3, 4) versehen werden, in einem vierten Schritt in den Graben ein für die Gate- Elektrode (15) vorgesehenes Material abgeschieden wird, in einem fünften Schritt die Hilfsschicht entfernt wird und beidseits des Grabens Dotierstoff zur Ausbildung der Source- Drain-Bereiche (7) implantiert wird und in einem sechsten Schritt eine Isolationsschich (9) auf die Source-Drain-Bereiche (7) aufgebracht wird und ein elektrischer Anschluss für die Gate-Elektrode (15) hergestellt wird.
3. Verfahren nach Anspruch 1 oder 2, bei dem ein Zellenfeld hergestellt wird, die Source-Drain-Bereiche (7) als Bitleitungen vorgesehen werden und die elektrischen Anschlüsse der Gate-Elektroden als Wortleitungen ausgebildet werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem die Speicherschicht (2, 3, 4) als Oxid-Nitrid-Oxid-Schicht- folge aufgebracht wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10204873 | 2002-02-06 | ||
DE10204873A DE10204873C1 (de) | 2002-02-06 | 2002-02-06 | Herstellungsverfahren für Speicherzelle |
PCT/DE2003/000183 WO2003067639A2 (de) | 2002-02-06 | 2003-01-23 | Herstellungsverfahren für speicherzelle |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1472722A2 true EP1472722A2 (de) | 2004-11-03 |
Family
ID=27674565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03737237A Withdrawn EP1472722A2 (de) | 2002-02-06 | 2003-01-23 | Herstellungsverfahren für speicherzelle |
Country Status (7)
Country | Link |
---|---|
US (1) | US6982202B2 (de) |
EP (1) | EP1472722A2 (de) |
JP (1) | JP4093965B2 (de) |
CN (1) | CN1628372A (de) |
DE (1) | DE10204873C1 (de) |
TW (1) | TW200308059A (de) |
WO (1) | WO2003067639A2 (de) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10324550B4 (de) | 2003-05-30 | 2006-10-19 | Infineon Technologies Ag | Herstellungsverfahren für eine NROM-Halbleiterspeichervorrichtung |
DE102004024047A1 (de) * | 2004-05-14 | 2005-12-08 | OCé PRINTING SYSTEMS GMBH | Verfahren und Vorrichtung zum Einfärben eines Applikatorelements eines elektrofotografischen Druckers oder Kopierers |
JP2006080163A (ja) * | 2004-09-07 | 2006-03-23 | Toshiba Corp | 不揮発性半導体記憶装置 |
US7053447B2 (en) * | 2004-09-14 | 2006-05-30 | Infineon Technologies Ag | Charge-trapping semiconductor memory device |
US7667264B2 (en) * | 2004-09-27 | 2010-02-23 | Alpha And Omega Semiconductor Limited | Shallow source MOSFET |
US7365382B2 (en) * | 2005-02-28 | 2008-04-29 | Infineon Technologies Ag | Semiconductor memory having charge trapping memory cells and fabrication method thereof |
US7335939B2 (en) | 2005-05-23 | 2008-02-26 | Infineon Technologies Ag | Semiconductor memory device and method of production |
US7399673B2 (en) | 2005-07-08 | 2008-07-15 | Infineon Technologies Ag | Method of forming a charge-trapping memory device |
US20070057318A1 (en) * | 2005-09-15 | 2007-03-15 | Lars Bach | Semiconductor memory device and method of production |
US7439594B2 (en) * | 2006-03-16 | 2008-10-21 | Micron Technology, Inc. | Stacked non-volatile memory with silicon carbide-based amorphous silicon thin film transistors |
US8344446B2 (en) * | 2006-12-15 | 2013-01-01 | Nec Corporation | Nonvolatile storage device and method for manufacturing the same in which insulating film is located between first and second impurity diffusion regions but absent on first impurity diffusion region |
JP2009049138A (ja) * | 2007-08-17 | 2009-03-05 | Spansion Llc | 半導体装置の製造方法 |
KR101920247B1 (ko) * | 2012-09-17 | 2018-11-20 | 삼성전자 주식회사 | 반도체 장치 및 그 제조 방법 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5961188A (ja) * | 1982-09-30 | 1984-04-07 | Toshiba Corp | 不揮発性半導体メモリ装置 |
JP2662076B2 (ja) | 1990-05-02 | 1997-10-08 | 松下電子工業株式会社 | 不揮発性半導体記憶装置およびその製造方法 |
DE19639026C1 (de) * | 1996-09-23 | 1998-04-09 | Siemens Ag | Selbstjustierte nichtflüchtige Speicherzelle |
US5973358A (en) * | 1997-07-01 | 1999-10-26 | Citizen Watch Co., Ltd. | SOI device having a channel with variable thickness |
US6002151A (en) * | 1997-12-18 | 1999-12-14 | Advanced Micro Devices, Inc. | Non-volatile trench semiconductor device |
US6376877B1 (en) * | 2000-02-24 | 2002-04-23 | Advanced Micro Devices, Inc. | Double self-aligning shallow trench isolation semiconductor and manufacturing method therefor |
-
2002
- 2002-02-06 DE DE10204873A patent/DE10204873C1/de not_active Expired - Fee Related
-
2003
- 2003-01-23 CN CNA038034182A patent/CN1628372A/zh active Pending
- 2003-01-23 WO PCT/DE2003/000183 patent/WO2003067639A2/de active Application Filing
- 2003-01-23 EP EP03737237A patent/EP1472722A2/de not_active Withdrawn
- 2003-01-23 JP JP2003566887A patent/JP4093965B2/ja not_active Expired - Fee Related
- 2003-01-27 TW TW092101684A patent/TW200308059A/zh unknown
-
2004
- 2004-07-26 US US10/899,436 patent/US6982202B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO03067639A2 * |
Also Published As
Publication number | Publication date |
---|---|
JP4093965B2 (ja) | 2008-06-04 |
JP2005525695A (ja) | 2005-08-25 |
TW200308059A (en) | 2003-12-16 |
US6982202B2 (en) | 2006-01-03 |
US20050032311A1 (en) | 2005-02-10 |
WO2003067639A2 (de) | 2003-08-14 |
WO2003067639A3 (de) | 2003-10-16 |
CN1628372A (zh) | 2005-06-15 |
DE10204873C1 (de) | 2003-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69432568T2 (de) | Selbstjustierende flash-eeprom-zelle mit doppelbit-geteiltem gat | |
DE10129958B4 (de) | Speicherzellenanordnung und Herstellungsverfahren | |
DE4241457B4 (de) | P-leitendes floatendes Gate aus Poly-Silizium zur Verwendung bei einem Halbleiterbautransistorelement und daraus hergestelltes Flash-E2PROM | |
DE69222913T2 (de) | Nichtflüchtiger Speicher und Verfahren zu seiner Herstellung | |
DE10336876B4 (de) | Speicherzelle mit Nanokristallen oder Nanodots und Verfahren zu deren Herstellung | |
DE102004006505B4 (de) | Charge-Trapping-Speicherzelle und Herstellungsverfahren | |
DE69013094T2 (de) | Nichtflüchtige Halbleiterspeicheranordnung und Verfahren zu ihrer Herstellung. | |
DE10203762A1 (de) | Nichtflüchtiges Halbleiterspeicherbauelement und Verfahren zu seiner Herstellung | |
DE10039441A1 (de) | Speicherzelle, Speicherzellenanordnung und Herstellungsverfahren | |
WO2004023519A2 (de) | Hochdichter nrom-finfet | |
EP0838092B1 (de) | Elektrisch schreib- und löschbare festwertspeicherzellenanordnung und verfahren zu deren herstellung | |
DE10204873C1 (de) | Herstellungsverfahren für Speicherzelle | |
EP0946985B1 (de) | Speicherzellenanordnung und verfahren zu deren herstellung | |
DE102005030845B4 (de) | Nichtflüchtige NAND-Typ-Halbleiterspeichervorrichtungen mit Gräben und Verfahren zum Bilden derselben | |
DE112004003019T5 (de) | Nicht-flüchtiges Speicherbauelement und Verfahren zu dessen Herstellung | |
DE69121775T2 (de) | Auslöschbare programmierbare Speicheranordnung | |
WO2004107435A1 (de) | Nrom-halbleiterspeichervorrichtung und herstellungsverfahren | |
DE10206057A1 (de) | Nichtflüchtiges Speicherbauelement und Verfahren zu seiner Herstellung | |
EP1518277B1 (de) | Verfahren zur herstellung eines nrom-speicherzellenfeldes | |
EP1514304B1 (de) | Verfahren zur herstellung einer nrom-speicherzellenanordnung | |
WO2003026014A1 (de) | Halbleiterspeicherelement, verfahren zur herstellung und verfahren zum betrieb | |
WO2003096425A1 (de) | Flash-speicherzelle und herstellungsverfahren | |
EP1374308B1 (de) | Speicherzellenanordnung mit individuel adressierbaren speicherzellen und verfahren zur herstellung derselben | |
DE102006026941B3 (de) | Speicherzellenfeld mit nichtflüchtigen Speicherzellen und Verfahren zu dessen Herstellung | |
WO2003105231A1 (de) | Verfahren zur herstellung von nrom-speicherzellen mit grabentransistoren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040813 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HOFMANN, FRANZ Inventor name: LANDGRAF, ERHARD Inventor name: LUYKEN, HANNES |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20080822 |