EP0955644B1 - Method of manufacturing a metal oxide varistor and varistor made according to this method - Google Patents

Method of manufacturing a metal oxide varistor and varistor made according to this method Download PDF

Info

Publication number
EP0955644B1
EP0955644B1 EP99810304A EP99810304A EP0955644B1 EP 0955644 B1 EP0955644 B1 EP 0955644B1 EP 99810304 A EP99810304 A EP 99810304A EP 99810304 A EP99810304 A EP 99810304A EP 0955644 B1 EP0955644 B1 EP 0955644B1
Authority
EP
European Patent Office
Prior art keywords
resistance body
end faces
varistor
electrodes
outer boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99810304A
Other languages
German (de)
French (fr)
Other versions
EP0955644A2 (en
EP0955644A3 (en
Inventor
Felix Dr. Greuter
Michael Hagemeister
Wolfgang Dr. Kluge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0955644A2 publication Critical patent/EP0955644A2/en
Publication of EP0955644A3 publication Critical patent/EP0955644A3/en
Application granted granted Critical
Publication of EP0955644B1 publication Critical patent/EP0955644B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/142Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being coated on the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making
    • Y10T29/49101Applying terminal

Definitions

  • the invention is based on a method for producing a Varistors according to the common preamble of claims 1 to 4.
  • the invention also relates a varistor made by this method.
  • a varistor produced by the above method is in the middle or High voltage systems used for measurement, protection or control tasks. He has a arranged between two parallel electrodes, cylindrical resistance body of a sintered ceramic or one with a ceramic sintered granules with Varistor highly filled polymer.
  • the Sintered ceramic resp. the ceramic sintered granules are generally made one specifically doped with selected metals such as Bi, Sb, Co and Mn Zinc oxide.
  • the varistor is preferably used in Mathletonsableitem and must be so be specified that it is caused by lightning strikes or switching operations high-energy current pulses can cause damage. Such current pulses are applied to the electrodes of the varistor in the course of the manufacturing process, to check their high current resistance.
  • the electrodes are each attached to the edge of the end faces of the resistor body.
  • each of the two electrodes over the entire end face extends the resistance body forms when briefly leading a large current in its interior a homogeneous electric field.
  • a uniform current density and thus a uniform heating of the varistor achieved.
  • the unprotected Resistance body in the area of the outer edges of the end faces edges and Has tips and since the guided to the outer edges of electrode material in the lateral surface of the resistor body can pass, is on the lateral surface of the resistor body a ring of a polymer with high Dielectric constant and positioned with high temperature resistance. This Ring ensures that the electric field in the lateral surface is reduced and so avoid unwanted flashovers. Also such a procedure for making varistors is very expensive and expensive.
  • US 4 157 527 describes a cylindrical varistor, which consists of semiconducting zinc oxide material that passes through Doping is semiconducting. On the two faces of the Cylinder is applied in each case a circular metal electrode. The metal electrodes cover the respective end faces except for a circular ring, which reaches the edge of the face.
  • the invention as defined in the claims, is the object based, a method of the type mentioned, for rapid and indicate economical production of a varistor. At the same time one should after this Process produced varistor both an excellent Have energy absorption capacity, as well as a simple structure.
  • each of the two faces of the resistor body is a to the Outside edge guided layer of electrode material applied, and it will either one bounded by the outer edge and up to the face of the Resistance body guided circular ring of about 10 to about 500 microns width from the Layer removed, or it will be the resistor body or alternatively the resistor body and the layer of electrode material beveled on the outer edge.
  • the large energy absorption capacity and the high high-current strength of the varistors produced by the method according to the invention are due in part to the fact that inhomogeneities in the electric field and in the current density in the varistor when a high-energy current pulse occurs largely occur as close as possible to the outer edge of the end faces be avoided.
  • Such inhomogeneities can be caused by metalized edge defects or by metal spatters that go beyond the edge.
  • a narrow electrode-free edge or a bevel slightly disturbs the ideal, homogeneous state with electrodes guided to the edges, the large inhomogeneities (metallized edge defects which lead to failure) are efficiently eliminated.
  • this surface may comprise its cylindrical lateral surface and two annular sections of its end faces adjoining it which are less than 500 ⁇ m wide.
  • the surface contains chamfers guided directly up to the edge of the electrodes, which pass over into the cylindrical lateral surface of the varistor.
  • Electrode material in particular aluminum, arranged on the front sides of the resistor body 1 .
  • Electrodes 2 and 3 are first on each of the two end faces one to the Outside edge 9 of the end face guided layer of electrode material applied (Fig.1).
  • the electrode material is about by flame spraying or sprayed by arc application.
  • the result is relatively porous Layers typically about 50-150 microns thick. Twenty were like that formed varistors made. Of these twenty, eight were unchanged maintained and served in experiments described below Comparison purposes.
  • the resistor body 1 and the layer were made Beveled electrode material on the outer edge. It created such a conical Bevel 5 of the lateral surface, which with the end face an obtuse angle of preferably 100 ° to 120 °, optionally up to 150 °.
  • the removal of the annulus 4 or bevel is beneficial by cutting with a preferably with an abrasive powder laden gas or liquid jet 6 executed.
  • the gas or liquid jet 6 obliquely guided from above onto the electrode 2. It can do so in a simple way Circular ring with a small thickness d are removed in the area of the end face.
  • One porous electrode material can be particularly effective from the gas or Fluid jet 6 attacked and - without dielectrically unwanted holes or Cracks left - to be removed.
  • the annulus should not exceed 500 microns, preferably at most 300 microns, from the outer edge 9 of the electrode material carrying Be removed face. With a small distance of at least 10 ⁇ m, preferably at least 20 microns, it is ensured that inhomogeneities of Electrodes or Elektrodenmaterialabtrag the dielectric strength of the varistor can not belittle.
  • the gas or liquid jet 6 is guided obliquely from below to the resistance body 1 and the electrode 2. It is then ensured that the beveled electrode material can not get to the conical taper 5 of the lateral surface and affects the dielectric properties of the varistor. Instead of using a gas or liquid jet 6, the chamfering can also be generated by grinding.
  • the twenty varistors were each loaded with several approximately rectangular current pulses of 2 ms duration and with an amplitude of several 100 A. Thereafter, the sample resistors were visually inspected. It was found that half of the eight varistors according to FIG. 1 had suffered a defect, whereas the varistors designed according to FIGS. 2 and 3 remained fully functional.
  • FIG. 4 shows a varistor during manufacture in which a combination of Method according to Fig.2 and Fig.3 is applied, in the first according to Fig.2 the annulus 4 is removed and then according to Figure 3, the conical Bevel 5 is made.
  • For the second side of the varistor can be either the same method as for the first page are applied (Fig.2, Fig.3, and Fig.4), or one of the other two methods (Fig.5).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermistors And Varistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

The varistor has a cylindrical body of resistive material that has a base of metal oxide. The end surfaces have electrodes (2,3) with an exposed section having a layer of electrode material (9). In a second stage the edge is formed with an angled surface.

Description

TECHNISCHES GEBIETTECHNICAL AREA

Bei der Erfindung wird ausgegangen von einem Verfahren zum Herstellen eines Varistors nach dem gemeinsamen Oberbegriff des Patentansprüche 1 bis 4. Die Erfindung betrifft auch einen nach diesem Verfahren hergestellten Varistor.The invention is based on a method for producing a Varistors according to the common preamble of claims 1 to 4. The invention also relates a varistor made by this method.

Ein nach dem obengenannten Verfahren hergestellter Varistor wird in Mittel- oder Hochspannungsanlagen für Mess-, Schutz- oder Steueraufgaben eingesetzt. Er weist einen zwischen zwei parallel ausgerichteten Elektroden angeordneten, zylinderförmigen Widerstandskörper aus einer Sinterkeramik oder einem mit einem keramischen Sintergranulat mit Varistorverhalten hochgefüllten Polymer auf. Die Sinterkeramik resp. das keramische Sintergranulat besteht im allgemeinen aus einem gezielt mit ausgewählten Metallen, wie Bi, Sb, Co und Mn, dotierten Zinkoxid.A varistor produced by the above method is in the middle or High voltage systems used for measurement, protection or control tasks. He has a arranged between two parallel electrodes, cylindrical resistance body of a sintered ceramic or one with a ceramic sintered granules with Varistorverhalten highly filled polymer. The Sintered ceramic resp. the ceramic sintered granules are generally made one specifically doped with selected metals such as Bi, Sb, Co and Mn Zinc oxide.

Der Varistor wird bevorzugt in Überspannungsableitem verwendet und muss so spezifiziert sein, dass er durch Blitzeinschläge oder Schalthandlungen entstehende hochenergetische Stromimpulse schadlos führen kann. Solche Stromimpulse werden im Zuge des Fertigungsprozesses an die Elektroden des Varistors gelegt, um deren Hochstromfestigkeit zu überprüfen. The varistor is preferably used in Überspannungsableitem and must be so be specified that it is caused by lightning strikes or switching operations high-energy current pulses can cause damage. Such current pulses are applied to the electrodes of the varistor in the course of the manufacturing process, to check their high current resistance.

STAND DER TECHNIKSTATE OF THE ART

Verfahren der eingangs genannten Art zum Herstellen von Varistoren sind in DE 34 05 834 C2 sowie EP 0 494 507 A1 angegeben. Dabei wird jeweils ein zylinderförmiger, keramischer Widerstandskörper auf der Basis von Zinkoxid hergestellt und auf den beiden zueinander parallelen, ebenen Stirnflächen des Widerstandkörpers je eine Elektrode aufgetragen.Method of the type mentioned above for producing varistors are in DE 34 05 834 C2 and EP 0 494 507 A1. It will be one each cylindrical, ceramic resistance body based on zinc oxide manufactured and on the two mutually parallel, flat faces of the Resistive body applied to each electrode.

Bei dem in DE 34 05 834 C2 beschrieben Verfahren, werden am Widerstandskörper in den Randbereichen beider Stirnflächen umlaufende Stufen abgeschliffen. Danach wird der Widerstandskörper die Umfangsfläche und die Stufen bedeckend mit einem Isolationsmaterial versehen. Anschliessend werden die Stirnflächen und ein Teil des auf den Stufen angebrachten lsolationsmaterials abgeschliffen. Schliesslich werden dann die Elektroden aus Metall die mit dem lsolationsmaterial gefüllten Stufen teilweise überlappend aber nicht ganz bis zum Rand der Stirnfläche reichend auf die Stirnflächen aufgetragen. Dieses Verfahren ist sehr aufwendig und zudem Fehleranfällig, da es beim Auftragen des Elektrodenmaterials zu Metallspritzer im Bereich des Randes kommen kann, die zu dielektrischen Ueberschlägen bei Hochfeldbeanspruchung führen können. Zudem entstehen wegen der unvollständigen Elektrodenüberdeckung im Widerstandskörper lokale Überhöhungen der Stromdichte resp. des elektrischen Feldes, welche die Spannungsfestigkeit eines derart ausgeführten Varistors herabsetzen.In the method described in DE 34 05 834 C2, am Resistance body in the edge regions of both end faces circumferential steps abraded. Thereafter, the resistance body is the peripheral surface and the Covering stages provided with an insulating material. Then be the faces and part of the insulation material applied to the steps abraded. Finally, the electrodes made of metal with the Insulating material filled steps partially overlapping but not quite up to the Edge of the front surface applied to the front surfaces. This method is very complex and error-prone, since it when applying the Electrode material can come to metal splash in the area of the edge, the too can lead to dielectric overtravings at high field stress. moreover arise because of incomplete electrode coverage in the Resistor body local elevations of the current density resp. of the electric Feldes, which the dielectric strength of such a varistor running decrease.

Bei dem in EP 0 494 507 A1 beschrieben Verfahren, werden die Elektroden jeweils bis an den Rand der Stirnflächen des Widerstandskörpers angebracht. Da sich bei einem solchen Varistor jede der beiden Elektroden über die gesamte Stirnfläche des Widerstandskörpers erstreckt, bildet sich beim kurzzeitigen Führen eines grossen Stromes in seinem Inneren ein homogenes elektrisches Feld aus. Hierdurch werden eine gleichmässige Stromdichte und somit auch eine gleichmässige Aufheizung des Varistors erreicht. Da der ungeschützte Widerstandskörper im Bereich der Aussenränder der Stirnflächen Kanten und Spitzen aufweist, und da das an die Aussenränder geführte Elektrodenmaterial in die Mantelfläche des Widerstandkörpers gelangen kann, wird auf der Mantelfläche des Widerstandskörpers ein Ring aus einem Polymer mit hoher Dielektrizitätskonstante und mit hoher Temperaturbeständigkeit positioniert. Dieser Ring sorgt dafür, dass das elektrische Feld in der Mantelfläche herabgesetzt wird und so unerwünschte Überschläge vermieden werden. Auch ein solches Verfahren zur Herstellen von Varistoren ist sehr kostspielig und aufwendig.In the method described in EP 0 494 507 A1, the electrodes are each attached to the edge of the end faces of the resistor body. As with Such a varistor, each of the two electrodes over the entire end face extends the resistance body forms when briefly leading a large current in its interior a homogeneous electric field. As a result, a uniform current density and thus a uniform heating of the varistor achieved. Because the unprotected Resistance body in the area of the outer edges of the end faces edges and Has tips, and since the guided to the outer edges of electrode material in the lateral surface of the resistor body can pass, is on the lateral surface of the resistor body a ring of a polymer with high Dielectric constant and positioned with high temperature resistance. This Ring ensures that the electric field in the lateral surface is reduced and so avoid unwanted flashovers. Also such a procedure for making varistors is very expensive and expensive.

US 4 157 527 beschreibt einen zylinderförmigen Varistor, der aus halbleitendem Zinkoxid-Material besteht, das durch Dotierung halbleitend ist. Auf den beiden Stirnflächen des Zylinders ist jeweils eine Kreisförmige Metallelektrode aufgebracht. Die Metallelektroden bedecken die jeweiligen Stirnflächen bis auf einen Kreisring, der an die Kante das Stirnfläche heranreicht.US 4 157 527 describes a cylindrical varistor, which consists of semiconducting zinc oxide material that passes through Doping is semiconducting. On the two faces of the Cylinder is applied in each case a circular metal electrode. The metal electrodes cover the respective end faces except for a circular ring, which reaches the edge of the face.

KURZE DARSTELLUNG DER ERFINDUNGBRIEF SUMMARY OF THE INVENTION

Der Erfindung, wie sie in den Patentansprüchen definiert ist, liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art, zum raschen und wirtschaftlichen Herstellen eines Varistor anzugeben. Zugleich soll ein nach diesem Verfahren hergestellter Varistor sowohl eine hervorragendes Energieaufnahmevermögen, als auch einen einfachen Aufbau aufweisen.The invention, as defined in the claims, is the object based, a method of the type mentioned, for rapid and indicate economical production of a varistor. At the same time one should after this Process produced varistor both an excellent Have energy absorption capacity, as well as a simple structure.

Die in den unabhängigen Patentansprüchen 1 bis 4 angegebenen erfindungsgemässen Verfahren zeichnen sich dadurch aus, dass sie für eine Serienfertigung geeignet sind und dass damit Varistoren mit grossem Energieaufnahmevermögen und hoher Hochstromfestigkeit rasch und wirtschaftlich gefertigt werden können.The specified in the independent claims 1 to 4 inventive methods are characterized by the fact that they are suitable for a Series production are suitable and that thus varistors with large Energy absorption capacity and high high-current strength quickly and economically can be made.

Die erfindungsgemässen Verfahren sind durch folgende Verfahrensschritte gekennzeichnet:The novel processes are characterized by the following process steps characterized:

Auf jede der beiden Stirnflächen des Widerstandskörpers wird eine bis an deren Aussenrand geführte Schicht aus Elektrodenmaterial aufgebracht, und es wird entweder ein vom Aussenrand begrenzter und bis auf die Stirnfläche des Widerstandskörpers geführter Kreisring von ca. 10 bis ca. 500 µm Breite aus der Schicht entfernt, oder es werden der Widerstandskörper oder alternativ der Widerstandskörper und die Schicht aus Elektrodenmaterial am Aussenrand abgeschrägt.On each of the two faces of the resistor body is a to the Outside edge guided layer of electrode material applied, and it will either one bounded by the outer edge and up to the face of the Resistance body guided circular ring of about 10 to about 500 microns width from the Layer removed, or it will be the resistor body or alternatively the resistor body and the layer of electrode material beveled on the outer edge.

Gegenüber Verfahren zum Herstellen von Varistoren nach dem Stand der Technik, bei denen beim Aufbringen der Elektrodenschichten unvermeidlich auftretende Metallisierungsfehler mit sehr komplizierten und kostspieligen Prozessen zu vermeiden versucht werden, werden diese bei den erfindungsgemässen Verfahren nachträglich entfernt. As compared to prior art methods of manufacturing varistors, in which inevitably occurring when applying the electrode layers Metallization errors with very complicated and costly processes too try to be avoided, they are in the inventive method subsequently removed.

Das grosse Energieaufnahmevermögen und die hohe Hochstromfestigkeit der mit den erfindungsgemässen Verfahren hergestellten Varistoren sind zum einen dadurch bedingt, dass durch möglichst nahe an den als Kante ausgebildeten Aussenrand der Stirnflächen geführte Elektroden Inhomogenitäten im elektrischen Feld und in der Stromdichte im Varistor beim Auftreten eines hochenergetischen Stromimpulses weitgehend vermieden werden. Solche Inhomogenitäten können durch metallisierte Kantendefekte oder durch Metallspritzer hervorgerufen werden, welche über die Kante hinaustreten. Durch einen schmalen elektrodenfreien Rand bzw. durch eine Abschrägung wird zwar der ideale, homogene Zustand mit an die Kanten geführten Elektroden geringfügig gestört, aber die grossen Inhomogenitäten (metallisierte Randdefekte, welche zum Versagen führen) werden effizient eliminiert.
Zum anderen ist dies auch eine Folge einer geeigneten Ausbildung der hohen dielektrischen Belastungen ausgesetzten Oberfläche des Varistors zwischen den beiden Elektroden. Diese Oberfläche kann in einer ersten bevorzugten Ausführungsform des Varistors seine zylinderförmige Mantelfläche und zwei sich daran anschliessende, weniger als 500 µm breite kreisringförmige Abschnitte seiner Stirnflächen umfassen. In einer bevorzugten zweiten Ausführungsform enthält die Oberfläche unmittelbar bis zum Rand der Elektroden geführte Abschrägungen, die in die zylinderförmige Mantelfläche des Varistors übergehen.
The large energy absorption capacity and the high high-current strength of the varistors produced by the method according to the invention are due in part to the fact that inhomogeneities in the electric field and in the current density in the varistor when a high-energy current pulse occurs largely occur as close as possible to the outer edge of the end faces be avoided. Such inhomogeneities can be caused by metalized edge defects or by metal spatters that go beyond the edge. Although a narrow electrode-free edge or a bevel slightly disturbs the ideal, homogeneous state with electrodes guided to the edges, the large inhomogeneities (metallized edge defects which lead to failure) are efficiently eliminated.
On the other hand, this is also a consequence of a suitable formation of the surface of the varistor exposed to high dielectric loads between the two electrodes. In a first preferred embodiment of the varistor, this surface may comprise its cylindrical lateral surface and two annular sections of its end faces adjoining it which are less than 500 μm wide. In a preferred second embodiment, the surface contains chamfers guided directly up to the edge of the electrodes, which pass over into the cylindrical lateral surface of the varistor.

KURZE BESCHREIBUNG DER ZEICHNUNGENBRIEF DESCRIPTION OF THE DRAWINGS

Bevorzugte Ausführungsbeispiele von mit den erfindungsgemässen Verfahren hergestellten Varistoren und die damit erzielbaren weiteren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert. Hierbei zeigt:

Fig.1
eine Aufsicht auf einen axial geführten Schnitt durch einen Teil eines Varistors,
Fig.2
eine Aufsicht auf einen axial geführten Schnitt durch einen Teil einer ersten Ausführungsform eines nach einem der erfindungsgemässen Verfahren hergestellten Varistors während seiner Fertigung,
Fig.3
eine Aufsicht auf einen axial geführten Schnitt durch einen Teil einer zweiten Ausführungsform eines nach einem zweiten erfindungsgemässen Verfahren hergestellten Varistors während seiner Fertigung,
Fig.4
eine Aufsicht auf einen axial geführten Schnitt durch einen Teil einer dritten Ausführungsform eines nach einem dritten erfindungsgemässen Verfahren hergestellten Varistors während seiner Fertigung, und
Fig.5
eine Aufsicht auf einen axial geführten Schnitt durch einen Teil einer vierten Ausführungsform eines nach einem vierten erfindungsgemässen Verfahren hergestellten Varistors.
Preferred embodiments of varistors produced by the method according to the invention and the further advantages that can be achieved therewith are explained in more detail below with reference to drawings. Hereby shows:
Fig.1
a plan view of an axially guided section through a part of a varistor,
Fig.2
a plan view of an axially guided section through a part of a first embodiment of a varistor produced by one of the inventive method during its manufacture,
Figure 3
a plan view of an axially guided section through a part of a second embodiment of a varistor produced by a second inventive method during its manufacture,
Figure 4
a plan view of an axially guided section through a part of a third embodiment of a varistor produced according to a third inventive method during its manufacture, and
Figure 5
a plan view of an axially guided section through a portion of a fourth embodiment of a varistor produced according to a fourth inventive method.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS FOR CARRYING OUT THE INVENTION

In allen Figuren bezeichnen gleiche Bezugszeichen auch gleichwirkende Teile. Das Bezugszeichen 1 bezieht sich auf einen Widerstandskörper aus einer Varistorverhalten aufweisenden, zum Stand der Technik zählenden Keramik, die wie folgt hergestellt wurde:

  • Ca. 97 Mol% Zn, ca. 0,5 Mol% Bi2O3, ca. 1,0 Mol% Sb2O3, ca. 0,5 Mol% Co2O3, ca. 0,5 Mol% MnO2, ca. 0,5 Mol% Cr2O3 und weitere Metalloxidzusätze wurden in einer Kugelmühle gemischt und zu einer homogenen Pulvermischung mit Partikeldurchmessern zwischen ca. 1 und ca. 5 µm gemahlen. Die Pulvermischung wurde in destilliertem Wasser aufgeschlämmt. Die Aufschlämmung wurde in einem Sprühtrockner in ein rieselfähiges, trockenes Granulat übergeführt. Die durchschnittliche Grösse der dabei erzeugten Körner lag bei ca. 100 µm. Aus dem Granulat wurden zylinderförmige Presskörper geformt, aus denen bei einer Temperatur von ca. 1200°C während ca. 2 h zylinderscheibenförmige Widerstandskörpern von ca. 38 mm Durchmesser und ca. 20 mm Länge gesintert wurden.
  • In all figures, like reference numerals designate like-acting parts. Reference numeral 1 refers to a resistor body made of a varistor-containing prior art ceramic which was manufactured as follows:
  • Approximately 97 mol% Zn, about 0.5 mol% Bi 2 O 3 , about 1.0 mol% Sb 2 O 3 , about 0.5 mol% Co 2 O 3 , about 0.5 mol% MnO 2 , about 0.5 mol% Cr 2 O 3 and other metal oxide were mixed in a ball mill and ground to a homogeneous powder mixture with particle diameters between about 1 and about 5 microns. The powder mixture was slurried in distilled water. The slurry was transferred into a spray dryer in a flowable, dry granules. The average size of the grains produced was about 100 μm. From the granules cylindrical shaped compacts were formed, from which at a temperature of about 1200 ° C for about 2 h cylindrical disk-shaped resistor bodies of about 38 mm diameter and about 20 mm in length were sintered.
  • Auf den Stirnseiten des Widerstandskörpers 1 sind Elektroden 2 und 3 aus Elektrodenmaterial, wie insbesondere Aluminium, angeordnet. Zur Herstellung der Elektroden 2 und 3 wird auf jede der beiden Stirnflächen zunächst eine bis an den Aussenrand 9 der Stirnfläche geführte Schicht aus Elektrodenmaterial aufgebracht (Fig.1). Mit Vorteil wird das Elektrodenmaterial etwa durch Flammspritzen oder durch Lichtbogenauftrag aufgesprüht. Es entstehen so verhältnismässig poröse Schichten von typischerweise ca. 50 -150 µm Dicke. Es wurden zwanzig derart ausgebildete Varistoren hergestellt. Von diesen zwanzig wurden acht unverändert beibehalten und dienten in nachfolgend beschriebenen Versuchen zu Vergleichszwecken.On the front sides of the resistor body 1 are electrodes 2 and 3 made Electrode material, in particular aluminum, arranged. For the production of Electrodes 2 and 3 are first on each of the two end faces one to the Outside edge 9 of the end face guided layer of electrode material applied (Fig.1). Advantageously, the electrode material is about by flame spraying or sprayed by arc application. The result is relatively porous Layers typically about 50-150 microns thick. Twenty were like that formed varistors made. Of these twenty, eight were unchanged maintained and served in experiments described below Comparison purposes.

    Von den verbleibenden zwölf Varistoren wurden sechs entsprechend der Ausführungsform nach Fig.2 modifiziert. Zu diesem Zweck wurde ein vom Aussenrand 9 begrenzter und bis auf die Stirnfläche des Widerstandskörpers geführter Kreisring 4 mit einer Dicke d aus der Schicht entfernt. Weitere sechs Varistoren wurden entsprechend der Ausführungsform nach Fig.3 modifiziert. Bei dieser Ausführungsform wurden der Widerstandskörper 1 und die Schicht aus Elektrodenmaterial am Aussenrand abgeschrägt. Es entstand so eine konische Abschrägung 5 der Mantelfläche, welche mit der Stirnfläche einen stumpfen Winkel von vorzugsweise 100° bis 120°, gegebenenfalls bis zu 150° bildet. Das Entfernen des Kreisrings 4 oder das Abschrägen wird mit Vorteil durch Schneiden mit einem vorzugsweise mit einem abrasiven Pulver beladenen Gas - oder Flüssigkeitsstrahl 6 ausgeführt.Of the remaining twelve varistors, six were corresponding to the Modified embodiment according to FIG. For this purpose, one of the Outer edge 9 limited and except for the end face of the resistor body guided annulus 4 with a thickness d removed from the layer. Another six Varistors were modified according to the embodiment of FIG. at In this embodiment, the resistor body 1 and the layer were made Beveled electrode material on the outer edge. It created such a conical Bevel 5 of the lateral surface, which with the end face an obtuse angle of preferably 100 ° to 120 °, optionally up to 150 °. The removal of the annulus 4 or bevel is beneficial by cutting with a preferably with an abrasive powder laden gas or liquid jet 6 executed.

    Zum Entfernen des Kreisrings 4 nach Fig.2 wird der Gas - oder Flüssigkeitsstrahl 6 schräg von oben auf die Elektrode 2 geführt. Es kann so in einfacher Weise ein Kreisring mit geringer Dicke d im Bereich der Stirnfläche entfernt werden. Das Entfernen des Kreisringes wird nach dem Auftragen der Elektroden ausgeführt. Ein poröses Elektrodenmaterial kann besonders wirksam vom Gas- oder Flüssigkeitsstrahl 6 angegriffen und - ohne dielektrisch unerwünschte Löcher oder Risse zu hinterlassen - entfernt werden. Um dielektrisch gute Eigenschaften einhalten zu können, sollte der Kreisring höchstens 500 µm, vorzugsweise höchstens 300 µm, vom Aussenrand 9 der das Elektrodenmaterial tragenden Stirnfläche entfernt sein. Mit einem geringen Abstand von mindestens 10 µm, vorzugsweise mindestens 20 µm, ist sichergestellt, dass Inhomogenitäten der Elektroden bzw. Elektrodenmaterialabtrag die dielektrische Festigkeit des Varistors nicht herabsetzen können.In order to remove the circular ring 4 according to FIG. 2, the gas or liquid jet 6 obliquely guided from above onto the electrode 2. It can do so in a simple way Circular ring with a small thickness d are removed in the area of the end face. The Remove the annulus after applying the electrodes. One porous electrode material can be particularly effective from the gas or Fluid jet 6 attacked and - without dielectrically unwanted holes or Cracks left - to be removed. To dielectrically good properties to be able to comply, the annulus should not exceed 500 microns, preferably at most 300 microns, from the outer edge 9 of the electrode material carrying Be removed face. With a small distance of at least 10 μm, preferably at least 20 microns, it is ensured that inhomogeneities of Electrodes or Elektrodenmaterialabtrag the dielectric strength of the varistor can not belittle.

    Beim Abschrägen nach Fig.3 wird der Gas - oder Flüssigkeitsstrahl 6 schräg von unten an den Widerstandskörper 1 und die Elektrode 2, geführt. Es ist dann sichergestellt, dass das abgeschrägte Elektrodenmaterial nicht an die konische Abschrägung 5 der Mantelfläche gelangen kann und die dielektrischen Eigenschaften des Varistors beeinträchtigt. Anstelle einen Gas - oder Flüssigkeitsstrahl 6 zu benutzen, kann die Abschrägung auch durch Abschleifen erzeugt werden.
    In einer Prüfvorrichtung wurden die zwanzig Varistoren jeweils mit mehren annähernd rechteckigen Stromimpulsen von 2 ms Dauer und mit einer Amplitude von mehreren 100 A belastet. Danach wurden die Probewiderstände durch Augenschein begutachtet. Hierbei wurde festgestellt, dass von den acht Varistoren gemäss Fig.1 die Hälfte einen Defekt erlitten hatten, wohingegen die gemäss den Figuren 2 und 3 ausgeführten Varistoren vollauf funktionsfähig geblieben waren.
    When chamfering according to FIG. 3, the gas or liquid jet 6 is guided obliquely from below to the resistance body 1 and the electrode 2. It is then ensured that the beveled electrode material can not get to the conical taper 5 of the lateral surface and affects the dielectric properties of the varistor. Instead of using a gas or liquid jet 6, the chamfering can also be generated by grinding.
    In a test device, the twenty varistors were each loaded with several approximately rectangular current pulses of 2 ms duration and with an amplitude of several 100 A. Thereafter, the sample resistors were visually inspected. It was found that half of the eight varistors according to FIG. 1 had suffered a defect, whereas the varistors designed according to FIGS. 2 and 3 remained fully functional.

    Fig.4 zeigt einen Varistor während der Fertigung bei dem eine Kombination der Verfahren gemäss Fig.2 und Fig.3 angewendet wird, in dem zuerst gemäss Fig.2 der Kreisring 4 abgetragen wird und anschliessend gemäss Fig.3 die konische Abschrägung 5 vorgenommen wird.4 shows a varistor during manufacture in which a combination of Method according to Fig.2 and Fig.3 is applied, in the first according to Fig.2 the annulus 4 is removed and then according to Figure 3, the conical Bevel 5 is made.

    Für die zweite Seite des Varistors kann entweder das gleiche Verfahren wie für die erste Seite angewendet werden (Fig.2, Fig.3, und Fig.4), oder aber eines der anderen beiden Verfahren (Fig.5).For the second side of the varistor can be either the same method as for the first page are applied (Fig.2, Fig.3, and Fig.4), or one of the other two methods (Fig.5).

    BezugszeichenlisteLIST OF REFERENCE NUMBERS

    11
    Widerstandskörperresistance body
    2, 32, 3
    Elektrodenelectrodes
    44
    Kreisringannulus
    5, 5'5, 5 '
    konische Abschrägungen der Mantelflächeconical chamfers of the lateral surface
    66
    Gas - oder FlüssigkeitsstrahlGas or liquid jet
    88th
    Mantelflächelateral surface
    99
    Aussenrandoutside of
    dd
    KreisringdickeCircular ring thickness

    Claims (13)

    1. Method for producing a varistor which, in an electric field of predetermined magnitude, can have at least one high-power current pulse of defined amplitude, form and duration applied to it, and which has a cylindrical resistance body (1) made from a material which is based on metal oxide, and two electrodes (2, 3), each arranged on one of two mutually parallel end faces of the cylindrical resistance body (1), in which method firstly the resistance body is produced and then it is provided with the electrodes (2, 3), characterized in that a layer (2, 3) of electrode material is applied to the two end faces, which layer runs to as far as the outer boundary (9), which is designed as a sharp edge, of said end faces, and in
      that then a circular ring (4), which is delimited by the outer boundary (9), runs to as far as the end face of the resistance body (1) and has a width of from 10 to 500 µm, is removed from the layer (2, 3) containing electrode material.
    2. Method for producing a varistor which, in an electric field of predetermined magnitude, can have at least one high-power current pulse of defined amplitude, form and duration applied to it, and which has a cylindrical resistance body (1) made from a material which is based on metal oxide, and two electrodes (2, 3), each arranged on one of two mutually parallel end faces of the cylindrical resistance body (1), in which method firstly the resistance body is produced and then it is provided with the electrodes (2, 3), characterized in that a layer (2, 3) of electrode material is applied to the two end faces, which layer runs to as far as the outer boundary (9), which is designed as a sharp edge, of said end faces, and in
      that then the resistance body (1) and each of the two layers (2, 3) of electrode material are bevelled at the outer boundary (9).
    3. Method for producing a varistor which, in an electric field of predetermined magnitude, can have at least one high-power current pulse of defined amplitude, form and duration applied to it, and which has a cylindrical resistance body (1) made from a material which is based on metal oxide, and two electrodes (2, 3), each arranged on one of two mutually parallel end faces of the cylindrical resistance body (1), in which method firstly the resistance body is produced and then it is provided with the electrodes (2, 3), characterized in that a layer (2, 3) of electrode material is applied to the two end faces, which layer runs to as far as the outer boundary (9), which is designed as a sharp edge, of said end faces, and in
      that then in each case one circular ring (4), which is delimited by the outer boundary (9), runs to as far as the end face of the resistance body (1) and has a width of from 10 to 500 µm, is removed from the layer (2, 3) containing electrode material and then the resistance body (1) is bevelled at the outer boundary (9).
    4. Method for producing a varistor which, in an electric field of predetermined magnitude, can have at least one high-power current pulse of defined amplitude, form and duration applied to it, and which has a cylindrical resistance body (1) made from a material which is based on metal oxide, and two electrodes (2, 3), each arranged on one of two mutually parallel end faces of the cylindrical resistance body (1), in which method firstly the resistance body is produced and then it is provided with the electrodes (2, 3), characterized in that a layer (2, 3) of electrode material is applied to the two end faces, which layer runs to as far as the outer boundary (9), which is designed as a sharp edge, of said end faces, and in
      that then a circular ring (4), which is delimited by the outer boundary (9), runs to as far as the end face of the resistance body (1) and has a width of from 10 to 500 µm is removed from a first (2) of the two layers (2, 3) containing electrode material and the resistance body (1) and the second (3) of the two layers (2, 3) made from electrode material are bevelled at the outer boundary (9).
    5. Method according to one of Claim 1 to 4, characterized in that the removal of the circular ring (4) or the bevelling is carried out by cutting using a gas or liquid jet (6) which may be laden with an abrasive powder.
    6. Method according to one of Claim 2 to 4, characterized in that the bevelling is carried out by grinding.
    7. Method according to one of Claims 1 to 6, characterized in that the electrode material is sprayed on.
    8. Varistor produced using the method according to Claim 1, which, in an electric field of predetermined magnitude, can have at least one high-power current pulse of defined amplitude, form and duration applied to it and which has a cylindrical resistance body (1) made from a material based on metal oxide, and two electrodes (2, 3) which are each arranged on one of two mutually parallel first and second end faces of the cylindrical resistance body (1), characterized in that the electrode (2) on the first and the electrode (3) on the second end face run to as far as at least 500 µm and at most 10 µm from the outer boundary (9), which is designed as a sharp edge, of these end faces.
    9. Varistor produced using the method according to Claim 2, which, in an electric field of predetermined magnitude, can have at least one high-power current pulse of defined amplitude, form and duration applied to it and which has a cylindrical resistance body (1) made from a material based on metal oxide, and two electrodes (2, 3) which are each arranged on one of two mutually parallel first and second end faces of the cylindrical resistance body (1), characterized in that the resistance body (1) has a conical bevel (5) which runs from the electrode (2) of the first and a conical bevel (5') which runs from the electrode (3) of the second end face to the circumferential surface (8) of said resistance body.
    10. Varistor produced using the method according to Claim 3, which, in an electric field of predetermined magnitude, can have at least one high-power current pulse of defined amplitude, form and duration applied to it and which has a cylindrical resistance body (1) made from a material based on metal oxide, and two electrodes (2, 3) which are each arranged on one of two mutually parallel first and second end faces of the cylindrical resistance body (1), characterized in that the electrode (2) of the first and the electrode (3) of the second end face run to as far as at least 500 µm and at most 10 µm from the outer boundary (9), which is designed as a sharp edge, of these end faces, and in that the resistance body (1) has a conical bevel (5, 5') which runs from each of these end faces to the circumferential surface (8) of said resistance body.
    11. Varistor produced using the method according to Claim 4, which, in an electric field of predetermined magnitude, can have at least one high-power current pulse of defined amplitude, form and duration applied to it and which has a cylindrical resistance body (1) made from a material based on metal oxide, and two electrodes (2, 3) which are each arranged on one of two mutually parallel first and second end faces of the cylindrical resistance body (1), characterized in that the electrode (2) of the first end face runs to as far as at least 500 µm and at most 10 µm from the outer boundary (9), which is designed as a sharp edge, of this end face, and in that the resistance body (1) has a conical bevel (5') which runs from the electrode (3) of the second end face to the circumferential surface (8) of said resistance body.
    12. Varistor according to Claims 9 to 11, characterized in that the conical bevel (5, 5') forms an obtuse angle with the associated end face.
    13. Varistor according to Claim 12, characterized in that the angle is 100° to 150°, preferably 100° to 120°.
    EP99810304A 1998-05-06 1999-04-13 Method of manufacturing a metal oxide varistor and varistor made according to this method Expired - Lifetime EP0955644B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19820134A DE19820134A1 (en) 1998-05-06 1998-05-06 Varistor based on a metal oxide and method for producing such a varistor
    DE19820134 1998-05-06

    Publications (3)

    Publication Number Publication Date
    EP0955644A2 EP0955644A2 (en) 1999-11-10
    EP0955644A3 EP0955644A3 (en) 2003-12-17
    EP0955644B1 true EP0955644B1 (en) 2005-03-02

    Family

    ID=7866793

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP99810304A Expired - Lifetime EP0955644B1 (en) 1998-05-06 1999-04-13 Method of manufacturing a metal oxide varistor and varistor made according to this method

    Country Status (5)

    Country Link
    US (2) US6199268B1 (en)
    EP (1) EP0955644B1 (en)
    AT (1) ATE290251T1 (en)
    DE (2) DE19820134A1 (en)
    ES (1) ES2239437T3 (en)

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SE527949C2 (en) * 2004-12-22 2006-07-18 Abb Research Ltd Method of producing a varistor
    KR100697918B1 (en) * 2005-01-12 2007-03-20 엘에스전선 주식회사 PTC current limiting device having structure preventing flashover
    IES20060769A2 (en) * 2005-10-19 2007-04-04 Littelfuse Ireland Dev Company A varistor and production method
    WO2008035319A1 (en) * 2006-09-19 2008-03-27 Littelfuse Ireland Development Company Limited Manufacture of varistors comprising a passivation layer
    US10839993B2 (en) * 2017-05-16 2020-11-17 Dongguan Littelfuse Electronics Company Limited Base metal electrodes for metal oxide varistor

    Family Cites Families (15)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US1063303A (en) * 1909-07-13 1913-06-03 Gen Electric Electrical resistance.
    DE1881598U (en) * 1962-04-18 1963-10-31 Siemens Ag CONTROL IMPEDANCE, IN PARTICULAR FOR OVERVOLTAGE ARRESTERS.
    NL181156C (en) * 1975-09-25 1987-06-16 Gen Electric METHOD FOR MANUFACTURING A METAL OXIDE VARISTOR
    US4157527A (en) * 1977-10-20 1979-06-05 General Electric Company Polycrystalline varistors with reduced overshoot
    US4371860A (en) * 1979-06-18 1983-02-01 General Electric Company Solderable varistor
    JPS5827643B2 (en) * 1979-07-13 1983-06-10 株式会社日立製作所 Nonlinear resistor and its manufacturing method
    US4451815A (en) * 1982-09-27 1984-05-29 General Electric Company Zinc oxide varistor having reduced edge current density
    DE3405834A1 (en) * 1984-02-17 1985-08-22 Siemens AG, 1000 Berlin und 8000 München Varistor consisting of a wafer of zinc-oxide material, which is semiconductive as a result of doping, and a method for producing this varistor
    JPS60226102A (en) * 1984-04-25 1985-11-11 株式会社日立製作所 Voltage nonlinear resistor
    JPH0616459B2 (en) 1987-07-23 1994-03-02 株式会社村田製作所 Method for manufacturing porcelain capacitor
    US5264819A (en) * 1990-12-12 1993-11-23 Electric Power Research Institute, Inc. High energy zinc oxide varistor
    EP0494507A1 (en) * 1990-12-12 1992-07-15 Electric Power Research Institute, Inc High energy zinc oxide varistor
    US5548474A (en) * 1994-03-01 1996-08-20 Avx Corporation Electrical components such as capacitors having electrodes with an insulating edge
    JPH09120908A (en) * 1995-10-25 1997-05-06 Toshiba Corp Non-linear resistor and its manufacture
    JP2000182807A (en) * 1998-12-14 2000-06-30 Toshiba Corp Nonlinear resistance member

    Also Published As

    Publication number Publication date
    US6199268B1 (en) 2001-03-13
    EP0955644A2 (en) 1999-11-10
    US6346872B1 (en) 2002-02-12
    DE19820134A1 (en) 1999-11-11
    ES2239437T3 (en) 2005-09-16
    ATE290251T1 (en) 2005-03-15
    EP0955644A3 (en) 2003-12-17
    DE59911675D1 (en) 2005-04-07

    Similar Documents

    Publication Publication Date Title
    DE10137523B4 (en) spark plug
    DE102007012368B4 (en) Spark plug for an internal combustion engine
    DE2235783C2 (en) Metal oxide varistor element
    DE2735171C2 (en) Transducers
    DE3930000A1 (en) VARISTOR IN LAYER DESIGN
    DE3785946T2 (en) SEMICONDUCTOR COMPONENT MADE OF POSITIVE CERAMIC.
    EP1500638A1 (en) Laser irradiated metallised electroceramic
    DE2730566C3 (en) Semiconductor device with a pn junction and method for the production thereof
    DE2526836A1 (en) ELECTRIC SEMI-CONDUCTIVE COVERING CONNECTION AND A SPARK DISCHARGE DEVICE
    EP0955644B1 (en) Method of manufacturing a metal oxide varistor and varistor made according to this method
    DE10049023B4 (en) Non-linear resistor and method of making the same
    DE2724659C2 (en) Picture display tube with an inner resistance layer
    DE19835443A1 (en) Integrated thermistor arrangement
    DE4007337C2 (en) Electrical insulator
    DE3013891C2 (en) Electrostatic powder spraying process to create a paint application
    DE2445626A1 (en) METAL OXIDE VARISTOR WITH A COATING THAT REINFORCES THE CONTACT ADHAESION
    DE69025347T2 (en) Spark plug and manufacturing process
    DE2607454C3 (en) Even voltage-dependent resistor based on zinc oxide
    DE2832735C2 (en) Method of manufacturing a stable metal oxide varistor
    DE69433778T2 (en) Electrode for suppressing electrical noise waves and method of making the same
    DE2818878A1 (en) ELECTRIC INSULATOR WITH SEMI-CONDUCTIVE GLAZING
    DE19612143A1 (en) Manufacturing helical contact member for vacuum switch
    DE3905444C2 (en) Ceramic capacitor and process for its manufacture
    EP0184645A2 (en) Chip varistor and production process
    DE4112029C2 (en) Rotor electrode for a distributor

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17P Request for examination filed

    Effective date: 20040503

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    AKX Designation fees paid

    Designated state(s): AT BE CH DE ES FI FR GB GR IE IT LI PT SE

    AXX Extension fees paid

    Extension state: SI

    Payment date: 20040503

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    17Q First examination report despatched

    Effective date: 20041203

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE ES FI FR GB GR IE IT LI PT SE

    AX Request for extension of the european patent

    Extension state: SI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050302

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 59911675

    Country of ref document: DE

    Date of ref document: 20050407

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050602

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ABB SCHWEIZ AG (INTELLECTUAL PROPERTY CH-LC/IP)

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050624

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050817

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2239437

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20051205

    ET Fr: translation filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20060430

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20060502

    Year of fee payment: 8

    BERE Be: lapsed

    Owner name: *ABB RESEARCH LTD

    Effective date: 20070430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070430

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20090422

    Year of fee payment: 11

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070413

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20100422

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20110715

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110705

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100414

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110413

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20160420

    Year of fee payment: 18

    Ref country code: GB

    Payment date: 20160421

    Year of fee payment: 18

    Ref country code: DE

    Payment date: 20160421

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20160421

    Year of fee payment: 18

    Ref country code: SE

    Payment date: 20160420

    Year of fee payment: 18

    Ref country code: FR

    Payment date: 20160421

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59911675

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 290251

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20170413

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20170413

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20171229

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20171103

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170502

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170413

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170430

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170413

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170414