EP0563777B1 - Process for production of synthesis gas by thermal treatment of raw materials containing metallic and organic substances - Google Patents
Process for production of synthesis gas by thermal treatment of raw materials containing metallic and organic substances Download PDFInfo
- Publication number
- EP0563777B1 EP0563777B1 EP93104882A EP93104882A EP0563777B1 EP 0563777 B1 EP0563777 B1 EP 0563777B1 EP 93104882 A EP93104882 A EP 93104882A EP 93104882 A EP93104882 A EP 93104882A EP 0563777 B1 EP0563777 B1 EP 0563777B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pyrolysis
- stage
- gas
- gases
- gasification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/58—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
- C10J3/60—Processes
- C10J3/62—Processes with separate withdrawal of the distillation products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/58—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
- C10J3/60—Processes
- C10J3/64—Processes with decomposition of the distillation products
- C10J3/66—Processes with decomposition of the distillation products by introducing them into the gasification zone
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
- C10K1/10—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
- C10K1/101—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
Definitions
- the invention relates to a process for the production of synthesis gas by thermal treatment of residues containing metallic and organic constituents, in particular for the treatment of packaging materials made of aluminum and plastic, the residues being broken down in a pyrolysis reaction, separated into a gas and solid phase, the separated solid phase enters into a gasification stage and is gasified with oxygen-enriched air or oxygen.
- Residual materials of the type mentioned at the outset occur, for example, in the separate collection and sorting of packaging materials from the household sector or as production residues and usually consist of plastics of different compositions in connection with thin metal foils made of, for example, aluminum.
- Packaging materials are usually provided with varnishes and / or adhesive layers which, when processed, result in products containing harmful substances, which make recycling to a great extent difficult.
- organically bound chlorine content which can be attributed to polyvinyl chloride PVC contained in the mixed plastics, as well as to polychlorinated hydrocarbons such as PCB (polychlorinated biphenyls) and other, sometimes very toxic, compounds.
- a process for the production of synthesis gas and other gaseous products by processing residues in a pyrolysis stage with subsequent separation of the residues into a gas and solid phase is known from W091 / 04306.
- the solid leaving the pyrolysis is introduced into a gasification stage and gasified there at the temperatures required for the desired product streams.
- the gases from the pyrolysis stage and from the gasification stage are passed through a separator and divided into the various product streams (tar, oil and fuel gas).
- processes are known which use the gas phase obtained in the pyrolysis process in combustion devices, in individual cases together with the solids from the fractionation which cannot be used directly, and utilize them energetically.
- the feedstock from carbon powder, oxygen-containing gas and steam is divided into two substreams and, in a first reaction zone, the feedstock from substream 1 at temperatures from 1200 ° to 1700 ° C converted to a product gas mixture of hydrogen and carbon monoxide.
- the product gas mixture is then reacted with the second partial stream of the starting mixture in a second reaction zone at temperatures of 600 ° to 1400 ° C.
- the process is intended to increase the yield of carbon monoxide and hydrogen.
- the blazing coke bed is replaced by the smoldering coke and / or other carbon carriers, e.g. Charcoal or brown coal smoked coke and supplied preheated fresh air are formed. So much preheated fresh air is supplied to the coke bed that a temperature level of 1000 to 1200 ° C. is maintained and the longer molecular chains contained in the carbonization gas can be split. It is disadvantageous for the environmental compatibility of such a system that the remaining solids in the coke bed are not melted and pollutants, such as heavy metal compounds, are not incorporated into them in an eluate-safe manner, so that they are washed out or leached out over time in an open landfill can.
- pollutants such as heavy metal compounds
- the object of the present invention is to provide a method for producing synthesis gas by thermal To create treatment of residues containing metallic and organic constituents in which the pollutant potential contained in the residues is destroyed and the formation of new pollutants is prevented, the resulting process products being usable as fillers, for example in construction, or at least capable of landfill and the chemical contained in the residues Energy at the highest possible level is used to produce a high-quality synthesis gas.
- FIG. 1 shows the basic sequence of the process according to the invention for the production of synthesis gas.
- the residual materials are first thermally separated into a gas and a solid stream at 300-500 ° C.
- the temperature in the pyrolysis stage is set so that, depending on the amount of chlorine or organochlorine compounds present in the feed, all polychlorinated hydrocarbons are completely converted into the gas phase.
- the treatment time is also to be controlled that no new pollutants can arise under the conditions prevailing in the pyrolysis. To ensure this task, a sufficient treatment time is required, which takes about 45-60 minutes when carried out, for example, in a rotary tube reactor. is.
- the gas and solid streams are fed separately for further treatment.
- the reusable constituents are comminuted and separated, e.g. of metals. This is done in a metal separator 4, from there the metal parts reach the melting furnace 5 in cleaned form.
- the non-metallic parts of the pyrolysis solids also contain heavy metals and salts, as well as elementary carbon and also non-volatile hydrocarbon parts. These enter a gasification zone, where CO, CO2, H2 and H2O are formed as gaseous products and liquid slag when oxygen-enriched air or oxygen is added at temperatures above 1450 ° C. The slag is withdrawn from the gasification zone, cooled and can be used as filler material or fed to the landfill.
- the gaseous products withdrawn from the gasification stage are mixed in the decomposition stage with the gaseous constituents from the pyrolysis, the amount of steam required for the production of synthesis gas being fed in at the same time.
- the stoichiometrically required amounts can be calculated from the analysis of the starting materials as well as the remaining solids from the pyrolysis and the oxygen content of the air blown in. They are to be calculated in such a way that the cracking and decomposition reactions required for the complete conversion of the hydrocarbons contained in the pyrolysis gases take place automatically, and the result is a synthesis gas with the desired composition.
- the feed contains metallic and organic components is gasified in several temperature levels, namely first at low temperatures in the pyrolysis (degassing) and then - separated from the pyrolysis gases - in a gasification zone at very high temperatures, while the pyrolysis gases at much lower temperatures, for example at 1000 ° C in the presence of water vapor to be converted into a gas mixture with a high proportion of 2 and CO.
- a regression of the polychlorinated hydrocarbons (denovo synthesis) is also ruled out, so that the raw synthetic gases coming from the decomposition stage only have to be subjected to wet cleaning in order to remove pollutants such as hydrogen chloride, ammonia and inorganic sulfur compounds from the gas.
- Another important feature of the synthesis gas production method according to the invention is that the oxygen is added at a location where neither organochlorine components nor hydrogen chloride are present. In addition, at this point at temperatures counteracted a formation of dioxin above 1450 ° C, so that even in the oxygen-containing gasification stage, the requirements set out above with regard to an environmentally friendly and energetically favorable synthesis gas process are met.
- the low-volatility hydrocarbons obtained with the solid from the pyrolysis can be used in the gasification, in that they contribute to an acceleration of the process step and thus the desired reactions can take place completely and without residue under the action of the high temperatures.
- steam jet compressors can advantageously be used for the task described, which compress the gas removed from the pyrolysis into the second gasification stage inject under pressure.
- This has the further advantage that the pyrolysis gases containing tar and oil vapor can be introduced into the gasification chamber in a very finely divided form.
- the inlet openings for the pyrolysis gases and the water vapor feed are arranged opposite one another, so that complete mixing of the gas components into a homogeneous reaction mixture is made possible.
- the process according to the invention is started at medium temperatures. This means that a final temperature of approximately 400 ° C. is set in the pyrolysis, a temperature of approximately 1750 ° C. in the gasification stage and a temperature of approximately 1100 ° C. in the decomposition stage. Then the composition of the raw synthesis gas is examined and more or less water vapor is introduced into the decomposition stage as required. If the temperature falls below 800 ° C, the temperature in the gasification stage must be raised. This is done by regulating the amount of oxygen supplied.
- the temperature in the gasification stage must be reduced if the amount of water vapor in the decomposition stage cannot be increased.
- the conditions in the pyrolysis must be changed in such a way that the carbon content is reduced by increasing the pyrolysis temperature.
- this can only be done satisfactorily up to an upper temperature limit of 500 ° C.
- the composition of the pyrolysis gases would be changed so that they could no longer be completely broken down to CO and H2 in the decomposition stage at the temperatures of 800 to 1250 ° C.
- the amount of oxygen required for the complete gasification of the pyrolysis residues is adjusted by regulating the gasification temperature in the range between 1700 and 1850 ° C.
- the pyrolysis gases are decomposed in an endothermic reaction, the temperature being regulated between 800 and 1250 ° C. by a controlled addition of steam.
- the optimum composition of the raw synthesis gas generated is used as a control means for regulation.
- Fluctuating residual material compositions can be compensated for by their temperature control in the gasification and decomposition stage by regulating the temperature of the pyrolysis process. This is done in an advantageous manner by controlling the content of "low-volatility hydrocarbons", the proportion of which is varied depending on the pyrolysis temperature in the pyrolysis solid. The content of low-volatility hydrocarbons in turn influences the temperature of the gasification process and the composition of the raw gases leaving the gasification.
- the proposed procedure a regression of the polychlorinated hydrocarbons (denovo synthesis) is prevented with certainty, since the oxygen is added at a place where neither organochlorine components nor hydrogen chloride are present.
- the raw synthetic gases coming from the decomposition stage only have to be subjected to wet cleaning in order to remove the pollutants which may have formed in the decomposition stage, such as hydrogen chloride, ammonia and inorganic sulfur compounds from the raw gas.
- the pressure energy of the water vapor can be used to increase the pressure of the pyrolysis gas.
- the introduction of the pyrolysis gas into the decomposition stage is facilitated by the excess pressure. Furthermore, advantageous operation of the gasification and decomposition stage under increased pressure is possible.
- I can advantageously use steam jet compressors that inject the gas removed from the pyrolysis into the decomposition stage under pressure.
- the tar and oil-containing pyrolysis gases can be introduced into the decomposition space in a very finely divided form.
- the basic diagram of synthesis gas production is explained in more detail below.
- the input materials E or residual materials such as packaging materials and plastic / metal composites are entered in pyrolysis 1. After a temperature treatment between 300 and 500 ° C, the pyrolysis gases PG and the pyrolysis solids PFM leave the pyrolysis 1 via separate lines.
- the pyrolysis solid PFM is very homogeneous and well prepared by the pyrolysis treatment, so that metal deposition can be carried out in the metal separator 4, with the result that the metal portion is fed to an oven 5, while the remaining constituents are fed into the gasification zone 3.1 as pyrolysis solid PF .
- Oxygen O also enters the gasification zone 3.1, which regulates the temperature in the gasification zone between 1700 ° C. and 1850 ° C.
- this gas is introduced into the decomposition stage 3.2 together with the pyrolysis gas PG and water vapor WD.
- a raw synthesis gas SR is generated, which is cleaned in a gas purification 6 and then leaves the system after a gas scrubbing 8 as a purified synthesis gas SG.
- the washing water can be passed through evaporator 9, the vapors B being advantageously introduced into the decomposer 3.2.
- the salts SA leave the evaporators 9 with the evaporated water.
- slag SC and from the furnace 5 a metal melt can be obtained, which can be processed to secondary metal in an advantageous manner.
- Feed water W is used for gas cleaning, which is introduced into gas cleaning 6 and leaves it as water vapor WD.
- the water vapor is input into the decomposition stage 3.2 to form synthesis gas and can advantageously also be used for the production of pressure energy in a steam jet compressor 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Processing Of Solid Wastes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von Synthesegas durch thermische Behandlung von Reststoffen enthaltend metallische und organische Bestandteile, insbesondere zur Behandlung von Verpackungsmaterialien aus Aluminium und Kunststoff, wobei man die Reststoffe in einer Pyrolysereaktion aufschließt, in eine Gas- und Feststoffphase trennt, die abgetrennte Feststoffphase in eine Vergasungsstufe eingibt und mit sauerstoffangereicherter Luft oder Sauerstoff vergast wird.The invention relates to a process for the production of synthesis gas by thermal treatment of residues containing metallic and organic constituents, in particular for the treatment of packaging materials made of aluminum and plastic, the residues being broken down in a pyrolysis reaction, separated into a gas and solid phase, the separated solid phase enters into a gasification stage and is gasified with oxygen-enriched air or oxygen.
Reststoffe der eingangs genannten Art fallen beispielsweise bei der getrennten Erfassung und Sortierung von Verpackungsmaterialien aus dem Haushaltsbereich oder als Produktionsrückstände an und bestehen üblicherweise aus Kunststoffen verschiedener Zusammensetzungen in Verbindung mit dünnen Metallfolien aus beispielsweise Aluminium.Residual materials of the type mentioned at the outset occur, for example, in the separate collection and sorting of packaging materials from the household sector or as production residues and usually consist of plastics of different compositions in connection with thin metal foils made of, for example, aluminum.
Üblicherweise sind Verpackungsmaterialien mit Lackierungen und/-oder Klebschichten versehen, die bei der Verarbeitung schadstoffhaltige Produkte ergeben, die eine Wiederverwertung im hohen Maße erschweren. Besonders hervorzuheben ist ein organisch gebundener Chloranteil, der auf in den Misch- Kunststoffen enthaltenes Polyvinylchlorid PVC zurückzuführen ist sowie auf polychlorierte Kohlenwasserstoffe wie PCB (polychlorierte Biphenyle) und andere, teils sehr toxische Verbindungen.Packaging materials are usually provided with varnishes and / or adhesive layers which, when processed, result in products containing harmful substances, which make recycling to a great extent difficult. Particularly noteworthy is an organically bound chlorine content, which can be attributed to polyvinyl chloride PVC contained in the mixed plastics, as well as to polychlorinated hydrocarbons such as PCB (polychlorinated biphenyls) and other, sometimes very toxic, compounds.
Desweiteren sind Schwefelverbindungen verschiedenster Zusammensetzung aber auch Schwermetalle in solchen Reststoffen zu finden. Zum Schluß sei noch auf das Problem der anhaftenden Inhaltsstoffe hingewiesen, die je nach Einsatzgebiet des Verpakkungsmaterials beispielsweise aus Arzneimittelresten, Lebensmittel aber auch aus verschiedenen Chemikalien, z.B. aus der Fotoindustrie, bestehen können.Furthermore, sulfur compounds of various compositions but also heavy metals can be found in such residues. Finally, the problem of the adherent ingredients pointed out, which, depending on the field of application of the packaging material, can consist of pharmaceutical residues, food, but also of various chemicals, for example from the photo industry.
Die Erzeugung von Synthesegas wie auch die Vergasung fester Materialien insgesamt sind in vielfältiger Weise erprobt und betrieben worden. Die eingesetzten Energieträger bestanden bisher jedoch in erster Linie aus Steinkohlen und -koks aber auch aus sogenannten "minderwertigen" Stoffen mit geringerem Heizwert, wie z.B. Braunkohlen, Torf und Holz. Die Beschaffenheit derartiger Einsatzmaterialien unterscheidet sich sowohl hinsichtlich ihrer physikalischen Konsistenz als auch hinsichtlich ihrer chemischen Zusammensetzung, insbesondere hinsichtlich des Wasserstoff-, Sauerstoff-\und Schadstoffgehaltes deutlich von den eingangs genannten Reststoffen. Daher ist eine unmittelbare Anwendung der bekannten Verfahren und Vorrichtungen auf die thermische Behandlung von Verpackungsmaterialien und Produktionsrückständen nicht möglich.The generation of synthesis gas as well as the gasification of solid materials as a whole have been tried and operated in a variety of ways. The energy sources used so far consisted primarily of hard coal and coke but also of so-called "inferior" substances with a lower calorific value, e.g. Lignite, peat and wood. The nature of such feed materials differs significantly in terms of their physical consistency as well as in terms of their chemical composition, in particular with regard to the hydrogen, oxygen and pollutant content, from the residues mentioned at the beginning. Therefore, the known methods and devices cannot be directly applied to the thermal treatment of packaging materials and production residues.
Aus W091/04306 ist ein Verfahren zur Herstellung von Synthesegas und anderen gasförmigen Produkten durch Verarbeitung von Reststoffen in einer Pyrolysestufe mit anschließender Auftrennung der Reststoffe in eine Gas- und Feststoffphase bekannt. Der die Pyrolyse verlassende Feststoff wird in eine Vergasungsstufe eingegeben und dort bei den für die gewünschten Produktströme erforderlichen Temperaturen vergast. Die Gase aus der Pyrolysestufe und aus der Vergasungsstufe werden über einen Separator geleitet und in die verschiedenen Produktströme (Teer, Öl und Brenngas) aufgeteilt. Weiterhin sind Verfahren bekannt, die die beim Pyrolyseprozeß anfallende Gasphase in Verbrennungseinrichtungen, in Einzelfällen gemeinsam mit den nicht direkt verwertbaren Feststoffen aus der Fraktionierung, einsetzen und energetisch verwerten. Die damit verbundene "Dioxinproblematik" (Dioxinbildung, -rückbildung und -zerstörung) führt zu einem erheblichen Aufwand bei der Reinigung der dabei anfallenden Rauchgase. Auch die Nutzung der prozeßintern anfallenden Abwärmen, z.B. zur Beheizung des Pyrolyseofens, ist nur mit einer aufwendigen Anlagenausrüstung zu realisieren.A process for the production of synthesis gas and other gaseous products by processing residues in a pyrolysis stage with subsequent separation of the residues into a gas and solid phase is known from W091 / 04306. The solid leaving the pyrolysis is introduced into a gasification stage and gasified there at the temperatures required for the desired product streams. The gases from the pyrolysis stage and from the gasification stage are passed through a separator and divided into the various product streams (tar, oil and fuel gas). Furthermore, processes are known which use the gas phase obtained in the pyrolysis process in combustion devices, in individual cases together with the solids from the fractionation which cannot be used directly, and utilize them energetically. The associated "dioxin problem" (dioxin formation, regression and destruction) leads to a considerable effort in the cleaning of the flue gases. The use of waste heat generated in the process, e.g. for heating the pyrolysis furnace can only be realized with complex plant equipment.
Nach FR-A-2 261 974 wird bei einem Verfahren zur Herstellung eines Wasserstoff und Kohlenmonoxid enthaltenen Gases das Einsatzmaterial aus Kohlepulver, sauerstoffhaltigem Gas und Dampf in zwei Teilströme aufgeteilt und in einer ersten Reaktionszone das Einsatzmaterial von Teilstrom 1 bei Temperaturen von 1200° bis 1700° C zu einem Produktgasgemisch aus Wasserstoff und Kohlenmonoxid umgesetzt. Danach wird das Produktgasgemisch in einer zweiten Reaktionszone bei Temperaturen von 600° bis 1400° C mit dem zweiten Teilstrom des Ausgangsgemisches umgesetzt. Das Verfahren soll dazu dienen, die Ausbeute an Kohlenmonoxid und Wasserstoff zu erhöhen.According to FR-A-2 261 974, in a process for producing a gas containing hydrogen and carbon monoxide, the feedstock from carbon powder, oxygen-containing gas and steam is divided into two substreams and, in a first reaction zone, the feedstock from
Aus DE-A 24 32 504 ist ein Verfahren bekannt, bei dem Abfall bei einer Temperatur von 300 bis 600° C unter Luftabschluß pyrolysiert und das dabei erhaltene Schwelgas kontinuierlich durch ein glutheißes Koksbett geleitet wird. Im Koksbett wird das Schwelgas zu einem Brenngas umgewandelt.From DE-A 24 32 504 a method is known in which waste is pyrolyzed at a temperature of 300 to 600 ° C with the exclusion of air and the carbonization gas obtained is continuously passed through a hot coke bed. The carbonization gas is converted into a fuel gas in the coke bed.
Das glutheiße Koksbett wird dabei durch den anfallenden Schwelkoks und/oder durch andere Kohlenstoffträger, wie z.B. Holzkohle oder Braunkohlen-Schwelkoks und zugeleiteter vorgewärmter Frischluft gebildet. Dem Koksbett wird dabei soviel vorgewärmte Frischluft zugeführt, daß ein Temperaturniveau von 1000 bis 1200° C gehalten und eine Spaltung der im Schwelgas enthaltenen längeren Molekülketten stattfinden kann. Es ist von Nachteil für die Umweltverträglichkeit einer solchen Anlage, daß die im Koksbett anfallenden restlichen Feststoffe nicht aufgeschmolzen und Schadstoffe, wie Schwermetallverbindungen, nicht eluatsicher in diesen eingebunden werden, so daß sie bei offener Lagerung auf einer Deponie mit der Zeit ausgewaschen bzw. ausgelaugt werden können.The blazing coke bed is replaced by the smoldering coke and / or other carbon carriers, e.g. Charcoal or brown coal smoked coke and supplied preheated fresh air are formed. So much preheated fresh air is supplied to the coke bed that a temperature level of 1000 to 1200 ° C. is maintained and the longer molecular chains contained in the carbonization gas can be split. It is disadvantageous for the environmental compatibility of such a system that the remaining solids in the coke bed are not melted and pollutants, such as heavy metal compounds, are not incorporated into them in an eluate-safe manner, so that they are washed out or leached out over time in an open landfill can.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung von Synthesegas durch thermische Behandlung von Reststoffen enthaltend metallische und organische Bestandteile zu schaffen, bei dem das in den Reststoffen enthaltene Schadstoffpotential zerstört und die Bildung neuer Schadstoffe unterbunden wird, wobei die entstehenden Verfahrensprodukte feste als Füllstoffe z.B. im Baubereich einsetzbar oder zumindest deponiefähig sind und die in den Reststoffen enthaltene chemische Energie auf möglichst hohem Niveau zur Herstellung eines hochwertigen Synthesegases genutzt wird.The object of the present invention is to provide a method for producing synthesis gas by thermal To create treatment of residues containing metallic and organic constituents in which the pollutant potential contained in the residues is destroyed and the formation of new pollutants is prevented, the resulting process products being usable as fillers, for example in construction, or at least capable of landfill and the chemical contained in the residues Energy at the highest possible level is used to produce a high-quality synthesis gas.
Diese Aufgabe wird erfindungsgemäß durch die im Patentanspruch 1 angegebenen Merkmale gelöst. Weitere bevorzugte Verfahrensvarianten sind den Unteransprüchen zu entnehmen.This object is achieved by the features specified in
In überraschender Weise konnte mit dem erfindungsgemäßen Verfahren in einer Zersetzungs- und einer Vergasungsstufe eine vollständige Zerstörung der organischen Kohlenwasserstoffe unter gleichzeitiger Bildung eines wertvollen wasserstoffreichen Synthesegases erreicht werden, wobei die aus der Umwandlung entstehenden Abbau- und Abfallprodukte als Schlacke aus dem Zersetzungsprozess abgezogen werden können und mit den evtl. anfallenden Schwermetallen zu mineralischen Glaskörpern erstarren. Sie lassen sich mit Vorteil als Füllstoffe oder Baumaterialien nutzen. Sie können aber auch zwischengelagert werden, da die Schadstoffe fest eingebunden und nicht auslaugbar sind.Surprisingly, with the process according to the invention, a complete destruction of the organic hydrocarbons with simultaneous formation of a valuable hydrogen-rich synthesis gas could be achieved in a decomposition and a gasification stage, the decomposition and waste products resulting from the conversion being able to be withdrawn as slag from the decomposition process and solidify with the possibly occurring heavy metals to mineral vitreous bodies. They can be used with advantage as fillers or building materials. However, they can also be stored temporarily because the pollutants are firmly integrated and cannot be leached out.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert.The invention is explained in more detail below using an exemplary embodiment.
In Fig. 1 ist der prinzipielle Ablauf des erfindungsgemäßen Verfahrens zur Synthesegasherstellung dargestellt.1 shows the basic sequence of the process according to the invention for the production of synthesis gas.
In der Pyrolysestufe wird bei 300-500 °C zunächst eine thermische Auftrennung der Reststoffe in einen Gas- und einen Feststoffstrom durchgeführt. Die Temperatur wird in der Pyrolysestufe so eingestellt, daß je nach der vorhandenen Menge an Chlor bzw. chlororganischen Verbindungen im Einsatzmaterial alle polychlorierten Kohlenwasserstoffe vollständig in die Gasphase überführt werden. Die Behandlungszeit ist ebenfalls so zu steuern, daß unter den bei der Pyrolyse herrschenden Bedingungen keine neuen Schadstoffe entstehen können. Zur Sicherstellung dieser Aufgabe ist eine ausreichende Behandlungszeit erforderlich, die bei Durchführung z.B. in einem Drehrohrreaktor ca. 45-60 min. beträgt.In the pyrolysis stage, the residual materials are first thermally separated into a gas and a solid stream at 300-500 ° C. The temperature in the pyrolysis stage is set so that, depending on the amount of chlorine or organochlorine compounds present in the feed, all polychlorinated hydrocarbons are completely converted into the gas phase. The treatment time is also to be controlled that no new pollutants can arise under the conditions prevailing in the pyrolysis. To ensure this task, a sufficient treatment time is required, which takes about 45-60 minutes when carried out, for example, in a rotary tube reactor. is.
Im Anschluß an die Pyrolyse werden der Gas- und der Feststoffstrom getrennt einer Weiterbehandlung zugeführt. Beim Feststoffstrom erfolgt eine Zerkleinerung und Abtrennung der wiederverwertbaren Bestandteile wie z.B. der Metalle. Dieses geschieht in einer Metallabscheidevorrichtung 4, von dort gelangen die Metallanteile in gereinigter Form in den Schmelzofen 5.Following the pyrolysis, the gas and solid streams are fed separately for further treatment. In the case of the solid stream, the reusable constituents are comminuted and separated, e.g. of metals. This is done in a
Die nichtmetallischen Anteile der Pyrolysefeststoffe enthalten außer Mineralien noch Schwermetalle und Salze sowie elementaren Kohlenstoff und auch schwer flüchtige Kohlenwasserstoffanteile. Diese gelangen in eine Vergasungszone, wo unter Zugabe von sauerstoffangereicherter Luft oder Sauerstoff bei Temperaturen von über 1450 °C CO, CO2, H2 und H2O als gasförmige Produkte sowie flüssige Schlacke entstehen. Die Schlacke wird aus der Vergasungszone abgezogen, abgekühlt und kann als Füllmaterial verwendet oder der Deponie zugeführt werden.In addition to minerals, the non-metallic parts of the pyrolysis solids also contain heavy metals and salts, as well as elementary carbon and also non-volatile hydrocarbon parts. These enter a gasification zone, where CO, CO2, H2 and H2O are formed as gaseous products and liquid slag when oxygen-enriched air or oxygen is added at temperatures above 1450 ° C. The slag is withdrawn from the gasification zone, cooled and can be used as filler material or fed to the landfill.
Die aus der Vergasungsstufe abgezogenen gasförmigen Produkte werden in der Zersetzungsstufe mit den gasförmigen Bestandteilen aus der Pyrolyse gemischt, wobei gleichzeitig die für die Herstellung von Synthesegas erforderliche Menge an Wasserdampf zugeführt wird. Die stöchiometrisch erforderlichen Mengen lassen sich aus der Analyse der Ausgangsstoffe sowie der verbleibenden Feststoffe aus der Pyrolyse und des Sauerstoffgehaltes der eingeblasenen Luft berechnen. Sie sind so zu berechnen, daß die zur vollständigen Umwandlung der im Pyrolysegase enthaltenen Kohlenwasserstoffe erforderlichen Spalt- und Zersetzungsreaktionen selbsttätig ablaufen und als Ergebnis ein Synthesegas mit der gewünschten Zusammensetzung entsteht.The gaseous products withdrawn from the gasification stage are mixed in the decomposition stage with the gaseous constituents from the pyrolysis, the amount of steam required for the production of synthesis gas being fed in at the same time. The stoichiometrically required amounts can be calculated from the analysis of the starting materials as well as the remaining solids from the pyrolysis and the oxygen content of the air blown in. They are to be calculated in such a way that the cracking and decomposition reactions required for the complete conversion of the hydrocarbons contained in the pyrolysis gases take place automatically, and the result is a synthesis gas with the desired composition.
Ein wesentlicher Erfindungsgedanke besteht darin, daß das Einsatzmaterial enthaltend metallische und organische Bestandteile in mehreren Temperaturstufen vergast wird, nämlich zunächst bei niedrigen Temperaturen in der Pyrolyse (Entgasung) und dann - getrennt von den Pyrolysegasen - in einer Vergasungszone bei sehr hohen Temperaturen, während die Pyrolysegase bei wesentlich niedrigeren Temperaturen, beispielsweise bei 1000 °C in Gegenwart von Wasserdampf zu einem Gasgemisch mit einem hohen Anteil an 2 und CO umgewandelt werden. Unter diesen Bedingungen ist auch eine Rückbildung der polychlorierten Kohlenwasserstoffe (denovo-Synthese) ausgeschlossen, so daß die aus der Zersetzungsstufe abgehenden Syntheserohgase nur noch einer nassen Reinigung unterzogen werden müssen, um Schadstoffe wie Chlorwasserstoff, Ammoniak und anorganische Schwefelverbindungen aus dem Gas zu entfernen.An essential idea of the invention is that the feed contains metallic and organic components is gasified in several temperature levels, namely first at low temperatures in the pyrolysis (degassing) and then - separated from the pyrolysis gases - in a gasification zone at very high temperatures, while the pyrolysis gases at much lower temperatures, for example at 1000 ° C in the presence of water vapor to be converted into a gas mixture with a high proportion of 2 and CO. Under these conditions, a regression of the polychlorinated hydrocarbons (denovo synthesis) is also ruled out, so that the raw synthetic gases coming from the decomposition stage only have to be subjected to wet cleaning in order to remove pollutants such as hydrogen chloride, ammonia and inorganic sulfur compounds from the gas.
Ein weiteres bedeutendes Merkmal der erfindungsgemäßen Herstellungsweise von Synthesegas besteht darin, daß die Sauerstoffzugabe an einem Ort erfolgt, an dem weder chlororganische Komponenten noch Chlorwasserstoff vorhanden sind. Hinzukommt, daß an dieser Stelle bei Temperaturen über 1450 °C einer Dioxinbildung entgegengewirkt wird, so daß auch in der sauerstoffhaltigen Vergasungsstufe die eingangs gestellten Anforderungen hinsichtlich einer umweltfreundlichen und energetisch günstig ablaufenden Synthesegasverfahren erfüllt werden.Another important feature of the synthesis gas production method according to the invention is that the oxygen is added at a location where neither organochlorine components nor hydrogen chloride are present. In addition, at this point at temperatures counteracted a formation of dioxin above 1450 ° C, so that even in the oxygen-containing gasification stage, the requirements set out above with regard to an environmentally friendly and energetically favorable synthesis gas process are met.
Dieses wird auch dadurch möglich, daß die mit dem Feststoff aus der Pyrolyse anfallenden schwerflüchtigen Kohlenwasserstoffe bei der Vergasung genutzt werden können, in dem sie zu einer Beschleunigung des Verfahrensschrittes beitragen und somit unter Einwirkung der hohen Temperaturen die erwünschten Reaktionen vollständig und rückstandsfrei ablaufen können.This is also made possible by the fact that the low-volatility hydrocarbons obtained with the solid from the pyrolysis can be used in the gasification, in that they contribute to an acceleration of the process step and thus the desired reactions can take place completely and without residue under the action of the high temperatures.
Der der Erfindung zugrundeliegende Gedanke einer mehrstufigen, temperaturangepaßten Aufschließung der Reststoffe kann noch durch eine nachfolgend beschriebene Druckregelung vervollständigt werden. Hierbei wird davon ausgegangen, daß die für die Synthesegaserzeugung erforderliche Energie im wesentlichen davon abhängt, bei welchen Temperaturen eine vollständige Durchspaltung des zugeführten Wasserdampfes möglich ist.The idea on which the invention is based, of a multi-stage, temperature-adapted digestion of the residues can be completed by a pressure control described below. It is assumed here that the energy required for the synthesis gas generation essentially depends on the temperatures at which a complete separation of the supplied water vapor is possible.
Es hat sich nun überraschender Weise gezeigt, daß eine Druckerhöhung in der zweiten Vergasungsstufe für eine vollständige Umsetzung der aus der Pyrolyse abgezogenen und in die Zersetzungsstufe eingeführten Pyrolysegase mit Vorteil genutzt werden kann.It has now surprisingly been found that an increase in pressure in the second gasification stage can be used to advantage for a complete conversion of the pyrolysis gases withdrawn from the pyrolysis and introduced into the decomposition stage.
Beispielsweise lassen sich für die beschriebene Aufgabe mit Vorteil Dampfstrahlverdichter einsetzen, die das aus der Pyrolyse entnommene Gas in die zweite Vergasungsstufe unter Druck eindüsen. Dieses hat den weiteren Vorteil, daß die teer- und Öldampfhaltigen Pyrolysegase sehr fein verteilt in die Vergasungskammer eingegeben werden können. In einer bevorzugten Ausführungsform sind die Einlaßöffnungen für die Pyrolysegase und die Wasserdampfeinspeisung gegenüberliegend angeordnet, so daß eine vollständige Durchmischung der Gasbestandteile zu einem homogenen Reaktionsgemisch ermöglicht ist.For example, steam jet compressors can advantageously be used for the task described, which compress the gas removed from the pyrolysis into the second gasification stage inject under pressure. This has the further advantage that the pyrolysis gases containing tar and oil vapor can be introduced into the gasification chamber in a very finely divided form. In a preferred embodiment, the inlet openings for the pyrolysis gases and the water vapor feed are arranged opposite one another, so that complete mixing of the gas components into a homogeneous reaction mixture is made possible.
Das erfindungsgemäße Verfahren kann durch folgende Parameter gesteuert werden:
- 1.
- Menge des zugegebenen Sauerstoffs bzw. Luft in die Vergasungsstufe
- 2.
- Menge des in den Pyrolysefeststoffen enthaltenen Kohlenstoffanteils bzw. Kohlenwasserstoffverbindungen
- 3.
- Menge des in die Zersetzungsstufe eingeleiteten Wasserdampfes
- 4.
- Menge und Zusammensetzung der Pyrolysegase
- 1.
- Amount of oxygen or air added to the gasification stage
- 2nd
- Amount of carbon or hydrocarbon compounds contained in the pyrolysis solids
- 3rd
- Amount of water vapor introduced into the decomposition stage
- 4th
- Amount and composition of the pyrolysis gases
Diese Parameter werden nach folgenden Gesichtspunkten eingestellt:These parameters are set according to the following criteria:
Zunächst wird das erfindungsgemäße Verfahren bei mittleren Temperaturen angefahren. Dies bedeutet, daß in der Pyrolyse eine Endtemperatur von ca. 400 °C, in der Vergasungsstufe eine Temperatur von ca. 1750 °C und in der Zersetzungsstufe eine Temperatur von etwa 1100 °C eingestellt werden. Dann wird die Zusammensetzung des Syntheserohgases untersucht und je nach Bedarf mehr oder weniger Wasserdampf in die Zersetzungsstufe eingeleitet. Falls dabei die Temperatur von 800 °C unterschritten wird, muß die Temperatur in der Vergasungsstufe angehoben werden. Dies geschieht durch Regelung der zugeführten Sauerstoffmenge.First of all, the process according to the invention is started at medium temperatures. This means that a final temperature of approximately 400 ° C. is set in the pyrolysis, a temperature of approximately 1750 ° C. in the gasification stage and a temperature of approximately 1100 ° C. in the decomposition stage. Then the composition of the raw synthesis gas is examined and more or less water vapor is introduced into the decomposition stage as required. If the temperature falls below 800 ° C, the temperature in the gasification stage must be raised. This is done by regulating the amount of oxygen supplied.
Bei Überschreitung einer Temperaturobergrenze von 1250 °C in der Zersetzungsstufe muß die Temperatur in der Vergasungsstufe herabgesetzt werden, falls die Wasserdampfmenge in der Zersetzungsstufe nicht erhöht werden kann. Dabei besteht allerdings die Gefahr, daß die aus der Vergasungestufe abfließende Schlacke noch einen zu hohen Kohlenstoffgehalt aufweist oder eine zu geringe Viscosität besitzt. In diesem Fall müssen die Bedingungen in der Pyrolyse geändert werden und zwar in der Weise, daß der Kohlenstoffgehalt durch Erhöhung der Pyrolysetemperatur abgesenkt wird. Dieses gelingt allerdings nur bis zu einer Temperaturobergrenze von 500 °C in zufriedenstellender Weise. Darüber hinaus würde bei einer weiteren Temperaturerhöhung die Zusammensetzung der Pyrolysegase so verändert, daß diese in der Zersetzungsstufe bei den dort herrschenden Temperaturen von 800 bis 1250 °C nicht mehr vollständig zu CO und H₂ abgebaut werden könnten.If a temperature limit of 1250 ° C is exceeded in the decomposition stage, the temperature in the gasification stage must be reduced if the amount of water vapor in the decomposition stage cannot be increased. However, there is a risk that the slag flowing out of the gasification stage will still have an excessively high carbon content or an insufficient viscosity. In this case, the conditions in the pyrolysis must be changed in such a way that the carbon content is reduced by increasing the pyrolysis temperature. However, this can only be done satisfactorily up to an upper temperature limit of 500 ° C. In addition, with a further increase in temperature, the composition of the pyrolysis gases would be changed so that they could no longer be completely broken down to CO and H₂ in the decomposition stage at the temperatures of 800 to 1250 ° C.
Im folgenden wird ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens näher erläutert:An exemplary embodiment of the method according to the invention is explained in more detail below:
Die zur vollständigen Vergasung der Pyrolyse-Reststoffe notwendige Sauerstoffmenge wird durch Regelung der Vergasungstemperatur im Bereich zwischen 1700 bis 1850 °C eingestellt. In der anschließenden Zersetzungsstufe werden die Pyrolysegase in einer endothermen Reaktion zersetzt, wobei die Temperatur durch eine gesteuerte Wasserdampfzugabe zwischen 800 und 1250 °C geregelt wird. Als Kontrollmittel wird die optimale Zusammensetzung des erzeugten Syntheserohgases zur Regelung herangezogen.The amount of oxygen required for the complete gasification of the pyrolysis residues is adjusted by regulating the gasification temperature in the range between 1700 and 1850 ° C. In the subsequent decomposition stage, the pyrolysis gases are decomposed in an endothermic reaction, the temperature being regulated between 800 and 1250 ° C. by a controlled addition of steam. The optimum composition of the raw synthesis gas generated is used as a control means for regulation.
Schwankende Reststoffzusammensetzungen können durch eine Temperaturregelung des Pyrolyseprozesses in ihrer Auswirkung auf die Vergasungs- und Zersetzungsstufe ausgeglichen werden. Dies geschieht in vorteilhafter Weise über die Steuerung des Gehaltes an "schwerflüchtigen Kohlenwasserstoffen", deren Anteil in Abhängigkeit von der Pyrolysetemperatur im Pyrolysefeststoff variiert wird. Der Gehalt an schwerflüchtigen Kohlenwasserstoffen beeinflußt aber wiederum die Temperatur des Vergasungsprozesses und die Zusammensetzung der die Vergasung verlassenden Rohgase.Fluctuating residual material compositions can be compensated for by their temperature control in the gasification and decomposition stage by regulating the temperature of the pyrolysis process. This is done in an advantageous manner by controlling the content of "low-volatility hydrocarbons", the proportion of which is varied depending on the pyrolysis temperature in the pyrolysis solid. The content of low-volatility hydrocarbons in turn influences the temperature of the gasification process and the composition of the raw gases leaving the gasification.
Nach der vorgeschlagenen Verfahrensweise wird eine Rückbildung der polychlorierten Kohlenwasserstoffe (denovo-Synthese) mit Sicherheit unterbunden, da die Sauerstoffzugabe an einem Ort erfolgt, an dem weder chlororganische Komponenten noch Chlorwasserstoff vorhanden sind. So müssen die aus der Zersetzungsstufe abgehenden Syntheserohgase nur noch einer nassen Reinigung unterzogen werden, um die in der Zersetzungsstufe eventuell gebildeten Schadstoffe, wie Chlorwasserstoff, Ammoniak und anorganische Schwefelverbindungen aus dem Rohgas zu entfernen.According to the proposed procedure, a regression of the polychlorinated hydrocarbons (denovo synthesis) is prevented with certainty, since the oxygen is added at a place where neither organochlorine components nor hydrogen chloride are present. For example, the raw synthetic gases coming from the decomposition stage only have to be subjected to wet cleaning in order to remove the pollutants which may have formed in the decomposition stage, such as hydrogen chloride, ammonia and inorganic sulfur compounds from the raw gas.
Bei der Zufuhr von Pyrolysegas in die Zersetzungsstufe kann die Druckenergie des Wasserdampfes zur Druckerhöhung des Pyrolysegases genutzt werden. Durch den Überdruck wird die Einbringung des Pyrolysegases in die Zersetzungsstufe erleichtert. Ferner ist ein vorteilhafter Betrieb der Vergasungs- und Zersetzungsstufe unter erhöhtem Druck möglich.When pyrolysis gas is fed into the decomposition stage, the pressure energy of the water vapor can be used to increase the pressure of the pyrolysis gas. The introduction of the pyrolysis gas into the decomposition stage is facilitated by the excess pressure. Furthermore, advantageous operation of the gasification and decomposition stage under increased pressure is possible.
Dabei lassen eich mit Vorteil Dampfstrahlverdichter einsetzen, die das aus der Pyrolyse entnommene Gas in die Zersetzungsstufe unter Druck eindüsen. Durch das Eindüsen können die teer- und ölhaltigen Pyrolysegase sehr fein verteilt in den Zersetzungsraum eingegeben werden.Here, I can advantageously use steam jet compressors that inject the gas removed from the pyrolysis into the decomposition stage under pressure. By means of the injection, the tar and oil-containing pyrolysis gases can be introduced into the decomposition space in a very finely divided form.
Im folgenden wird das Prinzipbild der Synthesegaserzeugung näher erläutert. Die Einsatzstoffe E bzw. Reststoffe wie Verpackungsmaterialien und Kunststoff/Metallverbunde werden in die Pyrolyse 1 eingegeben. Nach einer Temperaturbehandlung zwischen 300 und 500 °C verlassen die Pyrolysegase PG und die Pyrolysefeststoffe PFM die Pyrolyse 1 über getrennte Leitungen.The basic diagram of synthesis gas production is explained in more detail below. The input materials E or residual materials such as packaging materials and plastic / metal composites are entered in
Der Pyrolysefeststoff PFM ist durch die Pyrolysebehandlung sehr homogen und gut aufbereitet, so daß eine Metallabscheidung in dem Metallabscheider 4 durchgeführt werden kann mit dem Ergebnis, daß der Metallanteil einem Ofen 5 zugeführt wird, während die übrigen Bestandteile als Pyrolysefeststoff PF in die Vergasungszone 3.1 eingegeben werden. Weiterhin gelangt Sauerstoff O in die Vergasungszone 3.1, wodurch die Temperatur zwischen 1700 °C und 1850 °C in der Vergasungszone geregelt wird.The pyrolysis solid PFM is very homogeneous and well prepared by the pyrolysis treatment, so that metal deposition can be carried out in the
Sobald der Kohlenstoffgehalt des Pyrolysefeststoffes PF in Kohlenmonoxid CO umgesetzt ist, wird dieses Gas in die Zersetzungsstufe 3.2 zusammen mit dem Pyrolysegas PG und Wasserdampf WD eingegeben. Bei Temperaturen zwischen 800 und 1250 °C wird ein Syntheserohgas SR erzeugt, das in einer Gasreinigung 6 gereinigt und anschließend nach einer Gaswäsche 8 als gereinigtes Synthesegas SG die Anlage verläßt.As soon as the carbon content of the pyrolysis solid PF has been converted into carbon monoxide CO, this gas is introduced into the decomposition stage 3.2 together with the pyrolysis gas PG and water vapor WD. At temperatures between 800 and 1250 ° C., a raw synthesis gas SR is generated, which is cleaned in a
Wie bekannt, kann das Waschwasser durch Eindampfer 9 geleitet werden, wobei die Brüden B zweckmäßiger Weise in den Zersetzer 3.2 eingeleitet werden. Mit dem eingedampften Wasser verlassen die Salze SA die Eindampfer 9. Ferner können aus der Vergasungsstufe 3.1 Schlacke SC und aus dem Ofen 5 eine Metallschmelze gewonnen werden, die sich in vorteilhafter Weise zu Sekundärmetall verarbeiten läßt.As is known, the washing water can be passed through
Zur Gasreinigung wird Speisewasser W verwendet, daß in die Gasreinigung 6 eingeleitet und diesen als Wasserdampf WD verläßt. Der Wasserdampf wird in die Zersetzungsstufe 3.2 zur Bildung von Synthesegas eingegeben und kann vorteilhafterweise auch noch für die Herstellung von Druckenergie in einem Dampfstrahlverdichter 2 eingesetzt werden.Feed water W is used for gas cleaning, which is introduced into gas cleaning 6 and leaves it as water vapor WD. The water vapor is input into the decomposition stage 3.2 to form synthesis gas and can advantageously also be used for the production of pressure energy in a
Claims (8)
- A process of producing synthetic gas by thermally treating residual materials containing metallic and organic constituents, especially for treating packaging materials consisting of aluminium and plastics, with the residual materials being opened up in a pyrolysis reaction, being separated into a gas phase and solid substance phase and with the separated solid substance phase being fed into a gasification stage and being gasified with oxygen-enriched air or oxygen,characterised inthat the residual materials are heated in a pyrolysis reaction at a temperature of 300-500 °C until the chloro-organic hydrocarbons have been transferred completely into the gas phase; that after separation of the metallic constituents, the remaining solid substance phase is gasified in the gasification stage at temperatures ranging between 1450 and 1850 °C under reducing conditions; that the ash components occurring in the gasification stage are extracted in the form of a vitrified slag; and that, in a decomposition stage, with water vapour being added simultaneously, the gas phase leaving the pyrolysis, together with the gases which occurred in the gasification stage, are converted into synthetic gas at temperatures ranging between 800 and 1250 °C.
- A process according to claim 1,characterised inthat, after separation of the metallic constituents, the solid substances originating from the pyrolysis stage, during the first gasification stage, are heated to a temperature which is sufficient for completely converting the organic part into a gas phase consisting of CO, CO₂, H₂ and H₂O.
- A process according to any one of the preceding claims, characterised in
that transformation of the gases in the decomposition stage takes place under increased pressure. - A process according to any one of the preceding claims, characterised in
that the pyrolysis gases are introduced into the decomposition stage at an increased pressure and directly brought into contact with the water vapour. - A process according to any one of the preceding claims, characterised in
that the synthetic gas is cleansed, that the washing water is evaporated and that part of the water-vapour containing exhaust steam contained therein is used for decomposing the pyrolysis gases. - A process according to any one of the preceding claims, characterised in
that the water vapour required for decomposing the pyrolysis gases is used to operate a steam jet compressor. - A process according to any one of the preceding claims, characterised in
that the slag extracted from the first gasification stage is used for heating the water vapour needed for the decomposition of the pyrolysis gases. - A process according to any one of the preceding claims, characterised in
that oxygen-enriched air is introduced in the gasification stage and that the resulting gases are transferred into a decomposition reactor, whereas the ash parts are extracted in the form of a liquid gas slag, cooled and consolidated; that the pyrolysis gases are introduced into the decomposition reactor together with the water vapour; and that the resulting synthetic gases are guided through a cooling and washing device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4209549A DE4209549A1 (en) | 1992-03-24 | 1992-03-24 | Processes for the thermal treatment of residues, e.g. for the separation and recycling of metal compounds with organic components, using a combination of pyrolysis and gasification |
DE4209549 | 1992-03-24 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0563777A2 EP0563777A2 (en) | 1993-10-06 |
EP0563777A3 EP0563777A3 (en) | 1993-11-18 |
EP0563777B1 true EP0563777B1 (en) | 1996-05-29 |
Family
ID=6454891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93104882A Expired - Lifetime EP0563777B1 (en) | 1992-03-24 | 1993-03-24 | Process for production of synthesis gas by thermal treatment of raw materials containing metallic and organic substances |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0563777B1 (en) |
AT (1) | ATE138679T1 (en) |
DE (2) | DE4209549A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19730385A1 (en) * | 1997-07-16 | 1999-01-21 | Krc Umwelttechnik Gmbh | Generation of fuel- and synthesis gas from domestic waste char |
WO2021069394A1 (en) | 2019-10-09 | 2021-04-15 | Reissner Markus | Process and system for producing a hydrocarbon-containing and hydrogen-containing gas mixture from plastic |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4308551A1 (en) * | 1993-03-17 | 1994-01-05 | Siemens Ag | Thermal waste disposal process - involves gasification of carbonisation fines to reduce process costs |
DE69430639T2 (en) * | 1993-10-19 | 2002-08-29 | Mitsubishi Jukogyo K.K., Tokio/Tokyo | Process for gasification of glass fiber reinforced plastics |
DE69412559T2 (en) * | 1993-10-19 | 1999-03-25 | Mitsubishi Jukogyo K.K., Tokio/Tokyo | Process for the gasification of organic matter |
DE4402565B4 (en) * | 1994-01-28 | 2005-05-04 | Siemens Ag | Use at least one separation aid for the separation of sticky dusts in a device for waste processing |
DE4404673C2 (en) * | 1994-02-15 | 1995-11-23 | Entec Recycling Und Industriea | Process for the production of fuel gas |
DE4435144A1 (en) * | 1994-09-30 | 1996-04-04 | Kloeckner Humboldt Deutz Ag | Process and plant for thermal recycling of waste materials |
DE4446803C2 (en) * | 1994-12-24 | 1998-05-28 | Krc Umwelttechnik Gmbh | Process and device for thermal and material recycling of residual and waste materials |
DE19513832B4 (en) * | 1995-04-12 | 2005-08-11 | Future Energy Gmbh | Process for recycling residual and waste materials by combining a fluidized-bed thermolysis with an entrainment gasification |
IT1289557B1 (en) * | 1996-01-19 | 1998-10-15 | Texas Instruments Italia Spa | PROCEDURE FOR OBTAINING SYNTHESIS GAS FROM INDUSTRIAL SOLID OR LIQUID WASTE WITH HIGH CONTENT OF VOLATILE MATERIAL |
NL1007710C2 (en) * | 1997-12-05 | 1999-06-08 | Gibros Pec Bv | Method for processing waste or biomass material. |
DE19843613C2 (en) * | 1998-09-23 | 2000-12-07 | Harald Martin | Process and device for processing waste products and waste materials |
FR2786196A1 (en) * | 1998-11-20 | 2000-05-26 | Air Liquide | COMBUSTION PROCESS, PARTICULARLY FOR THE CASTING OF CAST IRON OR THE MANUFACTURE OF CEMENT |
DE19937524A1 (en) * | 1999-08-03 | 2001-02-15 | Harald Martin | Method and device for removing waste products and waste materials |
DE19937521A1 (en) | 1999-08-03 | 2001-02-15 | Harald Martin | Process and device for drying, separating, classifying and decomposing waste products |
DE102007034139A1 (en) | 2007-07-21 | 2009-01-22 | Helmut Hoffmann | Method for thermal treatment of wet wastes, production residues and other residual substances having native organic or synthetic organic constituents, involves shredding coarse particle material mixtures mechanically |
UY33038A (en) | 2009-11-20 | 2011-06-30 | Rv Lizenz Ag | THERMAL AND CHEMICAL USE OF CABONACE SUBSTANCES IN PARTICULAR FOR THE GENERATION OF ENERGY WITHOUT EMISSIONS |
EP2696982A2 (en) | 2011-04-13 | 2014-02-19 | Alter NRG Corp | Process and apparatus for treatment of incinerator ash |
DE102012017107A1 (en) | 2012-08-28 | 2014-03-06 | Linde Aktiengesellschaft | Heating a process exhaust |
DE102013008518A1 (en) | 2013-05-16 | 2014-11-20 | Linde Aktiengesellschaft | Process and plant for the at least partial gasification of solid, organic feedstock |
DE102013008519A1 (en) | 2013-05-16 | 2014-11-20 | Linde Aktiengesellschaft | Process and plant for the at least partial gasification of solid, organic feedstock |
DE102013009950A1 (en) | 2013-06-13 | 2014-12-18 | Linde Aktiengesellschaft | Process and plant for the treatment and thermal gasification of hydrous organic feedstock |
DE102013012661A1 (en) | 2013-07-30 | 2015-02-05 | Linde Aktiengesellschaft | Process and installation for enriching a synthesis gas generated by gasification with hydrogen |
DE102013014042A1 (en) | 2013-08-22 | 2015-02-26 | Linde Aktiengesellschaft | Process and plant for the at least partial gasification of solid, organic feedstock |
DE102013015536A1 (en) | 2013-09-18 | 2015-03-19 | Linde Aktiengesellschaft | Process and plant for the at least partial gasification of solid, organic feedstock |
DE102013015539A1 (en) | 2013-09-18 | 2015-03-19 | Linde Aktiengesellschaft | Plant and process for the at least partial gasification of solid organic feedstock |
DE102013017546A1 (en) | 2013-10-22 | 2015-04-23 | Linde Aktiengesellschaft | Process and plant for the gasification of feedstock |
DE102013017945A1 (en) | 2013-10-29 | 2015-04-30 | Linde Aktiengesellschaft | power plant |
DE102013018332A1 (en) | 2013-10-31 | 2015-04-30 | Linde Aktiengesellschaft | Device for introducing solid organic feed into a gasification plant |
DE102013018992A1 (en) | 2013-11-13 | 2015-05-13 | Linde Aktiengesellschaft | Apparatus for supplying gasification agent into a low-temperature gasifier |
DE102013019655A1 (en) | 2013-11-23 | 2015-05-28 | Linde Aktiengesellschaft | Container for a low temperature carburetor |
DE102013020792A1 (en) | 2013-12-11 | 2015-06-11 | Linde Aktiengesellschaft | Process and plant for the gasification of solid, organic feedstock |
DE102013020890A1 (en) | 2013-12-11 | 2015-06-11 | Linde Aktiengesellschaft | Process and plant for the at least partial gasification of solid, organic feedstock |
DE102013020889A1 (en) | 2013-12-11 | 2015-06-11 | Linde Aktiengesellschaft | Process and plant for the at least partial gasification of solid, organic feedstock |
DE102014016407A1 (en) | 2014-11-05 | 2016-05-12 | Linde Aktiengesellschaft | Process for the production of synthesis gas |
DE102014016401A1 (en) | 2014-11-05 | 2016-05-12 | Linde Aktiengesellschaft | Process for using CO2 in syngas production |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1491465A (en) * | 1974-02-21 | 1977-11-09 | Shell Int Research | Process for the production of hydrogen and carbon monoxide-containing gas |
CA1077271A (en) * | 1974-09-23 | 1980-05-13 | Louis D. Friedman | Coal gasification |
US4229185A (en) * | 1975-11-10 | 1980-10-21 | Occidental Petroleum Corporation | Process for the gasification of carbonaceous materials |
AU527314B2 (en) * | 1980-01-24 | 1983-02-24 | Tosco Corp. | Producing gas from coal |
DE3049250C2 (en) * | 1980-12-27 | 1985-10-24 | Kernforschungsanlage Jülich GmbH, 5170 Jülich | Equipment with smoldering drum and shaft furnace |
DE3310534A1 (en) * | 1983-03-23 | 1984-10-04 | C. Deilmann AG, 4444 Bad Bentheim | DEVICE FOR RECOVERING ENERGY FROM PYROLIZABLE, CARBONATED WASTE MATERIALS, ALTERNATING COMPOSITION |
DE3828534A1 (en) * | 1988-08-23 | 1990-03-08 | Gottfried Dipl Ing Roessle | METHOD FOR UTILIZING ENERGY-BASED MEASUREMENT, DEVICE FOR IMPLEMENTING THE METHOD AND USE OF A PRODUCT RECEIVED FROM RECYCLING |
US4977840A (en) * | 1989-09-20 | 1990-12-18 | American Waste Reduction Corporation | Minimization of environmental wastes |
-
1992
- 1992-03-24 DE DE4209549A patent/DE4209549A1/en not_active Withdrawn
-
1993
- 1993-03-24 EP EP93104882A patent/EP0563777B1/en not_active Expired - Lifetime
- 1993-03-24 DE DE59302721T patent/DE59302721D1/en not_active Expired - Fee Related
- 1993-03-24 AT AT93104882T patent/ATE138679T1/en active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19730385A1 (en) * | 1997-07-16 | 1999-01-21 | Krc Umwelttechnik Gmbh | Generation of fuel- and synthesis gas from domestic waste char |
DE19730385C2 (en) * | 1997-07-16 | 2002-08-29 | Bbp Power Plants Gmbh | Method for producing fuel and synthesis gas from fuels and combustible waste and an apparatus for carrying out the method |
DE19730385C5 (en) * | 1997-07-16 | 2006-06-08 | Future Energy Gmbh | Process for the production of fuel and synthesis gas from fuels and combustible waste and an apparatus for carrying out the process |
WO2021069394A1 (en) | 2019-10-09 | 2021-04-15 | Reissner Markus | Process and system for producing a hydrocarbon-containing and hydrogen-containing gas mixture from plastic |
Also Published As
Publication number | Publication date |
---|---|
EP0563777A2 (en) | 1993-10-06 |
DE59302721D1 (en) | 1996-07-04 |
DE4209549A1 (en) | 1993-09-30 |
EP0563777A3 (en) | 1993-11-18 |
ATE138679T1 (en) | 1996-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0563777B1 (en) | Process for production of synthesis gas by thermal treatment of raw materials containing metallic and organic substances | |
DE4130416C1 (en) | ||
EP0126407B1 (en) | Process for recovering a useful gas from waste by pyrolysis, and apparatus for carrying out the process | |
EP0600923B1 (en) | Process for producing synthetic or fuel gasses from solid or pasty residues and waste or low-grade fuels in a gasifying reactor | |
DE102007062414A1 (en) | Autothermic process for the continuous gasification of carbon-rich substances | |
CH615215A5 (en) | ||
WO1981000112A1 (en) | Process and plant for the gazification of solid fuels | |
DE4435349C1 (en) | Destruction of pollutants and gasifying of waste in a fluidised bed | |
DE2419517C3 (en) | Method and device for producing reducing gas | |
EP0531371B1 (en) | Process and device for utilizing organic wastes | |
DE10348142B3 (en) | Process and plant for the production of synthesis gas from residues | |
DE2910287A1 (en) | METHOD FOR HYDROGENATING SOLID CARBON MATERIAL | |
EP3580312B1 (en) | Preparation of synthesegas from carbonated substances by means of a combined cocurrent-contercurrent process | |
DE69808259T2 (en) | METHOD FOR TREATING A METAL CONTAINING METAL AND ORGANIC SUBSTANCES BY MEANS OF METAL SEPARATION | |
DE2825429A1 (en) | METHOD OF PYROLYSIS OF MUELL | |
DE4017089C3 (en) | Method and device for vegasing plastics for the production of synthesis gas | |
DE2834717C2 (en) | Method and device for combined waste recycling and waste water treatment | |
EP1203060B1 (en) | Method and apparatus for utilizing gas from a sedimentation basin | |
DE19513832B4 (en) | Process for recycling residual and waste materials by combining a fluidized-bed thermolysis with an entrainment gasification | |
DE4009798C2 (en) | ||
DE2323654C3 (en) | Process for converting solid waste into usable gaseous products | |
DE10010358A1 (en) | Process for gasifying combustible material comprises pyrolyzing in a first reactor with the exclusion of oxygen and introducing energy to the first reactor by introducing a part of the gaseous reaction products of the second reactor | |
WO1999025790A1 (en) | Method for producing synthesis gas or liquid hydrocarbons out of renewable raw or refuse materials containing cellulose | |
DE4304982A1 (en) | Method and appliance for recovering valuable substances from thermosetting plastic materials and from their composites | |
EP4414440A1 (en) | Method and plant for gasifying a solid carbon-containing raw material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE DE ES FR GB GR IT NL PT SE |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE DE ES FR GB GR IT NL PT SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VAW ALUMINIUM AG Owner name: THYSSEN STILL OTTO ANLAGENTECHNIK GMBH |
|
17P | Request for examination filed |
Effective date: 19931228 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KREBBER, FRANK Inventor name: ROSSEL, HARTMUT DR.-ING. Inventor name: DOBERT, HELMUT |
|
17Q | First examination report despatched |
Effective date: 19950214 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FR GB GR IT NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960529 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19960529 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960529 Ref country code: GB Effective date: 19960529 Ref country code: FR Effective date: 19960529 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960529 Ref country code: BE Effective date: 19960529 |
|
REF | Corresponds to: |
Ref document number: 138679 Country of ref document: AT Date of ref document: 19960615 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59302721 Country of ref document: DE Date of ref document: 19960704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960829 Ref country code: PT Effective date: 19960829 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19960529 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970324 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: NOELL-KRC ENERGIE- UND UMWELTTECHNIK GMBH, ZWEIGNI Effective date: 19970228 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBO | Opposition rejected |
Free format text: ORIGINAL CODE: EPIDOS REJO |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19981129 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000921 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020101 |