EP0502849B1 - Electronic fuel-supply control system for an internal-combustion engine - Google Patents

Electronic fuel-supply control system for an internal-combustion engine Download PDF

Info

Publication number
EP0502849B1
EP0502849B1 EP90914675A EP90914675A EP0502849B1 EP 0502849 B1 EP0502849 B1 EP 0502849B1 EP 90914675 A EP90914675 A EP 90914675A EP 90914675 A EP90914675 A EP 90914675A EP 0502849 B1 EP0502849 B1 EP 0502849B1
Authority
EP
European Patent Office
Prior art keywords
signal
control system
sum
electronic control
δwk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90914675A
Other languages
German (de)
French (fr)
Other versions
EP0502849A1 (en
Inventor
Eberhard Schnaibel
Rudi Mayer
Thomas GÖLZER
Bernhard Ebinger
Dieter Schuler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0502849A1 publication Critical patent/EP0502849A1/en
Application granted granted Critical
Publication of EP0502849B1 publication Critical patent/EP0502849B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions

Definitions

  • the invention is based on an electronic control system for fuel metering in an internal combustion engine with sensors for load, speed and temperature, means for determining a basic injection quantity signal and a transition compensation signal for adapting the metered fuel quantity in the event of acceleration and deceleration according to the type of the main claim (compare US A-4 852 538).
  • a fuel metering system is known from DE-OS 30 42 246 and the corresponding US Pat. No. 4,440,136, in which an enrichment factor is formed according to a certain formula for acceleration enrichment and the individual components of the formula are retrievable from memories depending on the load and speed.
  • FM 1 is speed and load dependent and FM 2 is temperature dependent.
  • DE-OS 36 23 041 and the corresponding US patent application SN 169 274 describe a method for metering fuel in the event of acceleration known that takes into account the temporal relationship between the occurrence of the acceleration request signal and the intake valve times, so that the required additional amount of fuel for realizing the acceleration request can be metered as optimally as possible.
  • provision is made, inter alia, to distribute the calculated additional quantity of fuel over a number of successive metering processes or to provide so-called intermediate splashes.
  • the physical problem with acceleration enrichment is to provide the required additional quantity in the combustion chambers of the internal combustion engine itself. This is particularly difficult at low temperatures because part of the amount of fuel metered into the intake manifold then condenses on the walls of the intake manifold and is therefore ultimately not immediately available to the actual combustion process.
  • the fuel depositing on the inner wall of the intake manifold forms a so-called fuel wall film. In addition to the design, it is primarily temperature, speed and load dependent. Since the assembly and disassembly of the fuel wall film in the case of non-stationary operating states of the internal combustion engine can only be controlled with great difficulty, different approaches for describing the wall film have become known in the literature. A basic work on this can be found in the SAE paper 810494 "Transient A / F Control Caracteristics of the 5 liter Central Fuel Injection Engine" by CF Aquino.
  • the object of the present invention is to provide an electronic control system for the fuel metering in an internal combustion engine, in which an optimal transition behavior with regard to exhaust gas is achieved during acceleration and deceleration processes.
  • the control system for fuel metering according to the invention is characterized by good exhaust gas behavior in the transition mode, in that a transition compensation signal for adapting the metered fuel quantity in the event of acceleration and deceleration is processed, including a wall film quantity difference signal and a control factor signal, depending on the operating parameters.
  • FIG. 1 shows a rough overview diagram of an electronic control system for fuel metering in an internal combustion engine
  • FIG. 2 shows in block form the most important elements of an electronic control system for fuel metering in connection with the provision of a transition compensation signal
  • FIG. 3 shows a flow chart of a first possibility for forming a transition compensation signal
  • FIG. 4a shows a time diagram of this implementation
  • FIG. 4b shows a time diagram to show a further possibility of forming a transition compensation signal
  • FIG. 5 shows a flow diagram to implement this second possibility of forming a transition compensation signal.
  • FIG. 1 shows a rough overview of an internal combustion engine with its most important sensors, a control unit and an injection valve.
  • the internal combustion engine is designated 10. It has an air intake pipe 11 and an exhaust pipe 12. In the air intake pipe 11 there is a throttle valve 13, possibly an air quantity or air mass meter 14 and an injection valve 15 for metering the required amount of fuel into the air flow flowing to the internal combustion engine 10.
  • a speed sensor is denoted by 16, a temperature sensor by 17.
  • the basic structure of a fuel metering system for an internal combustion engine shown in FIG. 1 is known.
  • the invention is concerned with the problem of providing a transition compensation signal for the acceleration or deceleration case with the aim of achieving the best possible transition behavior of the internal combustion engine or the vehicle equipped therewith while the exhaust gas is as clean as possible.
  • FIG. 2 A block diagram of the electronic control system according to the invention for fuel metering can be found in FIG. 2. There, elements already known from FIG. 1 are provided with the reference numbers already mentioned.
  • a basic map for emitting a basic injection signal tlk is designated by 25.
  • a control factor map for delivering a control factor signal Tk bears the reference numeral 26 and 27 denotes a wall film quantity map for delivering a corresponding wall film quantity signal Wk. All three characteristic diagrams 25, 26 and 27 receive signals from the load sensor 17 and speed sensor 15 on the input side.
  • a block 30 emits a signal which marks the end of a pushing or pushing operation.
  • a subsequent block 31 generates a correction signal TUKSAS depending on the previous duration of an overrun operating phase.
  • An addition point 32 subsequently connects the output signals of the two blocks 29 and 31.
  • a multiplier 33 follows, in which the output signal of the addition point 32 is multiplicatively linked with a temperature-dependent signal from a block 34, which is in turn connected to the temperature sensor 16. The result is then a wall film change signal ⁇ Wn corrected as a function of temperature and operating time.
  • difference-forming element 39 which receives both the signal on line 35 and the output signal of multiplication point 36 and which forms the second signal to be processed in block 29 one calculation step later.
  • FIG. 2 The subject of FIG. 2 is expediently explained on the basis of a flow chart shown in FIG.
  • the individual calculation steps can take place both in the time grid and in the angle grid (e.g. related to the crankshaft).
  • the starting point is designated 40.
  • a load value ⁇ k and a speed value nk are read in in block 41.
  • the letter k clarifies the values of the individual variables available at time tk. With k-1 the corresponding values are designated at the previous sampling time.
  • Block 41 is followed by a block 42 in which a value for the basic metering signal tlk, for the wall film fuel quantity Wk and a control factor Tk are read out from the characteristic diagrams 25, 26 and 27 known from FIG. 2, or are already made available as interpolation values.
  • a difference is formed between the individual wall film fuel quantity values at successive sampling times.
  • a correction takes place depending on the temperature and the duration of the overrun.
  • the remainder of the previous difference SUM ⁇ Wk-1 which has not yet been injected, is added to the current wall film difference ⁇ Wn in the following block 45.
  • the subsequent block 46 corresponds to the multiplication point 36 of FIG. 2.
  • the value of the currently applicable transition compensation signal UKk is determined.
  • the output signal is formed in accordance with the addition point 37 in FIG. 2, which further corrections can follow in block 49.
  • a signal relating to the total injection period ti total is then output and the program run ends with the program step Stop (50).
  • FIGS. 2 and 3 thus disclose a load-dependent and speed-dependent reading of a wall film fuel quantity signal from a corresponding characteristic diagram 27 or 42 at a sampling time tk.
  • This wall film fuel quantity value is redetermined at each sampling time depending on the load and speed and a difference is determined therefrom. This is followed by taking into account the residual values of previous wall film differences with blocks 29 and 44 respectively. Depending on the duration of the preceding overrun operation or the prevailing temperature, correction terms are then formed, which ultimately result in a wall film fuel quantity signal SUM ⁇ Wk on line 35 or in block 47.
  • a control factor signal Tk from the control factor map 26 or 42 is taken into account multiplicatively for the formation of a current applicable transition compensation signal UKk and this transition compensation signal UKk is added to the basic injection quantity signal tlk from the basic map 25.
  • the applicable wall film quantity value is continuously determined and changes in formation are taken into account as a transition compensation signal.
  • FIG. 4a shows an example of the course of the transition compensation (UK) as it results from the function described in FIGS. 2) and 3).
  • An acceleration request should occur at time to.
  • the time course of the transition compensation is determined by the throttle valve and speed-dependent control factor T.
  • FIG. 4b shows a typical course when the transition compensation is implemented differently.
  • a so-called intermediate spray is triggered, which provides an additional quantity of fuel asynchronously to the normal injection.
  • the remaining excess amount is divided into two stores.
  • the exponential reduction of this memory begins, with one memory being driven quickly and the other slowly. From the time t2 only slow slowdown takes effect.
  • the course from FIG. 4b makes it possible to dispense with the calculation of the control factor from a characteristic diagram. Instead, the map is replaced by 2 control factors, which are derived from 2 applicable constants.
  • the distribution factor can also be described by a map of speed and load.
  • FIG. 5 shows a possible implementation of the signal curve in FIG. 4b. Blocks which correspond to those in FIG. 3 are also provided with the corresponding reference numbers. It can be seen that in block 22 the formation of a control factor signal from a map does not take place and this factor is specifically formed in the further course.
  • this difference signal is queried for a threshold.
  • a programmatic union 62 connects the outputs of the two blocks 56 and 61 and the interrogation unit 59 with respect to the output "change in throttle valve position negative".
  • a query 67 follows a threshold greater or less than 0. If the total injection signal is less than 0, the injection time is limited to 0 in a block 68 and at the same time the negative The rest is taken into account for the next injection.
  • the entire injection signal can be metered in without a certain residual value having to be taken into account in the subsequent injection. This is reflected in block 70. Ultimately, further corrections are made in block 49 and the resulting injection quantity signal ti total is output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Rolling Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The system proposed includes means for determining a basic injection-quantity signal and a transitional compensation signal for regulating the measured amount of fuel when accelerating and decelerating. Depending on engine load and rpm, a cylinder-wall fuel-film signal and a control-factor signal (Tk) are generated, and the transitional compensation signal takes into account both the cylinder-wall fuel-film signal and the control-factor signal. The control-factor signal can either be extracted from a characteristic plot or be two discrete values. The system proposed gives optimum transitional behaviour as regards engine exhaust characteristics.

Description

Die Erfindung geht aus von einem elektronischen Steuersystem für die Kraftstoffzumessung bei einer Brennkraftmaschine mit Sensoren für Last, Drehzahl und Temperatur, Mitteln zur Bestimmung eines Grundeinspritzmengensignals sowie eines Übergangskompensationssignals zur Anpassung der zugemessenen Kraftstoffmenge im Beschleunigungs- und Verzögerungsfall nach der Gattung des Hauptanspruchs (vergleiche US-A-4 852 538).The invention is based on an electronic control system for fuel metering in an internal combustion engine with sensors for load, speed and temperature, means for determining a basic injection quantity signal and a transition compensation signal for adapting the metered fuel quantity in the event of acceleration and deceleration according to the type of the main claim (compare US A-4 852 538).

Bekannt ist aus der DE-OS 30 42 246 bzw. der entsprechenden US-PS 4 440 136 ein Kraftstoffzumeßsystem, bei dem zur Beschleunigungsanreicherung ein Anreicherungsfaktor nach einer bestimmten Formel gebildet wird und die Einzelkomponenten der Formel last- und drehzahlabhängig aus Speichern abrufbar sind. Der Anreicherungsfaktor ergibt sich nach FM = 1 + FM 1 x FM 2

Figure imgb0001
. Dabei sind FM 1 drehzahl- und lastabhängig und FM 2 temperaturabhängig.A fuel metering system is known from DE-OS 30 42 246 and the corresponding US Pat. No. 4,440,136, in which an enrichment factor is formed according to a certain formula for acceleration enrichment and the individual components of the formula are retrievable from memories depending on the load and speed. The enrichment factor follows FM = 1 + FM 1 x FM 2
Figure imgb0001
. FM 1 is speed and load dependent and FM 2 is temperature dependent.

Aus DE-OS 36 23 041 bzw. der entsprechenden US-Patentanmeldung SN 169 274 ist ein Verfahren zur Kraftstoffzumessung im Beschleunigungsfall bekannt, das die zeitliche Beziehung zwischen dem Auftreten des Beschleunigungswunschsignals und den Einlassventilzeiten berücksichtigt, damit die erforderliche Mehrmenge an Kraftstoff zur Realisierung des Beschleunigungswunsches möglichst zeitoptimal zugemessen werden kann. Dazu ist u. a. vorgesehen, die berechnete Mehrmenge an Kraftstoff auf mehrere aufeinanderfolgende Zumeßvorgänge zu verteilen bzw. sogenannte Zwischenspritzer vorzusehen.DE-OS 36 23 041 and the corresponding US patent application SN 169 274 describe a method for metering fuel in the event of acceleration known that takes into account the temporal relationship between the occurrence of the acceleration request signal and the intake valve times, so that the required additional amount of fuel for realizing the acceleration request can be metered as optimally as possible. For this purpose, provision is made, inter alia, to distribute the calculated additional quantity of fuel over a number of successive metering processes or to provide so-called intermediate splashes.

Das physikalische Problem bei der Beschleunigungsanreicherung ist, die erforderliche Mehrmenge in den Brennräumen der Brennkraftmaschine selbst zur Verfügung zu stellen. Dies gestaltet sich vor allem bei niedrigen Temperaturen schwierig, weil dann ein Teil der in das Saugrohr zugemessenen Kraftstoffmenge an den Wänden des Saugrohrs kondensiert, und somit letzlich dem eigentlichen Verbrennungsprozeß nicht sofort zur Verfügung steht. Der sich an der Innenwand des Saugrohrs niederschlagende Kraftstoff bildet einen sogenannten Kraftstoffwandfilm. Er ist neben den konstruktiven Gegebenheiten vor allem temperatur-, drehzahl- und lastabhängig. Da der Auf- und Abbau des Kraftstoffwandfilms bei nicht stationärer Betriebszuständen der Brennkraftmaschine nur sehr schwierig beherrschbar ist, sind in der Literatur bereits unterschiedliche Ansätze für die Beschreibung des Wandfilms bekannt geworden. Eine grundlegende Arbeit hierzu findet sich im SAE-Paper 810494 "Transient A/F Control Caracteristics of the 5 Liter Central Fuel Injection Engine" von CF Aquino.The physical problem with acceleration enrichment is to provide the required additional quantity in the combustion chambers of the internal combustion engine itself. This is particularly difficult at low temperatures because part of the amount of fuel metered into the intake manifold then condenses on the walls of the intake manifold and is therefore ultimately not immediately available to the actual combustion process. The fuel depositing on the inner wall of the intake manifold forms a so-called fuel wall film. In addition to the design, it is primarily temperature, speed and load dependent. Since the assembly and disassembly of the fuel wall film in the case of non-stationary operating states of the internal combustion engine can only be controlled with great difficulty, different approaches for describing the wall film have become known in the literature. A basic work on this can be found in the SAE paper 810494 "Transient A / F Control Caracteristics of the 5 liter Central Fuel Injection Engine" by CF Aquino.

Aufgabe der vorliegenden Erfindung ist es, ein elektronisches Steuersystem für die Kraftstoffzumessung bei einer Brennkraftmaschine zu schaffen, bei dem bei Beschleunigungs- und Verzögerungsvorgängen ein bezüglich Abgas optimales Übergangsverhalten erzielt wird.The object of the present invention is to provide an electronic control system for the fuel metering in an internal combustion engine, in which an optimal transition behavior with regard to exhaust gas is achieved during acceleration and deceleration processes.

Vorteile in der ErfindungAdvantages in the invention

Das erfindungsgemäße Steuersystem für die Kraftstoffzumessung kennzeichnet sich durch ein gutes Abgasverhalten im Übergangsbetrieb aus, indem betriebskenngrößenabhängig ein Übergangskompensationssignal zur Anpassung der zugemessenen Kraftstoffmenge im Beschleunigungs- und Verzögerungsfall unter Einbeziehung eines Wandfilmmengendifferenzsignals sowie eines Absteuerfaktorsignals verarbeitet wird.The control system for fuel metering according to the invention is characterized by good exhaust gas behavior in the transition mode, in that a transition compensation signal for adapting the metered fuel quantity in the event of acceleration and deceleration is processed, including a wall film quantity difference signal and a control factor signal, depending on the operating parameters.

Weitere Vorteile in der Erfindung ergeben sich in Verbindung mit den Unteransprüchen aus der nachfolgenden Beschreibung von Ausführungsbeispielen.Further advantages in the invention result in connection with the subclaims from the following description of exemplary embodiments.

Zeichnungdrawing

Ausführungsbeispiele der Erfindung sind in der Zeichnung näher beschrieben und erläutert. Es zeigen Figur 1 ein grobes Übersichtsschaubild eines elektronischen Steuersystems für die Kraftstoffzumessung bei einer Brennkraftmaschine, Figur 2 in Blockdarstellung die wesentlichsten Elemente eines elektronischen Steuersystems für die Kraftstoffzumessung in Verbindung mit der Bereitstellung eines Übergangskompensationssignal, Figur 3 ein Flußdiagramm einer ersten Möglichkeit zur Bildung eines Übergangskompensationssignals, Figur 4a ein Zeitdiagramm dieser Realisierung, Figur 4b ein Zeitdiagramm zur Darstellung einer weiteren Möglichkeit der Bildung eines Übergangskompensationssignals und schließlich Figur 5 eine Flußdiagramm-Darstellung zur Realisierung dieser zweiten Möglichkeit der Bildung eines Übergangskompensationssignals.Embodiments of the invention are described and explained in more detail in the drawing. 1 shows a rough overview diagram of an electronic control system for fuel metering in an internal combustion engine, FIG. 2 shows in block form the most important elements of an electronic control system for fuel metering in connection with the provision of a transition compensation signal, FIG. 3 shows a flow chart of a first possibility for forming a transition compensation signal, FIG. 4a shows a time diagram of this implementation, FIG. 4b shows a time diagram to show a further possibility of forming a transition compensation signal, and finally FIG. 5 shows a flow diagram to implement this second possibility of forming a transition compensation signal.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Figur 1 zeigt in einer groben Übersicht eine Brennkraftmaschine mit ihren wesentlichsten Sensoren, einem Steuergerät und einem Einspritzventil. Die Brennkraftmaschine ist dabei mit 10 bezeichnet. Sie besitzt ein Luftansaugrohr 11 sowie eine Abgasleitung 12. Im Luftansaugrohr 11 befindet sich eine Drosselklappe 13, ggf. ein Luftmengen- bzw. Luftmassenmesser 14 sowie ein Einspritzventil 15 zur Zumessung der erforderlichen Kraftstoffmenge in den zur Brennkraftmaschine 10 strömenden Luftstrom. Ein Drehzahlsensor ist mit 16 bezeichnet, ein Temperatursensor mit 17. Ein Lastsignal von einem Drosselklappensensor 18 und/oder vom Luftmengen- bzw. Luftmassensensor 14 gelangt zusammen mit den Signalen der übrigen Sensoren zu einem Steuergerät 20, das ein Ansteuersignal für das wenigstens eine Einspritzventil 15 sowie ggf. ein Zündsignal sowie weitere für die Brennkraftmaschinensteuerung wesentliche Ansteuersignale erzeugt.Figure 1 shows a rough overview of an internal combustion engine with its most important sensors, a control unit and an injection valve. The internal combustion engine is designated 10. It has an air intake pipe 11 and an exhaust pipe 12. In the air intake pipe 11 there is a throttle valve 13, possibly an air quantity or air mass meter 14 and an injection valve 15 for metering the required amount of fuel into the air flow flowing to the internal combustion engine 10. A speed sensor is denoted by 16, a temperature sensor by 17. A load signal from a throttle valve sensor 18 and / or from the air quantity or air mass sensor 14, together with the signals from the other sensors, reaches a control unit 20, which has a control signal for the at least one injection valve 15 and possibly an ignition signal and other control signals essential for the internal combustion engine control.

Die in Figur 1 dargestellte Grundstruktur eines Kraftstoffzumeßsystems für eine Brennkraftmaschine ist bekannt. Die Erfindung befaßt sich mit dem Problem der Bereitstellung eines Übergangskompensationssignals für den Beschleunigungs- bzw. Verzögerungsfall mit dem Ziel eines möglichst optimalen Übergangsverhaltens der Brennkraftmaschine bzw. des damit ausgestatteten Fahrzeugs bei gleichzeitig möglichst sauberem Abgas.The basic structure of a fuel metering system for an internal combustion engine shown in FIG. 1 is known. The invention is concerned with the problem of providing a transition compensation signal for the acceleration or deceleration case with the aim of achieving the best possible transition behavior of the internal combustion engine or the vehicle equipped therewith while the exhaust gas is as clean as possible.

Eine Blockdarstellung des erfindungsgemäßen elektronischen Steuersystems für die Kraftstoffzumessung findet sich in Figur 2. Dort sind bereits aus Figur 1 bekannte Elemente mit den bereits genannten Bezugszeichen versehen.A block diagram of the electronic control system according to the invention for fuel metering can be found in FIG. 2. There, elements already known from FIG. 1 are provided with the reference numbers already mentioned.

Mit 25 ist ein Grundkennfeld zur Abgabe eines Grundeinspritzsignales tlk bezeichnet. Ein Absteuerfaktorkennfeld zur Abgabe eines Absteuerfaktorsignals Tk trägt das Bezugszeichen 26 und mit 27 ist ein Wandfilmmengenkennfeld zur Abgabe eines entsprechenden Wandfilmmengensignals Wk bezeichnet. Alle drei Kennfelder 25, 26 und 27 erhalten eingangsseitig Signale vom Lastsensor 17 und Drehzahlsensor 15. Dem Wandfilmmengenkennfeld 27 folgt ein Differenzbildungsmittel zur Darstellung eines Differenzsignals Δ Wn = Wk - Wk-1

Figure imgb0002
zwischen aufeinanderfolgenden Wandfilmmengenwerten.A basic map for emitting a basic injection signal tlk is designated by 25. A control factor map for delivering a control factor signal Tk bears the reference numeral 26 and 27 denotes a wall film quantity map for delivering a corresponding wall film quantity signal Wk. All three characteristic diagrams 25, 26 and 27 receive signals from the load sensor 17 and speed sensor 15 on the input side. The wall film quantity characteristic diagram 27 is followed by a difference-forming means for representing a differential signal Δ Wn = Wk - Wk-1
Figure imgb0002
between successive wall film quantity values.

Ein Block 30 gibt ein Signal ab, welches das Ende eines Schiebe- bzw. Schubbetriebes markiert. Ein nachfolgender Block 31 erzeugt ein Korrektursignal TUKSAS abhängig von der vorangegangenen Dauer einer Schubbetriebsphase. Eine Additionsstelle 32 verbindet im folgenden die Ausgangssignale der beiden Blöcke 29 und 31. Es folgt eine Multiplizierstelle 33, in der das Ausgangssignal der Additionsstelle 32 mit einem temperaturabhängigen Signal aus einem wiederum mit dem Temperatursensor 16 in Verbindung stehenden Block 34 multiplikativ verknüpft wird. Das Ergebnis ist dann ein temperatur- und betriebsdauerabhängig korrigiertes Wandfilmänderungssignal Δ Wn.A block 30 emits a signal which marks the end of a pushing or pushing operation. A subsequent block 31 generates a correction signal TUKSAS depending on the previous duration of an overrun operating phase. An addition point 32 subsequently connects the output signals of the two blocks 29 and 31. A multiplier 33 follows, in which the output signal of the addition point 32 is multiplicatively linked with a temperature-dependent signal from a block 34, which is in turn connected to the temperature sensor 16. The result is then a wall film change signal Δ Wn corrected as a function of temperature and operating time.

In einem nachfolgenden Block 29 wird zum momentanen Änderungssignal Δ Wn der noch nicht eingespritzte Rest aller vorhergehenden Differenzbildungen SUM Δ Wk-1 hinzuaddiert, mit dem Ergebnis, daß ausgangsseitig des Blocks 29 ein Signal SUM Δ Wk = Wk - Wk-1 + SUM Δ Wk-1

Figure imgb0003
zur Verfügung steht. Dieses Signal wird in einer Multiplikationsstelle 36 mit dem Signal Tk vom Absteuerfaktorkennfeld 26 verknüpft. Ausgangsseitig der Multiplikationsstelle 36 steht dann das Übergangskompensationssignal UKk zur Verfügung. Dieses Signal wird nachfolgend in einer Additionsstelle 37 mit dem Ausgangssignal tlk des Grundkennfeldes 25 verknüpft und anschließend in einem Block 38 ggf. noch lambdaabhängig und temperaturabhängig korrigiert. Das Ausgangssignal des Korrekturblocks 38 steht dann als Gesamteinspritzsignal ti letztlich dem Einspritzventil 14 zur Verfügung.In a subsequent block 29, the not yet injected remainder of all previous difference formations SUM Δ Wk-1 is added to the current change signal Δ Wn, with the result that a signal is output on the block 29 side SUM Δ Wk = Wk - Wk-1 + SUM Δ Wk-1
Figure imgb0003
is available. This signal is combined in a multiplication point 36 with the signal Tk from the control factor map 26. The transition compensation signal UKk is then available on the output side of the multiplication point 36. This signal is subsequently linked in an addition point 37 to the output signal tlk of the basic characteristic map 25 and then corrected in a block 38, if necessary depending on the lambda and on the temperature. The output signal of the correction block 38 is then ultimately available to the injection valve 14 as a total injection signal ti.

Zu erwähnen ist noch ein Differenzbildungselement 39, das sowohl das Signal auf der Leitung 35, als auch das Ausgangssignal der Multiplikationsstelle 36 empfängt und das im Block 29 einen Berechnungsschritt später zu verarbeitende zweite Signal bildet.Also to be mentioned is a difference-forming element 39 which receives both the signal on line 35 and the output signal of multiplication point 36 and which forms the second signal to be processed in block 29 one calculation step later.

Erläutert wird der Gegenstand von Figur 2 zweckmäßigerweise anhand eines in Figur 3 dargestellten Flußdiagrammes. Dabei können die einzelnen Berechnungsschritte sowohl im Zeitraster, als auch im Winkelraster (z. B. bezogen auf die Kurbelwelle) ablaufen.The subject of FIG. 2 is expediently explained on the basis of a flow chart shown in FIG. The individual calculation steps can take place both in the time grid and in the angle grid (e.g. related to the crankshaft).

In Figur 3 ist der Startpunkt mit 40 bezeichnet. Es folgt in Block 41 das Einlesen eines Lastwertes α k sowie eines Drehzahlwertes nk. Dabei verdeutlicht der Buchstabe k die zum Zeitpunkt tk zur Verfügung stehenden Werte der einzelnen Größen. Mit k-1 werden die entsprechenden Werte jeweils zum vorangegangenen Abtastzeitpunkt bezeichnet.In Figure 3, the starting point is designated 40. A load value α k and a speed value nk are read in in block 41. The letter k clarifies the values of the individual variables available at time tk. With k-1 the corresponding values are designated at the previous sampling time.

Block 41 schließt sich ein Block 42 an, in dem aus den von Figur 2 bekannten Kennfeldern 25, 26 und 27 jeweils ein Wert für das Grundzumeßsignal tlk, für die Wandfilmkraftstoffmenge Wk sowie ein Absteuerfaktor Tk ausgelesen bzw. bereits als Interpolationswerte zur Verfügung gestellt werden.Block 41 is followed by a block 42 in which a value for the basic metering signal tlk, for the wall film fuel quantity Wk and a control factor Tk are read out from the characteristic diagrams 25, 26 and 27 known from FIG. 2, or are already made available as interpolation values.

Es folgt in Block 43 entsprechend Block 28 von Figur 2 eine Differenzbildung zwischen den einzelnen Wandfilmkraftstoffmengenwerten zu aufeinander folgenden Abtastzeitpunkten. In Block 44 findet eine Korrektur abhängig von Temperatur sowie der Schubdauer statt. Zu diesem in Block 44 gebildeten Wert Δ Wn wird im nachfolgenden Block 45 zur aktuellen Wandfilmdifferenz Δ Wn der noch nicht eingespritzte Rest der vorangehenden Differenz SUM Δ Wk-1 hinzuaddiert. Der nachfolgende Block 46 entspricht der Multiplikationsstelle 36 von Figur 2. In ihm wird der Wert des momentan geltenden Übergangskompensationssignals UKk ermittelt. Es folgt in Block 47 die aus der Differenzbildungsstelle 39 von Figur 2 bekannte Berechnung eines Änderungsbetrags von SUM Δ Wk für den nächsten Berechnungsschritt in Block 45. Schließlich wird in Block 48 das Ausgangssignal entsprechend der Additionsstelle 37 von Figur 2 gebildet, dem im nachfolgenden Block 49 weitere Korrekturen folgen können. Im Anschluß daran wird ein Signal bezüglich der gesamten Einspritzdauer ti gesamt ausgegeben und der Programmdurchlauf endet mit dem Programmschritt Stop (50).In block 43, corresponding to block 28 of FIG. 2, a difference is formed between the individual wall film fuel quantity values at successive sampling times. In block 44, a correction takes place depending on the temperature and the duration of the overrun. In addition to this value Δ Wn formed in block 44, the remainder of the previous difference SUM Δ Wk-1, which has not yet been injected, is added to the current wall film difference Δ Wn in the following block 45. The subsequent block 46 corresponds to the multiplication point 36 of FIG. 2. In it, the value of the currently applicable transition compensation signal UKk is determined. It follows in block 47 the calculation of a change amount of SUM Δ Wk for the next calculation step known from the difference formation point 39 in FIG. 2 in block 45. Finally, in block 48 the output signal is formed in accordance with the addition point 37 in FIG. 2, which further corrections can follow in block 49. A signal relating to the total injection period ti total is then output and the program run ends with the program step Stop (50).

Die Gegenstände von Figur 2 und Figur 3 offenbaren somit ein last- und drehzahlabhängiges Auslesen eines Wandfilmkraftstoffmengensignals aus einem entsprechenden Kennfeld 27 bzw. 42 zu einem Abtastzeitpunkt tk. Dieser Wandfilmkraftstoffmengenwert wird in jedem Abtastzeitpunkt last- und drehzahlabhängig neu bestimmt und daraus eine Differenz ermittelt. Es folgt im Anschluß daran mit Block 29 bzw. 44 eine Berücksichtigung der Rest-Werte früherer Wandfilmdifferenzen. Je nach Dauer des vorangegangenen Schubbetriebs bzw. der jeweils herrschenden Temperatur werden dann Korrekturterme gebildet, die letztlich ein Wandfilmkraftstoffmengensignal SUM Δ Wk auf der Leitung 35 bzw. im Block 47 ergeben. Zu diesem Wert wird für die Bildung eines momentanen geltenden Übergangskompensationssignals UKk ein Absteuerfaktorsignal Tk aus dem Absteuerfaktorkennfeld 26 bzw. 42 multiplikativ berücksichtigt und dieses Übergangskompensationssignal UKk zum Grundeinspritzmengensignal tlk aus dem Grundkennfeld 25 addiert.The objects of FIGS. 2 and 3 thus disclose a load-dependent and speed-dependent reading of a wall film fuel quantity signal from a corresponding characteristic diagram 27 or 42 at a sampling time tk. This wall film fuel quantity value is redetermined at each sampling time depending on the load and speed and a difference is determined therefrom. This is followed by taking into account the residual values of previous wall film differences with blocks 29 and 44 respectively. Depending on the duration of the preceding overrun operation or the prevailing temperature, correction terms are then formed, which ultimately result in a wall film fuel quantity signal SUM ΔWk on line 35 or in block 47. At this value, a control factor signal Tk from the control factor map 26 or 42 is taken into account multiplicatively for the formation of a current applicable transition compensation signal UKk and this transition compensation signal UKk is added to the basic injection quantity signal tlk from the basic map 25.

Mit diesem Signal wird somit fortlaufend der jeweils geltende Wandfilmmengenwert ermittelt und Änderungen bei der Bildung als Übergangskompensationssignals berücksichtigt.With this signal, the applicable wall film quantity value is continuously determined and changes in formation are taken into account as a transition compensation signal.

Figur 4a zeigt ein Beispiel für den Verlauf der Übergangskompensation (UK), wie er sich aus der in Figur 2) und 3) beschriebenen Funktion ergibt. Ein Beschleunigungswunsch soll zum Zeitpunkt to auftreten. Der zeitliche Verlauf der übergangskompensation wird durch den drosselklappen- und drehzahlabhängigen Absteuerfaktor T bestimmt.FIG. 4a shows an example of the course of the transition compensation (UK) as it results from the function described in FIGS. 2) and 3). An acceleration request should occur at time to. The time course of the transition compensation is determined by the throttle valve and speed-dependent control factor T.

Figur 4b zeigt einen typischen Verlauf bei einer geänderten Realisierung der Übergangskompensation. Sofort nach der Berechnung der notwendigen Übergangskompensation wird ein sogenannter Zwischenspritzer ausgelöst, welcher asynchron zur normalen Einspritzung eine Kraftstoffmehrmenge bereitstellt. Die restliche benötigte Mehrmenge wird auf zwei Speicher aufgeteilt. Zum Zeitpunkt t₁ beginnt die exponentielle Absteuerung dieser Speicher, wobei ein Speicher schnell, der andere langsam angesteuert wird. Ab dem Zeitpunkt t₂ wirkt nur noch die langsame Absteuerung. Der Verlauf aus Figur 4b ermöglicht einen Verzicht auf die Berechnung des Absteuerfaktors aus einem Kennfeld. Stattdessen wird das Kennfeld durch 2 Absteuerfaktoren ersetzt, welche aus 2 applizierbaren Konstanten abgeleitet werden. Um bei unterschiedlichen Drehzahlen-/Lastpunkten die Aufteilung auf schnellen und langsamen Speicher variabel zu gestalten, kann der Aufteilfaktor auch durch ein Kennfeld über Drehzahl und Last beschrieben werden.FIG. 4b shows a typical course when the transition compensation is implemented differently. Immediately after the necessary transition compensation has been calculated, a so-called intermediate spray is triggered, which provides an additional quantity of fuel asynchronously to the normal injection. The remaining excess amount is divided into two stores. At time t 1, the exponential reduction of this memory begins, with one memory being driven quickly and the other slowly. From the time t₂ only slow slowdown takes effect. The course from FIG. 4b makes it possible to dispense with the calculation of the control factor from a characteristic diagram. Instead, the map is replaced by 2 control factors, which are derived from 2 applicable constants. In order to make the allocation to fast and slow storage variable at different speed / load points, the distribution factor can also be described by a map of speed and load.

Eine Realisierungsmöglichkeit für den Signalverlauf von Figur 4b zeigt Figur 5. Dabei sind Blöcke, die denen von Figur 3 entsprechen, auch mit den entsprechenden Bezugsziffern versehen. Erkennbar wird, daß in Block 22 die Bildung eines Absteuerfaktorsignals aus einem Kennfeld unterbleibt und dieser Faktor im weiteren Verlauf speziell gebildet wird.FIG. 5 shows a possible implementation of the signal curve in FIG. 4b. Blocks which correspond to those in FIG. 3 are also provided with the corresponding reference numbers. It can be seen that in block 22 the formation of a control factor signal from a map does not take place and this factor is specifically formed in the further course.

Im Anschluß an den aus Figur 3 bekannten Block 43 bezüglich der Bildung eines aktuellen Wandfilmdifferenzsignals Δ Wn wird dieses Differenzsignal auf eine Schwelle hin abgefragt.Following the block 43 known from FIG. 3 regarding the formation of a current wall film difference signal Δ Wn, this difference signal is queried for a threshold.

Diese Abfrage ist mit 55 markiert. Wird die Schwelle nicht erreicht, erfolgt in einem Block 56 eine Berechnung von Änderungswerten nach den Formeln

SUM Δ Wk L = Δ Wn.A L + SUM Δ Wk-1 L

Figure imgb0004

SUM Δ Wk S = Δ Wn.A S + SUM Δ Wk-1 S
Figure imgb0005

mit A L + A S = 1
Figure imgb0006


Wird in Block 55 auf ein Änderungssignal größer als ein bestimmter Schwellwert erkannt, dann ergibt sich eine Berechnung in Block 57 nach den folgenden angegebenen Formeln

SUM Δ Wk L = Δ Wn.A L + SUM Δ Wk-1 L
Figure imgb0007

SUM Δ Wk S = Δ Wn.A S + SUM Δ Wk-1 S
Figure imgb0008

SUM Δ WK Z = Δ Wn.A Z
Figure imgb0009

mit A L + A S + A Z = 1
Figure imgb0010


AL, AS und AZ sind applizierbare Faktoren, welche die gesamte neu hinzugekommene Wandfilmdifferenz Δ Wn auf die drei Speicher Langzeit-, Kurzzeit- und Zwischenspritzerspeicher aufteilt.This query is marked with 55. If the threshold is not reached, change values are calculated in a block 56 according to the formulas

SUM Δ Wk L = Δ Wn.A L + SUM Δ Wk-1 L
Figure imgb0004

SUM Δ Wk S = Δ Wn.A S + SUM Δ Wk-1 S
Figure imgb0005

with A L + A S = 1
Figure imgb0006


If a change signal greater than a certain threshold value is detected in block 55, then a calculation in block 57 results according to the following formulas

SUM Δ Wk L = Δ Wn.A L + SUM Δ Wk-1 L
Figure imgb0007

SUM Δ Wk S = Δ Wn.A S + SUM Δ Wk-1 S
Figure imgb0008

SUM Δ WK Z. = Δ Wn.A Z.
Figure imgb0009

with A L + A S + A Z. = 1
Figure imgb0010


A L , A S and A Z are applicable factors which divide the total newly added wall film difference Δ Wn into the three long-term, short-term and intermediate-spatter stores.

Daran schließt sich ein Block 58 zur Bildung eines Zwischenspritzersignals an ( UKK Z = SUM Δ WkZ

Figure imgb0011
Figure imgb0012
). Wird im folgenden in einer Abfrageeinheit 59 eine positive Änderung des Drosselklappensignals erkannt, erfolgt in Block 60 die Ausgabe eines Zwischenspritzers (UKKZ). Nach Ausgabe dieses Zwischenspritzers wird das entsprechende Zwischenspritzersignal UKKZ in Block 61 auf Null gesetzt. Eine programmäßige Vereinigungsstelle 62 verbindet die Ausgänge der beiden Blöcke 56 und 61 sowie der Abfrageeinheit 59 bezüglich des Ausgangs "Änderung der Drosselklappenposition negativ".This is followed by a block 58 for forming an intermediate sprayer signal ( UKK Z. = SUM Δ Tool
Figure imgb0011
Figure imgb0012
). If a positive change in the throttle valve signal is subsequently detected in an interrogation unit 59, an intermediate sprayer (UKK Z ) is output in block 60. After this intermediate sprayer has been output, the corresponding intermediate sprayer signal UKK Z is set to zero in block 61. A programmatic union 62 connects the outputs of the two blocks 56 and 61 and the interrogation unit 59 with respect to the output "change in throttle valve position negative".

Für alle Zweige gemeinsam wird in Block 46' die Berechnung der langsamen Absteuerung (TL) und der schnellen Absteuerung (TS) durchgeführt. Daran schließt sich ein Block 65 an, der die Übergangskompensationssignale UKKL bzw. UKKS auf applizierbare Maximalwerte max. UKS und max. UKL begrenzt. Entsprechend dem Flußdiagramm von Figur 3 folgt ein Block 47, an den sich wiederum ein Block 66 zur Bildung eines Gesamteinspritzzeitsignals anschließt.For all branches together, the calculation of the slow down-control (T L ) and the fast down-control (T S ) is carried out in block 46 '. This is followed by a block 65 which converts the transition compensation signals UKK L or UKK S to applicable maximum values. UK S and max. UK L limited. According to the flow chart of FIG. 3, a block 47 follows, which in turn is followed by a block 66 for forming an overall injection time signal.

Im Hinblick darauf, daß je nach Übergangskompensationssignal das Gesamteinspritzsignal tik auch negative Werte annehmen kann, folgt eine Abfrage 67 auf eine Schwelle größer oder kleiner 0. Ist das Gesamteinspritzsignal kleiner 0, dann wird die Einspritzzeit in einem Block 68 auf 0 begrenzt und gleichzeitig der negative Rest bei der nächsten Einspritzung berücksichtigt.In view of the fact that, depending on the transition compensation signal, the total injection signal tik can also assume negative values, a query 67 follows a threshold greater or less than 0. If the total injection signal is less than 0, the injection time is limited to 0 in a block 68 and at the same time the negative The rest is taken into account for the next injection.

Ist der in Block 66 gebildete Wert größer 0, so kann das gesamte Einspritzsignal zugemessen werden, ohne daß bei der folgenden Einspritzung ein bestimmter Restwert zu berücksichtigen ist. Dies findet in Block 70 seinen Niederschlag. Letztlich werden in Block 49 weitere Korrekturen vorgenommen und das resultierende Einspritzmengensignal ti gesamt ausgegeben.If the value formed in block 66 is greater than 0, the entire injection signal can be metered in without a certain residual value having to be taken into account in the subsequent injection. This is reflected in block 70. Ultimately, further corrections are made in block 49 and the resulting injection quantity signal ti total is output.

Wesentlich am Gegenstand von Figur 4b ist die Tatsache, daß Wandfilmmengenänderungen in den Blöcken 56 und 57 mit Werten AL, AS bzw. zusätzlich AZ gewichtet werden mit dem Ziel einer Abregelung mit unterschiedlichen Zeitkonstanten entsprechend der Darstellung von Figur 4a.4b is the fact that changes in the wall film quantity in blocks 56 and 57 are weighted with values A L , A S and additionally A Z with the aim of curtailment with different time constants as shown in FIG. 4a.

Claims (12)

  1. Electronic control system for fuel metering in an internal combustion engine, with sensors for load (α, p, QL), rotational speed and temperature, means for determining a basic injection-quantity signal, and an additive transition compensation signal for adapting the fuel quantity metered in in the case of acceleration and deceleration, in which, for transition compensation, a wall-film quantity alteration signal SUM ΔWk, in the form of an overall balance comprising the alterations in the operating point-dependent wall-film quantity signal, and a discharge factor signal (Tk) are formed as a function of load and rotational speed and in which the transition compensation signal UKk is dependent on the wall-film quantity alteration signal SUM ΔWk and on the discharge factor signal (Tk) characterised in that the overall balance also takes into account the already ejected partial quantities.
  2. Electronic control system according to Claim 1, characterised in that the transition compensation signal UKk is obtained from a multiplication of the wall-film quantity alteration signal SUM ΔWk and the discharge factor (Tk).
  3. Electronic control system according to Claim 1, characterised in that the wall-film quantity alteration signal is formed in accordance with the following formula:

    SUM ΔWk = Wk - Wk-1 + SUM Wk-1, where Wk = f(loadk, nk).
    Figure imgb0017
  4. Electronic control system according to Claim 3, characterised in that SUM ΔWk can be corrected as a function of the temperature (Θ) and overrun duration.
  5. Electronic control system according to Claim 1, characterised in that the discharge factor signal (Tk) is dependent on the load and rotational speed ( Tk = f (loadk, nk)
    Figure imgb0018
    ).
  6. Electronic control system according to one of Claims 1 to 5, characterised in that when determining the transition compensation signal for the subsequent fuel metering signal, the portion already metered in is taken into account in accordance with the following formula:

    SUM ΔWk-1 = SUM ΔWk - UKk.
    Figure imgb0019
  7. Electronic control system according to Claim 1 or 5, characterised in that the discharge factor signal (Tk) is dependent on the sign of the load change.
  8. Electronic control system according to Claim 1, 5 or 7, characterised in that the wall-film quantity difference signal SUM ΔWk is distributed in each step between two storage devices and one storage device is discharged rapidly (using Ts [sic]) and the other storage device is discharged slowly (using Tl [sic]).
  9. Electronic control system according to Claim 1, 5 or 7, characterised in that the wall-film quantity difference signal SUM ΔWk is distributed in each step between three storage devices and one storage device is always completely emptied in one step (interim injection storage device) and the other two are discharged rapidly (using Ts [sic)) and slowly (using Tl [sic]) respectively.
  10. Electronic control system according to Claim 8 or 9, characterised in that the factors for the distribution of the wall-film quantity alteration signal (SUM ΔWk) between the various storage devices are not constant but are predetermined in the form of a characteristic map against rotational speed and load.
  11. Electronic control system according to one of Claims 1 to 8, characterised in that the transition compensation signal (UKk) can be limited.
  12. Electronic control system according to one of Claims 1 to 9, characterised in that, in the case of a calculated injection time of less than zero, no fuel is metered in at the next metering instant and the negative residual amount is taken into account in the following metering process.
EP90914675A 1989-11-30 1990-10-12 Electronic fuel-supply control system for an internal-combustion engine Expired - Lifetime EP0502849B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3939548 1989-11-30
DE3939548A DE3939548A1 (en) 1989-11-30 1989-11-30 ELECTRONIC CONTROL SYSTEM FOR FUEL MEASURING IN AN INTERNAL COMBUSTION ENGINE
PCT/DE1990/000774 WO1991008390A1 (en) 1989-11-30 1990-10-12 Electronic fuel-supply control system for an internal-combustion engine

Publications (2)

Publication Number Publication Date
EP0502849A1 EP0502849A1 (en) 1992-09-16
EP0502849B1 true EP0502849B1 (en) 1994-08-24

Family

ID=6394473

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90914675A Expired - Lifetime EP0502849B1 (en) 1989-11-30 1990-10-12 Electronic fuel-supply control system for an internal-combustion engine

Country Status (7)

Country Link
US (1) US5243948A (en)
EP (1) EP0502849B1 (en)
JP (1) JP2877953B2 (en)
KR (1) KR0151702B1 (en)
DE (2) DE3939548A1 (en)
ES (1) ES2062556T3 (en)
WO (1) WO1991008390A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4115211C2 (en) * 1991-05-10 2003-04-30 Bosch Gmbh Robert Method for controlling fuel metering in an internal combustion engine
DE4306208A1 (en) * 1993-02-27 1994-09-01 Hella Kg Hueck & Co Fuel injection system
DE4420946B4 (en) * 1994-06-16 2007-09-20 Robert Bosch Gmbh Control system for fuel metering in an internal combustion engine
JPH08177556A (en) * 1994-10-24 1996-07-09 Nippondenso Co Ltd Fuel supply quantity control device for internal combustion engine
DE19548054C1 (en) * 1995-12-21 1997-06-05 Siemens Ag IC engine ignition control method
DE19819481A1 (en) 1998-04-30 1999-11-04 Volkswagen Ag Powertrain management function of a vehicle with CVT transmission
DE10147622A1 (en) * 2001-09-27 2003-04-10 Volkswagen Ag Process for operating an internal combustion engine comprises determining at the end of a thrust operation a correction value from the duration of the thrust operation over a characteristic line and/or a performance characteristic
JP2003254118A (en) * 2002-02-28 2003-09-10 Toyota Motor Corp Operation stop control method for internal combustion engine for vehicle
DE102007009840B4 (en) 2007-03-01 2018-11-22 Robert Bosch Gmbh Method for determining a malfunction of a device for metering fuel
FR2993318A3 (en) * 2012-07-10 2014-01-17 Renault Sa Method for adapting transient adjustment to spark ignition engine of car, involves determining driving adjustment value, and applying driving adjustment value to transient value according to value of adjustment adaptation parameter
DE102013206551A1 (en) * 2013-04-12 2014-10-16 Robert Bosch Gmbh Method for adapting the transition compensation
JP6168097B2 (en) 2015-05-08 2017-07-26 トヨタ自動車株式会社 Hybrid car

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357923A (en) * 1979-09-27 1982-11-09 Ford Motor Company Fuel metering system for an internal combustion engine
JPS5741441A (en) * 1980-08-27 1982-03-08 Hitachi Ltd Warming-up correcting device for air fuel ratio controller
DE3042246C2 (en) * 1980-11-08 1998-10-01 Bosch Gmbh Robert Electronically controlled fuel metering device for an internal combustion engine
JPS588238A (en) * 1981-07-06 1983-01-18 Toyota Motor Corp Fuel injection control method for fuel injection engine
US4939658A (en) * 1984-09-03 1990-07-03 Hitachi, Ltd. Control method for a fuel injection engine
DE3636810A1 (en) * 1985-10-29 1987-04-30 Nissan Motor FUEL INJECTION CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
JPS62182454A (en) * 1985-12-26 1987-08-10 Honda Motor Co Ltd Air-fuel ratio control for internal combustion engine
DE3623041A1 (en) * 1986-07-09 1988-01-14 Bosch Gmbh Robert METHOD FOR FUEL ALLOCATION
JPS6361739A (en) * 1986-09-01 1988-03-17 Hitachi Ltd Fuel control device
JPS63314339A (en) * 1987-06-17 1988-12-22 Hitachi Ltd Air-fuel ratio controller
US4903668A (en) * 1987-07-29 1990-02-27 Toyota Jidosha Kabushiki Kaisha Fuel injection system of an internal combustion engine
JP2512787B2 (en) * 1988-07-29 1996-07-03 株式会社日立製作所 Throttle opening control device for internal combustion engine

Also Published As

Publication number Publication date
JPH05501595A (en) 1993-03-25
WO1991008390A1 (en) 1991-06-13
JP2877953B2 (en) 1999-04-05
ES2062556T3 (en) 1994-12-16
US5243948A (en) 1993-09-14
KR920703981A (en) 1992-12-18
EP0502849A1 (en) 1992-09-16
DE59006920D1 (en) 1994-09-29
KR0151702B1 (en) 1998-10-01
DE3939548A1 (en) 1991-06-06

Similar Documents

Publication Publication Date Title
EP0416270B1 (en) Method and apparatus to control and regulate an engine with self-ignition
DE602004003390T2 (en) METHOD FOR REAL-TIME DETERMINATION OF A FUEL INJECTION FLOW CHARACTERISTIC
DE4115211C2 (en) Method for controlling fuel metering in an internal combustion engine
DE3901109C2 (en) Adaptive control device for the air-fuel ratio of an internal combustion engine
DE3311892C2 (en)
DE2812442C2 (en)
DE3238190A1 (en) ELECTRONIC SYSTEM FOR CONTROLLING OR CONTROL OF OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
EP0502849B1 (en) Electronic fuel-supply control system for an internal-combustion engine
DE2633617A1 (en) METHOD AND DEVICE FOR DETERMINING SETTING SIZES IN A FUEL MACHINE
DE69205304T2 (en) Device for determining the altitude and engine control using this.
DE3242795A1 (en) DEVICE FOR CORRECTING THE AIR / FUEL RATIO FOR AN INTERNAL COMBUSTION ENGINE DEPENDING ON THE SUCTION TEMPERATURE
DE3108601A1 (en) ENGINE OPERATION CONTROL METHOD
EP0347446B1 (en) Process and device for regulating the air feed in an internal combustion engine, in particular during idling and coasting
DE3330700C2 (en)
EP0449851B1 (en) Processes for metering fuel
EP0819210A1 (en) Process for finding an additional quantity of fuel to be injected during reinjection in an internal combustion engine
DE4006301C2 (en)
DE4134522A1 (en) DEVICE AND METHOD FOR ELECTRONIC FUEL INJECTION CONTROL FOR COMBUSTION ENGINE
DE3726892C2 (en)
DE3902303A1 (en) FUEL CONTROL FOR A COMBUSTION ENGINE
DE3921965C2 (en) Device for determining the fuel injection quantity for an internal combustion engine
DE69004232T2 (en) Fuel injection control unit with correction as a function of the atmospheric external pressure.
DE3816432C2 (en) Engine control device
DE3438465A1 (en) METHOD FOR CONTROLLING THE OPERATING SIZE OF A DEVICE FOR CONTROLLING THE OPERATION OF AN INTERNAL COMBUSTION ENGINE
DE3744331C2 (en) System for controlling the fuel quantity of an internal combustion engine used to drive a vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB

17Q First examination report despatched

Effective date: 19931227

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940826

REF Corresponds to:

Ref document number: 59006920

Country of ref document: DE

Date of ref document: 19940929

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2062556

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040928

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20041026

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051013

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20051013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091110

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091215

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101012