EP0153588B2 - Method for the continuous production of shaped articles, in particular slabs, from a mix of plaster of Paris, and fibre materials as well as a device for carrying out the method - Google Patents
Method for the continuous production of shaped articles, in particular slabs, from a mix of plaster of Paris, and fibre materials as well as a device for carrying out the method Download PDFInfo
- Publication number
- EP0153588B2 EP0153588B2 EP85100748A EP85100748A EP0153588B2 EP 0153588 B2 EP0153588 B2 EP 0153588B2 EP 85100748 A EP85100748 A EP 85100748A EP 85100748 A EP85100748 A EP 85100748A EP 0153588 B2 EP0153588 B2 EP 0153588B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- plaster
- mixture
- mixer
- fibrous material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 49
- 239000000835 fiber Substances 0.000 title claims description 41
- 238000010924 continuous production Methods 0.000 title claims description 5
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Inorganic materials [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 title description 7
- 239000000463 material Substances 0.000 title description 3
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 title 1
- 239000011507 gypsum plaster Substances 0.000 title 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 92
- 239000000203 mixture Substances 0.000 claims description 37
- 239000011505 plaster Substances 0.000 claims description 19
- 238000003892 spreading Methods 0.000 claims description 18
- 239000000654 additive Substances 0.000 claims description 16
- 239000002657 fibrous material Substances 0.000 claims description 15
- 238000002156 mixing Methods 0.000 claims description 15
- 238000000465 moulding Methods 0.000 claims description 14
- 239000007921 spray Substances 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 2
- 238000005469 granulation Methods 0.000 claims description 2
- 230000003179 granulation Effects 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 239000010440 gypsum Substances 0.000 description 37
- 229910052602 gypsum Inorganic materials 0.000 description 37
- 239000010410 layer Substances 0.000 description 35
- 238000007792 addition Methods 0.000 description 19
- 241000273930 Brevoortia tyrannus Species 0.000 description 10
- 239000012792 core layer Substances 0.000 description 7
- 238000005303 weighing Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000011094 fiberboard Substances 0.000 description 4
- 241000700647 Variola virus Species 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001020 rhythmical effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/52—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
- B28B1/526—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement by delivering the materials on a conveyor of the endless-belt type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/52—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
- B28B1/521—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement from dry mixtures to which a setting agent is applied after forming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/52—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
- B28B1/522—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement for producing multi-layered articles
Definitions
- the invention relates to a process for the continuous production of moldings, such as boards made of gypsum and fibrous material, in accordance with the features of the preamble of claim 1, and to an apparatus for carrying out the process according to the features of the preamble of claim 10.
- the invention has for its object to provide a process for the continuous production of moldings, in particular plates, from gypsum and fibrous material, in which the surfaces of the plates are essentially free of smallpox and in which furthermore optimal strength values of little statistical variation Series production can be achieved. Furthermore, an apparatus for performing the method according to the invention is to be specified.
- the object is achieved in a method with the features of the preamble of claim 1 by the characterizing features of this claim.
- the method according to the invention it is possible to produce very good strength values with less scatter in the continuous manufacturing process.
- the plates produced by the method according to the invention have surfaces of high quality which are free from smallpox and therefore do not have to be ground.
- the method according to the invention also makes it possible to regulate and measure the addition of water to the metered gypsum-fiber mixture in such a way that the moistened gypsum-fiber mass does not granulate or clump.
- the limit value depends on the pre-selected mixing ratio and the type of raw materials.
- the division of the gypsum pulp mass into separate partial streams also has the advantage that the water added is distributed evenly and finely throughout the mass.
- sheets with good constant flexural and transverse tensile strengths can be mass-produced, which have a high-quality surface that is free of small pox.
- the exact dosage of the constituents of the gypsum fibreboard, including the precisely metered addition of as little moisture as possible, also ensures that the time for the drying of the finished pressed panels can be kept optimally short, which also reduces the energy expenditure required.
- the gypsum fiber material undergoes relatively large volume changes, which can have an effect of up to 0.3% linear change in length (3 mm / m). This is particularly disadvantageous when using gypsum fibreboards, where precise dimensioning or tolerances when laying or installing such panels is important. If seamlessly laid panels with a residual moisture of up to 3% are then laid and then dry up to 0% residual moisture, these can tear open when subsequently compensated for the ambient moisture.
- the invention thus creates a process in which molded articles, in particular sheets, made from a mixture of gypsum and fibrous material with an optimally short setting and drying time receive a consistently high strength with little scatter.
- each partial mass flow is sprinkled into a layer of the shaped body on the base or the previous layer.
- Each layer - regardless of the other layers - is moistened with a given amount of water.
- the supply of total water (including the amount of water for moistening the dry gypsum-fiber mixture) is controlled in such a way that a quantity of water is added to the shaped body that is up to 25% greater than the stoichiometric amount of water that is calculated to set the gypsum-fiber mixture is required.
- the superstoichiometric addition of water is preferably in the order of magnitude between 15% and 20% (cf. FIG. 4). Since the additional amount of water is distributed in layers, there is no need for remixing and the associated disadvantageous lumping or granulation of the gypsum.
- the over-stoichiometric addition of water increases the plasticity of the plaster when pressed.
- the plasticity also allows the use of a somewhat coarser grinding plaster, which results in economic advantages.
- the adhesive force of the wet gypsum also compensates for the restoring forces of the cellulose fibers deformed during pressing. As a result, the press can be opened immediately after briefly pressing, without it being necessary to adapt the pressing time to the setting process. Due to the higher plasticity, the surface of the molded body adapts exactly to the press base, whereby a smooth press base is formed as a smooth surface.
- the partial mass flows have different mass volumes, layers of different thicknesses can be formed. In order to achieve a central core layer and a large number of scattered layers, the number of partial mass flows is odd. Additives can be added to each partial mass flow; In particular, additives are added to the partial mass flow of the core layer, which is preferably larger in volume.
- the supply of the individual amounts of water is controlled, which is preferably 15% to 20% above the stoichiometric amount of water in the total amount.
- the amount of water added to the individual layers after spreading can vary; in particular, a larger amount of water is added to the outer layers of the shaped body than to the inner layers.
- the amounts of water sprayed on the individual layers can also contain additives; it is expedient to add suspensions or emulsions of pigments and / or synthetic resins to the amount of water in the outer layer of the molding. This can, for. B. a surface decoration, a water-repellent impregnation or a fire retardant can be used directly in the production without a second process step being necessary.
- the method according to the invention has an advantageous effect here, since it can be used to produce plates with finished surfaces that do not have to be reground.
- An originally unaccelerated or slightly decelerated basic mixture can also be accelerated shortly before the press by adding accelerator solution (e.g. potassium sulfate).
- a quantity of fibers is drawn from a fiber bunker 1 by means of motor-driven conveyor belts 20a, 20b and 20c.
- the conveyor belt 20c is preferably driven by a motor 34.
- the amount of fiber discharged is pre-metered volumetrically by means of leveling rollers 21 or the like.
- the leveling rollers 21 are arranged at the end of the last conveyor belt 20c near the exit 22 of the fiber bunker 1.
- a continuously operating weighing device 2 for example a belt weigher, is arranged below the outlet 22, for example it weighs the amount of fiber emerging from the fiber bunker 1 and conveys it to a dry mixer 4 via a chute or the like.
- the output signal of the preferably electronic weighing device 2 which corresponds to the detected weight of the fiber quantity, is fed to an electronic control device 23 which, depending on this output signal, regulates the speed of the drive motor 13a of a screw conveyor 13 of a metering scale 14 assigned to the gypsum metering device 3 via a control line 31.
- the control device 23 further regulates at least the conveying speed of the last conveyor belt 20c of the fiber bunker 1 in accordance with a difference value which is formed from the output signal of the belt scale 2 and a setpoint value predetermined by the control device 23. Furthermore, the control device 23 also monitors the predetermined quantity ratio of gypsum / fiber and acts via the control lines 30 and 31 accordingly on the conveying speed of the conveyor belt 20c and the screw conveyor 13 of the metering device 3.
- the dry mixer 4 is preferably a horizontal continuous mixer with a rotating mixer shaft and mixing tools arranged radially thereon, in which the material to be mixed passes through the mixer largely without backflow.
- This mixer 4 is continuously added at one end with the weight-metered starting quantities of gypsum and fibrous material.
- the dry mixture of gypsum and fibers emerging from its outlet 4a is conveyed preferably via a conveyor belt 5 with variable speed drive into an intermediate bunker 45 of the gypsum fiber metering device 6.
- the mixture is drawn off from this intermediate bunker 6a as required via conveyor belts 16a, 16b arranged in the intermediate bunker.
- leveling rollers 15 are arranged in the vicinity of the bunker outlet 17, by means of which the amount of the dry mixture consisting of gypsum and fibers to be discharged is volumetrically pre-metered.
- the dry mixture falls directly on a weighing device arranged under the outlet 17, which preferably consists of a belt scale 7.
- the output signal of the belt scale 7 is fed to an electronic control device 18 which controls the conveying speed of the last conveyor belt 16b on the one hand via the control line 32 and a water metering device 8 on the other hand via the control line 33.
- This is controlled in such a way that such an amount of water is always supplied which is below a limit value above which the moistened gypsum-fiber mixture tends to form granules or lumps.
- the controlled metering of the water in a wet mixer 9 can be carried out according to the invention in such a way that the control signal is effective with a delay of the amount of time that the detected mass of gypsum-fiber mixture needs to reach the point (nozzle 8 ') of the water addition.
- the dry gypsum-fiber mixture determined by the weight of the belt weigher 7 is fed directly to the moist mixer 9, which is preferably also designed as a continuous mixer with a rotating mixer shaft and mixing tools arranged thereon.
- the moist mixer 9 Via the water metering device 8 controlled by the control device 18, the precisely metered amount of water is fed to the mixed flow of the wet mixer 9 via nozzles 8 ′ (not shown in more detail).
- the nozzles 8 'spray the water preferably transversely to the longitudinal axis of the mixed stream passing through the mixer into the cylindrical interior of the mixer 9.
- the gypsum-fiber mixture moistened with water falls into an apportioning device 37 which divides the mass flow into three mass flows, preferably by rhythmic deflection (clocked deflection), on conveyor belts 10a, 10b and 10c which can be driven at variable speed.
- Each conveyor belt 10a to 10c feeds an intermediate bunker of a spreading machine 11a to 11c known per se.
- the spreading machines 11a to 11c are constructed identically and have a conveyor belt 36, at least one leveling roller 27 and a discharge roller 28.
- a molding line 12 runs under the spreading head 26a to 26c of each spreading machine 11a to 11c, the spreading heads 26a to 26c being arranged one behind the other in the conveying direction 19 of the molding line 12.
- a spray nozzle 40 for adding water is provided in front of the first spreading head 26a.
- a spray nozzle 41 and 42 is arranged between the spreading heads 26a and 26b and 26b and 26c; behind the last spreading head 26c, water is also supplied via a spray nozzle 43. This arrangement ensures that the spray nozzles 40 to 43 do not become dirty and cannot become clogged, since these nozzles lie outside the dust swirling zone between adjacent spreading heads.
- the continuous weight-metered addition of the dry mixture to the mixer 9 and the moistening by means of a controllable amount of water as a function of the electrical output signal of the weighing device 7 have made it possible to continuously produce gypsum fiberboard without a large scatter in the strength values.
- the top of the molding line is wetted with water before the application of a first layer 35a of the molded body to be produced on the molding line 12 by means of the nozzle 40.
- the first partial mass flow of the gypsum-fiber mixture moistened in the manner described above is sprinkled onto the thus moistened molding line 12.
- the first layer 35a is moved past in the direction of the arrow 19 under the nozzle 41, the outer surface of the layer 35a being re-moistened by spraying with water or a water mist.
- the second layer 35b is sprinkled on this re-moistened surface of the layer 35a as it passes the scattering head 26b, the outer surface of which is now moistened with water by means of the nozzle 42.
- the third layer 35c is then sprinkled onto this layer, the outer surface of which is subsequently moistened with water via the nozzle 43.
- the mat-like shaped body thus formed is compacted in a press arranged downstream of the molding line 12, then cut to length and then deposited for setting and drying.
- the individual devices of the system according to the invention such as the weighing devices 2 and 7, the mixers 4 and 9, the metering devices 3, 6 and 8 and the spreading machines 11a to 11c operate continuously, so that plates can be produced continuously without interruption.
- a plate of high strength can be produced.
- a total of up to 25%, preferably 15% to 20%, water is added above the stoichiometric amount of water, which enables mass transport of calcium sulfate ions in all directions and the gypsum body to crystallize in well-formed, idiomorphic, needle-shaped crystals which interact with one another are grown together and matted.
- Such a plate has excellent structural properties and shows a significantly higher transverse tensile and bending strength than conventional plates. In particular, an excellent plate surface is achieved, which is free of pox-like elevations and therefore does not have to be reworked.
- FIG. 4 The effect of the superstoichiometric addition of water on the order of 15% to 20% can be seen from FIG. 4. It shows the bending tensile strength versus density with different water additions. You can see the typical parabolic course. With a higher proportion of superstoichiometric water, higher strengths are obtained. In the range of densities between 1.15 and 1.2 realized in practice, the strength is doubled compared to the stoichiometric addition of water. This diagram clearly shows the positive effect with regard to the higher strength of gypsum fibreboards when water is added in excess of stoichiometry.
- FIGS. 3c to 3e The plates that can be produced using the method according to the invention are shown in FIGS. 3c to 3e.
- a plate 35 is shown in section, which was produced by previously known methods.
- a plate is drawn in section, which is produced by the method according to the invention and in which the transverse tensile and bending strengths are considerably improved and in which the surfaces 38 are also formed much stronger, which can be achieved by spraying the plates with water on both sides is.
- the plate produced according to the method further developed according to the invention in which the mass flow of the gypsum-fiber mixture is divided into separate partial mass flows and each scattered layer is re-moistened with water, the total amount of water supplied to the plate being up to 25% above the stoichiometric amount of water for setting gypsum-fiber mixture scattered to form the molded body, consist of three layers 35a to 35c and are based on a division of the mass flow into an odd number of partial mass flows, namely into three partial mass flows. Three partial mass flows are sufficient to produce a 10 mm thick gypsum fibreboard with high strength and a middle core layer. However, it may be advantageous to choose a higher layer division.
- 3c was composed of three partial mass flows of the same volume. In the area of the layer boundaries, a higher solidification of the gypsum is achieved.
- the volumes of the partial flows are selected such that a layer thickness of 1 to 7 mm results after the compression molding. However, the volumes of the partial flows are preferably dimensioned such that that after the compression molding there is a layer thickness of 2 to 3 mm.
- the plate shown in section in FIG. 3d was also composed of three partial mass flows.
- the partial mass flow forming the core layer 35b was provided with a larger mass volume than the remaining partial mass flows of the outer layers 35a and 35c.
- Additives 44 were added to the partial mass flow forming the core layer.
- a light aggregate such as vermiculite or kenospheres can be useful for the core layer.
- the addition of mica to the core layer and / or the outer layers can significantly improve the fire protection properties of the board.
- Gypsum can also be mixed into the outer or inner layer as an additive.
- aggregates in the form of other reinforcing fibers such.
- the plate shown in section in FIG. 3e corresponds in structure to the plate from FIG. 3c.
- a pigment additive was added to the amount of water supplied via the last spray nozzle 43, so that a surface 39 of bonded pigment is formed.
- any additives such as. B. a setting accelerator can be added.
- These additives are preferably water soluble. It may be expedient to add other additives to the amount of water supplied to the outer layers than to the amounts of water supplied to the inner layers.
- the additives for the amounts of water in the outer layers are preferably in the form of suspensions or dispersions.
- FIG. 2 shows a device for carrying out the method according to the invention, which largely corresponds to the basic structure of the device according to FIG. 1. The same parts are provided with the same reference numbers.
- the division of the mass flow into several partial mass flows is already provided at the outlet of the dry mixer 4.
- the dry premixed amount of gypsum fiber arrives via the outlet 4a of the dry mixer directly into an allocation device 37a which divides the mass flow into individual mass flows of the same or different volume.
- This division preferably takes place by clocked deflection of the main mass flow onto conveyor belts of the partial mass flows. These conveyor belts open into intermediate bunkers 6a to 6c.
- a division into three partial mass flows is provided; three gypsum fiber metering devices 6a to 6c are arranged accordingly.
- the structure of the gypsum-fiber metering devices 6a to 6c corresponds to the gypsum-fiber metering device 6 from FIG. 1.
- the gypsum-fiber metering device opens into a damp mixer 9, which corresponds to the amount of gypsum / fiber mixture drawn off Control device 18 controlled - water is added. Furthermore, the desired amount of additive is supplied to each partial mass flow via an additive metering device 50, the amount being determined by weight from a metering scale 50a and reported to the control device 18.
- the outlet 9a of the wet mixer 9 opens directly onto one of the conveyor belts 10a to 10c, which feeds the mixture moistened in the partial mass flow directly to an assigned spreading machine 11a to 11c.
- the device according to FIG. 2 also has the advantage that the additives to be mixed into a partial mass flow can be mixed in dry.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Producing Shaped Articles From Materials (AREA)
Description
Die Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung von Formkörpern wie Platten aus Gips und Faserstoff entsprechend den Merkmalen des Oberbegriffes des Anspruches 1 sowie eine Vorrichtung zur Durchführung des Verfahrens nach den Merkmalen des Oberbegriffs des Anspruches 10.The invention relates to a process for the continuous production of moldings, such as boards made of gypsum and fibrous material, in accordance with the features of the preamble of
Mit einem bekannten Verfahren (vgl. DE-OS 32 16 886) lassen sich Gips-Faserplatten befriedigender Qualität herstellen. Es besteht jedoch der Nachteil, daß bei serienmäßiger Herstellung solcher Gips-Faserplatten die statistische Streuung für Querzug und Biegefestigkeit verhältnismäßig groß ist. Auch hat sich gezeigt, daß kleinere, meist punktförmige Rückstellungen von Fasernestern auf der Plattenaußenseite zu kleinen pockenartigen Erhebungen führen, die für viele Verwendungszwecke eine Beeinträchtigung der Qualität solcher Gips-Faserplatten darstellen und dadurch eventuell ein Schleifen erforderlich machen.With a known method (cf. DE-OS 32 16 886), gypsum fibreboards of satisfactory quality can be produced. However, there is the disadvantage that the statistical scatter for transverse tension and bending strength is relatively large when such gypsum fibreboards are produced in series. It has also been shown that smaller, mostly punctiform resets of fiber nests on the outside of the board lead to small pox-like elevations which, for many uses, impair the quality of such gypsum fiber boards and may therefore require grinding.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur kontinuierlichen Herstellung von Formkörpern, insbesondere von Platten, aus Gips und Faserstoff zu schaffen, bei welchem die Oberflächen der Platten im wesentlichen frei von Pocken sind und bei welchem ferner optimale Festigkeitswerte von geringer statistischer Streuung auch bei Serienfertigung erreichbar sind. Ferner soll eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens angegeben werden.The invention has for its object to provide a process for the continuous production of moldings, in particular plates, from gypsum and fibrous material, in which the surfaces of the plates are essentially free of smallpox and in which furthermore optimal strength values of little statistical variation Series production can be achieved. Furthermore, an apparatus for performing the method according to the invention is to be specified.
Erfindungsgemäß wird die Aufgabe bei einem Verfahren mit den Merkmalen des Oberbegriffes des Anspruches 1 durch die kennzeichnenden Merkmale dieses Anspruches gelöst. Mit dem erfindungsgemäßen Verfahren ist es möglich, sehr gute Festigkeitswerte mit geringerer Streuung im kontinuierlichen Herstellverfahren zu erzeugen. Darüberhinaus weisen die nach dem erfindungsgemäßen Verfahren erzeugten Platten Oberflächen hoher Qualität auf, die frei von Pocken sind und deshalb nicht geschliffen werden müssen.According to the invention the object is achieved in a method with the features of the preamble of
Das erfindungsgemäße Verfahren ermöglicht auch die Zugabe von Wasser zu dem dosierten Gips-Fasergemisch so zu regeln und zu bemessen, daß die angefeuchtete Gips-Fasermasse nicht granuliert oder verklumpt. Hierbei hängt der Grenzwert von dem vorgewählten Mischungsverhältnis und der Art der Rohstoffe ab. Die Aufteilung der Gips-Faserstoffmasse in getrennte Teilströme hat zudem den Vorteil, daß das zugegebene Wasser in der gesamten Masse gleichmäßig und fein verteilt wird.The method according to the invention also makes it possible to regulate and measure the addition of water to the metered gypsum-fiber mixture in such a way that the moistened gypsum-fiber mass does not granulate or clump. The limit value depends on the pre-selected mixing ratio and the type of raw materials. The division of the gypsum pulp mass into separate partial streams also has the advantage that the water added is distributed evenly and finely throughout the mass.
Demgemäß lassen sich mit dem erfindungsgemäßen Verfahren Platten mit guten gleichbleibenden Biege- und Querzugfestigkeiten serienmäßig herstellen, die eine qualitativ hochwertige Oberfläche haben, die frei von noch so kleinen Pocken ist. Durch die genaue Dosierung der Bestandteile der Gips-Faserplatte einschließlich der genau dosierbaren, möglichst geringen Feuchtigkeitszugabe wird ferner erreicht, daß die Zeit für die Trocknung der fertig gepreßten Platten optimal kurz gehalten werden kann, wodurch gleichfalls der erforderliche Energieaufwand verringert wird.Accordingly, with the method according to the invention, sheets with good constant flexural and transverse tensile strengths can be mass-produced, which have a high-quality surface that is free of small pox. The exact dosage of the constituents of the gypsum fibreboard, including the precisely metered addition of as little moisture as possible, also ensures that the time for the drying of the finished pressed panels can be kept optimally short, which also reduces the energy expenditure required.
In der Praxis hat sich gezeigt, daß eine exakt stöchiometrische Wasserzugabe verhältnismäßig schwierig ist, da stets kleinere Schwankungen im Mischungsverhältnis und in der Qualität der Rohstoffe auftreten. Es kann daher vorkommen, daß bei überhöhter Wasserzugabe eine nachträgliche Trocknung der Platten notwendig wird oder daß bei zu geringer Wasserzugabe nicht genügend Wasser für die Abbindereaktion des Gipses vorhanden ist, was zu einer Schwächung der Platten führen kann. Es kann ferner nachteilig sein, daß bei stöchiometrischer Wasserzugabe eine Restfeuchte zwischen 1 % bis 3 % bleibt, die einer Menge von 5 % bis 15 % nicht abgebundenen Gipses entspricht, was gleichfalls zu einer Schwächung der Plattenstruktur führen kann. Im Bereich von 0 % bis 3 % Restfeuchte erfährt der Gips-Faserstoff relativ große Volumenveränderungen, was sich in bis zu 0,3 %-iger linearer Längenveränderung (3 mm/m) auswirken kann. Dies macht sich besonders nachteilig bei Verwendung von Gips-Faserplatten bemerkbar, wo es auf genaue Dimensionierung bzw. Toleranzen beim Verlegen bzw. beim Einbau solcher Platten ankommt. Wenn nämlich fugenlos verlegte Platten mit einer Restfeuchte von bis zu 3 % verlegt werden und dann bis zu 0 % Restfeuchte austrocknen, können diese bei anschließendem Ausgleich an die Umgebungsfeuchte Fugen aufreißen.In practice, it has been shown that an exactly stoichiometric addition of water is relatively difficult since there are always smaller fluctuations in the mixing ratio and in the quality of the raw materials. It can therefore happen that if the water is added excessively, the plates need to be dried later, or if there is too little water added, there is not enough water for the setting reaction of the plaster, which can lead to a weakening of the plates. It can also be disadvantageous that with the stoichiometric addition of water, a residual moisture between 1% and 3% remains, which corresponds to an amount of 5% to 15% of non-set gypsum, which can likewise lead to a weakening of the plate structure. In the range of 0% to 3% residual moisture, the gypsum fiber material undergoes relatively large volume changes, which can have an effect of up to 0.3% linear change in length (3 mm / m). This is particularly disadvantageous when using gypsum fibreboards, where precise dimensioning or tolerances when laying or installing such panels is important. If seamlessly laid panels with a residual moisture of up to 3% are then laid and then dry up to 0% residual moisture, these can tear open when subsequently compensated for the ambient moisture.
Schließlich wurde gefunden, daß der Abbindevorgang bei stöchiometrischer Wasserzugabe nachteilig abläuft. Der Gips kristallisiert nämlich jeweils an Ort und Stelle, weil Wasser zum Transport der Calcium-Sulfat-lonen nicht zur Verfügung steht. Es besteht daher die Gefahr, daß die Platte zu einem leicht verbackenen Aggregat aus Körnern wird, welche die ursprüngliche Gestalt der Gipskörner beibehalten haben.Finally, it was found that the setting process takes place disadvantageously with the stoichiometric addition of water. The gypsum crystallizes on the spot because water is not available to transport the calcium sulfate ions. There is therefore a risk that the plate will become a slightly caked aggregate of grains that have retained the original shape of the gypsum grains.
Werden die Oberflächen des Formkörpers nachträglich mit Wasser besprüht, so erhält zwar die Oberfläche eine feste, gleichmäßige Struktur. Es hat sich jedoch gezeigt, daß diese vorteilhafte Verfestigung der Oberfläche noch keine optimale gute Plattenqualität sicherstellt. Es kann vorkommen, daß beim Vernageln oder Verschrauben der Platte größere Stücke aus der verfestigten Oberfläche herausbrechen.If the surfaces of the molded body are subsequently sprayed with water, the surface is given a firm, uniform structure. However, it has been shown that this advantageous consolidation of the surface does not yet ensure an optimal, good plate quality. It can happen that larger pieces break out of the solidified surface when nailing or screwing the plate.
Insgesamt ist durch die Erfindung somit ein Verfahren geschaffen, bei welchem Formkörper, insbesondere Platten, aus einer Mischung von Gips und Faserstoff bei optimal geringer Abbinde- und Trocknungszeit eine durchgehend hohe Festigkeit geringer Streuung erhalten.Overall, the invention thus creates a process in which molded articles, in particular sheets, made from a mixture of gypsum and fibrous material with an optimally short setting and drying time receive a consistently high strength with little scatter.
Um dem Formkörper die zum Abbinden notwendige Wassermenge zuzusetzen, wird der Massestrom in mehrere, voneinander getrennte Teilmasseströme aufgeteilt, wobei jeder Teilmassestrom zu einer Schicht des Formkörpers auf die Unterlage bzw. die vorherige Schicht aufgestreut wird. Jede Schicht wird - von den übrigen Schichten unabhängig - mit einer vorgegebenen Wassermenge nachbefeuchtet. Dabei ist die Zufuhr an Gesamtwasser (incl. der Wassermenge zur Anfeuchtung des trockenen Gips-Faserstoffgemisches) so gesteuert, daß dem Formkörper eine Wassermenge zugesetzt wird, die bis zu 25 % größer ist als die stöchiometrische Wassermenge, die rechnerisch zum Abbinden des Gips-Faserstoffgemisches erforderlich ist. Vorzugsweise liegt die überstöchiometrische Wasserzugabe in der Größenordnung zwischen 15 % bis 20 % (vgl. Fig. 4). Da die zusätzliche Wassermenge auf Schichten verteilt zugeführt wird, entfällt eine Nachmischung und die damit verbundene nachteilige Klumpung bzw. Granulierung des Gipses.In order to add the amount of water required for setting to the shaped body, the mass flow is divided into several, separate partial mass flows, each partial mass flow is sprinkled into a layer of the shaped body on the base or the previous layer. Each layer - regardless of the other layers - is moistened with a given amount of water. The supply of total water (including the amount of water for moistening the dry gypsum-fiber mixture) is controlled in such a way that a quantity of water is added to the shaped body that is up to 25% greater than the stoichiometric amount of water that is calculated to set the gypsum-fiber mixture is required. The superstoichiometric addition of water is preferably in the order of magnitude between 15% and 20% (cf. FIG. 4). Since the additional amount of water is distributed in layers, there is no need for remixing and the associated disadvantageous lumping or granulation of the gypsum.
Durch die überstöchiometrische Wasserzugabe ist bei einem Abbindevorgang ausreichend Wasser vorhanden, um einen Transport der Calcium-Sulfat-lonen in alle Richtungen sicherzustellen. Dies gewährleistet, daß der Formkörper in gut ausgebildete, idiomorphe, nadelförmige Kristalle auskristallisiert, die miteinander stark verwachsen und verfilzt sind. Hierdurch werden hohe mechanische Festigkeiten der Platte erzielt.Due to the over-stoichiometric addition of water, sufficient water is available during a setting process to ensure that the calcium sulfate ions are transported in all directions. This ensures that the shaped body crystallizes into well-formed, idiomorphic, needle-shaped crystals that are strongly grown and matted together. As a result, high mechanical strengths of the plate are achieved.
Darüberhinaus bewirkt die überstöchiometrische Wasserzugabe eine steigende Plastizität des Gipses beim Verpressen. Das bedeutet, daß Gipsmaterial in alle Hohlräume verpreßt werden kann, was wiederum eine bessere Fasereinbindung bewirkt. Die Plastizität erlaubt außerdem die Verwendung eines etwas gröber vermahlenden Gipses, wodurch wirtschaftliche Vorteile entstehen. Durch die Klebekraft des nassen Gipses werden außerdem die Rückstellkräfte der beim Pressen verformten Zellulosefasern kompensiert. Dadurch kann sofort nach kurzzeitigem Verpressen die Presse geöffnet werden, ohne daß es erforderlich ist, die Preßzeit dem Abbindevorgang anzupassen. Durch die höhere Plastizität paßt sich die Oberfläche des Formkörpers genau der Preßunterlage an, wodurch sich eine glatte Preßunterlage als glatte Oberfläche abbildet. Dagegen kann es bei genau stöchiometrischer Wasserzugabe zu staubigen Oberflächen oder bei nur geringer überstöchiometrischer Wasserzugabe zu pockigen Oberflächen der Platten kommen. Bei einem nassen Verfahren mit großem Wasserüberschuß muß dagegen mit strukturierten Walzen oder Sieben gearbeitet werden, was ein Nachschleifen erforderlich macht. Dabei muß mit Schleifverlusten der Platte in der Größenordnung von mindestens 3 %, meist jedoch 10 % gerechnet werden.In addition, the over-stoichiometric addition of water increases the plasticity of the plaster when pressed. This means that gypsum material can be pressed into all cavities, which in turn leads to better fiber integration. The plasticity also allows the use of a somewhat coarser grinding plaster, which results in economic advantages. The adhesive force of the wet gypsum also compensates for the restoring forces of the cellulose fibers deformed during pressing. As a result, the press can be opened immediately after briefly pressing, without it being necessary to adapt the pressing time to the setting process. Due to the higher plasticity, the surface of the molded body adapts exactly to the press base, whereby a smooth press base is formed as a smooth surface. On the other hand, if the water is added exactly stoichiometrically, dusty surfaces may occur, or the surfaces of the plates may become pockish if the water is only added slightly above stoichiometric. In the case of a wet process with a large excess of water, on the other hand, structured rollers or screens have to be used, which necessitates regrinding. Grinding losses of the plate in the order of magnitude of at least 3%, but usually 10% must be expected.
Bei einer überstöchiometrischen Wasserzugabe in der Größenordnung bis zu 25 %, vorzugsweise etwa 15 % bis 20 %, ist auch der Abbindevorgang des Gipses erheblich beschleunigt, wodurch die Kosten für die Abbindestrecke bei einer kontinuierlich arbeitenden Anlage erheblich niedriger als bei vergleichbaren Anlagen sind.With an over-stoichiometric addition of water in the order of up to 25%, preferably about 15% to 20%, the setting process of the gypsum is also considerably accelerated, as a result of which the costs for the setting line in a continuously operating system are considerably lower than in comparable systems.
Wenn nach einem weiteren Merkmal der Erfindung die Teilmasseströme unterschiedliche Massenvolumina aufweisen, können Schichten unterschiedlicher Dicke gebildet werden. Um eine mittige Kernschicht und eine Vielzahl aufgestreuter Schichten zu erzielen, ist die Anzahl der Teilmasseströme ungerade. Hierbei können jedem Teilmassestrom Zuschlagstoffe zugemischt werden; insbesondere werden dem vorzugsweise im Volumen größeren Teilmassestrom der Kernschicht Zuschlagstoffe beigesetzt.If, according to a further feature of the invention, the partial mass flows have different mass volumes, layers of different thicknesses can be formed. In order to achieve a central core layer and a large number of scattered layers, the number of partial mass flows is odd. Additives can be added to each partial mass flow; In particular, additives are added to the partial mass flow of the core layer, which is preferably larger in volume.
Ähnlich wird die Zufuhr der einzelnen Wassermengen gesteuert, die in der Gesamtmenge vorzugsweise 15 % bis 20 % über der stöchiometrischen Wassermenge beträgt. Die den einzelnen Schichten nach dem Streuen zugesetzte Wassermenge kann unterschiedlich sein ; insbesondere wird den Außenschichten des Formkörpers eine größere Menge Wasser zugesetzt als den innenliegenden Schichten. Die den einzelnen Schichten aufgesprühten Wassermengen können auch Additive enthalten ; so ist es zweckmäßig, der Wassermenge der äußeren Schicht des Formkörpers Suspensionen oder Emulsionen von Pigmenten und/oder Kunstharze zuzusetzen. Dadurch kann z. B. eine Oberflächen-Dekorierung, eine wasserabweisende Imprägnierung oder ein Feuerschutzmittel direkt bei der Herstellung angewendet werden, ohne daß ein zweiter Verfahrensgang notwendig ist. Hierbei wirkt sich das erfindungsgemäße Verfahren vorteilhaft aus, da mit ihm Platten mit fertigen Oberflächen erzeugt werden können, die nicht nachgeschliffen werden müssen. Auch kann eine ursprünglich unbeschleunigte oder leicht verzögerte Grundmischung durch Zugabe von Beschleunigerlösung (z. B. Kaliumsulfat) kurz vor der Presse beschleunigt werden.Similarly, the supply of the individual amounts of water is controlled, which is preferably 15% to 20% above the stoichiometric amount of water in the total amount. The amount of water added to the individual layers after spreading can vary; in particular, a larger amount of water is added to the outer layers of the shaped body than to the inner layers. The amounts of water sprayed on the individual layers can also contain additives; it is expedient to add suspensions or emulsions of pigments and / or synthetic resins to the amount of water in the outer layer of the molding. This can, for. B. a surface decoration, a water-repellent impregnation or a fire retardant can be used directly in the production without a second process step being necessary. The method according to the invention has an advantageous effect here, since it can be used to produce plates with finished surfaces that do not have to be reground. An originally unaccelerated or slightly decelerated basic mixture can also be accelerated shortly before the press by adding accelerator solution (e.g. potassium sulfate).
Eine vorteilhafte Vorrichtung zur Durchführung des Verfahrens ist in gesonderten Patentansprüchen angegeben.An advantageous device for performing the method is specified in separate patent claims.
Weitere Merkmale der Erfindung ergeben sich aus den weiteren Ansprüchen, der Beschreibung sowie der Zeichnung, anhand der vorteilhafte Ausführungen des erfindungsgemäßen Verfahrens näher erläutert sind. Es zeigen:
- Fig. 1 eine Vorrichtung zur Durchführung des Verfahrens mit Aufteilung des Massestroms nach dem Feucht-Mischvorgang,
- Fig. 2 eine Vorrichtung gemäß Fig. 1 mit Aufteilung des Massestroms nach dem Trocken-Mischvorgang,
- Fig. 3a bis 3e Schnitte durch Platten verschiedenen Aufbaus,
- Fig. 4 ein Diagramm der Abhängigkeit der Biegezugfestigkeit von der Dichte bei Gipsfaserplatten,
- Fig. 5 ein Diagramm des Abbindeverlaufs von Gipsfaserplatten mit verschiedenen Anteilen überstöchiometrischen Wassers.
- 1 shows an apparatus for carrying out the method with division of the mass flow after the wet mixing process,
- 2 shows a device according to FIG. 1 with distribution of the mass flow after the dry mixing process,
- 3a to 3e sections through plates of different construction,
- 4 shows a diagram of the dependence of the bending tensile strength on the density in the case of gypsum fiber boards,
- Fig. 5 is a diagram of the setting course of gypsum fiber boards with different proportions of superstoichiometric water.
Mittels motorgetriebener Förderbänder 20a, 20b und 20c wird aus einem Faserbunker 1 eine Fasermenge abgezogen. Vorzugsweise wird das Förderband 20c von einem Motor 34 angetrieben. Die ausgetragene Fasermenge wird mittels Egalisierwalzen 21 oder dgl. volumetrisch vordosiert. Die Egalisierwalzen 21 sind am Ende des letzten Förderbandes 20c in der Nähe des Ausgangs 22 des Faserbunkers 1 angeordnet.A quantity of fibers is drawn from a
Unterhalb des Ausgangs 22 ist eine an sich bekannte, kontinuierlich arbeitende Wägeeinrichtung 2 angeordnet, beispielsweise eine Bandwaage, welche die aus dem Faserbunker 1 austretende Fasermenge gewichtsmäßig erfaßt und über eine Schütte oder dgl. in einen Trockenmischer 4 fördert. Das dem erfaßten Gewicht der Fasermenge entsprechende Ausgangssignal der vorzugsweise elektronischen Wägeeinrichtung 2 wird einer elektronischen Steuereinrichtung 23 zugeführt, die in Abhängigkeit von diesem Ausgangssignal über eine Steuerleitung 31 die Drehzahl des Antriebsmotors 13a einer Förderschnecke 13 einer der Gipsdosiervorrichtung 3 zugeordneten Dosierwaage 14 regelt.A continuously operating weighing
Die Steuervorrichtung 23 regelt ferner zumindest die Fördergeschwindigkeit des letzten Förderbandes 20c des Faserbunkers 1 entsprechend einem Differenzwert, der aus dem Ausgangssignal der Bandwaage 2 und einem der Steuervorrichtung 23 vorgegebenen Sollwert gebildet ist. Ferner überwacht die Steuervorrichtung 23 auch das vorgegebene Mengenverhältnis Gips/Faserstoff und wirkt über die Steuerleitungen 30 und 31 entsprechend auf die Fördergeschwindigkeit des Förderbandes 20c und der Förderschnecke 13 der Dosiervorrichtung 3 ein.The control device 23 further regulates at least the conveying speed of the
Die Meßgröße der kontinuierlichen Wägung der Gips-Fasermasse steuert die vorgewählte Sollgröße der Fasermasse (F) und die Sollgröße der Gipsmenge (G) derart, daß F/G = konstant und G + F = konstant sind.The measured quantity of the continuous weighing of the gypsum fiber mass controls the preselected target size of the fiber mass (F) and the target size of the gypsum quantity (G) in such a way that F / G = constant and G + F = constant.
Der Trockenmischer 4 ist vorzugsweise ein horizontaler Durchlaufmischer mit rotierender Mischerwelle und auf dieser radial angeordneten Mischwerkzeugen, in welchen das Mischgut weitgehend ohne Rückströmung den Mischer durchläuft. Diesem Mischer 4 werden kontinuierlich an einem Ende die gewichtsdosierten Ausgangsmengen an Gips und Faserstoff zugegeben. Am anderen Ende des Durchlaufmischers 4 wird das aus seinem Auslaß 4a austretende Trockengemisch aus Gips und Fasern vorzugsweise über ein Transportband 5 mit variablem Geschwindigkeitsantrieb in einen Zwischenbunker 45 der Gips-Faserdosiervorrichtung 6 gefördert. Aus diesem Zwischenbunker 6a wird das Gemisch über im Zwischenbunker angeordnete Förderbänder 16a, 16b nach Bedarf abgezogen.The dry mixer 4 is preferably a horizontal continuous mixer with a rotating mixer shaft and mixing tools arranged radially thereon, in which the material to be mixed passes through the mixer largely without backflow. This mixer 4 is continuously added at one end with the weight-metered starting quantities of gypsum and fibrous material. At the other end of the continuous mixer 4, the dry mixture of gypsum and fibers emerging from its outlet 4a is conveyed preferably via a
Am Ende des von einem Motor 29 angetriebenen letzten Förderbandes 16b sind in der Nähe des Bunkerausgangs 17 Egalisierwalzen 15 angeordnet, durch welche die auszutragende Menge des aus Gips und Fasern bestehenden Trockengemisches volumetrisch vordosiert wird. Das Trockengemisch fällt unmittelbar auf eine unter dem Ausgang 17 angeordnete Wägeeinrichtung, die vorzugsweise aus einer Bandwaage 7 besteht.At the end of the
Das Ausgangssignal der Bandwaage 7 ist einer elektronischen Steuereinrichtung 18 zugeführt, die einerseits über die Steuerleitung 32 die Fördergeschwindigkeit des letzten Förderbandes 16b und andererseits über die Steuerleitung 33 eine Wasserdosiervorrichtung 8 steuert. Diese wird so angesteuert, daß immer eine derartige Menge an Wasser zugeführt ist, die unterhalb eines Grenzwertes liegt, oberhalb dem das angefeuchtete Gips-Fasergemisch zur Granulat- bzw. Klumpenbildung neigt. Auch bei Mengenschwankungen des trockenen Gips-Fasergemisches beim kontinuierlichen Verfahren ist die dem trockenen Gemisch zugegebene Wassermenge stets der wirklichen im Mischvorgang befindlichen Menge genau angepaßt, so daß nahezu eine stöchiometrische Wasserzugabe beim Mischvorgang gegeben ist.The output signal of the
Die geregelte Zudosierung des Wasser in einem Feuchtmischer 9 kann erfindungsgemäß so erfolgen, daß das Regelungssignal um die Zeitspanne verzögert wirksam wird, die die erfaßte Masse an Gips-Fasergemisch bis zum Erreichen der Stelle (Düse 8') der Wasserzugabe benötigt.The controlled metering of the water in a
Das von der Bandwaage 7 gewichtsmäßig erfaßte trockene Gips-Fasergemisch wird unmittelbar dem vorzugsweise ebenfalls als Durchlaufmischer mit rotierender Mischerwelle und auf dieser angeordneten Mischwerkzeugen ausgebildeten Feuchtmischer 9 zugeführt. Über die von der Steuereinrichtung 18 geregelte Wasser-Dosiervorrichtung 8 wird dem Mischstrom des Feuchtmischers 9 über nicht näher dargestellte Düsen 8' die genau dosierte Wassermenge zugeführt. Die Düsen 8' sprühen das Wasser vorzugsweise quer zur Längsachse des den Mischer durchlaufenden Mischstroms in den zylindrischen Innenraum des Mischers 9 ein.The dry gypsum-fiber mixture determined by the weight of the
Am Ausgang 9a des Durchlaufmischers 9 fällt das mit Wasser angefeuchtete Gips-Fasergemisch in eine Zuteilvorrichtung 37, die den Massestrom vorzugsweise durch rhythmisches Umlenken (getaktetes Umlenken) in drei Masseströme auf mit variabler Geschwindigkeit antreibbare Transportbänder 10a, 10b und 10c aufteilt. Jedes Transportband 10a bis 10c beschickt einen Zwischenbunker einer an sich bekannten Streumaschine 11a bis 11c. Die Streumaschinen 11a bis 11c sind gleich aufgebaut und weisen ein Transportband 36, mindestens eine Egalisierwalze 27 und eine Abwurfwalze 28 auf.At the
Unter dem Streukopf 26a bis 26c jeder Streumaschine 11a bis 11c läuft eine Formstraße 12 durch, wobei die Streuköpfe 26a bis 26c in Förderrichtung 19 der Formstraße 12 hintereinander angeordnet sind. In Förderrichtung 19 der Formstraße ist vor dem ersten Streukopf 26a eine Sprühdüse 40 zur Wasserzugabe vorgesehen. Ferner ist zwischen den Streuköpfen 26a und 26b sowie 26b und 26c je eine Sprühdüse 41 und 42 angeordnet ; auch hinter dem letzten Streukopf 26c wird über eine Sprühdüse 43 Wasser zugeführt. Durch diese Anordnung ist gewährleistet, daß die Spritzdüsen 40 bis 43 nicht verschmutzen und sich nicht zusetzen können, da diese Düsen außerhalb der Staubverwirbelungszone zwischen benachbarten Streuköpfen liegen.A
Aufgrund der variablen Antriebe für die Förderbänder ist eine Geschwindigkeitsanpassung dieser Bänder möglich, so daß ein kontinuierlicher Durchlauf unter Berücksichtigung des zeitlichen Gesamtablaufs ermöglicht wird, d.h. daß die Gesamtverweilzeit zwischen Feuchtmischen und Pressen in jeder Schicht gleich ist. Durch die kontinuierlich gewichtsdosierte Zugabe des Trockengemisches zum Mischer 9 und der Anfeuchtung mittels einer regelbaren Wassermenge in Abhängigkeit von dem elektrischen Ausgangssignal der Wägeeinrichtung 7 ist eine kontinuierliche Herstellung von Gips-Faserplatten ohne große Streuung der Festigkeitswerte möglich geworden. Im gezeigten Ausführungsbeispiel nach Fig. 1 wird vor dem Aufbringen einer ersten Schicht 35a des zu fertigenden Formkörpers auf die Formstraße 12 mittels der Düse 40 die Oberseite der Formstraße mit Wasser benetzt. Auf die so angefeuchtete Formstraße 12 wird der erste Teilmassestrom des in oben geschilderter Weise angefeuchteten Gips-Fasergemisches aufgestreut. Die erste Schicht 35a wird in Pfeilrichtung 19 unter der Düse 41 vorbeibewegt, wobei die äußere Oberfläche der Schicht 35a durch Besprühen mit Wasser bzw. einem Wassernebel nachbefeuchtet wird. Auf diese nachbefeuchtete Oberfläche der Schicht 35a wird bei Passieren des Streukopfes 26b die zweite Schicht 35b aufgestreut, deren äußere Oberfläche nunmehr mittels der Düse 42 mit Wasser nachbefeuchtet wird. Auf diese Schicht wird sodann die dritte Schicht 35c aufgestreut, deren äußere Oberfläche über die Düse 43 abschließend mit Wasser nachbefeuchtet wird. Der so schichtweise entstandene, mattenförmige Formkörper wird in einer der Formstraße 12 nachgeordneten Presse verdichtet, anschließend auf Länge zugeschnitten und dann zum Abbinden und zur Trocknung abgelagert. Die einzelnen Vorrichtungen der erfindungsgemäßen Anlage, wie beispielsweise die Wägeeinrichtung 2 und 7, die Mischer 4 und 9, die Dosiervorrichtungen 3, 6 und 8 sowie die Streumaschinen 11a bis 11c arbeiten kontinuierlich, so daß ohne Unterbrechung kontinuierlich Platten hergestellt werden können.Due to the variable drives for the conveyor belts, a speed adjustment of these belts is possible, so that a continuous run is possible taking into account the overall time sequence, that is, the Total residence time between wet mixing and pressing is the same in each shift. The continuous weight-metered addition of the dry mixture to the
Es hat sich gezeigt, daß durch die Aufteilung des Massestroms in mehrere, vorzugsweise drei getrennte Teilmasseströme und Nachbefeuchten eine Platte hoher Festigkeit gefertigt werden kann. Dabei wird insgesamt bis zu 25 %, vorzugsweise 15 % bis 20 % Wasser über der stöchiometrischen Wassermenge zugesetzt, wodurch ein Massentransport von Calcium-Sulfat-Ionen in alle Richtungen möglich ist und der Gipskörper in gut ausgebildeten, idiomorphen, nadelförmigen Kristallen auskristallisiert, die miteinander verwachsen und verfilzt sind. Eine derartige Platte weist hervorragende strukturelle Eigenschafen auf und zeigt eine deutlich höhere Querzug- und Biegefestigkeit als herkömmliche Platten. Insbesondere wird eine ausgezeichnete Plattenoberfläche erzielt, die frei von pockenartigen Erhebungen ist und daher nicht nachbearbeitet werden muß.It has been shown that by dividing the mass flow into several, preferably three, separate partial mass flows and rewetting, a plate of high strength can be produced. A total of up to 25%, preferably 15% to 20%, water is added above the stoichiometric amount of water, which enables mass transport of calcium sulfate ions in all directions and the gypsum body to crystallize in well-formed, idiomorphic, needle-shaped crystals which interact with one another are grown together and matted. Such a plate has excellent structural properties and shows a significantly higher transverse tensile and bending strength than conventional plates. In particular, an excellent plate surface is achieved, which is free of pox-like elevations and therefore does not have to be reworked.
Die Wirkung der überstöchiometrischen Wasserzugabe in der Größenordnung von 15 % bis 20 % ist aus Fig. 4 ersichtlich. Darin ist die Biegezugfestigkeit gegenüber der Dichte bei verschiedenen Wasserzugaben aufgetragen. Man erkennt den typischen parabelförmigen Verlauf. Bei höherem Anteil an überstöchiometrischem Wasser erhält man höhere Festigkeiten. Im Bereich der in der Praxis realisierten Dichten zwischen 1,15 und 1,2 verdoppelt sich die Festigkeit im Vergleich zu stöchiometrischer Wasserzugabe. Aus diesem Diagramm läßt sich die positive Wirkung bezüglich der höheren Festigkeit von Gipsfaserplatten bei überstöchiometrischer Wasserzugabe eindeutig ablesen.The effect of the superstoichiometric addition of water on the order of 15% to 20% can be seen from FIG. 4. It shows the bending tensile strength versus density with different water additions. You can see the typical parabolic course. With a higher proportion of superstoichiometric water, higher strengths are obtained. In the range of densities between 1.15 and 1.2 realized in practice, the strength is doubled compared to the stoichiometric addition of water. This diagram clearly shows the positive effect with regard to the higher strength of gypsum fibreboards when water is added in excess of stoichiometry.
Aufgrund der überstöchiometrischen Wasserzugabe wird auch ein erheblich rascheres Abbinden erzielt. Dieses schnellere Abbinden ist in Fig. 5 anhand der auftretenden Temperaturerhöhung dargestellt. Bei stöchiometrischer Zugabe von Wasser werden Abbindezeiten in der Größenordnung von 30 Minuten erzielt. Hierbei ist das sehr langsame Auslaufen der Kurve wesentlich, das auf eine unvollständige Reaktion hinweist. Im Fall einer überstöchiometrischen Wasserzugabe in der Größenordnung von 18% Wasser werden Abbindezeiten von etwa 10 Minuten erzielt, wobei die Temperaturerhöhung sehr schnell auf höherem Niveau zum Stillstand kommt. Dies ist ein Hinweis auf vollständiges Abbinden des Gipses und verdeutlicht graphisch die besseren strukturellen Eigenschaften der nach dem erfindungsgemäßen Verfahren hergestellten Platten.Due to the over-stoichiometric addition of water, setting is also considerably faster. This faster setting is shown in FIG. 5 on the basis of the temperature increase that occurs. With the stoichiometric addition of water, setting times of the order of 30 minutes are achieved. The very slow runout of the curve is important here, which indicates an incomplete reaction. In the case of over-stoichiometric addition of water in the order of magnitude of 18% water, setting times of about 10 minutes are achieved, with the temperature increase coming to a standstill very quickly at a higher level. This is an indication of complete setting of the gypsum and graphically illustrates the better structural properties of the boards produced by the method according to the invention.
Die mit dem erfindungsgemäßen Verfahren herstellbaren Platten sind in den Fig. 3c bis 3e dargestellt. In Fig. 3a ist im Schnitt eine Platte 35 gezeigt, die nach bisher bekannten Verfahren hergestellt wurde. In Fig. 3b ist eine Platte im Schnitt gezeichnet, die nach dem erfindungsgemäßen Verfahren hergestellt ist und bei welcher die Querzug- und Biegefestigkeiten erheblich verbessert sind und bei der ferner die Oberflächen 38 wesentlich fester ausgebildet sind, was durch beidseitiges Besprühen der Platten mit Wasser erreichbar ist.The plates that can be produced using the method according to the invention are shown in FIGS. 3c to 3e. In Fig. 3a, a
Die nach dem erfindungsgemäß weiter ausgebildeten Verfahren hergestellten Platte, bei der der Massestrom des Gips-Faserstoffgemisches in voneinander getrennte Teilmasseströme aufgeteilt wird und jede abgestreute Schicht mit Wasser nachbefeuchtet wird, wobei die der Platte zugeführte Gesamtwassermenge bis zu 25 % über der stöchiometrischen Wassermenge zum Abbinden des zum Formkörper gestreuten Gips-Faserstoffgemisches beträgt, bestehen aus drei Schichten 35a bis 35c und basieren auf einer Aufteilung des Massestroms in eine ungerade Zahl von Teilmasseströmen, nämlich in drei Teilmasseströme. Drei Teilmasseströme sind zur Herstellung einer 10 mm dicken Gipsfaserplatte mit hoher Festigkeit und einer mittleren Kernschicht ausreichend. Es kann jedoch vorteilhaft sein, eine höhere Schichtenaufteilung zu wählen. Die in Fig. 3c im Schnitt dargestellte Platte wurde aus drei Teilmasseströmen gleichen Volumens zusammengesetzt. Im Bereich der Schichtgrenzen wird jeweils eine höhere Verfestigung des Gipses erzielt. Die Volumina der Teilströme sind derart gewählt, daß sich nach dem Formpressen eine Schichtdicke von jeweils 1 bis 7 mm ergibt. Vorzugsweise sind die Volumina der Teilströme jedoch so bemessen, daß nach dem Formpressen eine Schichtdicke von 2 bis 3 mm gegeben ist.The plate produced according to the method further developed according to the invention, in which the mass flow of the gypsum-fiber mixture is divided into separate partial mass flows and each scattered layer is re-moistened with water, the total amount of water supplied to the plate being up to 25% above the stoichiometric amount of water for setting gypsum-fiber mixture scattered to form the molded body, consist of three
Die in Fig. 3d im Schnitt dargestellte Platte wurde ebenfalls aus drei Teilmasseströmen zusammengesetzt. Der die Kernschicht 35b bildende Teilmassestrom wurde hierbei mit einem größeren Massevolumen versehen als die übrigen Teilmasseströme der Außenschichten 35a und 35c. Hierbei wurden dem die Kernschicht bildenden Teilmassestrom Zuschlagstoffe 44 zugesetzt.The plate shown in section in FIG. 3d was also composed of three partial mass flows. The partial mass flow forming the
Für die Kernschicht kann ein Leicht-Zuschlagstoff wie Vermiculite oder Kenosphären zweckmäßig sein. Die Zugabe von Glimmer in die Kernschicht und/oder die äußeren Schichten kann die Feuerschutzeigenschaft der Platte deutlich verbessern. Ferner können in die äußere oder innere Schicht auch Gips als Zuschlagstoff eingemischt werden. Auch sind Zuschlagstoffe in Form von weiteren Verstärkungsfasern wie z. B. Glasrovings für die äußere Schicht zweckmäßig. Auch können in die äußeren Schichten zugesetzte Paraffingranulate beim Trocknen aufgeschmolzen werden, wodurch eine tiefreichende Wasserschutz-Imprägnierung erzielt wird.A light aggregate such as vermiculite or kenospheres can be useful for the core layer. The addition of mica to the core layer and / or the outer layers can significantly improve the fire protection properties of the board. Gypsum can also be mixed into the outer or inner layer as an additive. Also aggregates in the form of other reinforcing fibers such. B. glass rovings useful for the outer layer. Paraffin granules added to the outer layers can also be melted during drying, which results in a deep waterproofing impregnation.
Die in Fig. 3e im Schnitt dargestellte Platte entspricht im Aufbau der Platte aus Fig. 3c. Der über die letzte Sprühdüse 43 zugeführten Wassermenge wurde jedoch ein Pigmentzusatz zugegeben, so daß sich eine Oberfläche 39 aus gebundenem Pigment ausbildet.The plate shown in section in FIG. 3e corresponds in structure to the plate from FIG. 3c. However, a pigment additive was added to the amount of water supplied via the
Zur Erzielung bestimmter Formstrukturen und Festigkeiten kann es vorteilhaft sein, die den einzelnen Schichten zur Nachbefeuchtung zugeführte Wassermenge unterschiedlich vorzusehen. So kann es vorteilhaft sein, die den äußeren Flächen des Formkörpers zugesetzte Wassermenge größer vorzusehen als die den innenliegenden Schichten zugesetzte Wassermenge, wodurch eine nachbearbeitungsfreie, glatte Oberfläche erzielbar ist. Insbesondere können über die zur Nachbefeuchtung zugesetzten Wassermengen beliebige Additive, so z. B. ein Abbindebeschleuniger zugesetzt werden. Diese Additive sind vorzugsweise wasserlöslich. Es kann zweckmäßig sein, der den äußeren Schichten zugeführten Wassermenge andere Additive zuzusetzen als den den inneren Schichten zugeführten Wassermengen. Dabei liegen die Additive für die Wassermengen der äußeren Schichten vorzugsweise in Form von Suspensionen oder Dispersionen vor.To achieve certain shape structures and strengths, it can be advantageous to provide the amount of water supplied to the individual layers for rewetting in different ways. Thus, it may be advantageous to provide the amount of water added to the outer surfaces of the shaped body larger than the amount of water added to the inner layers, as a result of which a smooth, post-processing-free surface can be achieved. In particular, any additives, such as. B. a setting accelerator can be added. These additives are preferably water soluble. It may be expedient to add other additives to the amount of water supplied to the outer layers than to the amounts of water supplied to the inner layers. The additives for the amounts of water in the outer layers are preferably in the form of suspensions or dispersions.
In Fig. 2 ist eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens angegeben, die dem Grundaufbau der Vorrichtung gemäß Fig. 1 weitgehend entspricht. Gleiche Teile sind mit gleichen Bezugsziffern versehen.FIG. 2 shows a device for carrying out the method according to the invention, which largely corresponds to the basic structure of the device according to FIG. 1. The same parts are provided with the same reference numbers.
Im Gegensatz zu Fig. 1 wird die Aufteilung des Massestroms in mehrere Teilmasseströme bereits am Ausgang des Trockenmischers 4 vorgesehen. Die trocken vorgemischte Gips-Fasermenge gelangt über den Auslaß 4a des Trockenmischers unmittelbar in eine Zuteilvorrichtung 37a, die den Massestrom in einzelne Masseströme gleichen oder unterschiedlichen Volumens aufteilt. Dieses Aufteilen geschieht vorzugsweise durch getaktetes Umlenken des Hauptmassestroms auf Transportbänder der Teilmasseströme. Diese Transportbänder münden in Zwischenbunker 6a bis 6c. Im dargestellten Ausführungsbeispiel ist eine Aufteilung in drei Teilmasseströme vorgesehen ; entsprechend sind drei Gips-Faser-Dosiervorrichtungen 6a bis 6c angeordnet. Die Gips-Faser-Dosiervorrichtungen 6a bis 6c entsprechen im Aufbau der Gips-Faser-Dosiervorrichtung 6 aus Fig. 1. Die Gips-Faser-Dosiervorrichtung mündet in einen Feuchtmischer 9, dem entsprechend der abgezogenen Menge an Gips/Faser-Gemisch - von der Steuervorrichtung 18 gesteuert - Wasser zugesetzt wird. Ferner wird über eine Zuschlagstoffdosiervorrichtung 50 jedem Teilmassestrom die gewünschte Menge an Zuschlagstoff zugeführt, wobei die Menge von einer Dosierwaage 50a gewichtsmäßig erfaßt und der Steuereinrichtung 18 gemeldet wird. Der Ausgang 9a des Feuchtmischers 9 mündet unmittelbar auf eines der Transportbänder 10a bis 10c, das das im Teilmassestrom angefeuchtete Gemisch unmittelbar einer zugeordneten Streumaschine 11a bis 11c zuführt. Die Aufteilung des Massestroms in Teilmasseströme bereits nach dem Trockenmischer bedingt zwar einen höheren Anlagenaufwand, jedoch wird dadurch die Verweilzeit des angefeuchteten Gemisches bis zur Presse sehr kurz gehalten, da das feuchte Gips-Fasergemisch nach Verlassen des Feuchtmischers 9 unmittelbar der Streumaschine zugeführt wird, die den Teilmassestrom auf die Formstraße 12 streut. Die Vorrichtung gemäß Fig. 2 hat ferner auch den Vorteil, daß die in einen Teilmassestrom einzumischende Zuschlagstoffe trocken eingemischt werden können.In contrast to FIG. 1, the division of the mass flow into several partial mass flows is already provided at the outlet of the dry mixer 4. The dry premixed amount of gypsum fiber arrives via the outlet 4a of the dry mixer directly into an
Claims (12)
- Method for the continuous production of shaped articles, in particular sheets, from a mixture of plaster and fibrous material, in a first continuous mixing process respectively metered quantities of plaster and fibrous material being mixed thoroughly, the dry plaster and fibrous material mixture then being moistened in a second continuous mixing process with the metered addition of a quantity of water, in that before the second mixing process the mass of the dry plaster and fibrous material mixture is continuously measured and the addition of water is adapted to correspond to the measured mass, the moistened mixture being spread on a support to form shaped articles and being subsequently pressed and the total quantity of water supplied lying significantly above the stoichiometric quantity of water required for binding the mixture of plaster and fibrous material, characterised in that the addition of water in the second mixing process is adapted so that the quantity of water added is kept below a limit value, at which the moistened mixture of plaster and fibrous material tends towards granulation or the formation of lumps, the mass flow of the mixture of plaster and fibrous material being divided into mass flows separated from each other, each partial mass flow being spread to form a layer of the shaped article on the support or a preceding layer and an additional quantity of water being added, in that each spread-out layer of the moistened mixture of plaster and fibrous material is subsequently moistened separately with water.
- Method according to Claim 1, characterised in that the total quantity of water supplied is up to 25%, preferably approximately 15% to 20% greater than the stoichiometric quantity of water.
- Method according to Claim 1 or 2, characterised in that the separation of the plaster and fibrous material mixture with the metered addition of water takes place after the second mixing process (Figure 1).
- Method according to Claim 1 or 2, characterised in that the separation of the plaster and fibrous material mixture takes place after the first mixing process and the metered quantity of water is added to the separate partial flows.
- Method according to one of Claims 1 to 4, characterised in that the partial mass flows are volumetrically different and that additives are added to the individual partial mass flows with subsequent mixing.
- Method according to one of Claims 1 to 5, characterised in that each partial mass flow is stored temporarily before it enters an associated spreading machine (11a to 11c).
- Method according to one of Claims 1 to 6, characterised in that the volumes of the partial flows are selected so that after moulding, a layer thickness of respectively 1 mm to 7 mm, preferably of 2 mm to 4.5 mm results.
- Method according to one of Claims 1 to 7, characterised in that the quantity of water sprayed onto the individual layers (35a to 35c) differs, preferably so that the quantity of water sprayed onto the external layers of the shaped article (35) is greater than that supplied to the internal layer or layers.
- Method according to Claim 8, characterised in that the quantity of water supplied to the individual layers may include additives, such as suspensions or dispersions, the quantities of water supplied to the external layers being able to contain additives different to those in the water quantities for the internal layer(s).
- Apparatus for carrying out the method according to Claims 1 to 9, with a first metering device (2, 3) for the metered addition of plaster and fibres into a subsequent first mixer (4), with a second mixer (9) receiving the plaster and fibre mixture, with which a metering device for liquid (8) is associated, and a subsequent spreader device for spreading the moist plaster and fibre mixture onto a moulding line (12) with a subsequent pressing device, characterised in that located between the dry mixer (4) and the second mixer (9) is a metering device (7) which continuously measures the weight and/or volume of the dry mixture of plaster and fibre, and that a water metering system (8) whose outlet (8') opens into the subsequent second mixer (9), is associated with this plaster and fibre metering device (7) and that the spreading device (11) consists of several spreading machines, that in the direction of travel (19) of the moulding line (12), spray nozzles (40; 43) for moistening the surfaces of the spread shaped article are located before and after the external spreader heads (26a, 26c), and that between the spray nozzles (40; 43) in the direction of travel (19) of the moulding line (12) there are several independent spreader heads (26a, 26b, 26c) located behind each other and fed by partial mass flows, for the separate spreading of individual layers (35a, 35b, 35c) of the shaped articles (35), and that in the direction of travel (19) at least one further spray nozzle (41, 42) is provided between the spreading heads.
- Apparatus according to Claim 10, characterised in that after the moist mixer (9), a feed device (37) is provided, which is followed by several separate spreader machines (11a, 11b, 11c) with spreader heads (26a, 26b, 26c) (Figure 1).
- Apparatus according to Claim 11, characterised in that after the dry mixer a feed device (37a) is provided for the mass flow of the dry mixture of plaster and fibre, followed by separate metering devices (6a, 6b, 6c) and moist mixers (9) according to the number of partial mass flows, each moist mixer (9) being followed by a spreader machine (11a, 11b, 11c) (Figure 2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT85100748T ATE48105T1 (en) | 1984-02-10 | 1985-01-25 | PROCESS FOR THE CONTINUOUS PRODUCTION OF MOLDINGS, IN PARTICULAR PANELS, FROM A MIXTURE OF GYPSUM AND FIBER MATERIAL, AND DEVICE FOR CARRYING OUT THE PROCESS. |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3404658 | 1984-02-10 | ||
DE19843404658 DE3404658A1 (en) | 1984-02-10 | 1984-02-10 | Process for the continuous production of mouldings, in particular of boards, from gypsum and fibre material and device for carrying out the process |
DE19843439493 DE3439493A1 (en) | 1984-10-27 | 1984-10-27 | Process for the continuous production of mouldings, in particular slabs, from a mixture of gypsum and fibre material and device for carrying out the process |
DE3439493 | 1984-10-27 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0153588A1 EP0153588A1 (en) | 1985-09-04 |
EP0153588B1 EP0153588B1 (en) | 1989-11-23 |
EP0153588B2 true EP0153588B2 (en) | 1994-04-20 |
Family
ID=25818336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85100748A Expired - Lifetime EP0153588B2 (en) | 1984-02-10 | 1985-01-25 | Method for the continuous production of shaped articles, in particular slabs, from a mix of plaster of Paris, and fibre materials as well as a device for carrying out the method |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0153588B2 (en) |
CA (1) | CA1261125A (en) |
DE (1) | DE3574353D1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3604388A1 (en) * | 1984-10-27 | 1987-08-13 | Wuertex Maschinenbau Hofmann G | Process for the continuous production of shaped bodies, in particular of boards, from a mixture of plaster and fibre material and also apparatus for carrying out the process |
DE3708873C2 (en) * | 1987-03-18 | 1996-04-04 | Baehre & Greten | Method and device for producing a free-flowing mixture of fibrous and / or chip-shaped wood material and gypsum, especially for the production of boards |
DE3708875C3 (en) * | 1987-03-18 | 2001-09-06 | Kvaerner Panel Sys Gmbh | Process for the production of moldings, in particular plates |
DE3801315C2 (en) * | 1988-01-19 | 1994-05-26 | Babcock Bsh Ag | Plant for the production of plate-shaped bodies from a mixture of gypsum and fibrous material |
US5277856A (en) * | 1988-12-02 | 1994-01-11 | Bison-Werke Bahre & Greten Gmbh & Co. Kg | Method for manufacturing shaped bodies from gypsum, water, fibers and light aggregate particles |
DE3906009C1 (en) * | 1989-02-26 | 1990-09-06 | Wuertex Maschinenbau Hofmann Gmbh & Co, 7336 Uhingen, De | |
US5342566A (en) * | 1990-08-23 | 1994-08-30 | Carl Schenck Ag | Method of manufacturing fiber gypsum board |
DE4031935C2 (en) * | 1990-10-09 | 1999-09-16 | Norbert Seddig | Process for the production of gypsum-bound lignocellulose-containing moldings and gypsum-bound cellulose-containing moldings |
DE4222872C2 (en) * | 1991-08-09 | 1996-01-25 | Siempelkamp Gmbh & Co | Three-layer gypsum-based building material board and manufacturing method |
DE4129466A1 (en) * | 1991-09-05 | 1993-03-11 | Bold Joerg | METHOD FOR PRODUCING PLASTER PANELS AFTER A SEMI-DRYING PROCESS |
WO1993011085A1 (en) * | 1991-11-25 | 1993-06-10 | Carl Schenck Ag | Fiber gypsum board and method of manufacturing same |
DE4239033A1 (en) * | 1992-03-19 | 1993-09-23 | Fraunhofer Ges Forschung | |
GB2281231B (en) * | 1993-07-12 | 1997-11-19 | Bpb Industries Plc | A method of manufacturing multilayer plasterboard and apparatus therefor |
CA2130508C (en) * | 1993-08-20 | 2005-04-12 | Peter Douglas Chase | Process for making thin, sealant-coated, fiber-reinforced gypsum panel and panel made thereby |
US6443258B1 (en) * | 1999-10-01 | 2002-09-03 | Awi Licensing Company | Durable porous article of manufacture and a process to create same |
US6780356B1 (en) | 1999-10-01 | 2004-08-24 | Awi Licensing Company | Method for producing an inorganic foam structure for use as a durable acoustical panel |
WO2014207098A1 (en) * | 2013-06-26 | 2014-12-31 | Knauf Gips Kg | Process for producing a gypsum fiber board |
CN113681702A (en) * | 2021-08-17 | 2021-11-23 | 四川吉浦森建材有限公司 | Gypsum board batching and irrigating device and method |
CN115319888B (en) * | 2022-09-01 | 2023-12-01 | 吉林建筑大学 | Processing equipment and method for basalt fiber composite integrated wallboard |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3243163A (en) * | 1963-07-01 | 1966-03-29 | Norton American Aviat Inc | Viscous and non-viscous material processing system |
NL7801229A (en) * | 1977-02-09 | 1978-08-11 | Rhone Poulenc Ind | PROCEDURE FOR COMPRESSING PLASTIC GLASS MIXTURES. |
US4239716A (en) * | 1977-05-30 | 1980-12-16 | Nippon Hardboard Co. Ltd. | Gypsum moldings as building materials and methods manufacturing the said gypsum moldings |
CH621597A5 (en) * | 1978-02-13 | 1981-02-13 | Epsi Brevets & Participations | |
DE3216886A1 (en) | 1982-05-06 | 1983-11-10 | "Würtex" Maschinenbau Hofmann GmbH & Co., 7336 Uhingen | Process for continuously producing mouldings, preferably panels, from gypsum and fibrous material as well as an apparatus for carrying out such a process |
-
1985
- 1985-01-25 DE DE8585100748T patent/DE3574353D1/en not_active Expired
- 1985-01-25 EP EP85100748A patent/EP0153588B2/en not_active Expired - Lifetime
- 1985-02-08 CA CA000473854A patent/CA1261125A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE3574353D1 (en) | 1989-12-28 |
EP0153588A1 (en) | 1985-09-04 |
CA1261125A (en) | 1989-09-26 |
EP0153588B1 (en) | 1989-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3439493A1 (en) | Process for the continuous production of mouldings, in particular slabs, from a mixture of gypsum and fibre material and device for carrying out the process | |
EP0153588B2 (en) | Method for the continuous production of shaped articles, in particular slabs, from a mix of plaster of Paris, and fibre materials as well as a device for carrying out the method | |
DE69130485T2 (en) | Process for the production of a fiber-reinforced plasterboard | |
EP0120812B1 (en) | Process and device for the production and direct application of ready-to-use building material preparations | |
DE69015981T2 (en) | Method and device for producing colored decorative plates based on flaked rock particles. | |
DE1784657A1 (en) | Process for the continuous production of molded bodies, in particular plates, from plaster of paris | |
EP0566830B1 (en) | Process and apparatus for preparing a fibre/resin composite moulding material, especially a prepreg | |
DE3309744A1 (en) | METHOD FOR DOSING LIGNOCELLULOSE-CONTAINING BULK MATERIAL, IN PARTICULAR CEMENTED WOOD CHIPBOARD AND DEVICE FOR IMPLEMENTING THE METHOD | |
DE1571466A1 (en) | Process and device for the production of plasterboard and molded articles | |
DE3930840C2 (en) | ||
DE3801315A1 (en) | PLANT FOR PRODUCING PANEL-SHAPED BODIES FROM A MIXTURE OF PLASTER AND FIBER FIBER | |
DE3216886C2 (en) | ||
DE3325643C2 (en) | Building board and method and device for their manufacture | |
DE19712440A1 (en) | Chipboard/fibreboard manufacturing appliance | |
DE3404658C2 (en) | ||
DE3708873C2 (en) | Method and device for producing a free-flowing mixture of fibrous and / or chip-shaped wood material and gypsum, especially for the production of boards | |
DE3242598A1 (en) | Method of producing shaped bodies, particularly plates, with the use of binders containing calcium sulphate | |
DE3840377A1 (en) | Process and apparatus for producing building boards | |
DE3906009C1 (en) | ||
DE1704551B2 (en) | Process for the manufacture of lightweight building materials from beads, foamed polystyrene or a similar fine-grained insulating material | |
DE3604388A1 (en) | Process for the continuous production of shaped bodies, in particular of boards, from a mixture of plaster and fibre material and also apparatus for carrying out the process | |
EP0230483A1 (en) | Process for uniforming spread particles and device for performing the process | |
DE2443117A1 (en) | PROCESS FOR CONTINUOUS PRODUCTION OF FIBER REINFORCED LAYERS | |
EP0602134A1 (en) | Process and plant for producing staff slabs by a mixed method. | |
EP1623807B2 (en) | Method and device for producing a wood-based object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19860118 |
|
17Q | First examination report despatched |
Effective date: 19880119 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 48105 Country of ref document: AT Date of ref document: 19891215 Kind code of ref document: T |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 3574353 Country of ref document: DE Date of ref document: 19891228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19900131 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: G. SIEMPELKAMP GMBH & CO. Effective date: 19900820 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: G.SIEMPELKAMP GMBH & CO |
|
ITTA | It: last paid annual fee | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: WUERTEX MASCHINENBAU HOFMANN GMBH & CO I.K. |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: 'WUERTEX' MASCHINENBAU HOFMANN GMBH & CO I.K. TE U |
|
BECN | Be: change of holder's name |
Effective date: 19911023 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: BABCOCK-BSH AKTIENGESELLSCHAFT VORMALS BUETTNER-SC |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: BABCOCK-BSH AKTIENGESELLSCHAFT VORMALS BUETTNER-SC |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: BABCOCK-BSH AKTIENGESELLSCHAFT VORMALS BUETTNER-SC |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732 |
|
NLS | Nl: assignments of ep-patents |
Owner name: BABCOCK-BSH AKTIENGESELLSCHAFT VORMALS BUETTNER-SC |
|
ITPR | It: changes in ownership of a european patent |
Owner name: CESSIONE;BABCOCK - BSH AKTIENGESELLSCHAFT VORMALS |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19940420 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
NLR2 | Nl: decision of opposition | ||
ITF | It: translation for a ep patent filed | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) |
Effective date: 19940727 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19941216 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950126 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19950130 Year of fee payment: 11 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 85100748.4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19960125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19960131 Ref country code: CH Effective date: 19960131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 85100748.4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19961107 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19961119 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19961219 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970113 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970131 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980131 |
|
BERE | Be: lapsed |
Owner name: BABCOCK-BSH A.G. VORMALS BUTTNER-SCHILDE-HAAS A.G Effective date: 19980131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980801 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980930 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |