CN1774210B - 用于对检查对象的机械和弹性参数进行确定和成像的弹性检查设备和方法 - Google Patents

用于对检查对象的机械和弹性参数进行确定和成像的弹性检查设备和方法 Download PDF

Info

Publication number
CN1774210B
CN1774210B CN2004800099789A CN200480009978A CN1774210B CN 1774210 B CN1774210 B CN 1774210B CN 2004800099789 A CN2004800099789 A CN 2004800099789A CN 200480009978 A CN200480009978 A CN 200480009978A CN 1774210 B CN1774210 B CN 1774210B
Authority
CN
China
Prior art keywords
inspection area
magnetic
magnetic field
particle
magnetic particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800099789A
Other languages
English (en)
Other versions
CN1774210A (zh
Inventor
B·格莱奇
J·维泽内克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1774210A publication Critical patent/CN1774210A/zh
Application granted granted Critical
Publication of CN1774210B publication Critical patent/CN1774210B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0051Detecting, measuring or recording by applying mechanical forces or stimuli by applying vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0515Magnetic particle imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • A61N1/406Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia using implantable thermoseeds or injected particles for localized hyperthermia

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及一种用于确定检查对象的机械参数、尤其是弹性参数的设备,其包括:a)用于确定磁性粒子在检查对象的至少一个检查区域中的空间分布的至少一个配置,其包括用于生成磁场的装置,该磁场具有磁场强度的空间轮廓,使得在至少一个检查区域中产生了具有低磁场强度的第一部分区域和具有较高磁场强度的第二部分区域,还包括用于检测信号的装置,该信号取决于受到粒子的空间变化影响的检查对象、尤其是检查区域中的磁化,以及用于评估该信号的装置,从而获得关于检查区域中磁性粒子的空间分布、尤其是随时间变化的空间分布的信息;b)至少在检查对象的检查区域中和/或其附近生成机械位移、尤其是振动的至少一个装置。此外,本发明还涉及一种用于确定检查对象的机械和/或物理参数的方法,尤其使用了根据本发明的设备。本发明还涉及能够用于根据本发明的该方法的磁性粒子成分。

Description

用于对检查对象的机械和弹性参数进行确定和成像的弹性检查设备和方法
本发明涉及一种用于对检查对象的机械参数、尤其是弹性参数进行确定、尤其是进行成像的设备和方法。本发明还涉及能够用于根据本发明的方法中的磁性粒子成分。
为了能够获知该检查对象内的精确情况,确定材料以及生物组织的机械特性、尤其是弹性特性是十分重要的。这是因为检查对象的结构特性变化通常还与弹性性能的变化相关。例如,增大或减小对象内的内部摩擦力对于所述对象的弹性性能存在影响。按照相同的方式,能够检测到密度差并且将其用于确定诸如材料和生物组织的情况。
将已知的弹性检查法用于确定机械参数以及利用超声技术成像。例如,DE-A 19754085公开了一种超声弹性检查法,其中按照技术方式检测弹性组织特性,并且以断面图像的形式在质量和数量上使其视觉化。所述方法利用了以下的情况,当机械压力施加到一部分组织上时,导致组织的变形,具有不同弹性特性的区域变形不同。该方法例如在US2002/0010399A1和US4993416中公开了。US2002/0010399A1主要描述了对于优选的柔软组织的弹性参数的检测。将第一和第二超声脉冲沿着变频器轴引导到被检对象上,并且利用傅立叶分析评估各种情况下反射的信号。根据US4993416,为了检查组织而在径向上设置了大量超声变频器,并且顺序地使用它们是有利的。目前,不能广泛使用这些方法,并且这些方法通常仅仅提供有关检查对象表面区域的信息成像。
为了确定检查对象的机械参数,磁共振弹性检查法(MRE)也是已知的。在MRE方法中,利用了以下情况,检查对象的磁共振图像的相位由于其中有效的机械振动而变化。这种变化的范围取决于由于机械振动引起的位移。利用所获得的MR相位图像,从而可以对核磁化的相位进行成像,据此可以获得关于该组织的特定机械参数的信息。如EP-A708340中或者Vancouver的ISMRM论文集1997,第1905页中描述的常规MRE方法的缺点在于,适于进行评估的结果仅仅在检查对象中未出现反射以及在该对象中仅传播横向振动的情况下才能够获得。为了克服这个问题,DE19952880A1提出了一种MRE方法,其中在三维区域中关于相互垂直的三个方向确定位移的影响和相位,并且根据在至少部分三维区域中的这些位移值及其空间导数来计算至少一个机械参数。还描述了可以使用检查对象中的纵向振动来确定机械特性。在这种方法中,通常利用已经在DE29722630U1中描述的磁共振配置。然而,MRE技术的装置复杂并且成本高,因此仅仅适于有限数量的用途。此外,由于在MRE方法中的信噪比不是很高,因此必须考虑相对较长的检查时间。
因此,希望得到的是能够利用一种用于确定检查对象的机械性能、尤其是弹性性能的配置,其没有现有技术的缺点,并且在制造方面非常简单、节约制造成本,能够广泛使用并且测量时间短,同时分辨率高。此外,本发明的目的是能够在检查对象的任意位置确定机械和/或弹性特性,而不管其与表面的距离如何。此外,本发明的另一目的是提供一种弹性检查法,其可以用于多种检查对象上,并且以可再现的方式提供了非常精确的结果。
根据本发明提供了一种设备,其包括:a)用于确定磁性粒子在检查对象的至少一个检查区域中的空间分布的至少一个配置,其包括用于生成磁场的装置,该磁场具有磁场强度的空间轮廓,使得在至少一个检查区域中产生了具有低磁场强度的第一部分区域和具有较高磁场强度的第二部分区域,还包括用于检测信号的装置,该信号取决于受到粒子的空间变化影响的检查对象、尤其是检查区域中的磁化,以及用于评估该信号的装置,从而获得关于检查区域中磁性粒子的空间分布、尤其是空间分布随时间的变化的信息;b)至少在检查对象的检查区域中和/或其附近生成机械位移、尤其是振动的至少一个装置.
使用根据本发明的设备,可以跟踪并存储位移以及静止位置之外的磁性粒子的位移程度,同时具有高分辨率并且比利用已知技术更加深入身体。还可以对检查区域中的压力变化成像,尤其是当磁性粒子处于气泡中时,这将在以下进行描述。因此,根据本发明的设备适于确定关节和身体、尤其是组织和器官在接近表面以及远离表面的区域中的机械性能、尤其是弹性性能。此外,已经发现根据本发明的设备还尤其适于检查呼吸器官,尤其是进行实时检查。
根据本发明提供了用于生成机械位移或者振动的装置,其包括至少一个振动元件、振动发生器和用于将振动从振动发生器发送到振动元件的振动发送装置,和/或至少一个声音源,尤其是超声源。
通常在振动发生器中的磁体配置之外以及与其相距一定距离处生成振动。可以利用现有技术已知的振动发生器。适当的振动发生器同样可以具有金属元件。利用例如压电元件、振动线圈或者振动器可以生成振动,对于根据本发明的方法而言优选利用50Hz到500Hz范围内的振动,尤其是500Hz到250Hz范围内的振动。通常利用适当的振动发送装置将这些振动发送到实际的振动元件,该振动元件在工作过程中放置在检查对象上。有利的是,位于磁体配置中或其附近的所有部分不会影响梯度场,因此这些部分优选不由金属制成。因此,优选的是将振动发生器设置在磁体配置之外并且与其相距一定距离处,振动元件和振动发送装置由非金属和/或金属材料制成。
可以将用于确定磁性粒子的空间分布的配置与已知的弹性检查法和超声波检查法组合。因此,适当的振动为表面波,该表面波在如用于例如弹性检查法中(例如磁共振弹性检查法)时,在振动过程中不改变对象的体积,还为体波,该体波在给定频率时能够穿透到对象的深得多的位置。体波用于例如超声波检查法中。用于生成振动或波的适当设备和工具,如弹性检查法或超声波检查法中的用于生成振动或波的适当设备和工具对于本领域技术人员而言是公知的。
对于根据本发明的设备的一种有利的改进具有至少一个装置,尤其是至少一个线圈配置,以用于改变两个部分区域在检查区域中的空间位置,从而局部地改变磁性粒子的磁化。
原理上,通过改变具有低磁场强度的部分区域与具有较高磁场强度的部分区域的相对空间位置可以扫描和检查该检查区域。这同样包括其中将磁场叠加在梯度场,尤其是叠加在具有低磁场强度的部分区域上的配置,从而按照这种方式检测在具有低磁场强度的部分区域中磁性粒子的磁化变化或磁化程度。
此外,根据另一种改进,应当考虑以下情况,用于生成磁场的装置包括用于生成梯度磁场的梯度线圈配置,该梯度磁场在检查区域的第一部分区域中颠倒其方向并且具有零交叉。
根据本发明还适用的是一种设备,其具有用于生成叠加在梯度磁场上的随时间变化的磁场的装置,以用于在检查区域中移动两个部分区域。
根据本发明的适用设备的特征在于用于接收由检查区域中磁化的随时间的变化引起的信号的线圈配置。
根据另一个实施例,根据本发明的设备具有用于生成叠加在梯度磁场上的第一和至少第二磁场的装置,其中第一磁场在时间方面缓慢变化并且具有高幅度,第二磁场在时间方面快速变化并且具有低幅度。
对于根据本发明的设备的另一种改进提供了基本上在检查区域中相互垂直地延伸的两个磁场。
利用根据本发明使用的配置在检查区域中生成空间上不均匀的磁场。在第一部分区域中,磁场太弱,因此磁性粒子的磁化在较大程度上或较小程度上不同于外部磁场,也就是说不饱和。第一部分区域优选为空间相干区域;其可以为点状区域或者线状或平面区域。在第二部分区域中(即在第一部分之外的其余检查区域中),磁场足够强以至于将粒子保持在饱和状态。当实际上所有粒子的磁化几乎在外部磁场的方向上对准时磁化饱和,使得其中的磁场进一步增加,同时磁化的增长比给出相应磁场增长的第一部分区域中小得多。通过改变检查区域内两个部分区域的位置,检查区域中的(全部)磁化改变。因此,如果测量检查区域中的磁化或者由此影响的物理参数,则能够据此得到关于磁性粒子在检查区域中的空间分布的信息。为了改变检查区域中两个部分区域的空间位置,例如能够生成可以局部和/或随时间变化的磁场。还可以假设:接收并且评估由于检查区域中磁化的随时间的变化而在至少一个线圈中引起的信号,以便获得关于磁性粒子在检查区域中的空间分布的信息。通过两个部分区域的空间位置尽可能快地改变可以获得尽可能大的信号。用于在检查区域中生成磁场的线圈可以用于检测该信号。然而,优选使用至少一个特别的线圈。
部分区域的空间位置还可以发生变化,例如利用能够随时间变化的磁场。在这种情况下,在线圈中同样产生了周期性信号。然而,因为在检查区域中生成的信号和随时间变化的磁场同时有效,所以可能难以接收该信号;因此,可能不容易区分由磁场引起的信号和通过改变检查区域中的磁化而引起的信号。然而,通过在第一频带中在时间上改变在检查区域上的磁场以及根据该线圈中接收的信号评估第二频带中,来避免上述缺陷,从而获得关于磁性粒子空间分布的信息,第二频带包含比正在评估的第一频带更高的频率成分。这利用了以下的情况,即第二频带的频率成分仅能够依靠由于磁化特性的非线性造成的检查区域中的磁化变化而出现。如果随时间变化的磁场具有正弦周期性轮廓,则第一频带仅包括单独的频率成分-正弦基本成分。相反,除了该基本成分之外,第二频带还包含正弦基本成分的更高谐波(所谓的高次谐波),其可以用于评估。
在根据本发明的设备的优选配置中,用于生成磁场的装置包括用于生成梯度磁场的梯度线圈配置,该梯度磁场在检查区域的第一部分区域中反向并且具有零交叉。如果该梯度线圈配置包括例如设置在检查区域每侧上的两个相同绕组,但这两个绕组中流过相反的电流(麦克斯韦线圈),则该磁场在绕组轴上的一点处为零,并且实质上在该点具有相反极性的各侧上线性增长。只有粒子位于该场附近区域中的情况下,磁化中的零点非饱和。就该区域之外的磁性粒子而言,磁化处于饱和状态。
一种配置可以具有用于生成叠加在梯度磁场上的随时间变化的磁场的装置,以用于移动检查区域中的两个部分区域.在这种情况下,随时间变化的磁场使梯度线圈配置生成的区域围绕检查区域内的场零点(即第一部分区域)移动.如果该磁场具有适当的时间轮廓和方向,则按照这种方式可以使场零点通过整个检查区域.
利用适当的线圈配置可以接收与场零点的运动相关的磁化变化。用于接收检查区域中生成的信号的线圈可以是已经用于生成检查区域中的磁场的线圈。然而,同样有利的是使用特殊的线圈来接收,这是因为这种线圈可以从生成随时间变化的磁场的线圈配置中去耦。而且,利用一个线圈可以实现更高的信噪比,但是利用多个线圈更是如此。
在线圈配置中产生的信号的幅度越大,则检查区域中场零点的位置变化越快,也就是说叠加在梯度磁场上的随时间变化的磁场的变化越快。然而,一方面技术上难以生成幅度足以将场零点移动到检查区域的点以及变化速率足够高以生成具有足够幅度的信号的、随时间变化的磁场。为此尤其适合的是具有用于生成叠加在梯度磁场上的第一和至少第二磁场的装置的那些配置,其中第一磁场在时间方面缓慢变化并且具有高幅度,第二磁场在时间方面快速变化并且具有低幅度。优选利用两个线圈配置生成以不同速率变化并且具有不同幅度的两个磁场。另一个优点是场变化能够很快(例如>20kHz),使得它们超过人类听觉的极限。同样可以假设:两个磁场基本上在检查区域中相互垂直延伸。这就允许无场点在二维区域中移动。依靠具有垂直于该两个磁场延伸的成分的另一个磁场获得了向三维区域的扩展。具有连接线圈配置下游的滤波器的配置同样是有利的,所述滤波器抑制了线圈配置中产生的信号中的第一频带中的信号成分,并且允许第二频带中的信号成分通过,第二频带包含比第一频带更高的频率成分。这利用了以下情况,即其中的磁化从非饱和状态过渡到饱和状态的区域中的磁化特性是非线性的。这种非线性意味着:例如在非线性的范围内随时间以正弦方式按照频率f延伸的磁场引起了频率为f(基本成分)和频率f的整数倍(高次或更高次谐波)的随时间变化的感应现象。对高次谐波的评估的优点在于,与移动无场点同时有效的磁场的基本成分对于评估不具有任何影响。
根据本发明的另一个方面,提供了一种用于确定检查对象的机械和物理参数的方法,包括将磁性粒子引入检查物体的至少部分检查区域中,至少在检查对象的检查区域中生成至少一种机械位移,尤其是机械振动,生成具有以下磁场强度空间轮廓的磁场,即在检查区域中生成具有低磁场强度的第一部分区域以及具有较高磁场强度的第二部分区域,改变两个部分区域在检查区域中的空间位置,使得局部地改变粒子的磁化,根据受到这种变化影响的检查区域中的磁化来检测信号,评估该信号从而获得关于磁性粒子在检查区域中的空间分布的信息,尤其是空间分布随时间的变化的信息,并且比较所获得的关于磁性粒子的空间分布的信息,从而确定弹性参数,尤其是不同机械应力状态的弹性参数。
在根据本发明的方法的一个优选实施例中,假设检查区域中的磁性粒子存在于气泡和/或液滴的表面位置和/或表面上。当在检查区域中使用这种气泡时,在分辨率、敏感度和测量精度方面可以获得特别有利的结果,在这些气泡上存在磁性粒子。考虑到表面现象,磁性粒子通常自发聚集到这些气泡的表面上。然而,同样可能的是同时或几乎同时将气泡和磁性粒子引入到检查对象中。
在位移的影响下,或在造成气泡与周围介质之间的界面处的磁性粒子之间距离发生微小变化的压力波的影响下,气泡发生变形,从而导致了对于外部磁场的不同响应.在磁性粒子接近饱和的无场点的位置附近的位置处,磁泡对于压力或者位移变化非常敏感.这些所谓的磁泡是准宽响应麦克风,它们可以按照或多或少均匀的分布方式存在于检查区域中.在高振动频率时这些磁泡是非常适合的并且提供非常高的分辨率,高振动频率例如在50kHz的范围内,尤其是100kHz到20MHz.另一个优点是,尤其是在使用上述所谓的磁泡时,在检查具有低磁场强度的部分区域过程中,不需要利用外部磁场来激励,这是因为已经能够利用振动,例如通过声场来检测磁化的变化.这尤其适于使用高频声波.例如,如果在一个位置处的梯度场具有接近用于达到饱和的大小的量级,则磁泡的振动能够引起磁化的变化.因此,尤其是在接近梯度场的场零点位置,存在对于压力的波动反应敏感并且将这些波动转化为外部磁场的位置.在测量方面,这样的优点在于在检测该磁场过程中不存在激励频率的强烈背景.取代利用线圈或者发送器单元使具有低磁场强度和较高磁场强度的部分区域的相对位置彼此相对移动,在所示的实施例中仅需要将物体和场零点彼此相对移动.在这种方法的变型中,至少对于第一种近似,一个位置处的波场压力方向存在偏差.
尤其是在使用聚集在气泡或者液滴上的磁性粒子时,应当注意这些气泡或液滴在检查区域中的不均匀分布可能导致敏感度变化。然而,利用上述的磁成像方法能够测量这种不均匀分布,从而产生第一种校准。尽管如此,在根据本发明的方法进行过程中,尤其是在使用非常高的振动频率时,例如通过将气体溶解在周围介质中,由于相关的高压力或者随时间简单地稀疏气体体积也可以损坏单个的气泡。如果对于如上所述的通过确定磁性粒子的分布来实施这种校准存在约束,那么有可能会导致错误的信息。将已知的压力变化应用于检查区域以及将所获得的响应信号与那些同样当使其受到这种已知的压力变化时获得的响应信号进行比较,已被证明是有利的。所施加的压力波动优选为低频的,并且最为优选的是从各面均匀地施加到检查区域或者检查物体上。例如,环境空气压力的压力波动适于这种校准,该压力波动优选低于大约16Hz的音响阈值。可以与根据本发明的测量方法相分离地并且在实际测量方法过程中使检查区域受到已知的压力变化。在这种情况下,低频振动叠加到用于校准的实际测量频率上。
当产生低频的振动时,例如10kHz范围内,尤其是1kHz以及更小,利用按照分布方式存在于该区域中的磁性粒子也可以非常好地确定检查区域的弹性特性,而磁性粒子不必存在于气泡上。较低频率的优点在于能够检查在检查区域中较深的位置,例如身体中较深的器官。
在根据本发明的方法的一个实施例中,利用了各向异性、优选具有至少为0.1mT的内部各向异性场的磁性粒子。本方法包括以下步骤:1)将各向异性磁性粒子引入检查区域中,2)生成无场区域附近的区域中的粒子的定向,3)移动无场区域以测量磁性粒子的响应场,4)打开声波或者位移,以及5)移动无场区域以测量由于所述声波或者位移造成的已定向磁性粒子在新位置的响应场。当不存在与例如组织中的粒子不均匀分布的适当对比度时,这是尤其有用的。利用这种方法,通过以不均匀的方式对准磁性粒子可以生成人工对比度。
利用根据本发明的方法,可以显现检查区域中的声波。如果在检查区域中均匀性存在弹性,则干扰该声波。根据声波的反卷积,可以生成对象的图像,其中对比度与检查区域中的弹性特性差有关。这种方法可以用于例如检测肿瘤,尤其是胸部肿瘤。利用这种方法可以显现肿瘤,这是因为肿瘤典型地比周围组织具有更高的弹性模量。利用适当的校准,可以确定弹性张量或者模量。因为所需的用于测量位移因数或者弹性张量的扫描速度非常高,所以优选以该非常高的速度扫描检查区域的一小部分。为了成像,通过邻近所述小体积的连续成像来扫描检查区域的整个区域。
根据本发明的方法的另一种改进的特征在于随时间变化的磁场在第一频带作用于检查区域上,并根据线圈中接收到的信号,评估第二频带,该第二频带包含比第一频带更高的频率成分,从而获得关于磁性粒子的空间分布的信息。
根据本发明,当施加外部磁场时磁性粒子变为饱和,尤其是施加具有大约100mT或更小的强度的磁场时。当然,对于根据本发明的方法而言更高的饱和场强度也是适当的。
对于许多用途而言,适当的磁场强度甚至为大约10mT或更小。这种强度甚至对于许多组织或器官检查而言都是足够的。然而,利用在1mT或更小或者大约0.1mT或更小的范围内的场强度也能够实现良好的测量结果。例如,能够以高精确度和清晰度确定当磁场强度为大约10mT或更小、大约1mT或更小以及大约0.1mT或更小时的浓度、温度、压力或者pH。
在本发明的上下文中,术语外部磁场应理解为表示其中获得大约一半饱和磁化的磁场,在该外部磁场中磁性粒子是饱和的或者变为饱和的。
适当的磁性粒子为在足够小的磁场情况下能够变为饱和的磁性粒子。为此,必要的先决条件在于磁性粒子具有最小的尺寸或者最小的偶极矩。在本发明的上下文中,术语磁性粒子因此还包含可磁化的粒子。
适当的磁性粒子有利的是具有与体素尺寸相比较小的尺寸,利用根据本发明的方法来确定该粒子的磁化。此外,粒子的磁化在尽可能低的磁场的磁场强度时应当优选变为饱和的。为此所需的磁场强度越小,空间分辨能力越强,将要在检查区域中生成的(外部)磁场越弱。而且,磁性粒子应当具有尽可能高的偶极矩以及高饱和感应现象,从而磁化的变化引起尽可能高的输出信号。当使用本方法用于医疗检查时十分重要的是:磁性粒子是无毒的。
根据本发明的方法的优选改进,提出了磁性粒子是单畴粒子,利用Neel旋转和/或利用Brown旋转能够使该磁性粒子的磁化反向。
优选确定适当单畴磁性粒子的尺寸,使得其中仅能够形成单磁畴(单畴),并且不存在白色区域。根据本发明的特别优选的变型,适当的粒子尺寸在20nm到大约800nm的范围中,其中上限还取决于所使用的材料。在单畴粒子方面,优选利用磁石(Fe3O4)、磁赤铁(γ-Fe2O3)和/或非化学计量的磁铁氧化物。
特别的是,如果希望根据Neel旋转快速反向磁化,通常有利的是单畴粒子具有低的有效各向异性。在这种情况下,术语有效各向异性应当理解为表示由成形各向异性和晶体各向异性造成的各向异性。在上述情况下,磁化方向的变化不需要任意的磁性粒子旋转。可选择的是,如果希望用Brown旋转或者几何旋转在施加外部磁场时发生磁化的反向,则能够使用具有高有效各向异性的单畴粒子。
根据本发明方法的可选实施例,该磁性粒子可以是硬的或者软的多畴粒子。这些多畴粒子通常是较大的磁性粒子,其中可以形成多个磁畴。这种多畴粒子有利的是具有低饱和感应现象。
硬的多畴磁性粒子本质上与具有高有效各向异性的单畴粒子具有相同的磁特性.具有低饱和磁化的软的多畴磁性粒子具有以下优点,可以以任意方式对它们进行定形,以便能够用于根据本发明的方法.如果它们具有不对称的外形,则它们对于检查区域中的局部粘性测量也是非常适合的.有利的是将具有高饱和磁化的软的多畴粒子配置成退磁因数小.可以使用对称形状和非对称形状.例如,可以将具有高饱和磁化的软磁活性物质作为薄涂层涂敷到自身不能磁化的球体或管上.
根据本发明的方法尤其还适于特别是局部地确定内部压力、内部压力变化、存在于检查物体的检查区域中的气泡体积和/或体积变化。
而且,根据本发明的方法适于在检查对象的检查区域中确定,特别是局部地确定温度、温度变化、硬度、硬度变化、密度和/或密度变化、压力、位移、弹性模量和/或剪切模量。
根据本发明可以连续地或间隔地检测这些机械参数。
本发明基于以下令人惊奇的知识,能够容易地按照可再现的方式为检查物体内的局部分隔区域确定机械特性,尤其是弹性特性和密度信息。可以得到关于检查对象中气泡的内部压力的结论。尤其是,根据本发明的配置不再能够仅仅用于仅检查接近表面的对象区域,现在还能够获得关于体内机械和弹性条件的信息。根据本发明的设备因此允许按照简单而可靠的方式局部确定参数,例如温度、硬度、内部气压、气体体积和密度,以及允许跟踪并且确定这些参数的变化,尤其是还可以实时地进行。此外,还可以确定pH。
使用根据本发明的设备,因此可以以非常高的分辨率将机械和弹性特性分配给对象内的精细分隔的位置。与常规的弹性检查法相比,获得了非常高的信噪比,从而产生短的多的测量时间,同时没有在测量质量方面必须考虑的损失。此外,能够确定弹性张量的所有弹性参数。此外,因为为了校准可以将低频振动叠加到实际测量上,所以总能获得非常可靠的测量结果。
同样有利的是,磁性粒子不必均匀分布在检查区域上以便能够获得希望得到的关于所述区域的信息。相反,即使存在所述粒子的非均匀分布,也能够检测并且评估由于振动造成的检查区域或者磁泡的变形。如果粒子在检查区域中均匀分布,则已经证明使用那些磁性粒子是有利的,利用Neel旋转和Brown旋转能够使磁性粒子的磁化反向。在这种情况下,能够将利用Neel旋转或者Brown旋转的磁化反向的不同时间相关性用于获得关于检查区域中检查对象的局部弹性特性的信息。例如,在非均匀粒子分布的情况下,例如如果检查区域的部分区域不具有任何磁性粒子,则也能够通过所记录信号的外插来间接地确定不具有任何磁性粒子的这些区域的特征变量。例如,当其表面上具有磁性粒子的气泡传递到静脉中时可以使用这种方法,由于其尺寸该磁性粒子不能从静脉传递到其它组织中。然而,还能够获得关于这些静脉旁边或者静脉之间的区域的弹性特性的信息,这些区域不具有任何磁性粒子。
除了对活体中的组织结构或者器官进行检查之外,根据本发明的设备和根据本发明的方法还适于例如检查橡胶材料和成分,该设备和方法越来越多地用于塑料技术中。利用根据本发明的方法能够以高分辨率并且可靠地检查基于热塑弹性体的橡胶成分、轮胎或部件的内部弹性特性,其中在检查区域的每个位置处获得弹性参数。
本发明还涉及能够用于根据本发明的方法中以增强对比度和分辨率的磁性粒子成分.根据本发明的磁性粒子成分使用了以下效果,当磁性粒子非常紧密地在一起时,它们受到相互的磁场影响.因为与相邻粒子的磁场的耦合,改变了单独磁性粒子对于外部磁场的响应.粒子之间的距离例如能够通过周围介质中的位移来改变,该位移例如是由声波引起的.距离的变化以及磁特性的伴随变化造成对于在磁性粒子成像方法中所施加的外部磁场的不同响应.不同响应用于产生图像的对比度.为了得到在粒子分离或聚合时的第一与第二状态之间的磁特性变化,所需的距离取决于磁性粒子的性质.优选的是,粒子之间的距离小于粒子直径的10倍,优选小于8倍,更为优选的是小于5倍.距离表示中心到中心的距离.当磁性粒子过于接近时,由于非常难以使它们相互移动,所以该距离优选至少为平均粒子直径的3倍,优选至少为4倍.
这种磁性粒子成分的一个实施例是磁气泡成分,包括在液体介质中的一个或多个气泡,其中磁性粒子存在于气泡和液体介质的界面处。
在气泡与液体介质之间的界面处的磁性粒子之间的平均粒子间距优选为磁性粒子平均直径的3倍到10倍,优选小于8倍,更为优选的是小于磁性粒子尺寸的5倍。磁气泡成分可以包括用于将磁性粒子基本上定位在气泡与液体介质之间的界面处的表面活性剂。优选的是,磁性粒子附着于表面活性剂分子上。原则上,磁气泡的尺寸能够在宽范围上变化。在本磁性粒子成像方法的优选用途中,为了检查活体器官,气泡的直径优选为1到10微米之间。优选的是,磁气泡包括具有低水溶性的气体,尤其是其中气体在水中基本上不溶解和/或不快速溶解。适用于身体用途的不可溶气体是全氟酸盐气体。
可以按照不同的方式制造磁气泡成分。一种方式是将气泡引入液体介质中。液体磁气泡成分的缺点在于存储稳定性较差,并且制造较难。根据本发明的另一方面,提供了一种用于制造磁气泡成分的磁气泡前体,其中该气泡前体包括具有一定气体容积的壳体,并且其中该壳体包括磁性粒子。可以在干燥状态下使用磁干燥气泡前体,但是优选用于制造如上所述的磁气泡成分,例如通过将干燥磁气泡前体溶解在适当的液体介质中。这种干燥磁气泡前体的优点在于其可以存储较长的保存期。
如果检查区域包含液体介质,则可以直接将磁气泡前体分配给检查区域。也可以在扩散在液体介质中之后分配磁气泡前体。壳体材料可以至少部分地溶解或者减少与液体介质接触的粘性,使得磁性粒子获得在扩散在液体介质中时旋转运动的自由度。该壳体材料可以是例如溶解在含水介质(例如血液)中的材料,例如聚糖、淀粉或者低粘性亲水聚合物材料。该壳体材料还可以是在检查区域的主要温度下溶解或者减少粘性的材料,或者在检查区域中的主要条件下降解或分解成低粘性的材料。
该气泡可以包括药。可以按照由成像技术控制的受控方式将药传送到检查范围内的特定区域,以及通过损坏气泡来局部释放药,例如利用磁弹性效应或者通过电磁辐射照射或者利用声波。
在本发明的可选实施例中,提供了一种磁性粒子成分,其包括两种或多种磁性粒子,其中磁性粒子之间的平均粒子间距为平均粒子直径的3到10倍,其中通过嵌入粘性弹性介质中而按照空间分隔的方式使粒子聚集和/或耦合在一起。选择该粘性弹性介质,使得粒子之间的距离按照声波造成的位移而变化。
通常,选择磁性粒子成分中的磁性粒子,使得可以在给定的场梯度中获得良好的磁性粒子图像,尤其是良好的分辨率。在未公布的德国专利申请10151778.5中,描述了一种磁性粒子成像方法。其大体上描述了:尺寸为20到800nm的单畴磁性粒子或者涂敷了磁涂层的玻璃珠可以用于这种方法。然而,为了以较低的磁场梯度获得良好的磁成像对比度和分辨率,十分需要经过改进的磁性粒子成分。本发明人已经发现了具有改进磁性粒子成像特性的磁性粒子。
优选的是,磁性粒子成分中的磁性粒子具有呈阶跃变化的磁化曲线,该阶跃变化的特征在于如水悬浮液中测得的,在所述阶跃变化的拐点周围的量值增量的第一场强度窗口中的磁化变化至少比第一场强度窗口之上或之下的量值增量的场强度窗口大3倍,其中增量小于2000微特斯拉,优选小于1000微特斯拉,其中在第一增量窗口中完成磁化阶跃变化的时间小于0.01秒,优选小于0.005秒,更为优选的是小于0.001秒,最为优选的是小于0.0005秒。已经发现,这种磁性粒子特别适于磁性粒子成像,尤其是用于获得图像的良好分辨率。另外,优选的是磁性粒子成分具有磁化曲线,其中阶跃变化为在外部磁场为1特斯拉时测得的粒子成分总磁化的至少10%、优选至少20%、更为优选的是至少30%,最为优选的是至少50%。另外,优选的是,在所述阶跃变化的拐点周围的量值增量的第一场强度窗口中的磁化变化至少比第一场强度窗口之上或之下的量值增量的场强度窗口大4倍,优选的是至少5倍。
该磁性粒子成分特别适用于磁性粒子成像技术。该磁性粒子在较小的场强度梯度下具有良好的空间分辨率。而且,该磁性粒子成分可以获得用于检查大检查区域的较高扫描速度。例如,对于医疗磁性粒子成像中的用途而言,其中优选在1000微特斯拉以下的增量值时出现阶跃变化,该粒子成分在磁场强度梯度为10到0.1T/m之间时的分辨率值优于0.1到10mm之间。利用这种使用根据本发明的磁性粒子成分的磁性粒子成像技术,能够获得极好的分辨率,例如在能够实现非常大的磁场梯度的用途中分辨率为0.1到10微米,例如在显微镜检查中。
优选的是,将具有如上所述的需要的阶跃变化的磁性粒子成分用于根据本发明的方法和所有磁性粒子成分中。
注意,严格来讲,磁场强度表示为H(A/m)。然而,在本申请中,当涉及磁场强度时,是指B场。如上所述的2000μT的磁场B对应于2mT/μ0=1.6kA/m的H场,即相等的H场在真空中将会产生2mT的B场。
用于测量磁化曲线和所需的阶跃变化的方法如下。使磁性粒子成分样本悬浮在水中,可选的是借助于简单的清洁剂。为了防止使磁性粒子结块和/或为了使其散开,可以使用超声处理。磁性粒子成分的浓度为每升溶剂小于0.01gr核心质量。其中核心质量是指磁性粒子成分中磁性材料的质量。使该悬浮液进入快速磁力计。(即在施加外部场时测量样本磁化的设备)。适当的快速磁力计对于专家而言是已知的。该磁力计装备了可以在样本位置同时产生在至少两个正交方向上的外部场的装置,即可以产生在给定的变化的最大幅度和给定的变化的最大速度以下的任意磁场。还在同一平面中的至少两个正交方向上测量磁化。
首先,测量饱和磁化.为此,在一个方向上施加大约为1特斯拉的磁场,在至少10秒之后测量磁化的大小.然后,开始用于确定阶跃变化的测量程序.该程序以选择外部场量级在20mT以下的场矢量开始.该场至多施加100秒.然后,选择第二方向.该方向限定了场H和磁化M的标量值.该场快速变化,优选小于1微妙,使得其目前以小于20mT的某个量级位于-H方向上.然后,该场按照例如线性的方式从-H变化到+H,并且记录(目前为标量的,即投影的)磁化.在小于0.01s但是大于1μs的时间内记录磁化曲线.其中磁化曲线表示了阶跃变化,尺寸增量的第一窗口中心位于磁化阶跃变化拐点上.类似的是,尺寸增量的窗口位于第一窗口之下和之上,通过确定在每个窗口中磁化的变化来评估所需的阶跃变化.
给定的磁性粒子成分是否具有需要的阶跃变化以复杂的方式取决于许多变量,例如粒子的尺寸、粒子尺寸分布、粒子的形状、Neel旋转的阻尼常数、磁性材料的类型、磁性材料成分的结晶度和化学计量。已经发现粒子成分的粒子尺寸分布较窄是尤其重要的。优选的是,根据本发明的磁性粒子成分具有窄的粒子尺寸分布,其中至少50wt%的粒子具有在平均磁性粒子尺寸的正或负50%之间的粒子尺寸,优选为正或负25%之间,更为优选的是正或负10%之间。优选的是,特定窗口内的粒子量至少为70wt%,优选至少为80wt%,最为优选的是至少为90wt%。利用单畴粒子获得的特别好的成像结果具有低磁各向异性,并且引起Neel旋转所需的场基本上低于10mT,优选低于5mT,更为优选低于2mT。优选的是,磁性粒子是平均粒子尺寸在20和80纳米之间的单畴粒子,更为优选的是在25和70纳米之间,最为优选的是在30和60纳米之间,其中至少50、优选为至少60、更为优选的是至少为70wt%的粒子具有平均粒子尺寸的正或负10纳米的粒子尺寸。
在根据本发明的磁性粒子成分的可选实施例中,磁性粒子是基本上具有针形的多畴粒子,其具有小于0.001的去磁因数。该磁性粒子成分尤其有效用于针形不是缺点的非医疗用途中。在另一可选实施例中,根据本发明的磁性粒子成分包括磁性粒子,其包括由磁性涂层材料覆盖的非磁性芯,其中涂层的厚度在5和80纳米之间,并且其中去磁因数小于0.01,并且直径低于300μm。同样,在这些可选实施例中,有利的是具有如上所述的小粒子尺寸分布。优选的是,选择这些实施例中磁性粒子的物理参数,从而满足如上所述的用于获得良好成像性质的阶跃变化要求。
通过首先形成磁性粒子可以制造根据本发明的磁性粒子成分,例如通过沉淀,例如通过使包括亚铁或高铁离子的溶液与包括如上所述的氢氧化钠的溶液接触。原则上,可以使用已知的沉淀处理。还可以由块状材料研磨磁性粒子,例如使用高速球磨机。用于获得良好磁性磁性粒子成分的重要的下一步是粒子的选择和分离。第一步是通过过滤和/或离心分离方法实施尺寸选择处理。下一步是根据磁性粒子的磁性性质,例如使用振动梯度磁场来实施选择处理。
以上说明书和权利要求书中描述的本发明的特征对于将本发明单独地或者按照任意希望的组合实现为其各个实施例而言是重要的。

Claims (29)

1.一种用于确定检查对象的机械参数的设备,其包括:
a)用于确定磁性粒子在检查对象的至少一个检查区域中的空间分布的至少一个配置,其包括用于生成磁场的装置,该磁场具有磁场强度的空间轮廓,使得在至少一个检查区域中产生了具有低磁场强度的第一部分区域和具有较高磁场强度的第二部分区域,还包括用于检测信号的装置,该信号取决于受到粒子的空间变化影响的检查对象中的磁化,以及用于评估该信号的装置,从而获得关于检查区域中磁性粒子的空间分布的信息;
b)至少在检查对象的检查区域中和/或其附近生成机械位移的至少一个装置,以及
用于改变两个部分区域在检查区域中的空间位置从而局部地改变粒子的磁化的至少一个装置。
2.根据权利要求1所述的设备,其特征在于所述机械参数是弹性参数。
3.根据权利要求1所述的设备,其特征在于所述检查对象是检查区域。
4.根据权利要求1所述的设备,其特征在于所述空间分布是随时间变化的空间分布。
5.根据权利要求1所述的设备,其特征在于所述机械位移是振动。
6.根据权利要求1所述的设备,其特征在于用于改变两个部分区域在检查区域中的空间位置从而局部地改变粒子的磁化的所述至少一个装置是线圈配置。
7.根据权利要求1-6任一项所述的设备,其特征在于用于生成机械位移的装置包括至少一个振动元件、振动发生器以及用于从振动发生器向振动元件发送振动的振动发送装置和/或至少一个声音源。
8.根据权利要求7所述的设备,其特征在于所述至少一个声音源是超声源。
9.根据权利要求7所述的设备,其特征在于该振动发生器设置在磁体配置之外并且与其相距一定距离,该振动元件和振动发送装置由非金属和/或金属材料制成。
10.根据权利要求1-6任一项所述的设备,其特征在于用于生成磁场的装置包括用于生成梯度磁场的梯度线圈配置,该梯度磁场在检查区域的第一部分区域中颠倒其方向并且具有零交叉。
11.根据权利要求10所述的设备,其特征在于包括用于生成叠加在梯度磁场上的随时间变化的磁场的装置,以便在检查区域中移动两个部分区域。
12.根据前面权利要求1-6中任一项所述的设备,其特征在于包括用于接收由检查区域中磁化随时间的变化引起的信号的线圈配置。
13.根据权利要求10所述的设备,其特征在于包括用于生成叠加在梯度磁场上的第一和至少第二磁场的装置,其中第一磁场在时间方面缓慢变化并且具有高幅度,第二磁场在时间方面快速变化并且具有低幅度。
14.根据权利要求13所述的设备,其特征在于第一和第二磁场在检查区域中相互垂直地延伸。
15.一种用于利用根据前面权利要求中任一项所述的设备、确定检查对象的物理参数的方法,包括将磁性粒子引入检查物体的至少部分检查区域中,至少在检查对象的检查区域中生成至少一种机械位移,生成具有一种磁场强度空间轮廓的磁场,使得在检查区域中生成具有低磁场强度的第一部分区域以及具有较高磁场强度的第二部分区域,改变两个部分区域在检查区域中的空间位置,使得局部地改变粒子的磁化,根据受到这种变化影响的检查区域中的磁化来检测信号,评估该信号从而获得关于磁性粒子在检查区域中的空间分布的信息,并且比较所获得的关于磁性粒子的空间分布的信息,从而确定弹性参数.
16.根据权利要求15所述的方法,其特征在于所述空间分布是随时间变化的空间分布。
17.根据权利要求15所述的方法,其特征在于所述机械位移是机械振动。
18.根据权利要求15所述的方法,其特征在于所述弹性参数是不同机械应力状态的弹性参数。
19.根据权利要求15所述的方法,其特征在于检查区域中的磁性粒子存在于气泡和/或液滴的表面上。
20.根据权利要求15-19任一项所述的方法,其特征在于该磁性粒子是单畴和/或多畴粒子,利用Brown旋转和/或Neel旋转使其磁化反向。
21.根据权利要求15-19任一项所述的方法,其特征在于在第一频带中随时间改变检查区域上的磁场,并且根据该线圈中接收的信号评估第二频带,第二频带包含比第一频带更高的频率成分,从而获得关于磁性粒子空间分布的信息。
22.根据权利要求15-19任一项所述的方法,其特征在于确定存在于检查物体的检查区域中的内部压力、内部压力变化、气泡体积和/或气泡体积变化,以作为物理参数。
23.根据权利要求22所述的方法,其特征在于所述确定为局部性的确定。
24.根据权利要求15-19任一项所述的方法,其特征在于确定检查区域中的温度、温度变化、硬度、硬度变化、密度和/或密度变化、压力、位移、弹性模量和/或剪切模量,以作为物理参数。
25.根据权利要求24所述的方法,其特征在于所述确定为局部性的确定。
26.根据权利要求15-19任一项所述的方法,其特征在于连续或间隔地检测这些物理参数。
27.根据权利要求15-19任一项所述的方法,其特征在于磁性粒子按照均匀或者不均匀分布的方式存在于检查区域中或者引入该检查区域中。
28.根据权利要求15-19任一项所述的方法,其特征在于该检查区域额外地受到压力波动的影响,以用于校准。
29.根据权利要求28所述的方法,其特征在于所述压力波动的影响是周期性压力波动的影响。
CN2004800099789A 2003-04-15 2004-04-15 用于对检查对象的机械和弹性参数进行确定和成像的弹性检查设备和方法 Expired - Fee Related CN1774210B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03101021.8 2003-04-15
EP03101021 2003-04-15
PCT/IB2004/050445 WO2004091408A2 (en) 2003-04-15 2004-04-15 Elastography device and method for determining and imaging of mechanical and elastic parameters of an examination object

Publications (2)

Publication Number Publication Date
CN1774210A CN1774210A (zh) 2006-05-17
CN1774210B true CN1774210B (zh) 2010-05-12

Family

ID=33185927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800099789A Expired - Fee Related CN1774210B (zh) 2003-04-15 2004-04-15 用于对检查对象的机械和弹性参数进行确定和成像的弹性检查设备和方法

Country Status (5)

Country Link
US (1) US9107581B2 (zh)
EP (1) EP1615566B1 (zh)
JP (1) JP4901470B2 (zh)
CN (1) CN1774210B (zh)
WO (1) WO2004091408A2 (zh)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010914B2 (ja) * 2003-04-15 2012-08-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁性粒子の空間分布を決める方法及び磁性粒子を投与する組成物
WO2006035359A2 (en) * 2004-09-28 2006-04-06 Philips Intellectual Property & Standards Gmbh Method of determining a spatial distribution of magnetic particles
DE102006037160B4 (de) * 2006-04-13 2009-10-08 Charité - Universitätsmedizin Berlin Vorrichtung für die Magnetresonanzelastographie (MRE)
US8615285B2 (en) 2008-04-04 2013-12-24 Mayo Foundation For Medical Education And Research Passive acoustic driver for magnetic resonance elastography
US8281663B2 (en) * 2008-07-14 2012-10-09 Mayo Foundation For Medical Education And Research Active acoustic driver for magnetic resonance elastography
EP2456357B1 (en) 2009-07-20 2014-09-10 Koninklijke Philips N.V. Apparatus and method for influencing and/or detecting magnetic particles
BR112012002434A2 (pt) 2009-08-07 2020-08-18 Koninklijke Philips Electronics N.V. aparelho para determinar pelo menos uma quantidade eletromagnética, método para determinar pelo menos um quantidade eletromagnética e programa de computador
CN102481111B (zh) 2009-08-21 2014-12-17 皇家飞利浦电子股份有限公司 用于生成和移动具有无场线的磁场的设备和方法
WO2011024137A1 (en) 2009-08-31 2011-03-03 Koninklijke Philips Electronics N.V. Multi-level inverter apparatus and inversion method
US9084552B2 (en) 2009-09-11 2015-07-21 Koninklijke Philips N.V. Apparatus and method for influencing and/or detecting magnetic particles
WO2011030247A1 (en) 2009-09-11 2011-03-17 Koninklijke Philips Electronics N.V. Apparatus and method for influencing and/or detecting magnetic particles in a field of view
RU2548826C2 (ru) 2009-09-14 2015-04-20 Конинклейке Филипс Электроникс Н.В. Устройство и способ управления перемещением и локализации катетера
CN102497807B (zh) * 2009-09-14 2015-06-17 皇家飞利浦电子股份有限公司 用于测量检查对象的内压的设备
CN102655805B (zh) 2009-09-14 2014-09-17 皇家飞利浦电子股份有限公司 用于使用mpi进行无创心脏内心电描记的设备和方法
WO2011052401A1 (ja) * 2009-10-30 2011-05-05 株式会社 日立メディコ 超音波診断装置、被検体の診断対象部位の疾患の評価用画像生成方法、及び被検体の診断対象部位の疾患の評価用画像生成プログラム
EP2533688B1 (en) 2010-02-08 2013-11-20 Koninklijke Philips N.V. Apparatus and method for influencing and/or detecting magnetic particles in a field of view having an array of single-sided transmit coil sets
JP2013518658A (ja) 2010-02-08 2013-05-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁性粒子を検出するための装置と方法
WO2011121487A1 (en) 2010-04-01 2011-10-06 Koninklijke Philips Electronics N.V. Apparatus and method for forming a concentration image of the concentration of magnetic particles arranged in a field of view
DE102010013900B4 (de) 2010-04-01 2013-01-03 Hochschule Für Angewandte Wissenschaften Fachhochschule Würzburg-Schweinfurt Verfahren zur Bildgebung mittels magnetischer Kleinstpartikel sowie Vorrichtung hierfür
WO2011121511A1 (en) 2010-04-01 2011-10-06 Koninklijke Philips Electronics N.V. Apparatus and method for forming a concentration image of the concentration of magnetic particles arranged in a field of view field of the invention
WO2012007871A1 (en) 2010-07-13 2012-01-19 Koninklijke Philips Electronics N.V. System and method for generating a system function for use in the reconstruction of images
WO2012046157A1 (en) 2010-10-05 2012-04-12 Koninklijke Philips Electronics N.V. Apparatus and method for locating magnetic particles
BR112013013882A2 (pt) 2010-12-10 2016-09-13 Koninkl Philips Electronics Nv aparelho para operação em um modo de imagem da partículas magnética para influenciar e/ou detectar partículas magnéticas em um campo de visão e para operação em um modo de imagem de ressonância magnética, método para operar um aparelho e programa de computador
EP2648611B1 (en) 2010-12-10 2015-02-25 Koninklijke Philips N.V. Apparatus and method for influencing and/or detecting magnetic particles
US9149204B2 (en) 2011-04-22 2015-10-06 Mayo Foundation For Medical Education And Research Flexible passive acoustic driver for magnetic resonance elastography
RU2624315C2 (ru) 2011-11-16 2017-07-03 Конинклейке Филипс Н.В. Устройство и способ оказания влияния и обнаружения магнитных частиц, имеющие большое поле зрения
JP6106184B2 (ja) 2011-12-02 2017-03-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Mpiのためのコイル配置
BR112014014284A2 (pt) 2011-12-15 2017-06-13 Koninklijke Philips Nv aparelho e método para detecção de partículas magnéticas em um campo de visão, e, programa de computador
EP2809256B1 (en) 2012-02-01 2017-07-12 Koninklijke Philips N.V. Multimodal fiducial marker and marker arrangement
WO2014057396A1 (en) 2012-10-12 2014-04-17 Koninklijke Philips N.V. Dynamic background correction in mpi
EP2916731A1 (en) 2012-11-07 2015-09-16 Koninklijke Philips N.V. Magnetic device for use in an mpi apparatus
WO2014147589A1 (en) 2013-03-21 2014-09-25 Koninklijke Philips N.V. Apparatus and method for influencing and/or detecting magnetic particles comprising compensation unit
JP6232140B2 (ja) 2013-09-11 2017-11-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 高速な視野動作を備えたmpi装置
JP5815902B1 (ja) 2014-05-14 2015-11-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ブリッジユニットを有し、磁性粒子に影響を与える及び/又は検出する装置及び方法
KR101848812B1 (ko) * 2014-07-18 2018-04-16 주식회사 씨케이머티리얼즈랩 촉각 정보 제공 장치
WO2017032903A1 (en) 2015-08-27 2017-03-02 Koninklijke Philips N.V. Magnet arrangement and magnetic particle imaging device
EP3359047B1 (en) * 2015-10-08 2021-07-14 Mayo Foundation for Medical Education and Research Methods for ultrasound elastography with continuous transducer vibration
CN108348189A (zh) * 2015-11-03 2018-07-31 皇家飞利浦有限公司 用于跟踪永磁珠的检查装置
CN105245766A (zh) * 2015-11-05 2016-01-13 龚万新 一种振动辅助光学成像系统
CN107174244A (zh) * 2017-06-19 2017-09-19 重庆工商大学 一种血栓检测装置
JP7209003B2 (ja) * 2018-02-01 2023-01-19 コーニンクレッカ フィリップス エヌ ヴェ 定量分析が向上された低放射線量コンピュータ断層撮影灌流(ctp)
FR3079744B1 (fr) * 2018-04-05 2020-04-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d’un fluide biocompatible comportant une poudre de particules magnetiques, fluide biocompatible comportant une poudre de particules magnetiques
CN110755072B (zh) * 2019-11-04 2023-09-19 辽宁工程技术大学 一种磁声磁粒子浓度成像装置及成像方法
CN114532983B (zh) * 2022-01-17 2023-12-29 中国科学院电工研究所 一种磁声成像系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708340A1 (en) * 1994-10-19 1996-04-24 Mayo Foundation For Medical Education And Research MR imaging of synchronous spin motion and strain waves
US6486669B1 (en) * 1999-05-14 2002-11-26 Koninklijke Philips Electronics N.V. MR elastography method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953731A (en) * 1973-12-27 1976-04-27 Jersey Nuclear-Avco Isotopes, Inc. Isotope separation utilizing zeeman compensated magnetic extraction
US5366435A (en) * 1982-12-20 1994-11-22 Jacobson Jerry I Therapeutic treatment of mammals
DE3815259A1 (de) * 1988-05-05 1989-11-16 Henkel Kgaa Isomere formyl-trimethylbicyclo(2.2.2)oct-7-ene
US4993416A (en) 1989-04-25 1991-02-19 Board Of Reagents The University Of Texas System System for ultrasonic pan focal imaging and axial beam translation
US5726650A (en) * 1995-06-07 1998-03-10 Silicon Systems, Inc. Adaptive manchester decoding with adjustable delay and power saving mode
US5842986A (en) * 1995-08-16 1998-12-01 Proton Sciences Corp. Ferromagnetic foreign body screening method and apparatus
DE19754085A1 (de) 1997-12-05 1999-06-10 Helmut Prof Dr Ing Ermert Ein sonographisches Elastographiesystem
DE29722630U1 (de) 1997-12-22 1998-05-20 Philips Patentverwaltung GmbH, 22335 Hamburg MR-Anordnung für die MR-Elastographie
US6470220B1 (en) * 1999-03-29 2002-10-22 The Regents Of The University Of California Diagnosis and treatment of cancers using in vivo magnetic domains
DE19952880A1 (de) 1999-05-14 2000-12-14 Philips Corp Intellectual Pty MR-Elastographie-Verfahren
WO2001071366A2 (en) 2000-03-17 2001-09-27 The Board Of Regents Of The University Of Texas System Power spectral strain estimators in elastography
DE10151778A1 (de) 2001-10-19 2003-05-08 Philips Corp Intellectual Pty Verfahren zur Ermittlung der räumlichen Verteilung magnetischer Partikel
FR2844178B1 (fr) * 2002-09-06 2005-09-09 Dispositif et procede pour la mesure de l'elasticite d'un organe humain ou animal et l'etablissement d'une representation a deux ou trois dimensions de cette elasticite
AU2003302229A1 (en) * 2002-09-27 2004-06-30 The Trustees Of Dartmouth College Imaging by magnetic resonance adsorption, elastography and tomography

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708340A1 (en) * 1994-10-19 1996-04-24 Mayo Foundation For Medical Education And Research MR imaging of synchronous spin motion and strain waves
US6486669B1 (en) * 1999-05-14 2002-11-26 Koninklijke Philips Electronics N.V. MR elastography method

Also Published As

Publication number Publication date
US9107581B2 (en) 2015-08-18
EP1615566A2 (en) 2006-01-18
CN1774210A (zh) 2006-05-17
JP4901470B2 (ja) 2012-03-21
US20060189868A1 (en) 2006-08-24
EP1615566B1 (en) 2016-06-08
JP2006524086A (ja) 2006-10-26
WO2004091408A2 (en) 2004-10-28
WO2004091408A3 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
CN1774210B (zh) 用于对检查对象的机械和弹性参数进行确定和成像的弹性检查设备和方法
CN1774205B (zh) 用于空间分辨地测定检查区域内的磁性粒子分布的方法
JP4768603B2 (ja) 状態変数及び状態変数の変化を決定する方法
JP4647590B2 (ja) 物理的、化学的及び/又は生物学的な特性又は状態変数の空間的に解像される決定の方法
JP4583372B2 (ja) 検査領域内における非凝集状態の磁性粒子の空間的な分布の、改善された特定のための方法および装置
CN1774200B (zh) 对检测区域内的状态变量进行空间解像测定的装置及方法
JP5010914B2 (ja) 磁性粒子の空間分布を決める方法及び磁性粒子を投与する組成物
JP4583371B2 (ja) 磁性粒子を含む検査下の対象の電界の検査及び使用方法
Doyley et al. Thresholds for detecting and characterizing focal lesions using steady‐state MR elastography
US5166613A (en) Method and apparatus for mapping stress within ferrromagnetic materials by analyzing Barkhausen noise formed by the introduction of magnetic fields
Fink et al. Quantitative determination of local density of iron oxide nanoparticles used for drug targeting employing inverse magnetomotive ultrasound
JP6506273B2 (ja) 柔軟な固体の情報を収集するための、せん断弾性波画像化方法および装置
JP5236660B2 (ja) 磁性粒子を分離するための方法及び装置、磁性粒子、並びに磁性粒子の使用
JP2013518658A (ja) 磁性粒子を検出するための装置と方法
Lin et al. Magnetomotive Ultrasound Shear Wave Elastography (MMUS-SWE): A Validation Study From Simulations to Experiments
Almeida et al. Shear wave Vibro Magneto Acoustography for measuring tissue mimicking phantom elasticity and viscosity
WO2023017124A1 (de) Vorrichtung und verfahren zur nicht-invasiven quantifizierung von ferritischen stoffen in gewebe
Benlloch et al. Characterization of viscoelastic media combining ultrasound and magnetic-force induced vibrations on an embedded soft magnetic sphere
Arsalani Evaluation of magnetic nanoparticle as magneto-motive ultrasound imaging constrast

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100512

Termination date: 20190415

CF01 Termination of patent right due to non-payment of annual fee