CN118059063A - 一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡及其制备方法和应用 - Google Patents

一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡及其制备方法和应用 Download PDF

Info

Publication number
CN118059063A
CN118059063A CN202410205709.9A CN202410205709A CN118059063A CN 118059063 A CN118059063 A CN 118059063A CN 202410205709 A CN202410205709 A CN 202410205709A CN 118059063 A CN118059063 A CN 118059063A
Authority
CN
China
Prior art keywords
mesenchymal stem
stem cell
vesicle
endothelial cells
vascular endothelial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410205709.9A
Other languages
English (en)
Inventor
辛洪亮
李胜男
张琦
闵志一
何炜崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Medical University
Original Assignee
Nanjing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Medical University filed Critical Nanjing Medical University
Priority to CN202410205709.9A priority Critical patent/CN118059063A/zh
Publication of CN118059063A publication Critical patent/CN118059063A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Medicinal Preparation (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)

Abstract

本发明公开了一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡及其制备方法和在抗缺血性脑卒中中的应用。该仿生囊泡由外层的间充质干细胞膜蛋白、氢化大豆磷脂、二油酰磷脂酰乙醇胺、胆固醇和作为内核包封的miR‑132‑3p‑鱼精蛋白复合物构成。该间充质干细胞仿生纳米囊泡载体具有良好的生物相容性,能够逃避免疫系统的清除,具有延长的体内循环时间,向脑卒中损伤区域归巢并靶向结合脑血管内皮细胞,释放出miR‑132‑3p,发挥缓解血管内皮细胞氧化应激、抗细胞凋亡、保护BBB和减少继发性脑损伤的作用,实现对缺血性脑卒中的安全高效治疗。

Description

一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡及 其制备方法和应用
技术领域
本发明涉及医药技术领域,具体涉及一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡及其制备方法和在抗缺血性脑卒中中的应用。
背景技术
中风是世界范围内造成永久性残疾和死亡的严重脑血管疾病,其中缺血性脑卒中约占87%。组织型纤溶酶原激活剂(Tissue-type plasminogen activator,t-PA)是目前美国食品药品监督管理局批准的唯一治疗急性缺血性脑卒中的药物,但是它的使用存在治疗窗狭窄、出血风险和禁忌症较多的问题。尽管大多数临床前研究表明,神经保护药物在缺血性脑卒中动物模型中具有积极的治疗作用,但由于血脑屏障(BBB,Blood-brain barrier)对药物递送的阻碍和严重的脱靶毒性,很少有III期临床试验产生令人满意的结果。缺血再灌注脑损伤严重影响了中风患者的生存时间和生活质量。因此,迫切需要探索安全有效的脑缺血损伤治疗策略。
BBB位于外周循环和脑实质的交界面,调节血液和大脑之间的分子运输,保护大脑免受循环病原体的侵袭,充当动态“守门员”的角色,是维持大脑微环境的稳态的关键。BBB的完整性是保证中枢神经系统(CNS,Central nervous system)正常功能的基础,BBB的破坏与多种脑部相关疾病的发生和发展密切相关,如缺血性脑卒中、创伤性脑损伤、阿尔茨海默症、帕金森症等。缺血性脑卒中发生时,脑血流中断,能量供应突然停止,BBB功能障碍立刻发生并持续数周,由此引发的细胞旁通透性增加导致血液中的液体、毒素、各种免疫细胞和炎症因子进入脑实质,造成脑水肿、神经炎症、神经元死亡等一系列严重的继发性损伤。许多临床前和临床研究证据已经表明,BBB损坏与IS患者预后恶化息息相关。脑微血管内皮细胞(BMECs,Brain microvascular endothelial cells)排列在脑血管上,形成与血液的主要界面。BMECs间通过紧密连接蛋白以及粘附连接蛋白相互连接,形成限制BBB通透性的“开关”。缺血性再灌注脑损伤发生时,血管内立即产生炎症,BMECs发生氧化应激和凋亡,伴随着紧密连接的破坏,导致BBB功能障碍,加剧脑组织缺血损伤。因此,BMECs是一个有希望的治疗靶点,对减轻缺血再灌注脑损伤至关重要。
miR-132-3p作为一种内皮特异性miRNA,也被称为angiomiRs,是血管生成的关键调控因子,已有不少研究证实其在内皮功能障碍、血管生成和心血管疾病中的作用。p120Ras-GTP酶激活蛋白(p120RasGAP,也被命名为RASA1)是miR-132-3p的直接作用靶点,它通过增强Ras固有的GTP酶活性使其失活,是血管发育和重构的关键负调控因子。研究表明,miR-132-3p通过抑制小鼠BMECs中RASA1的表达,增加Ras的活性,诱导下游PI3K/Akt通路的蛋白磷酸化,有效降低损伤的BMECs中ROS生成和细胞凋亡的水平,增加紧密连接蛋白的表达,恢复BBB的屏障功能,在缺血性脑卒中急性期具有神经血管保护作用。然而,miRNA的体内递送仍然面临许多困难。首先,miRNA容易被体液中广泛分布的核酸酶所降解,导致真正能够到达治疗部位的miRNA少之又少。研究表明,裸露的RNA在进入人体血浆后几秒钟几乎就会被完全降解。其次,外源性的miRNA具有免疫原性,容易被单核吞噬系统(mononuclear phagocytosis system,MPS)清除。此外,由于miRNA带负电荷,和同样带负电荷的细胞膜之间存在电荷排斥作用,导致细胞摄取不良。最后,脱靶副作用和溶酶体逃逸能力差等等都是目前miRNA应用面临的障碍。因此,开发一种通过miRNA治疗缺血性中风的靶向药物递送系统至关重要。
发明内容
本发明的目的是解决miRNA体内递送存在障碍的问题,构建一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡。该仿生纳米囊泡具有良好的生物相容性、延长的体内循环时间,并且能主动靶向于缺血性脑卒中损伤的BMECs,被BMECs摄取后通过DOPE磷脂的倒六角相(Hexagonal II,HII)转变实现溶酶体逃逸,释放出miR-132-3p抑制RASA1基因的转录,通过调控下游Ras/PI3K/Akt信号通路,发挥抗细胞凋亡、缓解氧化应激、BBB保护的作用,实现安全高效治疗缺血性脑卒中的效果。
本发明的目的通过以下技术方案实现:
一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡,该囊泡由间充质干细胞膜蛋白通过疏水相互作用插入由氢化大豆磷脂(HSPC)、二油酰磷脂酰乙醇胺(DOPE)和胆固醇形成的磷脂薄膜中构成仿生囊泡外层,内部负载miR-132-3p-鱼精蛋白复合物。本发明制备得到的纳米囊泡呈现均匀的具有脂质双分子层的球状结构,平均粒径在120nm左右。
在一些实例中,本发明所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡中,磷脂薄膜中氢化大豆磷脂(HSPC)、二油酰磷脂酰乙醇胺(DOPE)和胆固醇的摩尔比为(2-3):1:(1-2),优选摩尔比为5:2:3。
在一些实例中,本发明所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡中,间充质干细胞膜蛋白与磷脂薄膜的质量比为1:(80-120),优选质量比为1:100。
本发明所述的间充质干细胞膜蛋白为使用膜蛋白提取试剂盒从间充质干细胞中提取获得,例如采用ProteoExtract Native Membrane protein extraction kit膜蛋白提取试剂盒提取间充质干细胞膜蛋白获得。
本发明所述的间充质干细胞可以购买获得,也可以通过提取获得,例如从4周龄的健康雄性C57BL/6小鼠骨髓中提取,所获得的间充质干细胞可以采用常规方法进行培养,例如使用全骨髓贴壁方法进行纯化和扩增。
本发明所述的miR-132-3p-鱼精蛋白复合物中鱼精蛋白和miR-132-3p的摩尔为2:1,其制备方法可以按照本领域的常规方法,在一种实施例中,提供一种具体的制备方法为:miR-132-3p和鱼精蛋白分别溶解在预冷的DEPC水中,以鱼精蛋白:miR-132-3p为2:1的摩尔比涡旋混匀,静置5分钟。
本发明还提供所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的制备方法,包括以下步骤:
(1)将大豆磷脂、二油酰磷脂酰乙醇胺和胆固醇按摩尔比溶解在无水乙醇中,经旋转蒸发仪蒸发形成磷脂薄膜;
(2)将miR-132-3p-鱼精蛋白复合物分散在PBS溶液中,通过水浴超声水化磷脂薄膜,并用磁子搅拌30分钟,形成磷脂薄膜悬浮液;
(3)以间充质干细胞膜蛋白与磷脂薄膜为1:(80-120)的质量比在磷脂薄膜悬浮液中加入间充质干细胞膜蛋白,分别通过800nm、400nm和200nm孔径的醋酸纤维素膜挤压10次,得到间充质干细胞仿生囊泡溶液;离心获得间充质干细胞仿生囊泡。
本发明所述的方法中的离心可以采用本领域常规的方式,例如16,000g离心30分钟。本发明获得的间充质干细胞仿生囊泡可以用PBS重悬,在4℃下保存。
本发明所述方法中,所述氢化大豆磷脂、二油酰磷脂酰乙醇胺和胆固醇的摩尔比为(2-3):1:(1-2),优选摩尔比为5:2:3;在一种实例中,所述间充质干细胞膜蛋白与磷脂薄膜的质量比为1:100;所述脂质体挤出器微孔滤膜孔径为800nm、400nm和200nm。
本发明还提供本发明所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡在制备治疗缺血性脑卒中药物中的应用。
在本发明中,通过疏水相互作用插入磷脂双分子层中的间充质干细胞膜蛋白最终形成的间充质干细胞仿生纳米囊泡,相对于现有技术具有如下优势:
(1)能够逃避MPS的清除,延长体内循环时间;
(2)能够响应缺血脑损伤区域过度分泌的SDF-1趋化因子,启动仿生囊泡脑损伤部位的归巢;
(3)结合损伤内皮细胞表面上调的VCAM-1,使仿生囊泡能被损伤内皮细胞选择性摄取并发挥作用;
(4)仿生囊泡被BMECs摄取后,在溶酶体酸性环境下,DOPE磷脂发生H相转变释放出miR-132-3p激活下游的RASA1/Ras/PI3K/Akt信号通路,减少BMECs氧化应激和细胞凋亡水平,对BBB和脑血管发挥保护作用,减少继发性脑损伤。
(5)对本发明制备的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡进行了体外迁移实验、体外溶酶体逃逸实验、体外血脑屏障保护实验、体内靶向性研究、体内药效学研究。结果表明,使用间充质干细胞仿生囊泡包载miR-132-3p可以延长其体内循环时间,避免被核酸酶降解,并将其靶向递送至损伤内皮细胞内,降低BBB通透性,减少继发性脑损伤,发挥抗缺血性脑损伤的作用。
(6)本发明针对缺血性脑卒中第一道屏障BBB的关键成分BMECs进行治疗,减少其氧化应激和凋亡水平,并恢复紧密连接,从而降低BBB通透性,避免外周循环中炎症分子、免疫细胞等进入脑实质,加剧脑损伤。提出了有效的靶向BMECs的药物递送策略,为研究BMECs和BBB在缺血再灌注脑损伤中的关键治疗作用提供了依据。
(7)本发明将间充质干细胞膜蛋白插入磷脂双分子层中构建间充质干细胞仿生纳米囊泡,制备步骤简洁,膜蛋白保存方便并保持了了良好的生物活性,使纳米囊泡具有良好的生物相容性、长循环特性和BMECs靶向特性。
综上,将间充质干细胞膜蛋白插入磷脂双分子层构建间充质干细胞仿生纳米囊泡对于靶向递送药物至缺血性脑卒中损伤血管内皮细胞具有较大的应用潜力。
附图说明
图1为靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的透射电镜图;
图2为激光粒度仪测定纳米囊泡粒径;
图3实施例2靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的十二烷基硫酸钠-聚丙烯酰胺凝胶电泳图;
图4为实施例3靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的蛋白免疫印迹图;
图5为实施例4仿生囊泡内核miR-132-3p和鱼精蛋白复合物在不同比例下的琼脂糖凝胶电泳图。
图6为实施例5靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的体外SDF-1趋向性迁移图。
图7为实施例6靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的体外血脑屏障渗透性图。
图8为实施例7靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡治疗缺血性脑卒中的体内荧光分布图(左)及其半定量图(右)。
图9为实施例8靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡治疗缺血性脑卒中的脑切片Evans蓝染色图(左)及其定量图(右)。
图10为实施例9靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡治疗缺血性脑卒中的脑切片TTC染色图。
图11为实施例10靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡治疗缺血性脑卒中的行为学评分图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步的阐述,具体实施例是在本发明的优选条件下进行。所述方法如无特别说明均为常规方法,所述原材料如无特别说明均能从公开商业途径而得。
实施例1
靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的制备与表征
(1)间充质干细胞膜蛋白的制备
间充质干细胞的提取方法包括以下步骤:处死4周龄的健康雄性C57BL/6小鼠,75%乙醇浸泡10min,于超净工作台中减去双足,分离得到胫、股骨,进一步剪断胫、股骨的连接,去除其上附着的肌肉、脂肪,并注意保持骨髓腔的完整性。用含青-链双抗的PBS溶液漂洗3次,剪开胫、股骨两端,吸取1mL DMEM完全培养基冲出骨髓腔内容物至培养皿中。吹打细胞悬液,用70μm滤网过滤后转移至15mL离心管,300g离心后弃上清,用DMEM完全培养基重悬后移入T25细胞培养瓶,置于37℃、5%CO2细胞培养箱中培养,3天后初次换液,继续培养进行纯化扩增。采用ProteoExtract Native Membrane protein extraction kit膜蛋白提取试剂盒提取间充质干细胞膜蛋白获得。
(2)miR-132-3p-鱼精蛋白复合物的制备
制备方法为:miR-132-3p和鱼精蛋白分别溶解在预冷的DEPC水中,以鱼精蛋白:miR-132-3p为2:1的摩尔比涡旋混匀,静置5分钟。
(3)采用薄膜分散法制备,将HSPC、DOPE和胆固醇以5:2:3的摩尔比溶解在乙醇中,经旋转蒸发仪蒸发形成磷脂薄膜。将miR-132-3p-鱼精蛋白复合物分散在PBS溶液中,通过水浴超声水化磷脂薄膜,并用磁子搅拌30分钟。以膜蛋白:磷脂薄膜为1:100的比例在磷脂薄膜悬浮液中加入膜蛋白,分别通过800nm、400nm和200nm孔径的醋酸纤维素膜挤压10次,得到间充质干细胞仿生囊泡溶液。16,000g离心30分钟后,用PBS重悬脂质体沉淀,在4℃下保存。用透射电镜表征仿生纳米囊泡的形态,图1中可观察到纳米囊泡呈现均匀的具有脂质双分子层的球状结构,平均粒径在120nm左右。激光粒度仪测定纳米囊泡粒径见图2。
若无特别说明,以下实施例中所用的间充质干细胞仿生纳米囊泡均为本实施例制备的囊泡。
实施例2
靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的的十二烷基硫酸钠-聚丙烯酰胺凝胶电泳实验
用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(Sodium dodecyl sulfatepolyacrylamide gel electrophoresis,SDS-PAGE)分析间充质干细胞总蛋白(Total cellprotein)、膜蛋白(Memberne protein)、实施例1制备的间充质干细胞仿生囊泡(MSCosome)和裸脂质体(Liposome)的蛋白表达谱。用BCA法定量各组的蛋白浓度后,用RIPA裂解液将各组稀释到相同的浓度,与5X上样缓冲液混合均匀,100℃下加热10分钟,将样品加入4-20%Bis-Tris蛋白凝胶的上样孔中,每孔加样体积为20μL,其中含60μg蛋白质。电泳完成后使用考马斯亮蓝染色液对凝胶进行染色,染出的蛋白表达条带图显示间充质干细胞仿生囊泡具有和间充质干细胞膜蛋白类似的表达谱,表明间充质干细胞膜蛋白成功整合到仿生纳米囊泡中。结果见图3。
实施例3
靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的蛋白免疫印迹实验
用RIPA溶液裂解各组样品,12,000g离心20分钟,收集上清液并定量蛋白浓度。经SDS-PAGE分离后,将蛋白质转移到孔径为0.22μm的PVDF膜上。PVDF膜用含5%脱脂奶粉的TBST溶液封闭,在室温下振荡孵育1小时;与抗CD47(1:1000)、CXCR4(1:500)、VLA-4(1:1000)和GADPH(1:1000)的一抗溶液在4℃下振荡孵育过夜;最后与HRP结合的IgG二抗(1:5000)室温孵育1小时。用ECL发光液浸泡条带,并在Tanon 4600系列全自动化学发光图像分析系统中曝光。结果如图4,表明间充质干细胞关键膜蛋白CD47、CXCR4和VLA-4能够成功转移到仿生纳米囊泡表面。
实施例4
靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡内核中鱼精蛋白对miR-132-3p的压缩比考察
间充质干细胞仿生纳米囊泡的内核使用鱼精蛋白来压缩miR-132-3p,来中和miRNA的负电荷并形成纳米级复合物,使其易于被包封。为了确定鱼精蛋白对miR-132-3p最佳压缩比,将鱼精蛋白和miRNA分别以0:1、0.4:1、0.8:1、1:1、1.2:1、1.6:1和2:1的摩尔比混合,并在4℃孵育5分钟。以1:5的比例用红色荧光上样缓冲液稀释复合物,将10μL含有200ng miRNA的复合物添加到2%琼脂糖凝胶的上样孔中,在Tanon HE-120多功能水平电泳槽中100V电泳20分钟,最后在Tanon 1600系列多功能凝胶图像分析系统中曝光。图5电泳结果表明当鱼精蛋白和miRNA摩尔比为2:1时,鱼精蛋白能够完全压缩miRNA。
实施例5
靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的体外SDF-1趋向性考察
通过Transwell实验验证SDF-1/CXCR4轴在仿生纳米囊泡向脑损伤部位的迁移中的重要作用。首先建立Transwell单层细胞模型:bEnd.3细胞以5×104细胞/孔的密度铺种于Transwell细胞培养小室(孔径为1.0μm,表面积为0.33cm2)中,置于24孔板内常规培养7天,使用Millicell-ERS伏特计(Millicell-ERS 2,Millipore,USA)检测细胞单层的跨内皮电阻(TEER),TEER值高于200Ω.cm2的单层细胞用作BBB实验模型。用100ng/mL TNF-α刺激细胞12小时后,在Transwell小室上腔室加入0.25mg/ml DMEM培养基稀释的DiO标记的仿生纳米囊泡溶液和对照组制剂,加样体积为800μL,下腔加入200μL含或不含SDF-1的DMEM培养基。37℃孵育6小时后,收集下室培养基,通过全波段多功能微板阅读器检测荧光信号强度。结果见图6,结果表明间充质干细胞仿生纳米囊泡通过表面的CXCR4蛋白趋向脑缺血损伤部位富集的SDF-1细胞因子,能够归巢于脑缺血损伤部位。
实施例6
靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的体外血脑屏障保护作用考察
建立体外血脑屏障损伤模型,考察仿生纳米囊泡对血脑屏障的保护作用。将bEnd.3细胞以5×104个细胞/孔的密度接种于Transwell细胞培养小室上室中,置于24孔板内常规培养7天,形成致密的单细胞层。细胞用100ng/mL DMEM培养基稀释的TNF-α溶液刺激12h,之后用不同的制剂处理12h,以正常细胞作为对照。在Transwell小室上腔室加入1mg/mL 10kDa的FITC-葡聚糖溶液,共培养4小时后,收集下腔室的溶液,用全波段多功能微板阅读器测量荧光信号强度,用FITC-葡聚糖穿过单层细胞的通量来考察细胞旁通透性。FITC-葡聚糖对细胞的表观渗透系数(Papp)计算公式为:
dQ/dt是每分钟FITC的转运量(ng/min),A是滤膜的表面积(cm2),C0是FITC的初始浓度(ng/mL),60是分钟到秒的换算。结果见图7,结果表明间充质干细胞仿生纳米囊泡在细胞层面能够靶向修复损伤的血管内皮细胞,从而恢复血脑屏障的功能。
实施例7
靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的体内分布及靶向性考察
C57B6/J健康雄性小鼠,随机分为三组:靶向递药系统组(MSCo/miR-132-3p组)、非靶向递药系统组(Lipo/miR-132-3p)组和假手术组(Sham)组。每组分别于脑缺血再灌注损伤后,分别尾静脉注射Cy7荧光标记的相应组别的载体。于给药后2h、6h和12h时,使用小动物活体成像仪(In Vivo Imaging System,IVIS)观察各组制剂在tMCAO/R小鼠脑内的分布情况,见图8左。通过Region-Of-Interest(ROI)analysis进行半定量分析,见图8右。由图可知,在不同时间点,MSCo/miR-132-3p组的荧光信号较Lipo/miR-132-3p组和Sham组显著增加,且随着时间的持续,Lipo/miR-132-3p组和Sham组荧光强度逐渐减弱,而MSCo/miR-132-3p组依然有较强的荧光强度,表明将间充质干细胞膜蛋白整合入磷脂双分子层中使得仿生囊泡具有延长的体内循环时间,并能够靶向富集于病变脑区。
实施例8
靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的体内血脑屏障保护作用考察
使用Evans蓝染色评估体内血脑屏障的通透性。tMCAO小鼠再灌注1h后尾静脉注射不同的制剂,体内循环48小时后,以4mL/kg的浓度给小鼠注射4%的Evans蓝溶液,2小时后用PBS和4%多聚甲醛进行心脏灌注。处死小鼠并分离出小鼠大脑,将其切成1毫米厚的冠状切片,用照相机拍照,见图9,结果表明间充质干细胞仿生纳米囊泡在缺血性损伤脑卒中动物模型中能够降低血脑屏障通透性。
实施例9
靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的体内药效学研究
tMCAO小鼠再灌注1小时后分别尾静脉注射PBS、裸miR-132-3p、不包载miR-132-3p的间充质干细胞仿生囊泡(MSCosome)、未整合间充质干细胞膜蛋白的非靶向脂质体(Lipo/miR-132-3p)、间充质干细胞仿生纳米囊泡(MSCo/miR-132-3p),以健康小鼠作为对照。体内循环48小时后取脑,于-20℃冷冻20min,冠状面由前至后,快速切成1mm宽的冠状切片,共5片。将切片置于1%(w/v)的TTC染色液中,37℃恒温孵育约20min至观察到梗死区脑组织呈白色而正常脑组织呈现鲜红色,将染好的切片轻置白色板上,相机拍照。TTC染色结果见图10,其中玫红色部位为正常脑组织,白色部位为梗死区域,PBS、裸miR-132-3p和MSCosome给药组有较大程度的损伤,Lipo/miR-132-3p给药组由于缺乏靶向性仅能轻微减轻脑损伤,而MSCo/miR-132-3p的梗死面积可见明显减小,表明间充质干细胞仿生纳米囊泡对缺血性脑损伤具有良好的保护作用。
小鼠脑缺血再灌注损伤1小时后尾静脉注射上述相同的制剂,后续每隔一天给药,共给药7天,之后根据Zea-Longa建立的评价神经功能缺损程度的五级四分法对经术后治疗的小鼠进行神经功能评分。神经功能评分结果见图11,可以看出间充质干细胞仿生纳米囊泡MSCo/miR-132-3p治疗可以明显减轻tMCAO小鼠的神经功能损伤,统计学差异显著(P<0.001)。

Claims (10)

1.一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡,其特征在于,该囊泡由间充质干细胞膜蛋白通过疏水相互作用插入由氢化大豆磷脂、二油酰磷脂酰乙醇胺和胆固醇形成的磷脂薄膜中构成仿生囊泡外层,内部负载miR-132-3p-鱼精蛋白复合物。
2.根据权利要求1所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡,其特征在于,间充质干细胞仿生纳米囊泡平均粒径在123.30±0.78nm。
3.根据权利要求1所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡,其特征在于,磷脂薄膜中氢化大豆磷脂、二油酰磷脂酰乙醇胺和胆固醇的摩尔比为(2-3):1:(1-2),优选摩尔比为5:2:3。
4.根据权利要求1所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡,其特征在于,间充质干细胞膜蛋白与磷脂薄膜的质量比为1:(80-120),优选质量比为1:100。
5.根据权利要求1所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡,其特征在于,所述的间充质干细胞膜蛋白为使用膜蛋白提取试剂盒从间充质干细胞中提取获得。
6.根据权利要求1所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡,其特征在于,所述的miR-132-3p-鱼精蛋白复合物中鱼精蛋白和miR-132-3p的摩尔为2:1;优选的,制备方法为:miR-132-3p和鱼精蛋白分别溶解在预冷的DEPC水中,以鱼精蛋白:miR-132-3p为2:1的摩尔比涡旋混匀,静置5分钟。
7.权利要求1~6任一项所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡的制备方法,包括以下步骤:
(1)将大豆磷脂、二油酰磷脂酰乙醇胺和胆固醇按摩尔比溶解在无水乙醇中,经旋转蒸发仪蒸发形成磷脂薄膜;
(2)将miR-132-3p-鱼精蛋白复合物分散在PBS溶液中,通过水浴超声水化磷脂薄膜,并用磁子搅拌30分钟,形成磷脂薄膜悬浮液;
(3)以间充质干细胞膜蛋白与磷脂薄膜为1:(80-120)的质量比在磷脂薄膜悬浮液中加入间充质干细胞膜蛋白,分别通过800nm、400nm和200nm孔径的醋酸纤维素膜挤压10次,得到间充质干细胞仿生囊泡溶液;离心获得间充质干细胞仿生囊泡。
8.根据权利要求7所述的方法,其特征在于,离心为16,000g离心30分钟;优选的,获得的间充质干细胞仿生囊泡可以用PBS重悬,在4℃下保存。
9.根据权利要求7所述的方法,其特征在于,所述氢化大豆磷脂、二油酰磷脂酰乙醇胺和胆固醇的摩尔比为(2-3):1:(1-2),优选摩尔比为5:2:3;优选的,所述间充质干细胞膜蛋白与磷脂薄膜的质量比为1:100;所述脂质体挤出器微孔滤膜孔径为800nm、400nm和200nm。
10.权利要求1~6任一项所述的靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡在制备治疗缺血性脑卒中药物中的应用。
CN202410205709.9A 2024-02-26 2024-02-26 一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡及其制备方法和应用 Pending CN118059063A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410205709.9A CN118059063A (zh) 2024-02-26 2024-02-26 一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410205709.9A CN118059063A (zh) 2024-02-26 2024-02-26 一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN118059063A true CN118059063A (zh) 2024-05-24

Family

ID=91098512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410205709.9A Pending CN118059063A (zh) 2024-02-26 2024-02-26 一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN118059063A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725499A (zh) * 2022-08-15 2023-03-03 哈尔滨医科大学 一种人脐带间充质干细胞膜仿生纳米囊泡的制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725499A (zh) * 2022-08-15 2023-03-03 哈尔滨医科大学 一种人脐带间充质干细胞膜仿生纳米囊泡的制备方法和应用

Similar Documents

Publication Publication Date Title
EP3639832A2 (en) Use of composition comprising adipose stem cell-derived exosome as effective ingredient in alleviating dermatitis
DE3852221T2 (de) Tierische Zelle mit darin eingeführtem antigenem Protein.
CN112386709B (zh) 一种靶向多肽修饰的载药脂蛋白纳米递药系统及其制备和应用
KR20120132183A (ko) 종양 조직에서 유래한 나노소포체 및 이를 이용한 암 백신
JPH11512439A (ja) リン脂質の混合物を含む抗アポトーシス活性を有する組成物
US10828262B2 (en) Biomembrane, closed structure with biomembrane characteristics or cellular compartment derived from natural sources and/or self-assembly techniques, preparation method and applications thereof
KR102045188B1 (ko) 지방줄기세포 유래의 엑소좀을 유효성분으로 포함하는 조성물의 피부염 개선 용도
KR102019277B1 (ko) 미토콘드리아를 포함하는 허혈성 질환 예방 또는 치료용 조성물
CN113289028B (zh) 基于dna四面体的间充质干细胞外泌体制剂及其制备方法和应用
CN109675032A (zh) 光热材料和外泌体介导的化疗药组成的药物及其用途
KR20190136908A (ko) 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 안면 홍조 개선용 조성물
KR20200013575A (ko) 줄기세포 유래 엑소좀의 동결건조제제 및 이를 유효성분으로 포함하는 항염조성물
CN118059063A (zh) 一种靶向治疗血管内皮细胞的间充质干细胞仿生纳米囊泡及其制备方法和应用
CN101020715B (zh) 鹿茸神经生长因子(deer ngf)提取及其制备方法
WO2023011287A1 (zh) 一种载氯喹化合物的囊泡纳米药物及其制备方法与应用
Liu et al. Lipid-hybrid cell-derived biomimetic functional materials: A state-of-the-art multifunctional weapon against tumors
DE19810655A1 (de) Arzneimittel mit einem Gehalt an Ciclosporin
US11931458B2 (en) Exosome systems, products and methods
KR102185981B1 (ko) 스트렙토코커스 속 세균 유래 나노소포 및 이의 용도
CN114395531A (zh) 一种生物活性物质或药物传递微囊泡的制备方法及其应用
WO2014034669A1 (ja) 非極性溶媒に分散性を有する細菌菌体成分を内封する脂質膜構造体およびその製造方法
JP2019017297A (ja) 天然由来および/または自己集合技術によって得られる生体膜、生体膜性質を有する閉合構造または細胞内区画およびその作製方法と応用
ITRM20130657A1 (it) Trattamento delle dermatopatie mediante estratto vegetale di daphne laureola
CN113425842B (zh) 一种细菌和植物来源的融合囊泡、制备方法及其应用
CN114848610A (zh) 一种外泌体-vegf-a纳米药物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination