CN109298379A - 一种基于数据监测的智能电表现场误差异常的识别方法 - Google Patents

一种基于数据监测的智能电表现场误差异常的识别方法 Download PDF

Info

Publication number
CN109298379A
CN109298379A CN201811488752.1A CN201811488752A CN109298379A CN 109298379 A CN109298379 A CN 109298379A CN 201811488752 A CN201811488752 A CN 201811488752A CN 109298379 A CN109298379 A CN 109298379A
Authority
CN
China
Prior art keywords
data
intelligent electric
electric meter
voltage
judgment models
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811488752.1A
Other languages
English (en)
Other versions
CN109298379B (zh
Inventor
刘丽娜
彭军
屈鸣
李锐超
李琪林
白泰
申杰
李方硕
罗银康
李林欢
王姝
吴勇
王伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Original Assignee
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd filed Critical Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Priority to CN201811488752.1A priority Critical patent/CN109298379B/zh
Publication of CN109298379A publication Critical patent/CN109298379A/zh
Application granted granted Critical
Publication of CN109298379B publication Critical patent/CN109298379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/04Testing or calibrating of apparatus covered by the other groups of this subclass of instruments for measuring time integral of power or current

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于数据监测的智能电表现场误差异常的识别方法,所述方法包括:采集智能电表的历史数据,包括:电能数据、电压数据、功率数据和功率因数数据;基于采集单元采集的数据,构建智能电表失效判断模型,智能电表失效判断模型包括:智能电表硬件问题‑失效判断模型和智能电表参数突变‑失效判断模型;采集智能电表实时数据,基于智能电表失效判断模型和智能电表实时数据,判断智能电表是否存在误差异常;通过该方法的执行可以有效识别和判断智能电表运行误差准确度状态。

Description

一种基于数据监测的智能电表现场误差异常的识别方法
技术领域
本发明涉及智能电表领域,具体地,涉及一种基于数据监测的智能电表现场误差异常的识别方法。
背景技术
伴随着智能电网技术的快速发展,用电侧计量使用的智能电表功能也日趋复杂,电能计量误差是智能电表众多功能的一项最重要的功能,它决定电能表能否准确计量和计费,是所有电能表功能的基石。然而,随着智能电表电子化的深度发展,器件的小型化、成本优化以及供货周期压缩导致智能电表的质量存在一定的风险。突出的表现为现场运行的电能表计量误差故障增加。传统的监测方式通过现场巡查和定期拆回检测的方式进行抽样监察,但这种方法无法有效的实现现场运行表计全覆盖监测。为确保产品现场运行质量,本申请提出一种有效的监测手段提高对现场误差的监测和识别方法。
发明内容
本发明提供了一种基于数据监测的智能电表现场误差异常的识别方法,通过该方法的执行可以有效识别和判断智能电表运行误差准确度状态。
为实现上述发明目的,本申请提供了一种基于数据监测的智能电表现场误差异常的识别方法,所述方法包括:
采集智能电表的历史数据,包括:电能数据、电压数据、功率数据和功率因数数据;
基于采集单元采集的数据,构建智能电表失效判断模型,智能电表失效判断模型包括:智能电表硬件问题-失效判断模型和智能电表参数突变-失效判断模型;智能电表硬件问题-失效判断模型用于对电网支路测量电压的一致性进行判断,若电网支路测量电压与历史电网支路测量电压之间的差异大于预设范围,则判断智能电表存在误差异常;智能电表参数突变-失效判断模型用于对同一只智能电能表采集的电压数据、电流数据、功率数据、功率因数数据进行计算,基于计算出的数据判断数据之间是否符合预设的电学关系;若不符合,则判断智能电表存在误差异常;
采集智能电表实时数据,基于智能电表失效判断模型和智能电表实时数据,判断智能电表是否存在误差异常。
进一步的,通过集抄网络,在智能电能集抄电能数据的基础上增加电流数据、电压数据、功率数据和功率因数数据的定期采集。
进一步的,在智能电表上安装有数据采集单元和数据传输单元,用于采集智能电表的相关数据,数据传输单元用于将数据采集单元采集的数据传输至后台服务器,后台服务器用于运行智能电表失效判断模型,对智能电表是否存在误差异常进行判断。
进一步的,所述智能电表内设有存储单元,用于在智能电表采集数据后,将采集的数据进行存储,并将采集的数据进行复制2份,将复制后的2份数据分别发送至智能电表预设关联终端和数据采集单元。
进一步的,基于智能电表硬件问题-失效判断模型,对电网支路测量电压的一致性进行判断,具体为:
采集同一支路电能表变量数据,理论分析同一支路计量表计电压为电网网络电压,偏差不会超过2%,以220V作为理论值,则实际浮动范围在215V至225V之间,电能表计量电路硬件失效后,呈现的状态是电压超出正常范围,尤其表现为大于最大范围值,也就是说正常表计电压测量值为225V以下,异常表计电压测量值为225V以上,初步判断为计量异常。
进一步的,基于智能电表参数突变-失效判断模型,判断智能电表存在误差异常,具体为:
基于同一支路电能表计量变量数据应处于一定范围,而对于计量参数突变的表计,已经无法按照正常理论进行推算,由于校表参数突变,导致硬件采样信号的数据转化过程失真,测试的数据均为异常数据,与实际值偏差较大,如正常运行时电压值在220V附近,如出现校准参数偏差,会出现及其异常的测量值,同时根据电压、电流和功率值可以判断数值关系是否符合P=U*I*COSΦ关系,P为功率,U为电压,I为电流,COSΦ为功率因素。
本申请提供的一个或多个技术方案,至少具有如下技术效果或优点:
通过以上综合性的测试方法可以排查电能表现场运行期间是否存在误差异常,进而为智能用电管理提供有效的监管手段和快捷的检测方法;
本方法不需要现场巡查和定期拆回,监测效率较高,且能够有效的实现现场运行表计全覆盖监测。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定;
图1是本申请中基于数据监测的智能电表现场误差异常的识别方法的流程示意图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在相互不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述范围内的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
其中,在本申请实施例中,请参考图1,提供了一种基于数据监测的智能电表现场误差异常的识别方法,所述方法包括:
采集智能电表的历史数据,包括:电能数据、电压数据、功率数据和功率因数数据;
基于采集单元采集的数据,构建智能电表失效判断模型,智能电表失效判断模型包括:智能电表硬件问题-失效判断模型和智能电表参数突变-失效判断模型;智能电表硬件问题-失效判断模型用于对电网支路测量电压的一致性进行判断,若电网支路测量电压与历史电网支路测量电压之间的差异大于预设范围,则判断智能电表存在误差异常;智能电表参数突变-失效判断模型用于对同一只智能电能表采集的电压数据、电流数据、功率数据、功率因数数据进行计算,基于计算出的数据判断数据之间是否符合预设的电学关系;若不符合,则判断智能电表存在误差异常;
采集智能电表实时数据,基于智能电表失效判断模型和智能电表实时数据,判断智能电表是否存在误差异常。
其中,在本申请实施例中,通过集抄网络,在智能电能集抄电能数据的基础上增加电流数据、电压数据、功率数据和功率因数数据的定期采集。在智能电表上安装有数据采集单元和数据传输单元,用于采集智能电表的相关数据,数据传输单元用于将数据采集单元采集的数据传输至后台服务器,后台服务器用于运行智能电表失效判断模型,对智能电表是否存在误差异常进行判断。所述智能电表内设有存储单元,用于在智能电表采集数据后,将采集的数据进行存储,并将采集的数据进行复制2份,将复制后的2份数据分别发送至智能电表预设关联终端和数据采集单元。
其中,在本申请实施例中,基于智能电表硬件问题-失效判断模型,对电网支路测量电压的一致性进行判断,具体为:
采集同一支路电能表变量数据,理论分析同一支路计量表计电压为电网网络电压,偏差不会超过2%,以220V作为理论值,则实际浮动范围在215V至225V之间,电能表计量电路硬件失效后,呈现的状态是电压超出正常范围,尤其表现为大于最大范围值,也就是说正常表计电压测量值为225V以下,异常表计电压测量值为225V以上,初步判断为计量异常。
基于智能电表参数突变-失效判断模型,判断智能电表存在误差异常,具体为:
基于同一支路电能表计量变量数据应处于一定范围,而对于计量参数突变的表计,已经无法按照正常理论进行推算,由于校表参数突变,导致硬件采样信号的数据转化过程失真,测试的数据均为异常数据,与实际值偏差较大,如正常运行时电压值在220V附近,如出现校准参数偏差,会出现及其异常的测量值,同时根据电压、电流和功率值可以判断数值关系是否符合P=U*I*COSΦ关系。
本申请中误差异常故障识别原理为:
智能电表运行期间误差故障由以下几种情况引起:
1.由于硬件原因导致计量采样电路时效,集中表现为计量芯片采样基准变化导致采样电压、采样电流同时异常,进而导致功率和电能异常,最终导致计量误差突变。
2.由于校表参数突变导致误差突变,影响正常计量。
以上两种失效模型基本覆盖现场计量误差故障的绝大部分,因此如何快速识别以上故障失效模式,并提出具体方法,为终端用户或监管部们提供可靠依据成为本发明的重点任务,具体方法如下:
1.数据监测:通过现有集抄网络,在原有电能集抄的基础上增加电流、电压、功率和功率因数的定期采集,为构建失效模型提供数据支持;
2.失效判断:
针对第一种失效原因对数据进行失效分析,对统一电网支路测量电压的一致性进行判断如果存在明显差异,则应针对差异电表进行现场确认,排查是否存在误差突变;
针对第二种失效原因则需要对同一只电能表采集的电压、电流、功率、功率因数的数据进行计算,判断其是否符合之间的电学关系,进而判断是否存在校表参数存在异常的可能。
3.根据测试结果对有疑问的电表进行现场误差排查,结合实测数据进行最终判断。
通过以上综合性的测试方法可以排查电能表现场运行期间是否存在误差异常,进而为智能用电管理提供有效的监管手段和快捷的检测方法。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (6)

1.一种基于数据监测的智能电表现场误差异常的识别方法,其特征在于,所述方法包括:
采集智能电表的历史数据,包括:电能数据、电压数据、功率数据和功率因数数据;
基于采集单元采集的数据,构建智能电表失效判断模型,智能电表失效判断模型包括:智能电表硬件问题-失效判断模型和智能电表参数突变-失效判断模型;智能电表硬件问题-失效判断模型用于对电网支路测量电压的一致性进行判断,若电网支路测量电压与历史电网支路测量电压之间的差异大于预设范围,则判断智能电表存在误差异常;智能电表参数突变-失效判断模型用于对同一只智能电能表采集的电压数据、电流数据、功率数据、功率因数数据进行计算,基于计算出的数据判断数据之间是否符合预设的电学关系;若不符合,则判断智能电表存在误差异常;
采集智能电表实时数据,基于智能电表失效判断模型和智能电表实时数据,判断智能电表是否存在误差异常。
2.根据权利要求1所述的基于数据监测的智能电表现场误差异常的识别方法,其特征在于,通过集抄网络,在智能电能集抄电能数据的基础上增加电流数据、电压数据、功率数据和功率因数数据的定期采集。
3.根据权利要求1所述的基于数据监测的智能电表现场误差异常的识别方法,其特征在于,在智能电表上安装有数据采集单元和数据传输单元,用于采集智能电表的相关数据,数据传输单元用于将数据采集单元采集的数据传输至后台服务器,后台服务器用于运行智能电表失效判断模型,对智能电表是否存在误差异常进行判断。
4.根据权利要求3所述的基于数据监测的智能电表现场误差异常的识别方法,其特征在于,所述智能电表内设有存储单元,用于在智能电表采集数据后,将采集的数据进行存储,并将采集的数据进行复制2份,将复制后的2份数据分别发送至智能电表预设关联终端和数据采集单元。
5.根据权利要求1所述的基于数据监测的智能电表现场误差异常的识别方法,其特征在于,基于智能电表硬件问题-失效判断模型,对电网支路测量电压的一致性进行判断,具体为:采集同一支路智能电表变量数据,同一支路智能电表的电压为电网网络电压,智能电表的实时电压与理论电压之间偏差不超过预设范围,当智能电表的实时电压与理论电压之间偏差超过预设范围时,则判断智能电表计量电路硬件失效。
6.根据权利要求1所述的基于数据监测的智能电表现场误差异常的识别方法,其特征在于,基于智能电表参数突变-失效判断模型,判断智能电表存在误差异常,具体为:
对同一只智能电能表采集的电压数据、电流数据、功率数据、功率因数数据进行计算,根据电压、电流和功率值可以判断数值关系是否符合P=U*I*COSΦ关系,P为功率,U为电压,I为电流,COSΦ为功率因素。
CN201811488752.1A 2018-12-06 2018-12-06 一种基于数据监测的智能电表现场误差异常的识别方法 Active CN109298379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811488752.1A CN109298379B (zh) 2018-12-06 2018-12-06 一种基于数据监测的智能电表现场误差异常的识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811488752.1A CN109298379B (zh) 2018-12-06 2018-12-06 一种基于数据监测的智能电表现场误差异常的识别方法

Publications (2)

Publication Number Publication Date
CN109298379A true CN109298379A (zh) 2019-02-01
CN109298379B CN109298379B (zh) 2021-04-06

Family

ID=65141426

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811488752.1A Active CN109298379B (zh) 2018-12-06 2018-12-06 一种基于数据监测的智能电表现场误差异常的识别方法

Country Status (1)

Country Link
CN (1) CN109298379B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531302A (zh) * 2019-08-27 2019-12-03 哈尔滨理工大学 智能电能表失效机理与状态监测系统及方法
CN111737253A (zh) * 2020-05-25 2020-10-02 清远博依特智能科技有限公司 一种区域表计断数据识别方法及装置
CN111830454A (zh) * 2020-07-21 2020-10-27 国家电网有限公司 一种新型智能表现场测试仪装置
CN112230083A (zh) * 2020-10-10 2021-01-15 国网四川省电力公司电力科学研究院 一种关口计量装置异常事件识别方法和系统
CN112881969A (zh) * 2021-01-21 2021-06-01 马彦 一种基于数据监测的智能电表误差异常的识别装置
CN113009407A (zh) * 2021-03-02 2021-06-22 深圳供电局有限公司 双芯智能电表的电压事件记录方法、装置和双芯智能电表
WO2021147501A1 (zh) * 2020-01-21 2021-07-29 北京市腾河电子技术有限公司 基于单一负荷跳变进行测量域误差分析的方法及系统、存储介质
CN113341366A (zh) * 2021-05-26 2021-09-03 广东电网有限责任公司广州供电局 一种用户电表状态监测方法、装置设备和存储介质
CN113391256A (zh) * 2021-05-28 2021-09-14 国网河北省电力有限公司营销服务中心 一种现场作业终端的电能表计量故障分析方法及系统
CN114200386A (zh) * 2021-12-21 2022-03-18 广西电网有限责任公司 智能电表运行误差在线分析方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251585A (zh) * 2008-03-26 2008-08-27 武汉国测科技股份有限公司 高压电能计量装置整体误差校验方法及装置
CN101655545A (zh) * 2009-09-02 2010-02-24 珠海市科荟电器有限公司 电能表现场校验方法
WO2014130220A1 (en) * 2013-02-21 2014-08-28 General Electric Company Electric power consumption measuring mechanism
CN104614700A (zh) * 2012-10-29 2015-05-13 江苏省电力公司常州供电公司 一种实时性好的电能计量装置远程监测诊断方法
CN104833944A (zh) * 2015-05-06 2015-08-12 国网上海市电力公司 一种大用户电能表现场检验系统及方法
CN105548949A (zh) * 2016-01-29 2016-05-04 张波 一种智能电能表的故障远程判断方法及其系统
CN106405475A (zh) * 2016-08-31 2017-02-15 国网江苏省电力公司常州供电公司 电能表异常诊断方法
CN108562864A (zh) * 2018-02-27 2018-09-21 杭州海兴电力科技股份有限公司 单点功率法校准电能表误差的方法
CN108845285A (zh) * 2018-04-13 2018-11-20 广州供电局有限公司 电能计量装置检测方法和系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251585A (zh) * 2008-03-26 2008-08-27 武汉国测科技股份有限公司 高压电能计量装置整体误差校验方法及装置
CN101655545A (zh) * 2009-09-02 2010-02-24 珠海市科荟电器有限公司 电能表现场校验方法
CN104614700A (zh) * 2012-10-29 2015-05-13 江苏省电力公司常州供电公司 一种实时性好的电能计量装置远程监测诊断方法
WO2014130220A1 (en) * 2013-02-21 2014-08-28 General Electric Company Electric power consumption measuring mechanism
CN104833944A (zh) * 2015-05-06 2015-08-12 国网上海市电力公司 一种大用户电能表现场检验系统及方法
CN105548949A (zh) * 2016-01-29 2016-05-04 张波 一种智能电能表的故障远程判断方法及其系统
CN106405475A (zh) * 2016-08-31 2017-02-15 国网江苏省电力公司常州供电公司 电能表异常诊断方法
CN108562864A (zh) * 2018-02-27 2018-09-21 杭州海兴电力科技股份有限公司 单点功率法校准电能表误差的方法
CN108845285A (zh) * 2018-04-13 2018-11-20 广州供电局有限公司 电能计量装置检测方法和系统

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531302A (zh) * 2019-08-27 2019-12-03 哈尔滨理工大学 智能电能表失效机理与状态监测系统及方法
WO2021147501A1 (zh) * 2020-01-21 2021-07-29 北京市腾河电子技术有限公司 基于单一负荷跳变进行测量域误差分析的方法及系统、存储介质
US11947624B2 (en) 2020-01-21 2024-04-02 Beijing Tenhe Electronic Technology Co., Ltd. Method and system for analyzing error of measurement domain based on single load jump, and storage medium
CN111737253A (zh) * 2020-05-25 2020-10-02 清远博依特智能科技有限公司 一种区域表计断数据识别方法及装置
CN111737253B (zh) * 2020-05-25 2023-07-14 清远博依特智能科技有限公司 一种区域表计断数据识别方法及装置
CN111830454A (zh) * 2020-07-21 2020-10-27 国家电网有限公司 一种新型智能表现场测试仪装置
CN112230083A (zh) * 2020-10-10 2021-01-15 国网四川省电力公司电力科学研究院 一种关口计量装置异常事件识别方法和系统
CN112230083B (zh) * 2020-10-10 2022-08-30 国网四川省电力公司电力科学研究院 一种关口计量装置异常事件识别方法和系统
CN112881969A (zh) * 2021-01-21 2021-06-01 马彦 一种基于数据监测的智能电表误差异常的识别装置
CN112881969B (zh) * 2021-01-21 2024-06-18 安徽融兆智能有限公司 一种基于数据监测的智能电表误差异常的识别装置
CN113009407A (zh) * 2021-03-02 2021-06-22 深圳供电局有限公司 双芯智能电表的电压事件记录方法、装置和双芯智能电表
CN113341366A (zh) * 2021-05-26 2021-09-03 广东电网有限责任公司广州供电局 一种用户电表状态监测方法、装置设备和存储介质
CN113391256A (zh) * 2021-05-28 2021-09-14 国网河北省电力有限公司营销服务中心 一种现场作业终端的电能表计量故障分析方法及系统
CN114200386A (zh) * 2021-12-21 2022-03-18 广西电网有限责任公司 智能电表运行误差在线分析方法及系统
CN114200386B (zh) * 2021-12-21 2023-10-24 广西电网有限责任公司 智能电表运行误差在线分析方法及系统

Also Published As

Publication number Publication date
CN109298379B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
CN109298379A (zh) 一种基于数据监测的智能电表现场误差异常的识别方法
CN111026927B (zh) 一种低压台区运行状态智能监测系统
CN111781463A (zh) 一种台区线损异常辅助诊断方法
CN101958544B (zh) 电力配电线路线损率计算系统及方法
CN110806518B (zh) 一种台区线损异动分析模块及其操作方法
CN104635198B (zh) 故障发现及时的电能计量装置远程监测诊断方法
CN113098130A (zh) 一种监测低压台区线损异常问题的分析系统
CN104682556A (zh) 变电站直流电源的远程智能维护系统及其应用
CN102928809A (zh) 电能计量装置远程监测诊断系统及其工作方法
CN105915398A (zh) 基于农村电网故障快速检测及复电系统及其集中器检测方法
CN104678348B (zh) 效率较高的电能计量装置远程监测诊断方法
CN109596873A (zh) 一种具有预警功能的智能电表
CN105548949A (zh) 一种智能电能表的故障远程判断方法及其系统
Luan et al. Energy theft detection via integrated distribution state estimation based on AMI and SCADA measurements
CN107741577A (zh) 一种关口表准确度在线监控和分析方法及系统
CN111027026A (zh) 一种抄表数据异常智能诊断系统
CN113063997A (zh) 一种配变台区线损异常问题监测方法
CN104714206B (zh) 一种故障发现及时的电能计量装置远程监测诊断方法
CN113985098A (zh) 一种基于实时计量的提高防窃电分析准确度的方法
CN116593926A (zh) 便携式信息系统电源综合性能检测方法及平台
CN104656050B (zh) 一种节省人力的电能计量装置远程监测诊断方法
CN205792639U (zh) 基于农村电网故障快速检测及复电系统
CN106104282A (zh) 一种基于参考能量的电气测量方法
CN104614700B (zh) 一种实时性好的电能计量装置远程监测诊断方法
CN109142862A (zh) 一种智能化电气工程测量系统及其测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant