CN107286546B - 一种生物可降解高分子薄膜的制备方法 - Google Patents
一种生物可降解高分子薄膜的制备方法 Download PDFInfo
- Publication number
- CN107286546B CN107286546B CN201710636226.4A CN201710636226A CN107286546B CN 107286546 B CN107286546 B CN 107286546B CN 201710636226 A CN201710636226 A CN 201710636226A CN 107286546 B CN107286546 B CN 107286546B
- Authority
- CN
- China
- Prior art keywords
- polycaprolactone
- polyvinyl alcohol
- preparation
- film
- biodegradable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/07—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/09—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
- C08J3/091—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids characterised by the chemical constitution of the organic liquid
- C08J3/093—Halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2329/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2467/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2467/04—Polyesters derived from hydroxy carboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
一种生物可降解高分子薄膜的制备方法,涉及可降解高分子复合薄膜的制备技术领域。本发明利用乳液法将聚己内酯和聚乙烯醇溶液混合,并采用生物型颗粒纤维素纳米晶来稳定两相界面,由此即可利用稳定颗粒的加入量来控制所得材料的相畴的大小,从而控制材料的性能。本发明一方面在无需复杂的加工工艺,另一方面仅需简单稳定颗粒加入量即可实现对生物可降解及生物相容的聚乙烯醇/聚己内酯薄膜形态的有效控制。
Description
技术领域
本发明涉及可降解高分子复合薄膜的制备技术领域。
背景技术
如聚己内酯(PCL)、聚乙烯醇(PVA)等生物可降解高分子是当今材料科学的研究热点。它们具有良好的生物相容性、生物可降解性以及较好的力学性能等特点,因此不仅在通用领域,而且在组织工程方面如骨组织工程、皮肤组织工程等具有重要的应用价值。不过在作为单一材料使用时这些生物可降解高分子或多或少存在着不足。如聚己内酯具有良好可加工性以及低温韧性、生物适应性也比较好,但降解速率较慢;而水溶性的聚乙烯醇具有一定的强度和较快的降解速率,但其韧性及在高湿环境下阻氧性较差。由于两者性能正好互补,将两者混合是获得综合性能较为优异的生物可降解材料简单易行的方法。
不过聚乙烯醇的加工性能较差,往往在未达到熔融状态时就已经降解,无法满足熔融共混的条件,而用溶液共混时,聚乙烯醇与聚己内酯之间热力学的不相容,使得它们的共混材料相畴较大且界面粘结松散,反而无法体现各自的优势性能。
Pickering乳液是近些年比较热门的研究方向,它是用固体颗粒代替传统的表面活性剂从而稳定不相容两相界面。相比于传统的乳液,Pickering乳液具有无毒、稳定性、刺激响应性等明显优势。
发明内容
本发明的目的就在于克服两种聚合物热力学上不相容带来的宏观相分离的缺陷,提出一种生物可降解高分子复合薄膜的制备方法。
本发明技术方案是:将聚乙烯醇溶于水后与纤维素纳米晶、聚己内酯的三氯甲烷溶液混合,经乳化分散制备成Pickering乳液,然后涂抹于玻璃板上,再经真空干燥,得生物可降解高分子薄膜。
本发明使用第三组分——生物可降解的纳米颗粒纤维素纳米晶作为固体乳化剂,利用乳化分散的方法,将不相容的聚己内酯与聚乙烯醇两相制备成Pickering乳液,经真空干燥制成膜,通过纤维素纳米晶的加入有效改善聚乙烯醇/聚己内酯体系的相界面粘结,从而实现两组分间性能互补,获得性能优异的生物可降解高分子薄膜材料,并保持了材料的生物可降解性。
本发明的优点在于利用简便易行的乳液法将聚己内酯和聚乙烯醇溶液混合,并采用生物型颗粒纤维素纳米晶来稳定两相界面,由此即可利用稳定颗粒的加入量来控制所得材料的相畴的大小,从而控制材料的性能。本发明一方面在无需复杂的加工工艺,另一方面仅需简单稳定颗粒加入量即可实现对生物可降解及生物相容的聚乙烯醇/聚己内酯薄膜形态的有效控制。
聚乙烯醇是一种水溶性的高分子,因而先溶于水配置成水溶液。聚己内酯不溶于水,但溶于三氯甲烷后即形成油溶液。本发明先将聚乙烯醇溶于水后与其它组分再混合成为不相容的水/油乳液体系。
进一步地,本发明优先选用聚己内酯的数均分子量为40,000~60,000,熔点为50~70℃。本发明优先选用该聚己内酯可以适当改善聚乙烯醇的强度,并减慢其降解速度,提高聚乙烯醇其在环境中的稳定性,此种聚己内酯在三氯甲烷中溶解后,油溶液的粘度与聚乙烯醇水溶液相匹配,可以在复合薄膜中形成较为均一的分散相,并且在其潜在的应用方面可以提供较好的力学性能。
本发明优先选用聚乙烯醇的分子量为250,000~290,000,选用该聚乙烯醇在制备乳液的过程中产生的气泡较少,有利于均一薄膜的形成。
所述聚乙烯醇与聚己内酯、纤维素纳米晶的投料质量比为8∶2∶1~2。纤维素的用量控制是必要的。作为稳定颗粒的纤维素纳米晶,用量过少对聚乙烯醇和聚己内酯界面之间的稳定作用不大;而用量过多纤维素会在一相产生过度的絮凝现象,从而不能很好的覆盖在液滴表面,反而不利于复合薄膜的形成。
所述聚乙烯醇溶于水后形成的聚乙烯醇水溶液的浓度为0.1g/mL。此浓度是根据成膜过程中样品的流延性确定的。若溶液溶度过低,所形成的乳液过稀,无法成膜;若溶液浓度过高,所制备出的乳液过于粘稠,不易于均匀涂抹于玻璃板,从而无法得到厚度均一的薄膜。
所述聚己内酯的三氯甲烷溶液中聚己内酯浓度为0.1g/mL。此浓度是根据成膜过程中样品的流延性确定的。若溶液溶度过低,所形成的乳液过稀,无法成膜;若溶液浓度过高,所制备出的乳液过于粘稠,不易于均匀涂抹于玻璃板,从而无法得到厚度均一的薄膜。
所述乳化分散的温度条件为40℃。在此乳化分散温度下,可加快氯仿的挥发,避免了后期薄膜制备过程中分散相溶剂挥发而导致的相分离现象。
所述真空干燥温度为40℃。由于聚己内酯的熔融温度为50℃~70℃,选择40℃真空干燥,可以在避免聚己内酯不熔融的情况下,保证最快的烘干速度,薄膜内部两相形态不会受到影响。
附图说明
图1是实施例1取得乳液产品的光学显微镜照片。
图2是实施例2取得乳液产品的光学显微镜照片。
图3是对比例1取得产品烘干后的扫描电镜图片。
图4是对比例2取得产品烘干后的扫描电镜图片。
图5是实施例2取得产品烘干后的扫描电镜图片。
图6是实施例3取得产品烘干后的扫描电镜图片。
具体实施方式
原料说明:以下各例中,聚己内酯的数均分子量为40,000~60,000,熔点为50~70℃。聚乙烯醇的分子量为250,000~290,000。
实施例1:
取20g聚己内酯溶于三氯甲烷中,制得浓度为0.1g/mL的聚己内酯三氯甲烷溶液。
将聚乙烯醇80g加入到水中,80℃下溶解制备成浓度为0.1g/mL的聚乙烯醇水溶液,随后加入纤维素纳米晶10g混匀,再加入以上聚己内酯三氯甲烷溶液,在40℃、10000转/分钟的转子转速下乳化处理3分钟,取得制备成Pickering乳液。
将Pickering乳液涂抹于玻璃板上,于40℃真空干燥,得薄膜。
实施例2:
取20g聚己内酯溶于三氯甲烷中,制得浓度为0.1g/mL的聚己内酯三氯甲烷溶液。
将聚乙烯醇80g加入到水中,80℃下溶解制备成浓度为0.1g/mL的聚乙烯醇水溶液,随后加入纤维素纳米晶20g混匀,再加入以上聚己内酯三氯甲烷溶液,在40℃、10000转/分钟的转子转速下乳化处理3分钟,取得制备成Pickering乳液。
将Pickering乳液涂抹于玻璃板上,于40℃真空干燥,得薄膜。
对比例1:
将聚乙烯醇20g、聚己内酯80g加入到甲酸中,在室温、10000转/分钟的转子转速下乳化混合10分钟后,涂抹于玻璃板上,烘干得薄膜。
对比例2:
取20g聚己内酯溶于三氯甲烷中,制得浓度为0.1g/mL的聚己内酯三氯甲烷溶液。
将聚乙烯醇80g加入到水中,80℃下溶解制备成浓度为0.1g/mL的聚乙烯醇水溶液,随后加入纤维素纳米晶30g混匀,再加入以上聚己内酯三氯甲烷溶液,在40℃、10000转/分钟的转子转速下乳化处理3分钟,取得制备成Pickering乳液。
将Pickering乳液涂抹于玻璃板上,于40℃真空干燥,得薄膜。
分析:
图1、2分别是实施例1、2取得乳液产品常温下于可见光模式的光学显微镜照片。由图中可见,通过改变纤维素纳米晶的含量,可以很好的改变PCL/PVA体系中液滴的大小。
图3,4,5,6分别是对比例1,2及实施例1,2的扫描电镜照片。从图3中可以看出,对比例1由溶液法直接混合制得的薄膜分散相分布十分不均一,且分散相与连续相之间粘结并不紧密。而加入了纤维素纳米晶体作为稳定颗粒后乳液的图4和图5十分稳定,且分散小均一,液滴粒径小与界面的结合也较为紧密,这样可以更好的发挥两相结合的优势。但图4中加入了过量纤维素纳米晶后的对比例2,因为过度的絮凝作用,反而不利于均一液滴的产生,从而影响了材料性能。
Claims (3)
1.一种生物可降解高分子薄膜的制备方法,其特征在于:将聚乙烯醇溶于水后与纤维素纳米晶、聚己内酯的三氯甲烷溶液混合,经乳化分散制备成Pickering乳液,然后涂抹于玻璃板上,再经真空干燥,得生物可降解高分子薄膜;
所述聚己内酯的数均分子量为40,000~60,000,熔点为50~70℃;
所述聚乙烯醇的分子量为250,000~290,000;
所述聚乙烯醇与聚己内酯、纤维素纳米晶的投料质量比为8∶2∶1~2;
所述聚己内酯的三氯甲烷溶液中聚己内酯浓度为0.1g/mL;
所述乳化分散的温度条件为40℃。
2.根据权利要求1所述生物可降解薄膜的制备方法,其特征在于所述聚乙烯醇溶于水后形成的聚乙烯醇水溶液的浓度为0.1g/mL。
3.根据权利要求1所述生物可降解薄膜的制备方法,其特征在于所述真空干燥温度为40℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710636226.4A CN107286546B (zh) | 2017-07-31 | 2017-07-31 | 一种生物可降解高分子薄膜的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710636226.4A CN107286546B (zh) | 2017-07-31 | 2017-07-31 | 一种生物可降解高分子薄膜的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107286546A CN107286546A (zh) | 2017-10-24 |
CN107286546B true CN107286546B (zh) | 2019-08-16 |
Family
ID=60103697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710636226.4A Active CN107286546B (zh) | 2017-07-31 | 2017-07-31 | 一种生物可降解高分子薄膜的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107286546B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107998907B (zh) * | 2017-12-18 | 2020-09-01 | 江南大学 | 一种氧化石墨烯(GO)稳定的Pickering乳液制备多孔聚赖氨酸膜的制备方法 |
CN114129325A (zh) * | 2021-12-02 | 2022-03-04 | 杭州糖吉医疗科技有限公司 | 可降解自密封阀及其制备方法、胃内植入球囊及其制备方法 |
CN114752077B (zh) * | 2022-04-11 | 2024-02-13 | 扬州大学 | 双组份各向异性水凝胶的制备方法 |
CN115385653A (zh) * | 2022-05-07 | 2022-11-25 | 华南理工大学 | 一种造纸脱墨污泥基凝胶材料及其制备方法与应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008058297A2 (en) * | 2006-11-10 | 2008-05-15 | Harvard University | Non-spherical particles |
JP2014024818A (ja) * | 2012-07-30 | 2014-02-06 | Josho Gakuen | ゲル体の製造方法 |
CN103665398A (zh) * | 2013-12-15 | 2014-03-26 | 桂林理工大学 | 可完全生物降解和生物相容的复合微球的制备方法 |
CN104927169A (zh) * | 2015-06-28 | 2015-09-23 | 青岛宇星智能科技开发有限公司 | 一种改进的可降解的农用地膜 |
WO2016174414A1 (en) * | 2015-04-30 | 2016-11-03 | Johnson Matthey Public Limited Company | Oil field chemical delivery fluids, methods for their use in the targeted delivery of oil field chemicals to subterranean hydrocarbon reservoirs and methods for tracing fluid flow |
CN106084701A (zh) * | 2016-08-25 | 2016-11-09 | 芜湖市天雄新材料科技有限公司 | 一种可降解塑料及其制备方法 |
CN106117592A (zh) * | 2016-07-21 | 2016-11-16 | 桂林理工大学 | 一种纳米纤维素/聚合物复合气凝胶的制备方法 |
-
2017
- 2017-07-31 CN CN201710636226.4A patent/CN107286546B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008058297A2 (en) * | 2006-11-10 | 2008-05-15 | Harvard University | Non-spherical particles |
JP2014024818A (ja) * | 2012-07-30 | 2014-02-06 | Josho Gakuen | ゲル体の製造方法 |
CN103665398A (zh) * | 2013-12-15 | 2014-03-26 | 桂林理工大学 | 可完全生物降解和生物相容的复合微球的制备方法 |
WO2016174414A1 (en) * | 2015-04-30 | 2016-11-03 | Johnson Matthey Public Limited Company | Oil field chemical delivery fluids, methods for their use in the targeted delivery of oil field chemicals to subterranean hydrocarbon reservoirs and methods for tracing fluid flow |
CN104927169A (zh) * | 2015-06-28 | 2015-09-23 | 青岛宇星智能科技开发有限公司 | 一种改进的可降解的农用地膜 |
CN106117592A (zh) * | 2016-07-21 | 2016-11-16 | 桂林理工大学 | 一种纳米纤维素/聚合物复合气凝胶的制备方法 |
CN106084701A (zh) * | 2016-08-25 | 2016-11-09 | 芜湖市天雄新材料科技有限公司 | 一种可降解塑料及其制备方法 |
Non-Patent Citations (1)
Title |
---|
Poly(ε-caprolactone)(PCL)/cellulose nano-crystal(CNC) nanacomposites and foams;Hao-Yang Mi et.al;《Cellulose》;20140618;第1-15页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107286546A (zh) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107286546B (zh) | 一种生物可降解高分子薄膜的制备方法 | |
CN104225669B (zh) | 生物活性细菌纤维素-玉米醇溶蛋白复合膜及其制备方法 | |
CN106913910A (zh) | 一种丝素蛋白/石墨烯复合纳米纤维支架材料的制备方法 | |
CN103866487A (zh) | 一种纳米微晶纤维素/壳聚糖/聚乙烯醇复合纳米膜的制备方法 | |
CN106149203A (zh) | 一种载药纳米纤维膜及其应用 | |
CN104624129B (zh) | 基于离子液体型表面活性剂微乳液体系淀粉纳米微球的制备方法 | |
Bier et al. | Investigation of eco-friendly casein fibre production methods | |
CN110157170B (zh) | 一种聚乳酸/纳米纤维素/羟基磷灰石复合材料及其制备 | |
CN102936795A (zh) | 一种载药纳米纤维膜及其制备方法 | |
CN104120500A (zh) | 一种鱼胶原/介孔生物玻璃复合纳米纤维膜及其制备方法 | |
KR20120127372A (ko) | 상분리법을 이용한 나노섬유 구조 생체고분자의 제조방법 | |
CN103993425A (zh) | 一种聚己内酯-角蛋白复合纳米纤维膜的制备方法 | |
CN103789847A (zh) | 一种复合纳米纤维材料的制备方法 | |
CN110025598A (zh) | 一种具有缓释功能的交联载药聚乙烯醇/海藻酸钠复合纳米纤维膜的制备 | |
CN105968384A (zh) | 一种非晶丝素蛋白纳米纤维溶液及其制备方法 | |
CN105670005B (zh) | 一种基于可控溶解制备纤维素纳米晶分散液的工艺方法 | |
CN107163261B (zh) | 一种丝素蛋白乳状液滴及其制备方法 | |
KR20140103197A (ko) | 원심 분리에 의한 고분자 지지체의 제조 방법 및 이에 의하여 제조된 고분자 지지체 | |
Takayama et al. | Shear-induced structuring for multiple parallel gel filaments obtained from casein–alginate hybrids | |
CN111041603A (zh) | 一种丝蛋白/微生物基聚合物溶液的制备方法和其复合纳米纤维的制备方法 | |
KR20170044434A (ko) | 고순도 셀룰로오스를 이용한 하이드로젤 제조 방법 및 이로부터 합성되는 셀룰로오스 분말 | |
Cao et al. | Soft yet mechanically robust injectable alginate hydrogels with processing versatility based on alginate/hydroxyapatite hybridization | |
Rezeki et al. | Optimization of PVA-Arabic gum–honey-based electrospun nanofibers as candidate carrier for peptide and protein delivery | |
CN114774346A (zh) | 聚合物复合微载体及其制备方法 | |
CN105943498A (zh) | 一种不同尺度plga微纳载体的可控乳化制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |