CN105667520B - A kind of front-wheel side force method of estimation of distributed driving electric car - Google Patents
A kind of front-wheel side force method of estimation of distributed driving electric car Download PDFInfo
- Publication number
- CN105667520B CN105667520B CN201610108400.3A CN201610108400A CN105667520B CN 105667520 B CN105667520 B CN 105667520B CN 201610108400 A CN201610108400 A CN 201610108400A CN 105667520 B CN105667520 B CN 105667520B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- mtd
- mtr
- mfrac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000001133 acceleration Effects 0.000 claims abstract description 22
- 238000001914 filtration Methods 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims abstract description 3
- 238000005457 optimization Methods 0.000 claims abstract 2
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 238000009415 formwork Methods 0.000 abstract 2
- 230000009916 joint effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/10—Longitudinal speed
- B60W2520/105—Longitudinal acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/12—Lateral speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/12—Lateral speed
- B60W2520/125—Lateral acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/28—Wheel speed
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Mathematical Physics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
The invention discloses a kind of front-wheel side force method of estimation of distributed driving electric car, mainly comprise the following steps:1, the car status information collected according to various sensors, sliding formwork longitudinal direction force observer is devised based on dynamics of vehicle equation the longitudinal force of tire is estimated in real time;2, each wheel longitudinal force of estimation and longitudinal acceleration signal, lateral acceleration signal, yaw rate signal etc. are transferred to the lateral force observer of sliding formwork, obtain the side force estimate of off-front wheel;3, by filtration module, to the further optimization processing of side force estimated, solve the singular problem occurred in side force estimate, so as to export two final front-wheel side force estimates;Advantages of the present invention:Using Second Order Sliding Mode observer, the real-time of calculating on the one hand ensure that;On the other hand, there is good robustness to the uncertain disturbance that original system is brought to different road surface and tire characteristics, so as to improve crosswise joint effect, keeps the stability of output.
Description
Technical Field
The invention relates to a method for estimating a lateral force of a tire in vehicle running, in particular to the estimation of the lateral force of a front steering wheel of a distributed drive electric vehicle.
Background
Electric vehicles are becoming an increasingly important part of the automotive industry in the future, against the background of environmental and energy issues. In recent years, an In-wheel motor Electric (IEV) has been receiving widespread attention from researchers. The wheel is driven by a wheel hub motor arranged in a wheel hub or two motors arranged at the position of a differential mechanism, so that power is provided for the whole vehicle. The IEV has the advantages of high corresponding speed, short transmission chain, high transmission efficiency and the like, and is an important development direction in the field of electric automobiles.
Currently, there are still places where improvement is needed for IEV lateral stability control, such as where tire lateral force cannot be accurately estimated under extreme conditions. Notably, tire lateral forces are an important component of lateral dynamics, affecting vehicle ride safety and stability. Therefore, accurate estimation of the tire lateral force will effectively improve the lateral control effect.
Conventional tire lateral force estimation relies on a tire model. Various non-linear tire models have been developed in China and abroad. The Dugoff model establishes expressions representing the relationship among driving (braking) force, cornering force, slip rate, cornering angle and other parameters of the tire according to experimental data; the UniTire model is a semi-empirical tire model proposed by Kuo-Konghui and has the characteristic of meeting high-order theoretical boundary conditions; the Magic Formula model establishes the relationship between the longitudinal force, the lateral force and the aligning moment of the tire and the slip angle, the slip rate, the roll angle and the vertical load by utilizing a sine function. The tire model can estimate the tire force relatively accurately, but the tire lateral force in the tire model is directly related to factors such as a tire slip angle, a vertical load, a longitudinal slip rate and a wheel speed, namely, the related variables are more, a large amount of test data fitting needs to be carried out, the calculated amount is large, and the algorithm of the tire model is complex, so that the requirement of quick response in the application of a real vehicle controller is difficult to meet. Furthermore, with the lateral force estimation method based on a tire model, once the tire characteristics (tire air pressure, wear degree, etc.) or road surface conditions change rapidly, the fitting accuracy will decrease rapidly, so that the tire lateral force estimation is not accurate, resulting in the lateral control effect being affected. It is therefore necessary to propose a lateral force estimation method that is independent of the tire model.
Disclosure of Invention
In order to solve the problem that the estimation of the lateral force of the tire depends on a tire model too much at present, the invention provides a method for estimating the lateral force of a front steering wheel of a distributed driving electric vehicle, which can estimate the lateral force on the basis of getting rid of the tire model. The method considers the real-time characteristics of the vehicle tire and the change of the road surface condition, and can accurately estimate the lateral force of the tire, thereby improving the transverse control effect of the vehicle. The estimation process is as follows:
1) during the running of the vehicle, the wheel motor controller measures the real-time driving torque T required by each motorijThe wheel speed sensor measures a real-time wheel speed signal omegaij. The driving moment signal and the wheel speed signal are sent to the sliding mode longitudinal force estimation module based on the wheel rotation dynamics, and the sliding mode longitudinal force estimation module obtains the value estimation of the tire longitudinal force according to the real-time collected signals
As described aboveTij、ωijWhere i ═ f, r, f denote front wheels, r denotes rear wheels; j ═ l, r, l denote the left wheel and r denotes the right wheel;
2) the longitudinal acceleration sensor and the lateral acceleration sensor measure real-time longitudinal acceleration signals axAnd a lateral acceleration signal ay(ii) a The longitudinal speed sensor and the lateral speed sensor measure real-time longitudinal speed VxAnd lateral velocity Vy(ii) a Furthermore, the vehicle yaw rate sensor measures a real-time yaw rate signal r and the steering wheel angle sensor measures a steering wheel angle signal δ;
steering wheel angle signal, yaw rate signal, longitudinal acceleration signal, lateral acceleration signal, and longitudinal speed signalSign, lateral velocity signal and estimated longitudinal forceSending the lateral force to a sliding mode lateral force estimation module based on vehicle dynamics, and estimating the lateral force of the front right wheel through calculation by the sliding mode lateral force estimation module
3) And finally, sending the estimated lateral force of the right front wheel and a steering wheel corner signal to the filtering module, aiming at the singular phenomenon appearing in the lateral force estimated value, the filtering module adopts a method of carrying out linearization processing near a singular point so as to output a more accurate lateral force value of the right front wheel, and then further calculating to obtain a lateral force value of the left front wheel, thus obtaining the lateral force estimated values of the two front wheels.
The parameters used in the estimation method process are obtained based on the following measurement parts: the steering wheel angle signal δ is measured by a steering wheel angle sensor, the yaw rate signal r is measured by a yaw rate sensor, and the longitudinal acceleration signal axThe lateral acceleration signal a measured by a longitudinal acceleration sensorySaid longitudinal speed signal V measured by a lateral acceleration sensorxThe lateral speed signal V measured by a longitudinal speed sensoryMeasured by a lateral velocity sensor.
Compared with the prior art, the invention has the beneficial effects that:
1) according to the method, a complex nonlinear tire model is not needed, the tire lateral force is estimated by only applying the second-order sliding-mode observer, the calculation is simple and convenient, and the accuracy and the calculation real-time performance are ensured.
2) The invention can realize accurate estimation of the lateral force of the tire by applying the existing easily-obtained signals in the vehicle state without other expensive sensors, and has lower cost.
3) The invention utilizes a second-order sliding mode observer designed by a Super-spiral algorithm (Super-twist), and the observer has quick convergence and strong robustness to uncertain disturbances such as air resistance, friction coefficient of tires and the like in a vehicle system, namely has strong adaptability to a complex environment.
Drawings
FIG. 1 is a system diagram of the present invention.
Detailed Description
The invention provides a method for estimating lateral force of a front wheel of a distributed electric vehicle. In order to make the objects, technical solutions and effects of the present invention clearer and clearer, the present invention is further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
Fig. 1 is a schematic diagram showing a system relationship of tire lateral force estimation according to the present invention, which includes a wheel side motor controller, a wheel speed sensor, a sliding mode longitudinal force estimation module, a vehicle yaw rate sensor, a vehicle longitudinal acceleration sensor, a vehicle lateral acceleration sensor, a vehicle longitudinal speed sensor, a vehicle lateral speed sensor, a steering wheel rotation angle sensor, a sliding mode lateral force estimation module, and a filter module.
Based on the above system, the method of estimating the tire lateral force of the front wheels (steered wheels) of the vehicle during running according to the present invention is explained below by way of implementation:
the vehicle parameters used are shown in Table 1, and the selected test conditions were 72km/h and serpentine.
TABLE 1 vehicle parameters
Vehicle mass | m(kg) | 1464 |
Moment of inertia about z-axis | Iz(kg/m2) | 2400 |
Distance from center of mass to front axle | a(mm) | 1256 |
Distance from center of mass to rear axle | b(mm) | 1368 |
Front wheel base | df(mm) | 1450 |
Rear wheel base | dr(mm) | 1450 |
Height of center of mass from ground | hg(mm) | 500 |
Moment of inertia of wheel | Iω(kg/m2) | 2.1 |
Rolling radius of wheel | R(mm) | 310 |
1) Wheel rotation dynamics-based sliding mode longitudinal force estimation module acquires tire central speed signal omega in real time according to wheel speed sensorijAnd each tire driving torque signal T acquired by the wheel side controller in real timeijAnd a sliding mode observer is designed by applying a sliding mode observation theory to observe the longitudinal force of the four tires.
The wheel rotational kinetic equation is
Equation (1) can be rewritten as
Wherein x is1=ωijInput variableRegarded as unknown disturbances and y is the output quantity.
Based on the supercoiling algorithm, the following second-order sliding-mode observer is designed as
According to the finite time convergence theory, there is a time constant T1Is provided with
Further calculating to obtain the longitudinal force of the wheel
Wherein,is x1Is determined by the estimated value of (c),is F1Is estimated andis FxijAn estimate of (d).
2) Based on a seven-degree-of-freedom model of a vehicle, a method for calculating the lateral force of the right front wheel in a sliding-mode lateral force estimation module is as follows
The longitudinal dynamic equation of the vehicle is
m(ax-Vyr)=(Fxfl+Fxfr)cos-(Fyfl+Fyfr)sinδ+Fxrl+Fxrr. (2)
The lateral dynamic equation of the vehicle is
m(ay+Vxr)=(Fxfl+Fxfr)sinδ+(Fyfl+Fyfr)cosδ+Fyrl+Fyrr. (3)
The yaw dynamics equation of the vehicle is
Equations (2), (3) can be rewritten as
Substituting equation (5) into equation (4) yields
It is to be noted that the steering wheel angle δ, the yaw rate r, and the vehicle longitudinal acceleration a in equations (5) and (6)xVehicle lateral acceleration ayVehicle longitudinal speed VxAnd lateral velocity VyRespectively, can be measured by the corresponding sensors, and the longitudinal force F thereinxijLongitudinal force estimated by sliding mode longitudinal force estimation moduleInstead. Thus, the right half of equation (6) has only FyfrIs an unknown quantity, and others are known quantities.
Thus, equation (6) can be rewritten as
In the formula,
designing a second-order sliding-mode observer according to the supercoiling algorithm again as
Similarly, when T is more than or equal to T2(T2> 0), the observed value can accurately track the actual value of the device, i.e. the measured value
Thus, an estimated value of the right front wheel lateral force is calculated as
From the equation (7), it is not difficult to find that the denominator contains a sin δ term, and when the steering angle δ is zero, this results in thatBecomes infinite, which is not allowed. In order to solve the problem, the filtering module takes a small interval near the zero point, and then makes a straight line with the head point and the tail point of the interval to replace the change of the original lateral force estimated value in the interval. In other words, the final longitudinal force estimate is in the form of a piecewise function that is a linear equation over the interval taken, with the signal output intact outside the interval.
In the formula (8), T is a time constant, and when T ═ T, the steering angle δ is zero; Δ is the neighborhood radius centered at point T;the lateral force estimates for the right front wheel and the left front wheel, respectively.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Claims (4)
1. A method for estimating the lateral force of a front wheel of a distributed driving electric vehicle is characterized by comprising the following steps:
1) in the running process of the vehicle, the torque T required by each motor and measured by the wheel motor controllerijAnd a wheel speed signal omega detected by a wheel speed sensorijSending the signals to a sliding mode longitudinal force estimation module, and calculating the longitudinal force estimation value of the tire by the sliding mode longitudinal force estimation module according to the signals acquired in real time
Estimation of tire longitudinal forceThe specific calculation of (a) is as follows:
1-1) establishing a wheel rotation dynamic equation as follows:
<mrow> <msub> <mi>I</mi> <mi>&omega;</mi> </msub> <msub> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>T</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>RF</mi> <mrow> <mi>x</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
rewriting equation (1) to
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>dx</mi> <mn>1</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>F</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein x is1=ωijInput variableAs unknown disturbance, y is the output quantity;
1-2) designing a second-order sliding-mode observer based on a supercoiling algorithm:
<mrow> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi>d</mi> <mover> <mi>x</mi> <mo>^</mo> </mover> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>u</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <msup> <mrow> <mo>|</mo> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> <mo>|</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>dz</mi> <mn>2</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>0</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <mn>0</mn> </msub> <mo>></mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&lambda;</mi> <mn>1</mn> </msub> <mo>></mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
1-3) according to the finite time convergence theory, there is a certain constant T1(T1> 0) so that
Thus, the estimated value of the wheel longitudinal force is:
<mrow> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mi>I</mi> <mi>&omega;</mi> </msub> <mi>R</mi> </mfrac> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> </mrow>
wherein,is x1Is determined by the estimated value of (c),is F1Is estimated andis FxijAn estimated value of (d);
wherein i ═ f, r, f denote front wheels, r denotes rear wheels; j ═ l, r, l denote the left wheel and r denotes the right wheel;
2) a steering wheel angle signal delta, a yaw rate signal r and a longitudinal acceleration signal axLateral acceleration signal ayLongitudinal velocity signal VxLateral velocity signal VyAnd the longitudinal force estimated by the sliding mode longitudinal force estimation moduleTransmitted to a sliding mode lateral force estimation module based on vehicle dynamics, which estimates the lateral force of the front right wheel
3) Sending the lateral force of the right front wheel estimated by the sliding mode lateral force estimation module and a steering wheel corner signal delta to the filtering module; the filtering module carries out linearization processing on the estimated right front wheel lateral force near the moment when the steering wheel corner signal delta is zero, outputs an accurate right front wheel lateral force estimated value, and obtains a left front wheel lateral force estimated value through simple calculation, thereby obtaining a final two front wheel lateral force estimated value.
2. The method of estimating lateral force of front wheel of a distributed-drive electric vehicle according to claim 1, wherein said steering wheel angle signal δ is measured by a steering wheel angle sensor, said yaw rate signal r is measured by a yaw rate sensor, and said longitudinal acceleration signal axThe lateral acceleration signal a measured by a longitudinal acceleration sensorySaid longitudinal speed signal V measured by a lateral acceleration sensorxThe lateral speed signal V measured by a longitudinal speed sensoryMeasured by a lateral velocity sensor.
3. The front wheel lateral force estimation method of a distributed-drive electric vehicle according to claim 1, wherein in the step 2), the right front lateral force estimation is estimated in a sliding mode lateral force estimation moduleWheel side forceThe method comprises the following steps:
2-1) establishing a longitudinal kinetic equation of
m(ax-Vyr)=(Fxfl+Fxfr)cosδ-(Fyfl+Fyfr)sinδ+Fxrl+Fxrr(2)
The lateral kinetic equation is
m(ay+Vxr)=(Fxfl+Fxfr)sinδ+(Fyfl+Fyfr)cosδ+Fyrl+Fyrr(3)
The yaw kinetic equation is
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mi>Z</mi> </msub> <mover> <mi>r</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mi>a</mi> <mo>&lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&delta;</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi>&delta;</mi> <mo>&rsqb;</mo> <mo>-</mo> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <mo>&lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi>&delta;</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&delta;</mi> <mo>&rsqb;</mo> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>r</mi> </msub> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
2-2) rewriting equations (2), (3) to
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mo>-</mo> <mi>m</mi> <mo>(</mo> <mrow> <msub> <mi>a</mi> <mi>x</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>y</mi> </msub> <mi>r</mi> </mrow> <mo>)</mo> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> </mrow> <mo>)</mo> <mi>cos</mi> <mi>&delta;</mi> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mi>sin</mi> <mi>&delta;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mi>m</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>x</mi> </msub> <mi>r</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&delta;</mi> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mi>cos</mi> <mi>&delta;</mi> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
2-3) substituting equation (5) into (4) to obtain
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>I</mi> <mi>Z</mi> </msub> <mover> <mi>r</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mi>a</mi> <mo>&lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&delta;</mi> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&delta;</mi> <mo>&rsqb;</mo> <mo>-</mo> <msub> <mi>bF</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi>&delta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mi>sin</mi> <mi>&delta;</mi> <mo>-</mo> <msub> <mi>d</mi> <mi>f</mi> </msub> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mi>sin</mi> <mi>&delta;</mi> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>r</mi> </msub> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
2-4) equation (6) is rewritten as
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>r</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>F</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>y</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>r</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
Wherein,
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>&lsqb;</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&delta;</mi> <mo>+</mo> <msub> <mi>aF</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mi>cos</mi> <mi>&delta;</mi> <mo>-</mo> <msub> <mi>bF</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mi>&delta;</mi> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> <msub> <mi>F</mi> <mrow> <mi>f</mi> <mo>,</mo> <mi>y</mi> </mrow> </msub> <mi>sin</mi> <mi>&delta;</mi> <mo>+</mo> <mfrac> <msub> <mi>d</mi> <mi>r</mi> </msub> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>F</mi> <mrow> <mi>x</mi> <mi>r</mi> <mi>l</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>/</mo> <msub> <mi>I</mi> <mi>Z</mi> </msub> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <msub> <mi>F</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>d</mi> <mi>f</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&delta;</mi> </mrow> <msub> <mi>I</mi> <mi>Z</mi> </msub> </mfrac> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>.</mo> </mrow>
2-5) designing a second-order sliding-mode observer by applying a supercoiling algorithm
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mi>d</mi> <mover> <mi>r</mi> <mo>^</mo> </mover> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>u</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>3</mn> </msub> <msup> <mrow> <mo>|</mo> <mrow> <mover> <mi>r</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>r</mi> </mrow> <mo>|</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mover> <mi>r</mi> <mo>^</mo> </mover> <mo>-</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>z</mi> <mn>4</mn> </msub> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>dz</mi> <mn>4</mn> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <msub> <mi>&lambda;</mi> <mn>4</mn> </msub> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>4</mn> </msub> <mo>-</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <mn>3</mn> </msub> <mo>></mo> <mn>0</mn> <mo>,</mo> <msub> <mi>&lambda;</mi> <mn>4</mn> </msub> <mo>></mo> <mn>0</mn> <mo>)</mo> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>
t≥T2,T2When > 0, the observer is able to accurately track its actual value, i.e.
And further calculating an estimated value of the right front wheel lateral force as follows:
4. a distributed drive electric as claimed in claim 1Method for estimating the lateral force of the front wheels of a motor car, characterized in that in step 3), a filter module is used for estimating the lateral forceThe optimization process is carried out as follows:
setting the moment when the steering wheel corner signal delta is zero as T, taking a closed neighborhood taking T as a center, and taking delta as a neighborhood radius, when the delta is in the neighborhood, replacing the original function by a straight line, and when the delta is out of the neighborhood, outputting the original function to obtain a piecewise function of the lateral force:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>T</mi> <mo>+</mo> <mi>&Delta;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>T</mi> <mo>-</mo> <mi>&Delta;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <mi>&Delta;</mi> </mrow> </mfrac> <mo>)</mo> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>T</mi> <mo>+</mo> <mi>&Delta;</mi> <mo>)</mo> <mo>+</mo> <msubsup> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> <mo>&prime;</mo> </msubsup> <mo>(</mo> <mi>T</mi> <mo>-</mo> <mi>&Delta;</mi> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&Element;</mo> <mo>&lsqb;</mo> <mi>T</mi> <mo>-</mo> <mi>&Delta;</mi> <mo>,</mo> <mi>T</mi> <mo>+</mo> <mi>&Delta;</mi> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <msub> <mi>I</mi> <mi>Z</mi> </msub> <mrow> <msub> <mi>d</mi> <mi>f</mi> </msub> <mi>sin</mi> <mi>&delta;</mi> </mrow> </mfrac> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>t</mi> <mo>&NotElement;</mo> <mo>&lsqb;</mo> <mi>T</mi> <mo>-</mo> <mi>&Delta;</mi> <mo>,</mo> <mi>T</mi> <mo>+</mo> <mi>&Delta;</mi> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>F</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>f</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>F</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
wherein,is an estimate of the right front wheel lateral force,left front wheel lateral force estimate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610108400.3A CN105667520B (en) | 2016-02-26 | 2016-02-26 | A kind of front-wheel side force method of estimation of distributed driving electric car |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610108400.3A CN105667520B (en) | 2016-02-26 | 2016-02-26 | A kind of front-wheel side force method of estimation of distributed driving electric car |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105667520A CN105667520A (en) | 2016-06-15 |
CN105667520B true CN105667520B (en) | 2018-01-16 |
Family
ID=56305197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610108400.3A Expired - Fee Related CN105667520B (en) | 2016-02-26 | 2016-02-26 | A kind of front-wheel side force method of estimation of distributed driving electric car |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105667520B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107215329B (en) * | 2017-05-10 | 2020-06-26 | 江苏大学 | Distributed driving electric vehicle transverse stability control method based on ATSM |
CN108287934B (en) * | 2017-12-11 | 2020-08-28 | 江苏大学 | Vehicle mass center slip angle robust estimation method based on longitudinal force observer |
CN108597058B (en) * | 2017-12-11 | 2020-03-31 | 江苏大学 | Distributed driving electric vehicle state cascade estimation method based on pseudo measurement information |
CN107985404B (en) * | 2017-12-22 | 2024-01-26 | 天津职业技术师范大学 | Automobile lateral stability control device |
CN109591821B (en) * | 2018-12-07 | 2020-09-01 | 清华大学 | Tire stress calculation method and device and vehicle-mounted computer equipment |
CN110620528B (en) * | 2019-09-20 | 2021-07-13 | 电子科技大学 | Multichannel direct current motor system control method based on second-order supercoiled sliding mode |
CN111204332B (en) * | 2020-02-10 | 2022-07-15 | 哈尔滨工业大学 | Sliding mode control method for optimizing vehicle yaw dynamic performance under all working conditions |
CN111645696B (en) * | 2020-04-28 | 2021-09-10 | 武汉理工大学 | Method for identifying complex off-road working condition of distributed driving off-road vehicle |
CN111708977B (en) * | 2020-06-28 | 2023-04-25 | 南京航空航天大学 | Tire force online estimation method based on neural network |
CN113044047B (en) * | 2021-03-31 | 2022-06-21 | 江苏大学 | AFS/DYC integrated control method based on class PID-STSM |
CN113085880B (en) * | 2021-04-15 | 2022-05-24 | 南京航空航天大学 | Vehicle state prediction method based on particle filter and random walk model |
CN114261385B (en) * | 2021-12-10 | 2024-02-09 | 吉林大学 | Vehicle stability control method for low-adhesion road surface |
CN116908088B (en) * | 2023-07-14 | 2024-03-22 | 河北省交通规划设计研究院有限公司 | Road friction coefficient acquisition method based on vehicle information |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102880048A (en) * | 2012-10-12 | 2013-01-16 | 江苏大学 | Method for linearization control of side force of tire |
CN103879307A (en) * | 2014-03-13 | 2014-06-25 | 浙江大学 | Rear wheel independent drive control system and method for electric automobile |
CN103909933A (en) * | 2014-03-27 | 2014-07-09 | 清华大学 | Method for estimating lateral force of front wheels of distributed-type electrically-driven vehicle |
EP2757007A1 (en) * | 2013-01-17 | 2014-07-23 | Autoliv Development AB | A vehicle safety system |
CN104527775A (en) * | 2014-12-20 | 2015-04-22 | 株洲易力达机电有限公司 | Estimation method for steering moment of steering system and lateral forces of tires |
CN105083373A (en) * | 2015-06-15 | 2015-11-25 | 南京航空航天大学 | Steering-by-wire feeling device based on parameter estimation and control method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5137792B2 (en) * | 2008-11-25 | 2013-02-06 | 三菱電機株式会社 | Vehicle lateral force disturbance estimation device |
-
2016
- 2016-02-26 CN CN201610108400.3A patent/CN105667520B/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102880048A (en) * | 2012-10-12 | 2013-01-16 | 江苏大学 | Method for linearization control of side force of tire |
EP2757007A1 (en) * | 2013-01-17 | 2014-07-23 | Autoliv Development AB | A vehicle safety system |
CN103879307A (en) * | 2014-03-13 | 2014-06-25 | 浙江大学 | Rear wheel independent drive control system and method for electric automobile |
CN103909933A (en) * | 2014-03-27 | 2014-07-09 | 清华大学 | Method for estimating lateral force of front wheels of distributed-type electrically-driven vehicle |
CN104527775A (en) * | 2014-12-20 | 2015-04-22 | 株洲易力达机电有限公司 | Estimation method for steering moment of steering system and lateral forces of tires |
CN105083373A (en) * | 2015-06-15 | 2015-11-25 | 南京航空航天大学 | Steering-by-wire feeling device based on parameter estimation and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105667520A (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105667520B (en) | A kind of front-wheel side force method of estimation of distributed driving electric car | |
CN103909933B (en) | A kind of front wheel side of distributed electro-motive vehicle is to force evaluating method | |
CN103946679B (en) | Vehicle mass identification method and system | |
CN102582626B (en) | Method for estimating heavy semitrailer status | |
CN111806449A (en) | Method for estimating total vehicle mass and road surface gradient of pure electric vehicle | |
CN100480664C (en) | Detecting method for full wheel driven electric driving vehicle movement parameter | |
CN103921786B (en) | A kind of nonlinear model predictive control method of electric vehicle process of regenerative braking | |
CN104773173A (en) | Autonomous driving vehicle traveling status information estimation method | |
CN107016157B (en) | Pavement self-adaptive longitudinal speed estimation system and method for distributed driving electric automobile | |
CN103754218B (en) | Coefficient of road adhesion method of estimation under a kind of motor tire lateral deviation operating mode | |
CN108216250A (en) | Four-drive electric car speed and road grade method of estimation based on state observer | |
CN108241773A (en) | A kind of improved vehicle running state method of estimation | |
CN105279309A (en) | Aligning torque estimation based design method for active steering ideal steering wheel torque | |
CN108791276B (en) | Method for rapidly judging linear/nonlinear working state of tire lateral force | |
CN104890674A (en) | Automobile mass center side slip angle measurement device and automobile mass center side slip angle calculation method | |
Kim et al. | Development of EHPS motor speed map using HILS system | |
Doumiati et al. | An estimation process for vehicle wheel-ground contact normal forces | |
CN111006884B (en) | Method for measuring wheel axle slip angle and slip stiffness based on Fourier transform | |
CN115946707B (en) | Method and system for estimating tire force of all-line-control electric automobile driven by four-wheel hub motor | |
CN104527775B (en) | Estimation method for steering moment of steering system and lateral forces of tires | |
CN113449378B (en) | Transverse load transfer rate calculation method based on deformation of vehicle suspension | |
Ghosh et al. | Sideslip angle estimation of a Formula SAE racing vehicle | |
Ma et al. | Estimation of road grade and vehicle velocity for autonomous driving vehicle | |
Bucchi et al. | The effect of the front-to-rear wheel torque distribution on vehicle handling: an experimental assessment | |
CN116049608A (en) | Method and system for estimating peak attachment coefficient of road surface under unstructured road surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180116 Termination date: 20190226 |
|
CF01 | Termination of patent right due to non-payment of annual fee |