CN104290587B - For vehicle power drive system and there is its vehicle - Google Patents
For vehicle power drive system and there is its vehicle Download PDFInfo
- Publication number
- CN104290587B CN104290587B CN201410044457.2A CN201410044457A CN104290587B CN 104290587 B CN104290587 B CN 104290587B CN 201410044457 A CN201410044457 A CN 201410044457A CN 104290587 B CN104290587 B CN 104290587B
- Authority
- CN
- China
- Prior art keywords
- gear
- input shaft
- dynamotor
- power
- mouth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Structure Of Transmissions (AREA)
Abstract
The invention discloses a kind of power drive system for vehicle and there is its vehicle.This power drive system, comprising: engine unit; Multiple input shaft, engine unit optionally engages with in multiple input shaft, and each input shaft is provided with driving gear; Output shaft and connection gear structure, connection gear structure can be rotated by differential relative to output shaft, and connection gear structure has multiple gear part, and gear part engages with driving gear; Efferent, efferent is fixed on output shaft; Synchro, synchro is for engaging connection gear structure; First dynamotor, a transmission in the first dynamotor and input shaft and output shaft; Second dynamotor, the second dynamotor is arranged for driving trailing wheel.Power drive system of the present invention, the power that engine unit and/or the first dynamotor export can be exported from efferent by the synchronous of synchro, and whole power transmission system structure is compact and control is convenient.
Description
Technical field
The present invention relates to technical field of vehicle, especially relate to a kind of power drive system for vehicle and there is its vehicle.
Background technology
Along with the continuous consumption of the energy, the development and utilization of new forms of energy vehicle becomes a kind of trend gradually.Hybrid vehicle, as the one in new forms of energy vehicle, is driven by driving engine and/or motor, has various modes, can improve driving efficiency and fuel economy.
But in correlation technique known for inventor, the power drive system general structure in hybrid vehicle is complicated, and bulky, driving efficiency is on the low side, needs to control multiple gearshift power element when gear switches or pattern switches, and control policy is complicated simultaneously.
Summary of the invention
The present invention is intended to solve one of above-mentioned technical matters of the prior art at least to a certain extent.
For this reason, the present invention needs to provide a kind of power drive system for vehicle, and this power transmission system structure is compact, and driving efficiency is high and control is convenient.
Further, the present invention needs to provide a kind of vehicle, and this vehicle comprises above-mentioned power drive system.
According to the power drive system for vehicle of the embodiment of the present invention, comprising: engine unit; Multiple input shaft, when described engine unit transmits power to described input shaft, described engine unit optionally engages with in described multiple input shaft, and each described input shaft is provided with driving gear; Output shaft and connection gear structure, described gear structure can be rotated by differential relative to described output shaft, and described gear structure has multiple gear part, and described multiple gear part engages accordingly with the driving gear on described multiple input shaft respectively; Efferent, described efferent to be fixed on described output shaft and to drive the front-wheel of described vehicle; Synchro, described synchro is arranged on described output shaft, and is arranged to optionally engage described gear structure; First dynamotor, a direct-drive in described first dynamotor and described input shaft and described output shaft or indirect drive; And second dynamotor, described second dynamotor is arranged for and drives described trailing wheel.
According to the power drive system of the embodiment of the present invention, the power that engine unit and/or the first dynamotor export can be exported from efferent by the synchronous effect of synchro, compact conformation and control convenient.
And, first dynamotor can the rotating speed of efferent be target, by the change of rotating speed, regulate the speed of connection gear structure, connection gear structure is mated rapidly in time actv. mode with the speed of output shaft, thus reduces the synchronous required time, reduce intermediate energy loss, engaging without moment of torsion of synchro can also be realized simultaneously, drastically increase the driving efficiency of vehicle, synchronous controllability and synchronous real-time.In addition, the life-span of synchro is able to further prolongation, thus reduces the cost of car load maintenance.
According to the power drive system for vehicle of the embodiment of the present invention, comprising: engine unit; Double-clutch, described double-clutch has input end, the first mouth and the second mouth, and the mouth of described engine unit is connected with the input end of described double-clutch; First input shaft and the second input shaft, described first input shaft is connected with described first mouth and described second input shaft is connected with described second mouth, described second input shaft is set on described first input shaft coaxially, and described first input shaft and described second input shaft are fixedly installed a driving gear respectively; Output shaft, described output shaft is set with dual gear, described dual gear has the first gear part and the second gear part, and described first gear part engages with the driving gear on described first input shaft and described second gear part engages with the driving gear on described second input shaft; Tween drive shaft, described tween drive shaft is fixedly installed the first countershaft-gear and the second countershaft-gear, and described first countershaft-gear engages with the driving gear on described second input shaft; First dynamotor, the mouth of described first dynamotor and described second countershaft-gear direct-drive or by intermediate idler and described second intermediate gear indirect drive; Main reduction gear driving gear, described main reduction gear driving gear is fixed on described output shaft; Diff, described diff is provided with main reduction gear driven gear, and described main reduction gear driven gear engages with described main reduction gear driving gear, and described diff is located between two front-wheels; Synchro, described synchro to be arranged on described output shaft and optionally to engage described dual gear; Second dynamotor, described second dynamotor drives two trailing wheels by speed reduction gearing.
According to a further aspect of the invention, provide a kind of vehicle, described vehicle comprises as above for the power drive system of vehicle.
Accompanying drawing explanation
Fig. 1 is the principle sketch of the power drive system according to the embodiment of the present invention;
Fig. 2 is the schematic diagram of power drive system according to an embodiment of the invention;
Fig. 3 is the schematic diagram of power drive system in accordance with another embodiment of the present invention;
Fig. 4 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Fig. 5 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Fig. 6 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Fig. 7 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Fig. 8 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Fig. 9 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 10 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 11 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 12 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 13 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 14 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 15 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 16 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 17 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 18 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 19 is the schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 20 is the simplified schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 21 is the simplified schematic diagram of the power drive system according to another embodiment of the present invention;
Figure 22 is the schematic diagram of the power drive system according to another embodiment of the present invention.
Detailed description of the invention
Be described below in detail embodiments of the invention, the example of described embodiment is shown in the drawings, and wherein same or similar label represents same or similar element or has element that is identical or similar functions from start to finish.Be exemplary below by the embodiment be described with reference to the drawings, be intended to for explaining the present invention, and can not limitation of the present invention be interpreted as.
In describing the invention, it will be appreciated that, term " " center ", " longitudinal direction ", " transverse direction ", " length ", " width ", " thickness ", " on ", D score, " front ", " afterwards ", " left side ", " right side ", " vertically ", " level ", " top ", " end " " interior ", " outward ", " cw ", orientation or the position relationship of the instruction such as " conter clockwise " are based on orientation shown in the drawings or position relationship, only the present invention for convenience of description and simplified characterization, instead of indicate or imply that the device of indication or element must have specific orientation, with specific azimuth configuration and operation, therefore limitation of the present invention can not be interpreted as.
In addition, term " first ", " second " only for describing object, and can not be interpreted as instruction or hint relative importance or imply the quantity indicating indicated technical characteristic.Thus, be limited with " first ", the feature of " second " can express or impliedly comprise one or more these features.In describing the invention, the implication of " multiple " is two or more, unless otherwise expressly limited specifically.
In the present invention, unless otherwise clearly defined and limited, the term such as term " installation ", " being connected ", " connection ", " fixing " should be interpreted broadly, and such as, can be fixedly connected with, also can be removably connect, or integral; Can be mechanical connection, also can be electrical connection; Can be directly be connected, also indirectly can be connected by intermediary, can be the connection of two element internals or the interaction relationship of two elements.For the ordinary skill in the art, above-mentioned term concrete meaning in the present invention can be understood as the case may be.
In the present invention, unless otherwise clearly defined and limited, fisrt feature second feature it " on " or D score can comprise the first and second features and directly contact, also can comprise the first and second features and not be directly contact but by the other characterisation contact between them.And, fisrt feature second feature " on ", " top " and " above " comprise fisrt feature directly over second feature and oblique upper, or only represent that fisrt feature level height is higher than second feature.Fisrt feature second feature " under ", " below " and " below " comprise fisrt feature immediately below second feature and tiltedly below, or only represent that fisrt feature level height is less than second feature.
Describe in detail according to the power drive system 100 of the embodiment of the present invention below with reference to Fig. 1-Figure 19, this power drive system 100 is applicable to vehicle, is specially adapted to in engine unit 1 and the dynamotor motor vehicle driven by mixed power that is main power source.
As shown in drawings, engine unit 1, gearbox unit 2a, the first dynamotor 41, second dynamotor 42, efferent 5 and switchover apparatus (such as synchro 6, power-transfer clutch 9) can be comprised according to the power drive system 100 of the embodiment of the present invention.
Gearbox unit 2a is suitable for optionally being connected with engine unit 1 power coupling.The Power output that engine unit 1 can such as optionally be produced by power-transfer clutch etc. is to gearbox unit 2a; Optionally, gearbox unit 2a also such as can will export to engine unit 1, with start the engine unit 1 from the staring torque of the first dynamotor 41.In context of the present disclosure, can carry out such as being referred to as power coupling by self or the transmission of power that produced by miscellaneous part between engine unit 1 with gearbox unit 2a and be connected.
The feature of engine unit 1 is directly machine entered internal-combustion and produce power after liquid or gaseous fuel and air mixing, and then is transformed into mechanical energy.For vehicle, its engine unit 1 generally can adopt four-stroke spark ignition engine or diesel engine, and engine unit 1 generally can comprise body group, piston crank mechanism, feed system, ignition system, cooling system and lubricating system etc.
Body group is the assembling body of each mechanism of engine unit 1, system, and the straight reciprocating motion of piston can be changed into the rotary motion of bent axle and exportable power by piston crank mechanism.Valve mechanism is used for timing air inlet, exhaust, ensures carrying out smoothly of each circulation of engine unit 1.Feed system can will be used for burning in gas mixture supply cylinder.Cooling system is used for cooled engine unit 1, ensures that the operating temperature of engine unit 1 is in suitable temperature range.Lubricating system is used for each kinematic pair in lubricating engine unit 1, reduces wear and waste of power.
Should be understood that, above-mentioned concrete structure, principle of work etc. about engine unit 1 and subsystems thereof, clamp mechanism has been prior art all, and is well known to those of ordinary skill in the art, here for succinct object, is described in detail no longer one by one.
First dynamotor 41 is connected with gearbox unit 2a power coupling.In other words, the first dynamotor 41 coordinates transmission with gearbox unit 2a, and namely the first dynamotor 41 can drive speed transmission unit 2a, and gearbox unit 2a also can drive the first dynamotor 41 conversely.
Such as, at least part of power produced can be exported to the first dynamotor 41 by gearbox unit 2a by engine unit 1, and now the first dynamotor 41 can generate electricity, and mechanical energy can be converted to electrical power storage in accumulation of energy parts such as battery component.And for example, the electric energy from battery component can be converted to mechanical energy by the first dynamotor 41, and exports to efferent 5 to drive vehicle by gearbox unit 2a.
First dynamotor 41 is the motors with electrical motor and generator function, in the description of the present invention about " dynamotor ", if do not have specified otherwise, is all understood in this way.
Efferent 5 is configured to by the power transmission through gearbox unit 2a speed change to the wheel 200 of vehicle, i.e. front-wheel 210 and/or trailing wheel 220.In brief, efferent 5 is suitable for exporting the power from gearbox unit 2a.
Switchover apparatus such as synchro 6 is suitable between efferent 5 and gearbox unit 2a, carry out power transmission or disconnection.In other words, switchover apparatus can export by efferent 5 power that gearbox unit 2a exports to front-wheel 210 and/or trailing wheel 220, or switchover apparatus also can open slew device unit 2a and efferent 5, and now gearbox unit 2a directly cannot output power to front-wheel 210 and/or trailing wheel 220 by efferent 5.
Shown in Fig. 1 and composition graphs 2-Figure 13, the second dynamotor 42 is for driving front-wheel 210 or trailing wheel 220.
Thus, efferent 5 for drive front-wheel 210 and the second dynamotor 42 also for driving front-wheel 210 time, the vehicle with this power drive system 100 can be two and to drive.When efferent 5 is for driving front-wheel 210 and the second dynamotor 42 for driving trailing wheel 220, the vehicle with this power drive system 100 can be four-wheel drive cars, can drive between pattern and 4 wheel driven pattern simultaneously switch two.Efferent 5 for drive front-wheel 210 and trailing wheel 220 and the second dynamotor 42 for driving in front-wheel 210 and trailing wheel 220 time, the vehicle with this power drive system 100 can be four-wheel drive cars.
According to the power drive system 100 of the embodiment of the present invention, the power that engine unit 1 and/or the first dynamotor 41 export can export efferent 5 to by switchover apparatus, then exports to front-wheel 210 and/or the trailing wheel 220 of vehicle by efferent 5.
Simultaneously, due to the introducing of the second dynamotor 42, second dynamotor 42 can carry out torque compensation to front-wheel 210 or trailing wheel 220, also engine unit 1 and the first dynamotor 41 pairs of vehicles can be coordinated to drive simultaneously, add the operational mode of vehicle, make vehicle can adapt to different operating mode better, reach preferably fuel economy, reduce the discharge of pernicious gas simultaneously.
According to some embodiments of the present invention, as shown in Fig. 1-Figure 16, switchover apparatus is configured to synchro 6, and synchro 6 is arranged to be suitable between efferent 5 and gearbox unit 2a selectively synchronous, thus by efferent 5 outputting power to drive the wheel 200 of vehicle.
Here, the effect of synchro 6 can be final synchronism output portion 5 and gearbox unit 2a, namely by after the synchronous effect of synchro 6, make efferent 5 can with gearbox unit 2a synchronization action, thus by efferent 5 as clutch end, by the Power output of gearbox unit 2a.And when synchro 6 non-synchronized gear transmission unit 2a and efferent 5, the power of gearbox unit 2a (by efferent 5) cannot directly export wheel 200 to.
In brief, synchro 6 serves the object of powershift, namely synchro 6 engages, the power of gearbox unit 2a can be exported by efferent 5 and for driving wheel 200, and synchro 6 disconnects, gearbox unit 2a cannot by efferent 5 by transmission of power to wheel 200, like this by the joint of a control synchro 6 or disconnection, thus the conversion of whole drive mode can be realized.
Due to the particularity of application scenario, synchro 6 is compared clutch appliance and is had the following advantages herein:
A, when synchro 6 disconnects, engine unit 1, gearbox unit 2a and the first motor generator 41 is needed thoroughly to disconnect with the power of wheel 200, the motion (generating, driving, power torque transfer etc.) that both sides are carried out separately is independent of each other, and this demand is particularly important to the energy ezpenditure reducing vehicle.Synchro 6 can well accomplish this point, and power-transfer clutch there will be friction lining is usually separated halfway situation, adds loss due to friction and energy ezpenditure.
B, when synchro 6 engages, the synthesis of engine unit 1 and the first dynamotor 41 (after coupling) propulsive effort is needed to be passed to wheel 200 after the moment of torsion of gearbox unit 2a amplifies, or the propulsive effort of wheel 200 is passed to the first dynamotor 41(generates electricity), this just requires that dynamic coupling device herein can transmit very large moment of torsion, and has very high stability.Synchro 6 can well accomplish this point, and if select power-transfer clutch, then need the power-transfer clutch designing the ultra-large volume do not matched with whole system (driving engine, change-speed box, motor), add layout difficulty, improve weight and cost, and when torsional impact, have the risk of skidding.
And, first dynamotor 41 can by regulating the speed of gearbox unit 2a, such as the first dynamotor 41 can the rotating speed of efferent 5 be target, by the change of rotating speed, regulate the speed of gearbox unit 2a, gearbox unit 2a is mated rapidly in time actv. mode with the speed of efferent 5, thus reduce the synchro 6 synchronous required time, reduce intermediate energy loss, engaging without moment of torsion of synchro 6 can also be realized simultaneously, drastically increase the driving efficiency of vehicle, synchronous controllability and synchronous real-time.In addition, the life-span of synchro 6 is able to further prolongation, thus reduces the cost of car load maintenance.In addition, according to power drive system 100 compact conformation of the embodiment of the present invention and control convenient.
According to some embodiments of the present invention, as Fig. 2-Fig. 6 and shown in composition graphs 7, gearbox unit 2a comprises transmission power input part 21a and transmission power efferent 22a, transmission power input part 21a optionally engages with engine unit 1, to transmit the power that engine unit 1 produces.Transmission power efferent 22a is configured to be suitable for outputting power to efferent 5 by from the power on transmission power input part 21a by the synchronous of synchro 6.
As Fig. 2-Fig. 6 and shown in composition graphs 7, further, transmission power input part 21a comprises further: input shaft (such as the first input shaft 21, second input shaft 22) and the driving gear 25 be arranged on input shaft, input shaft optionally engages with engine unit 1, to transmit the power that engine unit 1 produces.In other words, when engine unit 1 needs to output power to input shaft, engine unit 1 can engage with input shaft, thus the power that engine unit 1 exports can be passed to input shaft.Engine unit 1 can pass through power-transfer clutch (such as, double-clutch 31) with the juncture of input shaft and realize, and will provide detailed description below, and repeat no more here about this part content.
As Fig. 2-Fig. 6 and shown in composition graphs 7, transmission power efferent 22a comprises: output shaft 24 and driven gear 26, driven gear 26 to be arranged on output shaft 24 and to engage accordingly with the driving gear 25 on input shaft.
With reference to shown in Fig. 2-Fig. 5, output shaft 24 is configured to export power that input shaft transmits at least partially.Specifically, output shaft 24 coordinates transmission with input shaft, such as preferably, can carry out transmission between output shaft 24 and input shaft by above-mentioned driving gear 25 and driven gear 26.
Of course it is to be understood that the type of drive for output shaft 24 and input shaft is not limited to this, such as, can also be by pulley transmission mechanism, rack and pinion drive mechanism etc.To those skilled in the art, the drive mechanism that is suitable for or mode specifically can be selected according to actual conditions.
Output shaft 24 is for transmitting the power at least partially on input shaft, such as when power drive system 100 is in some transmission mode, as the first dynamotor 41 carries out dynamoelectric and power generation, power now on input shaft can partly for the generating of the first dynamotor 41, another part also may be used for driving vehicle to travel, and the whole power on certain input shaft also can all for generating.
According to some embodiments of the present invention, the first dynamotor 41 and a direct-drive in input shaft and output shaft 24 or indirect drive.Here, " direct-drive " refers to the first dynamotor 41 and is directly connected with corresponding axle and carries out transmission, without intermediate transmission parts such as any such as transmission system, arrangement of clutch, drivings device, directly and in input shaft and output shaft 24 one of the mouth of such as the first dynamotor 41 is rigidly connected.Direct drive advantage resides in reduced intermediate transmission parts, reduces the loss of energy in transmission process.
" indirect drive " namely gets rid of other type of drive any outside direct-drive, such as, carry out transmission by centre parts such as transmission system, arrangement of clutch, drivings device.The advantage of indirect drive mode is that layout is convenient, and can obtain required transmitting ratio by arranging such as transmission system.
Efferent 5 can as the Power output terminal of output shaft 24, for exporting the power on output shaft 24, efferent 5 can rotate by differential relative to output shaft 24, namely can there is asynchronous situation of rotating relative to output shaft 24 in efferent 5, that is there is speed discrepancy therebetween, be not rigidly connected.
Synchro 6 is arranged on output shaft 24.Particularly, shown in Fig. 1 and composition graphs 2-Fig. 6, synchro 6 can comprise splined hub 61 and sliding hub 62, splined hub 61 can be fixed on output shaft 24, and splined hub 61 is with output shaft 24 synchronous axial system, and splined hub 61 can along the axial action of output shaft 24 relatively for sliding hub 62, optionally to engage efferent 5, thus making efferent 5 with output shaft 24 synchronous axial system, power can pass to front-wheel 210 and/or trailing wheel 220 from efferent 5 thus, realizes the object driving wheel 200.But should be understood that, the structure of synchro 6 is not limited thereto.
According to the power drive system 100 of the embodiment of the present invention, the power that engine unit 1 and/or the first dynamotor 41 export can be exported from efferent 5 by the joint of synchro 6, compact conformation, it is convenient to control, and switch in operating mode process at vehicle, may occur that synchro 6 is converted to the situation of engagement state from released state, now the first dynamotor 41 can the rotating speed of efferent 5 be target, controlled by rotating speed, the rotating speed of regulation output axle 24, output shaft 24 is mated at short notice with the rotating speed of efferent 5, facilitate the joint of synchro 6, thus substantially increase driving efficiency, decrease the transmission loss of intermediate energy simultaneously, and can realize synchro 6 engage (when namely synchro 6 engages substantially without radial frictional force or radial frictional force far below mean level in industry) without moment of torsion.
According to some embodiments of the present invention, efferent 5 is for driving the pair of wheels of vehicle, and the second dynamotor 42 is a pair and for driving pair of wheels.Further, power drive system 100 also comprises at least one the 3rd dynamotor the 43, three dynamotor 43 for driving second pair of wheel of vehicle.Wherein, pair of wheels is a pair in front-wheel 210 or trailing wheel 220, and the second pair of wheel is that another in front-wheel 210 or trailing wheel 220 is right.Such as, in the example of Fig. 2-Fig. 8, front-wheel 210, the second pair of wheel that this pair of wheels refers to vehicle refers to the trailing wheel 220 of vehicle.
Thus, according to the power drive system 100 of the embodiment of the present invention, there are four class Power output sources, i.e. engine unit 1, first dynamotor 41, second dynamotor 42 and the 3rd dynamotor 43, wherein engine unit 1, first dynamotor 41 and the second dynamotor 42 may be used for the wherein pair of wheels driving vehicle, and the 3rd dynamotor 43 may be used for driving another pair of wheels.Therefore, the vehicle with this power drive system 100 is four-wheel drive cars.
And, switch in operating mode process at vehicle, may occur that synchro 6 is converted to the situation of engagement state from released state, now the first dynamotor 41 can the rotating speed of efferent 5 be target, is controlled, the rotating speed of regulation output axle 24 by rotating speed, output shaft 24 is mated at short notice with the rotating speed of efferent 5, facilitate the joint of synchro 6, thus substantially increase driving efficiency, decrease the transmission loss of intermediate energy simultaneously.
Simultaneously, due to the introducing of the second dynamotor 42 and the 3rd dynamotor 43, second dynamotor 42 and the 3rd dynamotor 43 can carry out torque compensation to wheel 200, thus be indirectly reflected to efferent 5, namely the second dynamotor 42 and the 3rd dynamotor 43 can the rotating speeds in regulation output portion 5 indirectly, such as when occurring that synchro 6 is converted to engagement state from released state, now the second dynamotor 42 and the 3rd dynamotor 43 can the rotating speeds of indirect regulation efferent 5 as required, output shaft 24 is mated at short notice with the rotating speed of efferent 5, thus facilitate the joint of synchro 6.
And, second dynamotor 42 and the 3rd dynamotor 43 can coordinate the first dynamotor 41 to carry out speed governing simultaneously, the rotating speed of output shaft 24 and efferent 5 is made to carry out synchronously within the shorter time, thus engaging condition is met within the fastest time, synchro 6 is engaged, substantially increases driving efficiency.
In brief, alternatively, the first dynamotor 41 can carry out independent speed governing.Or alternatively, at least one in the second dynamotor 42 and the 3rd dynamotor 43 can carry out independent speed governing.Moreover further alternatively, the first dynamotor 41, second dynamotor 42, the 3rd dynamotor 43 can carry out speed governing simultaneously.
Like this, the engaging/disengaging of synchro 6 controls the output of gearbox unit 2a power, simultaneously the first dynamotor 41 and/or the second dynamotor 42 and/or the 3rd dynamotor 43 can carry out speed governing compensation to output shaft 24 and efferent 5 respectively during synchro 6 is converted to engagement state from off-state, make the rotating speed Rapid matching of output shaft 24 and efferent 5, thus realize engaging without moment of torsion of synchro 6 fast.
According to preferred embodiments more of the present invention, as shown in Fig. 2-Fig. 9, input shaft is multiple, namely two or more.The plurality of input shaft is coaxial nested setting successively, and such as, input shaft is N number of, then K input shaft is set on K-1 input shaft, wherein N >=K >=2, and the central axis of this N number of input shaft overlaps.
In the example of Fig. 2-Fig. 5, Fig. 7-Fig. 9, input shaft is two, i.e. the first input shaft 21 and the second input shaft 22, then the second input shaft 22 to be set on the first input shaft 21 and the central axes of the two.And for example, in the example of fig. 6, input shaft is three, i.e. the first input shaft 21, second input shaft 22 and the 3rd input shaft 23, then the 3rd input shaft 23 is set on the second input shaft 22, and the second input shaft 22 is set on the first input shaft 21, and the central axes of these three axles.
Engine unit 1 to input shaft transmit power or with input shaft carry out power coupling be connected time, engine unit 1 optionally engages with in multiple input shaft.In other words, when needing the power of engine unit 1 to send out, the mouth of engine unit 1 can engage with in multiple input shaft thus synchronous axial system.And when not needing engine unit 1 to work or engine unit 1 is in idling, then engine unit 1 all can disconnect with multiple input shaft, namely engine unit 1 is not connected with any one input shaft, thus disconnection is connected with the power coupling of engine unit 1.
Further, as shown in Fig. 2-Fig. 6, each input shaft is fixed with a driving gear 25, driving gear 25 is with input shaft synchronous rotary, driving gear 25 has multiple with the fixed form of corresponding input shaft, such as can be fixed by keyway fit system, driving gear 25 and input shaft can certainly be fixed by hot pressing, the various ways such as one-body molded, both guarantees can synchronous rotary.
Output shaft 24 is fixed with multiple driven gear 26, multiple driven gear 26 is with output shaft 24 synchronous rotary, and driven gear 26 and the fixed form of output shaft 24 also can adopt the fixed form of above-mentioned driving gear 25 and input shaft, but are not limited thereto.
But, the present invention is not limited thereto, as, on the driving gear 25 that each input shaft is arranged quantity can be not limited to one, accordingly, output shaft 24 arranges multiple driven gear 26 and has formed multiple gear, can realize to those skilled in the art.
As shown in Fig. 2-Fig. 6, multiple driven gear 26 engages respectively accordingly with the driving gear 25 on multiple input shaft, according to one embodiment of present invention, the quantity of driven gear 26 and the quantity of input shaft can be identical, such as driven gear 26 is two, then input shaft is two, such two driven gears 26 can distinguish accordingly with driving gear 25 engaged transmission on two input shafts, make these two pairs of gear pairs can form two gears and carry out transmission.
According to one embodiment of present invention, can need according to transmission and three or more input shafts are set, and on each input shaft, all can fix a driving gear 25, the quantity of input shaft is more thus, the gear that can carry out transmission is more, the scope of the transmitting ratio of this power drive system 100 is larger, thus adapts to the requirement of various for transmission.
According to specific embodiments more of the present invention, as Figure 2-Figure 5, multiple input shaft comprises the first input shaft 21 and the second input shaft 22, second input shaft 22 is set on the first input shaft 21, second input shaft 22 is hollow shafts, first input shaft 21 is preferably solid axle, and certainly alternatively, the first input shaft 21 also can be hollow shaft.
First input shaft 21 can adopt bearing to support, and in order to ensure ride comfort during the first input shaft 21 transmission, bearing is preferably multiple and can arranges along the position that the axis of the first input shaft 21 is not affecting remaining part assembling.Similarly, the second input shaft 22 also can adopt bearing to support, and is not described in detail here.
Further, with reference to shown in Fig. 2-Fig. 5, engine unit 1 and be provided with double-clutch 31 between the first input shaft 21 and the second input shaft 22, double-clutch 31 can adopt existing dry dual clutch 31 or wet-type dual-clutch 31.
Double-clutch 31 has input end 313, first mouth 311 and the second mouth 312, engine unit 1 is connected with the input end 313 of double-clutch 31, specifically, engine unit 1 can pass through the various ways such as flywheel, bumper or reverse plate and is connected with the input end 313 of double-clutch 31.
First mouth 311 of double-clutch 31 is connected with the first input shaft 21, thus this first mouth 311 and first input shaft 21 synchronous rotary.Second mouth 312 of double-clutch 31 is connected with the second input shaft 22, thus this second mouth 312 and second input shaft 22 synchronous rotary.
Wherein, the input end 313 of double-clutch 31 can be the housing of double-clutch 31, and its first mouth 311 and the second mouth 312 can be two clutch plates.Usually, housing and two clutch plates can all disconnect, namely input end 313 and the first mouth 311 and the second mouth 312 all disconnect, when needs engage one of them clutch plate, housing can be controlled carry out engaging thus synchronous rotary with corresponding clutch plate, namely input end 313 engages with one of the first mouth 311 and second mouth 312, thus the power that input end 313 transmits can by an output in the first mouth 311 and the second mouth 312.Usually, housing can not engage with two clutch plates simultaneously.
Be to be understood that, the concrete engagement state of double-clutch 31 is controlled the impact of strategy, for a person skilled in the art, can transmission mode needed for reality and adaptive settings control policy, thus can switch with the Three models that two mouths all disconnect and input end engages with one of two mouths at input end.
In the example of Fig. 2-Fig. 5, due to the cross-compound arrangement that input shaft is concentric, and each input shaft is only provided with a driving gear 25, therefore this gearbox unit 2a has two different gears, engine unit 1 can output power to efferent 5 by these two gears, synchro 6 can be in engagement state always, namely engages output shaft 24 and efferent 5.
When switching between gear, synchro 6 is without the need to engaging other gear as will first disconnect moving axially with the synchronizer structure of traditional arrangement mode again, and only need control the engaging/disengaging state of double-clutch 31 simply, now synchro 6 can be in engagement state always, like this when engine unit 1 outputs power to efferent 5, only need control a gearshift power element and double-clutch 31, and without the need to control synchro 6, greatly can simplify control policy like this, reduce the engaging/disengaging number of times of synchro 6, improve the life-span of synchro 6.
According to some embodiments of the present invention, the first dynamotor 41 is arranged to coordinate transmission with in driving gear 25 and driven gear 26, and in other words, the first dynamotor 41 is and an indirect drive in input shaft and output shaft 24.
Further, alternatively, between first dynamotor 41 and respective gears, can intermediate transmission mechanism be set, this transmission device can be Worm and worm-wheel gearing, one or more levels gear pair transmission device, chain wheel driving mechanism etc., or when non-contravention, can also be the combination of above-mentioned multiple transmission device, such first dynamotor 41 can be arranged in diverse location as required, reduces the layout difficulty of the first dynamotor 41.
Consider the problem of being convenient to spatially arrange, according to one embodiment of present invention, the first dynamotor 41 can carry out transmission by an intermediate gear 411.Such as, in the example of Fig. 3 (composition graphs 2), by intermediate gear 411 indirect drive between the driving gear 25 on the first dynamotor 41 and the first input shaft 21.And for example, in the figure 2 example, by intermediate gear 411 indirect drive between the driving gear 25 on the first dynamotor 41 and the second input shaft 22.
But the present invention is not limited to this.In other embodiments of the invention, the first dynamotor 41 is arranged to be connected with in output shaft 24 with the first input shaft 21.Such as, in the example of fig. 4, the first dynamotor 41 is directly connected with the first input shaft 21.And for example, in the example of hgure 5, the first dynamotor 41 is directly connected with output shaft 24.First dynamotor 41 adopts the mode be directly connected with corresponding axle, and the structure of power drive system 100 can be made compacter, can also reduce the circumferential size of power drive system 100 simultaneously, be convenient to be arranged in the cabin of vehicle.
According to one embodiment of present invention, with reference to shown in Fig. 4, the first dynamotor 41 is coaxially arranged with the first input shaft 21, and the first dynamotor 41 and engine unit 1 coaxially arranged.Here, " the first dynamotor 41 is coaxially arranged with engine unit 1 " should be understood to: the pivot center of the rotor of the first dynamotor 41 overlaps substantially with the rotation axis of the bent axle of engine unit 1.Thus, make the structure of power drive system 100 compacter.
According to some embodiments of the present invention, shown in Fig. 2-Fig. 6, efferent 5 can comprise output gear 51 and engage gear ring 52, and output gear 51 and output shaft 24 can relatively rotate i.e. differential and rotate, engage gear ring 52 to fix with output gear 51, namely engage gear ring 52 and output gear 51 synchronous axial system.
Thus, when synchro 6 needs efferent 5 to engage with output shaft 24, the sliding hub 62 of synchro 6 can axially to the direction motion engaging gear ring 52, after efferent 5 with the synchronization of output shaft 24, sliding hub 62 can engage with engaging gear ring 52, thus output shaft 24, formed between synchro 6 and efferent 5 three and be rigidly connected, and then three's synchronous rotary.
In order to reduce intermediate transmission parts, reduce degradation of energy, and improve the driving efficiency of power drive system 100 as much as possible, as preferred mode, as shown in Fig. 2-Fig. 6, output gear 51 can be main reduction gear driving gear, and this main reduction gear driving gear can directly engage with main reduction gear driven gear 53 thus output power, to drive wheel 200.But the present invention is not limited to this, other centre part for transmission also can be set between output gear 51 and main reduction gear.
Shown in Fig. 2-Figure 13, pair of wheels is such as provided with diff 54 between front-wheel 210, diff 54 coordinates transmission with efferent 5, specifically, in certain embodiments, diff 54 is provided with main reduction gear driven gear 53, output gear 51 is main reduction gear driven gear, main reduction gear driving gear engages with main reduction gear driven gear 53, thus power can successively by being passed to two front-wheels 210 after main reduction gear driving gear, main reduction gear driven gear 53 and diff 54.
Two front-wheel 210 required drives are reasonably distributed in the effect of diff 54, and diff 54 can be gear differential, full locking differential, torsional differential gear etc.For a person skilled in the art, suitable diff can be selected according to different automobile types.
According to some embodiments of the present invention, shown in Fig. 5-Fig. 7, Figure 10, a pair second dynamotors 42 lean against the both sides being located at diff 54 privately, and such as a pair second dynamotors 42 are located at the another side of diff 54 respectively and become one structure with diff 54.In other words, second dynamotor 42 in left side is located between the left side of left hand side half shaft and diff 54, and second dynamotor 42 on right side is located between the right side of right axle and diff 54.Specifically, the power drive system 100 in Fig. 5-Fig. 7 is 4 wheel driven form, and the power drive system 100 in Figure 10 is two drive form.It should be noted that, relevant dynamotor leans against the both sides being located at diff 54 privately below, all can be understood as this dynamotor and is located at the both sides of diff 54 respectively and becomes one structure with this diff.
According to other embodiments of the present invention, shown in Fig. 2-Fig. 4, Fig. 9, the second dynamotor 42 is wheel motor.In other words, one of them the second dynamotor 42 is located at the inner side of the near front wheel, and another the second dynamotor 42 is located at the inner side of off front wheel, the second dynamotor 42 can by gear mechanism by transmission of power to the wheel hub of corresponding wheel.Specifically, the power drive system 100 in Fig. 2-Fig. 4 is 4 wheel driven form, and the power drive system 100 in Fig. 9 is two drive form.
In some embodiments of the invention, the 3rd dynamotor 43 is two, and the 3rd dynamotor 43 is wheel motor, as shown in Figure 2 and Figure 5.In other words, in the example of Fig. 2 and Fig. 5, the 3rd dynamotor 43 is located at the inner side of left rear wheel, and another the 3rd dynamotor 43 is located at the inner side of off hind wheel, and transmission of power can be given corresponding trailing wheel by gear mechanism by the 3rd dynamotor 43.
In other embodiments of the present invention, the 3rd dynamotor 43 is one, and this 3rd dynamotor 43 drives second pair of wheel by the first speed-changing mechanism 71.Wherein, the first speed-changing mechanism 71 is preferably speed reduction gearing, and speed reduction gearing can be primary speed-down mechanism or more step reduction mechanism.Speed reduction gearing can be gear reduction, turbine and worm decelerator etc., does not make particular determination to this present invention.
In these some embodiments, second pair of wheel can be connected by a vehicle bridge, this vehicle bridge can be integral structure, and now the 3rd dynamotor 43 can this integral type vehicle bridge of Direct driver by the first speed-changing mechanism 71, thus drives two wheel synchronous axial system.
In some embodiments more of the present invention, the 3rd dynamotor 43 is two, and each 3rd dynamotor 43 drives one in second pair of wheel respectively by second speed-changing mechanism 72.Wherein, the second speed-changing mechanism 72 is preferably speed reduction gearing, and this speed reduction gearing can be primary speed-down mechanism or more step reduction mechanism.This speed reduction gearing can be gear reduction, turbine and worm decelerator etc., does not make particular determination to this present invention.
In these some embodiments, second pair of wheel can be connected with the 3rd corresponding dynamotor 43 and the second speed-changing mechanism 72 by two half-bridges, that is, 3rd dynamotor 43 can drive corresponding half-bridge by second speed-changing mechanism 72, thus drives the rotation of wheel outside this half-bridge.
According to other embodiments of the present invention, as shown in Fig. 9-Figure 13, these power drive systems 100 are two and drive form.In the example of figure 9, efferent 5 drives front-wheel 210, and the second dynamotor 42 is for wheel motor and for driving front-wheel 220.In the example of Figure 10, efferent 5 drives front-wheel 210, and the second dynamotor 42 leans against the both sides being located at diff 54 privately, and such as the second dynamotor 42 is located at the both sides of diff 54 and the structure that becomes one respectively.In the example of fig. 11, efferent 5 drives front-wheel 210, and the second dynamotor 42 is two, and each second dynamotor 42 all drives trailing wheel 220 by the 4th speed-changing mechanism 74.In the illustration in fig 12, efferent 5 drives front-wheel 210, and the second dynamotor 42 is one, and this second dynamotor 42 drives trailing wheel 220 by the 3rd speed-changing mechanism 73.In the example in figure 13, efferent 5 drives front-wheel 210, and the second dynamotor 42 is two and is wheel motor, and it is for driving trailing wheel 220.
About the 3rd speed-changing mechanism 73, it can be identical with the first speed-changing mechanism 71.Similarly, the 4th speed-changing mechanism 74 can be identical with the second speed-changing mechanism 72.Therefore, repeat no more here.
According to some embodiments of the present invention, power drive system 100 can also comprise battery component (scheming not shown), and battery component is preferably connected with the 3rd dynamotor 43 with the first dynamotor 41, second dynamotor 42.Thus, first dynamotor 41 drives the electric energy carrying out generating electricity or braking recovery can be used for and be stored in battery component by engine unit 1, and the electric energy that the second dynamotor 42 and the 3rd dynamotor 43 reclaim when damped condition also can be used for and is stored in battery component.When vehicle is in electric model, electric energy can be supplied to respectively the first dynamotor 41 and/or the second dynamotor 42 and/or the 3rd dynamotor 43 by battery component.
As a kind of variant embodiment of the power drive system 100 described in above-described embodiment, as shown in Figure 8, multiple input shaft comprises three axles, i.e. the first input shaft 21, second input shaft 22 and the 3rd input shaft 23, second input shaft 22 is set on the first input shaft 21, and the 3rd input shaft 23 is set on the second input shaft 22.
In this variant embodiment, power drive system 100 comprises three power-transfer clutchs 32 further, three power-transfer clutchs 32 have input end 324, first mouth 321, second mouth 322 and the 3rd mouth 323, engine unit 1 is connected with the input end 324 of three power-transfer clutchs 32, and the first mouth 321 of three power-transfer clutchs 32 is connected with the first input shaft 21, the second mouth 322 of three power-transfer clutchs 32 is connected with the second input shaft 22 and the 3rd mouth 323 of the 3rd power-transfer clutch 32 is connected with the 3rd input shaft 23.
Similarly, the input end of three power-transfer clutchs 32 can be its housing, and its three mouths can be three clutch plates, and input end can engage with one of three mouths, or input end and three mouths all disconnect.Be understandable that, principle of work and the double-clutch 31 of three power-transfer clutchs 32 are similar to, and repeat no more here.
It should be noted that, in this variant embodiment, for remainder, the such as type of drive of the first dynamotor 41 and the first input shaft 21 or output shaft 24, the setting position of the second dynamotor 42 and the 3rd dynamotor 43 and drive form etc. all can adopt set-up mode same in above-mentioned double-clutch 31 technical scheme, please with reference to the technical scheme of above-mentioned double-clutch 31, describe in detail no longer one by one here.
As the another kind of variant embodiment of the power drive system 100 described in above-described embodiment, as shown in Figure 14-Figure 16, in this power drive system 100, driven gear 26 is connection gear structure, this connection gear structure 26 can be rotated by differential relative to output shaft 24, such as, join gear structure 26 empty set and be arranged on output shaft 24.Wherein, synchro 6 to be fixed on output shaft 24 and selectively to engage with this connection gear structure 26.
In these some embodiments, as shown in Figure 14-Figure 16, particularly, power drive system 100 can comprise engine unit 1, multiple input shaft, output shaft 24, efferent 5(such as, main reduction gear driving gear 51), synchro 6 and the first dynamotor 41.
The topmost difference of this variant embodiment and the power drive system shown in Fig. 2-Figure 13 100 is: driven gear 26 adopts and joins toothing and be placed on output shaft 24, efferent 5 is fixedly installed on output shaft 24, and synchro 6 is for engaging connection gear structure.In this embodiment, the arrangement form of the first dynamotor 41 in the arrangement form of the first dynamotor 41 and the power drive system shown in above-mentioned Fig. 2-Figure 13 slightly makes modification.
In certain embodiments, as shown in Figure 14-Figure 16, input shaft is multiple, input shaft is provided with driving gear 25.Output shaft 24 is set with connection gear structure 26, connection gear structure 26 has multiple gear part (such as, the first gear part 261, second gear part 262), and multiple gear part engages accordingly with the driving gear 24 on multiple input shaft respectively.
With reference to Figure 14-Figure 16, efferent 5 is suitable for exporting the power from output shaft 24, and such as preferably, efferent 5 is fixedly installed on output shaft 24.According to one embodiment of present invention, efferent 5 comprises main reduction gear driving gear 51, but is not limited to this.
Synchro 6 is arranged on output shaft 24, and synchro 6 is arranged to optionally engage connection gear structure 26, thus by efferent 5 outputting power to drive the wheel of vehicle.First dynamotor 41 can be direct-drive or indirect drive with in input shaft and output shaft 24.
In these some embodiments, the effect of synchro 6 is roughly the same with the effect of the synchro in embodiment shown in Fig. 2-Figure 13, difference is that in these some embodiments, synchro 6 is for engaging connection gear structure 26 and output shaft 24, and the synchro 6 in embodiment shown in Fig. 2-Figure 13 is for engaging efferent 5 and output shaft 24.
Particularly, in this embodiment, the effect of synchro 6 can be final synchronous connection gear structure 26 and output shaft 24, namely by after the synchronous effect of synchro 6, make connection gear structure 26 and output shaft 24 synchronization action, thus by efferent 5 as clutch end, by the Power output of engine unit 1 and/or the first dynamotor 41.And when synchro 6 does not synchronously join gear structure 26 and output shaft 24, the power of engine unit 1 and/or the first dynamotor 41 (by efferent 5) cannot directly export wheel 200 to.
In brief, synchro 6 serves the object of powershift, namely synchro 6 engages, the power of engine unit 1 and/or the first dynamotor 41 can be exported by efferent 5 and for driving wheel 200, and synchro 6 disconnects, the power of engine unit 1 and/or the first dynamotor 41 cannot by efferent 5 by transmission of power to wheel 200, pass through joint or the disconnection of a control synchro 6 like this, thus the conversion of whole drive mode can be realized.
And, first dynamotor 41 can the rotating speed of efferent 5 be target, by the change of rotating speed, regulate the speed of connection gear structure 26, connection gear structure 26 is mated rapidly in time actv. mode with the speed of output shaft 24, thus reduces the synchro 6 synchronous required time, reduce intermediate energy loss, engaging without moment of torsion of synchro 6 can also be realized simultaneously, drastically increase the driving efficiency of vehicle, synchronous controllability and synchronous real-time.In addition, the life-span of synchro 6 is able to further prolongation, thus reduces the cost of car load maintenance.
In addition, adopt connection gear structure 26, the structure of power drive system 100 can be made compacter, be convenient to arrange.Decrease the number of driven gear, and then reduce the axial dimension of power drive system, be beneficial to the reduction of cost, also reduce layout difficulty simultaneously.
And synchro 6 can by its motion of an independent fork controls, and make rate-determining steps simple, reliability of service is higher.
According to some embodiments of the present invention, the coaxial nested setting of multiple input shaft, each input shaft is fixed with a driving gear 25.Particularly, in one embodiment, input shaft comprises the first input shaft 21 and the second input shaft 22, each input shaft is fixed with a driving gear 25, connection gear structure 26 is dual gear, this dual gear 26 has the first gear part 261 and the second gear part 262, first gear part 261 and the second gear part 262 and engages accordingly with two driving gears 25 respectively.
At engine unit 1 and double-clutch 31 can be arranged between the first input shaft 21 and the second input shaft 22, please refer to double-clutch 31 part in power drive system 100 shown in Fig. 2-Figure 13 about this part.Alternatively, double-clutch 31 can arrange vibration-proof structure, such as vibration-proof structure can be arranged between the first mouth of double-clutch 31 and the input end of double-clutch 31, is so more applicable to keeping out starting.
Shown in Figure 14-Figure 16, the mouth of the first dynamotor 41 and one of them driving gear direct-drive or indirect drive.
Such as, power drive system 100 in this embodiment also comprises tween drive shaft 43, tween drive shaft 43 is fixedly installed the first countershaft-gear 431 and the second countershaft-gear 432, first countershaft-gear 431 and the second middle of taking out in gear 432 engage with one of them driving gear 25, such as in the example of Figure 14 and Figure 15, take out gear 431 in the middle of first to engage with the driving gear 25 on the second input shaft 22, but the present invention is not limited thereto.
According to some embodiments of the present invention, a direct-drive in the mouth of the first dynamotor 41 and the first countershaft-gear 431 and the second countershaft-gear 432 or by intermediate idler 44 indirect drive.Such as in the example in figure 14, between the mouth of the first dynamotor 41 and the second countershaft-gear 432 by intermediate idler 44 indirect drive.And for example in the example of fig. 15, the mouth of the first dynamotor 41 directly with the second countershaft-gear 432 engaged transmission.
With reference to shown in Figure 16, the mouth of the first dynamotor 41 directly engage with a gear part in connection gear structure 26, direct and the first gear part 261 engaged transmission of the mouth of such as the first dynamotor 41.
But, should be understood that, the present invention is not limited to this, for the position of the first dynamotor 41, can set according to actual needs and flexibly, such as can adopt above-mentioned several modes, or also can adopt some arrangements shown in Fig. 2-Figure 13, repeat no longer one by one here.
Shown in Figure 14-Figure 15, the independent moment of torsion input being responsible for engine unit 1 of the first gear part 261, the second gear part 262 can be responsible for the moment of torsion input of engine unit 1 and the first dynamotor 41 simultaneously, certainly also can an individual responsibility wherein side.
Shown in Figure 14-Figure 16, the side towards synchro 6 of connection gear structure 26 is fixedly installed and engages gear ring 52, and synchro 6 is suitable for engaging gear ring 52, thus is rigidly connected connection gear structure 26 and output shaft 24 with synchronous axial system.
According to other embodiments of the present invention, input shaft can be three, incorporated by reference to Fig. 8 and the above-mentioned explanation about three input shafts, three power-transfer clutchs of specification sheets, launches no longer in detail here for this part.In this embodiment, connection gear structure 26 is triple gear, namely has three connection teeth.Particularly, as shown in figure 20, this triple gear has the first gear part 261, second gear part 262 and the 3rd gear part 263, and these three gear part engage with driving gear 25 on corresponding three input shafts respectively.
According to another embodiment of the invention, as shown in figure 21, input shaft is four, i.e. the first input shaft 21, second input shaft 22, the 3rd input shaft 23 and the 4th input shaft 27, second input shaft 22 is set on the first input shaft 21,3rd input shaft 23 is set on the second input shaft 22, and the 4th input shaft 27 is set on the 3rd input shaft 23.Further, connection gear structure 26 is two and is dual gear, each dual gear has the first gear part 261 and the second gear part 262, each first gear part 261 and each second gear part 262 engage with corresponding driving gear 25 respectively, synchro 6 to be arranged between two dual gears 26 and optionally to engage in two dual gears 26, it is appreciated of course that synchro 6 also all can disconnect with two dual gears 26.
In this embodiment, between engine unit 1 and four input shafts, can four clutches be set, this four clutches has input end, the first mouth, the second mouth, the 3rd mouth and the 4th mouth, engine unit is connected with the input end of four clutches, and the first mouth of four clutches is connected with the first input shaft 21, the second mouth of four clutches is connected with the second input shaft 22, the 3rd mouth of four clutches is connected with the 3rd input shaft 23 and the four-input terminal of four clutches is connected with the 4th input shaft 27.But the connection mode between engine unit 1 and this four input shafts is not limited to this.
Should be understood that, in variant embodiment about connection gear structure 26, be that driven gear 26 have employed with the topmost difference of the power drive system 100 shown in above-mentioned Fig. 2-Figure 13 embodiment and join gear structure, and be placed on output shaft 24, efferent 5 is fixedly installed on output shaft 24, and synchro 6 is for engaging output shaft 24 and connection gear structure 26.In these variant embodiment, power drive system 100 also can comprise the second dynamotor 42 and the 3rd dynamotor 43, and its arrangement can adopt arrangement basically identical in Fig. 2-Figure 13, therefore repeats no longer one by one here.
As the another kind of variant embodiment of the power drive system 100 described in above-mentioned gear embodiment, as shown in Figure 17-Figure 19, in this power drive system 100, replaced the synchro 6 in above-described embodiment by power-transfer clutch 9.
Particularly, in these some embodiments, as shown in Figure 17-Figure 19, switchover apparatus is power-transfer clutch 9, and power-transfer clutch 9 is arranged to the transmission that is suitable for carrying out power between gearbox unit 2a and efferent 5 or disconnection.In other words, by the conjugation of power-transfer clutch 9, can make gearbox unit 2a and efferent 5 synchronization action, now efferent 5 can by the Power output of gearbox unit 2a to wheel 200.And after power-transfer clutch 9 disconnection, the power that gearbox unit 2a exports cannot directly be exported by efferent 5.
In these some embodiments, dual gear 26 empty set is arranged on output shaft 24, efferent 5 is fixedly installed on output shaft 24, power-transfer clutch 9 have C in A end (the C master in Figure 17) and secondary part Figure 17 from), one in the A end of power-transfer clutch 9 and secondary part is located at connection gear structure example as on dual gear 26, another in the A end of power-transfer clutch 9 and secondary part is arranged on output shaft 24, the A end of power-transfer clutch 9 and secondary part is separable or engage.Such as, in the example of Figure 17, A end can be located on output shaft 24, and secondary part can be located in connection gear structure 26, but is not limited thereto.
Thus, after the A end of power-transfer clutch 9 engages with secondary part, output shaft 24 and the empty set dual gear 26 on it engages, and power can export from efferent 5.And after the A end of power-transfer clutch 9 and secondary part disconnect, on connection gear 26 empty set and output shaft 24, efferent 5 does not transmit the power of gearbox unit 2a.
Generally speaking, according to the power drive system 100 of the embodiment of the present invention, powershift is carried out owing to adopting synchro 6, and synchro 6 has, and volume is little, structure simple, bear the plurality of advantages such as moment of torsion is large, driving efficiency is high, therefore reduce to some extent according to the volume of the power drive system 100 of the embodiment of the present invention, structure is compacter, and driving efficiency is high and can meet Large-torsion transmisson requirement.
Simultaneously, compensated by the speed governing of the first dynamotor 41 and/or the second dynamotor 42 and/or the 3rd dynamotor 43, synchro 6 can be realized engage without moment of torsion, ride comfort is better, and engaging speed and dynamic response faster, compare conventional clutch type of drive, larger moment of torsion can be born and failure phenomenon can not occur, greatly increase stability and the reliability of transmission.
In some embodiments of the invention, as shown in Fig. 2, Fig. 3, Fig. 5, Fig. 6, Fig. 7, Fig. 8, in these six embodiments, have employed four dynamotors, these four dynamotors are responsible for driving wheel respectively, the advantage that these four individual motor drive is: common mechanical 4-wheel driven car only can realize the torque distribution of front and back wheel, only can realize left and right wheels instantaneous moment of torsion among a small circle difference when high-end AWD car is turned.And in above-mentioned six embodiments, drive respectively owing to adopting four motors, the moment of torsion difference that therefore can realize+100% to-100% of left and right wheels motor at any time regulates, thus manipulation stability when substantially increasing tempo turn, improve the problem of understeer and transition.In addition, rotate greatly can reduce vehicle turn radius by the opposite sense of two wheels in left and right during low speed, make vehicle performance more freely.
The structure of each specific embodiment medium power driving system 100 is simply described referring to Fig. 2-Figure 19.
Embodiment one:
As shown in Figure 2, engine unit 1 is connected with the input end 313 of double-clutch 31, first mouth 311 of double-clutch 31 is connected with the first input shaft 21, and the second mouth 312 of double-clutch 31 is connected with the second input shaft 22, and the second input shaft 22 is set on the first input shaft 21 coaxially.
First input shaft 21 and the second input shaft 22 are fixedly installed respectively a driving gear 25, first dynamotor 41 by an intermediate gear 411 with driving gear 25 indirect drive on the second input shaft 22.Output shaft 24 is fixedly installed two driven gears 26, these two driven gears 26 are corresponding with the driving gear 25 on the first input shaft 21 and the second input shaft 22 respectively to be engaged, thus forms two transmission gears.
Synchro 6 is fixed on output shaft 24, and main reduction gear driving gear (that is, output gear 51) can rotate by differential relative to output shaft 24, and the left side of main reduction gear driving gear can be fixed with the joint gear ring 52 with synchro 6 adaptation by pipe link.Wherein, main reduction gear driving gear and main reduction gear driven gear 53 external toothing, main reduction gear driven gear 53 can be fixed on diff 54, with by transmission of power to diff 54, after diff 54 distributes power, adaptability passes to the half-bridge of both sides, thus drives wheel 200.
Two the second dynamotors 42 are configured for the wheel motor of driving two front-wheels 210 respectively, and two the 3rd dynamotors 43 are configured for the wheel motor of driving two trailing wheels 220 respectively, and namely in the program, four wheel places are provided with a wheel motor.
Power drive system 100 in this embodiment, double-clutch 31 can, by cutting off or engaging, make the power of engine unit 1 be delivered on output shaft 24 with size two kinds of speed ratios respectively.First dynamotor 41 by shift gear group, can a fixed speed ratio by transmission of power on output shaft 24.Synchro 6 engages, and the power of output shaft 24 can be passed to front-wheel 210 by main reduction gear and diff 54, and synchro 6 cuts off, then the power of output shaft 24 can not be passed to front-wheel 210.Two the second dynamotors 42 are wheel limit form, can Direct driver two front-wheels.Two the 3rd dynamotors 43 are all wheel limit form, can Direct driver two trailing wheels.
Power drive system 100 in this embodiment can at least have following operating mode: the pure electronic operating mode of the 3rd dynamotor 43, pure electric four-wheel drive operating mode, operating mode in parallel, series connection operating mode, series-parallel connection operating mode and braking/deceleration feedback operating mode.
Operating mode one:
The pure electronic operating mode of 3rd dynamotor 43: double-clutch 31 cuts off, and synchro 6 cuts off, engine unit 1, first dynamotor 41 and the second dynamotor 42 do not work, and two the 3rd dynamotors 43 drive two trailing wheels 220 respectively.This operating mode is mainly used at the uniform velocity or the Smaller load occasion such as city operating mode, and the situation that battery electric quantity is higher.
The advantage of this operating mode is the 3rd dynamotor 43 Direct driver trailing wheel 220, compared to front drive vehicle, has better acceleration capability, grade climbing performance and limit steering capability.Further, the 3rd dynamotor 43 individually drives left rear wheel and off hind wheel, can realize electronic differential function, increases road-holding property, reduces the abrasion loss of tire.Predecessor portions then disconnects associating of output gear 51 and front-wheel 210 by synchro 6, makes forerunner not have mechanical wear, reduces the energy consumption of car load.
Operating mode two:
Pure electric four-wheel drive operating mode: double-clutch 31 cuts off, synchro 6 cuts off, and the first dynamotor 41 does not work, and two the second dynamotors 42 are respectively used to driving two front-wheels 210, two the 3rd dynamotors 43 and are respectively used to drive trailing wheel 220.The larger load occasions such as this operating mode is mainly used in accelerating, climb, overtake other vehicles, high speed, and the situation that battery electric quantity is higher.
The advantage of this operating mode is to drive compared to single motor to have better tractive performance, drives have better economy and lower noise compared to hybrid power.The typical applications giving prominence to its advantage is the road conditions of blocking up on heavy grade (winding road).
And, compared to forerunner and after drive, pure electric four-wheel drive has better acceleration capability, grade climbing performance, handling and cross country power.And two the second dynamotors 42 and two the 3rd dynamotors 43 independently drive four wheels, make each wheel can obtain separately different moments of torsion and rotating speed, achieve four-wheel to control separately, dynamic property, road-holding property and off-road capability are reached maximum performance.And when corresponding dynamotor applies the moment of torsion of different directions to left and right wheels, the pivot stud of car load can also be realized.
Operating mode three:
Operating mode in parallel: double-clutch 31 engages, synchro 6 engages, engine unit 1 and the first dynamotor 41 by shift gear group and synchro 6 by transmission of power to main reduction gear driving gear 51, and by diff 54, power is reached front-wheel 210, transmission of power is given corresponding front-wheel 210 by two the second dynamotors 42 respectively simultaneously, and transmission of power is given corresponding trailing wheel 220 by two the 3rd dynamotors 43 respectively.This operating mode is mainly used in anxious acceleration, climbs the peak load occasions such as large slope.
The advantage of this operating mode is that five dynamotors and engine unit 1 drive vehicle simultaneously, can play maximum tractive performance.Compared to forerunner and after drive, hybrid power 4 wheel driven has better acceleration capability, grade climbing performance, handling and cross country power.And the 3rd dynamotor 43 individually drives left rear wheel and off hind wheel, can realize electronic differential function, eliminate gearing formula diff, decrease parts, can also road-holding property be increased simultaneously, reduce the abrasion loss of tire.
Operating mode four:
Series connection operating mode: double-clutch 31 engages, synchro 6 cuts off, engine unit 1 drives the first dynamotor 41 to generate electricity by double-clutch 31 and shift gear group, the second dynamotor 42 for drive front-wheel 210 and the 3rd dynamotor 43 for driving trailing wheel 220.This operating mode is mainly used in moderate duty, and the situation that battery electric quantity is less.
The advantage of this operating mode be to compare forerunner and after drive, series connection (that is, 4 wheel driven series connection) operating mode has better acceleration capability, grade climbing performance, handling and cross country power.And two the second dynamotors 42 and two the 3rd dynamotors 43 independently drive four wheels, make each wheel can obtain separately different moments of torsion and rotating speed, achieve four-wheel to control separately, dynamic property, road-holding property and off-road capability are reached maximum performance.And when corresponding dynamotor applies the moment of torsion of different directions to left and right wheels, the pivot stud of car load can also be realized.In addition, the first dynamotor 41 can, by moment of torsion and speed adjustment, make engine unit 1 remain on optimal economic area operation, reduces generating oil consumption.
Operating mode five:
Braking/deceleration feedback operating mode: double-clutch 31 engages, synchro 6 cuts off, and engine unit 1 drives the first dynamotor 41 to generate electricity, and the second dynamotor 42 is braked front-wheel and generates electricity, and the 3rd dynamotor 43 braking rear-wheel also generates electricity.This operating mode is mainly used in car brakeing or deceleration.When the advantage of this operating mode is to slow down or brake, second dynamotor 42 the 3rd dynamotor 43 brakes four wheels respectively, no matter turning or keeping straight on, can under the prerequisite ensureing car load braking force and stability, absorb the power of each wheel fully, reach the maximization of feedback energy.And cut off due to synchro 6, while above-mentioned four dynamotors are to wheel braking, engine unit 1 and the first dynamotor 41 can proceed electricity generate function, generating state is stablized, avoids frequent switching, enhance the life-span of parts.
Operating mode six:
Series-parallel connection operating mode: double-clutch 31 engages, synchro 6 engages, the partial power of engine unit 1 drives the first dynamotor 41 to generate electricity by double-clutch 31 and shift gear group, another part power of engine unit 1 by shift gear group and synchro 6 by transmission of power to main reduction gear driving gear 51, second dynamotor 42 directly drives front-wheel 210 by main reduction gear driving gear 51, and the 3rd dynamotor 43 drives trailing wheel 220 respectively simultaneously.This operating mode be mainly used in the larger load occasions such as acceleration, climbing and electricity is few when.The advantage of this operating mode is whole power that can play engine unit 1, has both ensured the dynamic property of vehicle, can generate electricity again simultaneously, keeps the electricity of battery.
Six kinds of above-mentioned operating modes can switch, and wherein more typical operating mode switches to: switch to operating mode three by operating mode four, or switches to operating mode five from operating mode four.
Particularly, when switching to operating mode three by operating mode four: accelerate to overtake other vehicles when needs are anxious, avoiding barrier or other situation time, according to the throttle demand of driver, power drive system 100 can switch to operating mode three from operating mode four.Now the first dynamotor 41 with the rotating speed of main reduction gear driving gear for target, can be controlled by rotating speed, the rotating speed of regulation output axle 24, the rotating speed of output shaft 24 and main reduction gear driving gear is mated as much as possible, facilitate synchro 6 to combine.
And in the matching process, the second dynamotor 42 and the 3rd dynamotor 43 can respond driving demand, increase moment of torsion, vehicle is accelerated, and need not as common vehicle, synchro 6 could accelerate after engaging by the time.The function of this moment of torsion compensated in advance, can shorten the torque responsive time widely, improves the instantaneous acceleration capability of vehicle.
For another example, switch to operating mode five from operating mode four: when car brakeing or slow down time, according to the throttle demand of driver or the action of trampling brake pedal, power drive system 100 can switch to operating mode five from operating mode four.Second dynamotor 42 and the 3rd dynamotor 43 can meet the demand of feedback braking, feedback is carried out without the need to the first dynamotor 41, now the second dynamotor 42 and the 3rd dynamotor 43 can make an immediate response driving demand, wheel is braked, feedback electricity, and need not as common vehicle, synchro 6 could feedback electricity after engaging by the time.
Meanwhile, engine unit 1 and the first dynamotor 41 can keep original generating state, after operating mode to be braked terminates, also without the need to conversion, directly enter original series connection operating mode.This moment of torsion compensated in advance function, can shorten motor braking response time greatly, increases the electricity of feedback.
Especially, for complex road condition, such as when vehicle at upward slope, descending, jolt, travel under the low complex road condition such as attached time, often cause synchro 6 boding difficulties because of speed wobble.Even if the first dynamotor 41 can be controlled by rotating speed, the rotating speed of regulation output axle 24, but due to the rotating speed of main reduction gear driving gear uncontrollable with the speed of a motor vehicle, bring difficulty also can to the accuracy of speed governing of the first dynamotor 41 and speed.Under these road conditions, carry out torque compensation by the second dynamotor 42 and the 3rd dynamotor 43 pairs of vehicles, can stabilizing speed effectively, both improve the driving experience of car load, and also make the joint of synchro 6 become simple.
Embodiment two:
As shown in Figure 3, the power drive system 100 in this embodiment and the difference of the power drive system 100 in Fig. 2 only can be the arrangement form of the 3rd dynamotor 43.In this embodiment, each 3rd dynamotor 43 all drives corresponding trailing wheel 220 by second speed-changing mechanism 72, then can be basically identical with the power drive system 100 in Fig. 2 embodiment for remainder, repeats no more here.And about concrete operating mode, then basically identical with the power drive system 100 in Fig. 2 embodiment, difference can only be through the second speed-changing mechanism 72, equally no longer need to describe in detail here when carrying out transmission of power between the 3rd dynamotor 43 and corresponding trailing wheel 220.
Embodiment three:
As shown in Figure 4, the power drive system 100 in this embodiment and the difference of the power drive system 100 in Fig. 2 only can be the arrangement form of the 3rd dynamotor 43.In this embodiment, the 3rd dynamotor 43 is one and drives corresponding trailing wheel 220 by first speed-changing mechanism 71, then can be basically identical with the power drive system 100 in Fig. 2 embodiment for remainder, repeats no more here.And about concrete operating mode, then basically identical with the power drive system 100 in Fig. 2 embodiment, difference can only be, owing to driving two trailing wheels 220 by the 3rd dynamotor 43 and first speed-changing mechanism 71, therefore under the prerequisite not increasing new parts, the differential function of two trailing wheels 220 cannot be realized by means of only a motor and a speed-changing mechanism, but be understandable that, can set up diff to rotate with the differential realizing two trailing wheels 220, this diff can become one with the first speed-changing mechanism 71.
Embodiment four:
As shown in Figure 5, the power drive system 100 in this embodiment and the difference of the power drive system 100 in Fig. 2 only can be the arrangement form of the second dynamotor 42.In this embodiment, the second dynamotor 42 leans against the both sides being located at diff 54 privately respectively, then can be basically identical with the power drive system 100 in Fig. 2 embodiment for remainder, repeats no more here.And about concrete operating mode, then basically identical with the power drive system 100 in Fig. 2 embodiment, equally no longer describe in detail here.
Embodiment five:
As shown in Figure 6, the power drive system 100 in this embodiment and the difference of the power drive system 100 in Fig. 5 only can be the arrangement form of the 3rd dynamotor 43.In this embodiment, each 3rd dynamotor 43 all drives corresponding trailing wheel 220 by second speed-changing mechanism 72, then can be basically identical with the power drive system 100 in Fig. 2 embodiment for remainder, repeats no more here.And about concrete operating mode, then basically identical with the power drive system 100 in Fig. 2 embodiment, equally no longer describe in detail here.
Embodiment six:
As shown in Figure 7, the power drive system 100 in this embodiment and the difference of the power drive system 100 in Fig. 5 only can be the arrangement form of the 3rd dynamotor 43.In this embodiment, the 3rd dynamotor 43 is one and drives corresponding trailing wheel 220 by first speed-changing mechanism 71, then can be basically identical with the power drive system 100 in Fig. 2 embodiment for remainder, repeats no more here.And about concrete operating mode, then basically identical with the power drive system 100 in Fig. 2 embodiment, difference can only be, owing to driving two trailing wheels 220 by the 3rd dynamotor 43 and first speed-changing mechanism 71, therefore under the prerequisite not increasing new parts, the differential function of two trailing wheels 220 cannot be realized by means of only a motor and a speed-changing mechanism, but be understandable that, can set up diff to rotate with the differential realizing two trailing wheels 220, this diff can become one with the first speed-changing mechanism 71.
Embodiment seven:
As shown in Figure 8, power drive system 100 in this embodiment only can be the form of power-transfer clutch and the number of input shaft, driving gear 25 and driven gear 26 with the difference of the power drive system 100 in Fig. 2, in this embodiment, power-transfer clutch is three power-transfer clutchs 32, input shaft is three, it is three right that driving gear 25 and driven gear 26 correspond to, then can be basically identical with the power drive system 100 in Fig. 2 embodiment for remainder, repeat no more here.
Embodiment eight:
As shown in Figure 9, power drive system in this embodiment 100 and the difference of the power drive system 100 in Fig. 2 only can be the 3rd dynamotor 43 eliminated in Fig. 2 embodiment, and the power drive system 100 in this embodiment is two drive form.
Power drive system 100 in this embodiment at least can have following operating mode:
Operating mode one, the second dynamotor 42 is pure electronic: double-clutch 31 cuts off, and synchro 6 cuts off, and engine unit 1 and the first dynamotor 41 do not work, the second dynamotor 42 Direct driver front-wheel 210.This operating mode is mainly used at the uniform velocity or the Smaller load occasion such as city operating mode, and the situation that battery electric quantity is higher.
The advantage of this operating mode is the second dynamotor 42 Direct driver front-wheel 210, and messenger chain parts that are the shortest, that participate in work are minimum, can reach the highest driving efficiency and minimum noise.The front-wheel 210 that second dynamotor 42 individually drives left and right different, can realize electronic differential function, increases road-holding property, reduces the abrasion loss of tire.
Operating mode two, three motors are pure electronic: double-clutch 31 cuts off, synchro 6 engages, engine unit 1 does not work, first dynamotor 41 by shift gear group and synchro 6 by transmission of power to main reduction gear driving gear 51, and by diff 54, power is on average assigned to left and right front-wheel, the second dynamotor 42 Direct driver left and right front-wheel simultaneously.
The larger load occasions such as this operating mode is mainly used in accelerating, climb, overtake other vehicles, high speed, and the situation that battery electric quantity is higher.The advantage of this operating mode is to drive compared to single motor to have better tractive performance, drives have better economy and lower noise compared to hybrid power.The typical applications giving prominence to its advantage is the road conditions of blocking up on heavy grade (winding road).
Operating mode three, in parallel: double-clutch 31 cuts off, synchro 6 engages, engine unit 1 and the first dynamotor 41 by shift gear group and synchro 6 by transmission of power to main reduction gear driving gear 51, and by diff 54, power is on average assigned to left and right front-wheel, the second dynamotor 42 Direct driver front-wheel.This operating mode is mainly used in anxious acceleration, climbs the peak load occasions such as large slope.
The advantage of this operating mode is that three motors and engine unit 1 drive simultaneously, can play maximum tractive performance.
Operating mode four, series connection: double-clutch 31 engages, and synchro 6 cuts off, and engine unit 1 drives the first dynamotor 41 to generate electricity by double-clutch 31 and shift gear group, the second dynamotor 42 direct drive of wheel.This operating mode is mainly used in moderate duty, and the situation that battery electric quantity is less.
The advantage of this operating mode is the second dynamotor 42 direct drive of wheel, and messenger chain parts that are the shortest, that participate in work are minimum, can reach the highest driving efficiency and minimum noise.
First dynamotor 41 can, by moment of torsion and speed adjustment, make engine unit 1 remain on optimal economic area operation simultaneously, reduces generating oil consumption.The wheel that second dynamotor 42 individually drives left and right different, can realize electronic differential function, increases road-holding property, reduces the abrasion loss of tire.
Operating mode five, braking/deceleration feedback: double-clutch 31 engages, synchro 6 disconnects, and engine unit 1 drives the first dynamotor 41 to generate electricity, and the direct brake wheel of the second dynamotor 42 also generates electricity.This operating mode is mainly used in braking or the deceleration of vehicle.The advantage of this operating mode is when car retardation or braking, second dynamotor 42 is braked two wheels respectively, braking energy can be absorbed to greatest extent, be converted into electric energy, and engine unit 1 and the first dynamotor 41 can proceed generating, keep the stability of generating operation mode, and reduce frequent switching.
Five kinds of above-mentioned operating modes can switch, and wherein more typical operating mode switches to: switch to operating mode three by operating mode four, or switches to operating mode five from operating mode four.
Particularly, when switching to operating mode three by operating mode four, such as, accelerate to overtake other vehicles when needs are anxious, avoiding barrier time, according to the throttle demand of driver, power system can switch to operating mode three from operating mode four.Now the first dynamotor 41 with the rotating speed of main reduction gear driving gear 51 for target, can be controlled by rotating speed, the rotating speed of regulation output axle 24, the rotating speed of the two is mated as much as possible, facilitate synchro 6 to engage.And in the matching process, the second dynamotor 42 can respond driving demand, increase moment of torsion, vehicle is accelerated, and need not as common vehicle, synchro 6 could accelerate after engaging by the time.This moment of torsion compensated in advance function, can shorten the torque responsive time greatly, improves the instantaneous acceleration capability of vehicle.
When switching to operating mode five by operating mode four, such as, when car brakeing or when slowing down, according to the throttle demand of driver or the action of trampling brake pedal, power drive system 100 can switch to operating mode five from operating mode four.Second dynamotor 42 can meet the demand of feedback braking, feedback is carried out without the need to the first dynamotor 41, now the second dynamotor 42 can make an immediate response driving demand, wheel is braked, feedback electricity, and need not as common vehicle, synchro 6 could feedback electricity after engaging by the time.
Meanwhile, engine unit 1 and the first dynamotor 41 can keep original generating state, after operating mode to be braked terminates, also without the need to conversion, directly enter original series connection operating mode.This moment of torsion compensated in advance function, can shorten motor braking response time greatly, increases the electricity of feedback.
Especially, for complex road condition, such as when vehicle at upward slope, descending, jolt, travel under the low complex road condition such as attached time, often cause synchro 6 boding difficulties because of speed wobble.Even if the first dynamotor 41 can be controlled by rotating speed, the rotating speed of regulation output axle 24, but due to the rotating speed of main reduction gear driving gear uncontrollable with the speed of a motor vehicle, bring difficulty also can to the accuracy of speed governing of the first dynamotor 41 and speed.Under these road conditions, carry out torque compensation by the second dynamotor 42 pairs of vehicles, can stabilizing speed effectively, both improve the driving experience of car load, and also make the joint of synchro 6 become simple.
Embodiment nine:
As shown in Figure 10, power drive system 100 in this embodiment and the difference of the power drive system 100 in Fig. 9 are the position of the second dynamotor 42, in this embodiment, second dynamotor 42 leans against the both sides being arranged at diff 54 privately, then can be basically identical with the power drive system 100 in Fig. 9 embodiment for remainder, repeat no more here.
Embodiment ten:
As shown in figure 11, power drive system 100 in this embodiment and the difference of the power drive system 100 in Fig. 9 are the position of the second dynamotor 42, in this embodiment, second dynamotor 42 is two, each second dynamotor 42 all drives corresponding trailing wheel 220 by the 4th speed-changing mechanism 74, then can be basically identical with the power drive system 100 in Fig. 9 embodiment for remainder, repeat no more here.
Power drive system 100 in this embodiment at least has following operating mode:
Operating mode one, the second dynamotor 42 is pure electronic: double-clutch 31 cuts off, and synchro 6 cuts off, and engine unit 1 and the first dynamotor 41 do not work, and each second dynamotor 42 drives trailing wheel by the 4th corresponding speed-changing mechanism 74.This operating mode is mainly used at the uniform velocity or the Smaller load occasion such as city operating mode, and the situation that battery electric quantity is higher.The advantage of this operating mode is that the second dynamotor 42 drives trailing wheel, has better acceleration capability, grade climbing performance and limit steering capability compared to front drive vehicle.And the wheel that the second dynamotor 42 individually drives left and right different, electronic differential function can be realized, increase road-holding property, reduce the abrasion loss of tire.Forerunner disconnects associating of gear cluster and front-wheel by synchro 6, makes forerunner not have mechanical wear, reduces the energy consumption of car load.
Operating mode two, pure electric four-wheel drive: double-clutch 31 cuts off, synchro 6 engages, and engine unit 1 does not work, and the first dynamotor 41 drives front-wheel, and the second dynamotor 42 drives trailing wheel.The larger load occasions such as this operating mode is mainly used in accelerating, climb, overtake other vehicles, high speed, and the situation that battery electric quantity is higher.The advantage of this operating mode is to drive compared to single motor to have better tractive performance, drives have better economy and lower noise compared to hybrid power.The typical applications giving prominence to its advantage is the road conditions of blocking up on heavy grade (winding road).Compared to forerunner and after drive, pure electric four-wheel drive has better acceleration capability, grade climbing performance, handling and cross country power.And the trailing wheel that the second dynamotor 42 individually drives left and right different, electronic differential function can be realized, increase road-holding property, reduce the abrasion loss of tire.
Operating mode three, in parallel: double-clutch 31 cuts off, and synchro 6 engages, and engine unit 1 and the first dynamotor 41 drive front-wheel 210 simultaneously, and the second dynamotor 42 drives trailing wheel.This operating mode is mainly used in anxious acceleration, climbs the peak load occasions such as large slope.The advantage of this operating mode is that double-motor and engine unit drive simultaneously, can play maximum tractive performance.Compared to forerunner and after drive, hybrid power 4 wheel driven has better acceleration capability, grade climbing performance, handling and cross country power.And the trailing wheel that the second dynamotor individually drives left and right different, electronic differential function can be realized, increase road-holding property, reduce the abrasion loss of tire.
Operating mode four, series connection: double-clutch 31 engages, and synchro 6 cuts off, and engine unit 1 drives the first dynamotor 41 to generate electricity, and the second dynamotor 42 drives trailing wheel.This operating mode is mainly used in moderate duty, and the situation that battery electric quantity is less.The advantage of this operating mode is that two the second dynamotors drive two trailing wheels respectively, can realize electronic differential function, increases road-holding property, reduces the abrasion loss of tire.Better acceleration capability, grade climbing performance and limit steering capability is had compared to front drive vehicle.And the first dynamotor can, by moment of torsion and speed adjustment, make engine unit remain on optimal economic area operation, reduce generating oil consumption.
Operating mode five, braking/deceleration feedback: double-clutch 31 cuts off, synchro 6 engages, and engine unit does not work, and abrupt deceleration vehicle while of the first dynamotor and the second dynamotor also generates electricity.When the advantage of this operating mode is car retardation or braking, there is three motors abrupt deceleration vehicle simultaneously, thus braking energy can be absorbed to greatest extent, be converted into electric energy.And by cutting off double-clutch, eliminating the braking of engine unit friction moment to vehicle, more power can be left and absorb by motor.Before and after drive feedback braking together, can under the prerequisite ensureing car load braking force, better assignment system power to front and back motor, than independent forerunner or the more electric energy of rear-guard vehicle energy feedback.Further, two the second dynamotors can control separately the size of braking force, when brakeing during cornereing, can improve the handling stability of car load, and improve the energy of feedback further.
Similarly, can switch between each operating mode of power drive system 100 in this embodiment, more classical pattern is that operating mode four switches to operating mode three or operating mode five, for this part, similar to the corresponding switching part principle described in above-described embodiment, repeat no more here.
Embodiment 11:
As shown in figure 12, power drive system 100 in this embodiment and the difference of the power drive system 100 in Fig. 9 are the position of the second dynamotor 42, in this embodiment, second dynamotor 42 is one, this second dynamotor 42 drives trailing wheel 220 by the 3rd speed-changing mechanism 73, then can be basically identical with the power drive system 100 in Fig. 9 embodiment for remainder, repeat no more here.
In this embodiment, the second dynamotor 42 can be adopted to drive vehicle separately, and now double-clutch 31 and synchro 6 all cut off, and this operating mode is mainly used at the uniform velocity or the Smaller load occasion such as city operating mode, and the situation that battery electric quantity is higher.The advantage of this operating mode is that the second dynamotor 42 is by the 3rd speed-changing mechanism 73 Direct driver trailing wheel 220, compares forerunner, has better acceleration capability, grade climbing performance and limit steering capability.And predecessor portions is disconnected by synchro 6, make predecessor portions there is no mechanical wear, reduce the energy consumption of car load.Wherein, rear-guard part can also set up diff, and diff can become one with the 3rd speed-changing mechanism 73.
In this embodiment, power drive system can also have pure electric four-wheel drive operating mode, and now double-clutch 31 cuts off, and synchro 6 engages, and engine unit 1 does not work, and the first dynamotor 41 drives front-wheel, and the second dynamotor 42 drives trailing wheel.The larger load occasions such as this operating mode is mainly used in accelerating, climb, overtake other vehicles, high speed, and the situation that battery electric quantity is higher.This operating mode drives compared to single motor and has better tractive performance, drives have better economy and lower noise compared to hybrid power.The typical applications giving prominence to its advantage is the road conditions of blocking up on heavy grade (winding road).Compared to forerunner or after drive, pure electric four-wheel drive has better acceleration capability, grade climbing performance, handling and cross country power.
In this embodiment, power drive system also has operating mode in parallel: double-clutch 31 engages, and synchro 6 engages, and engine unit 1 and the first dynamotor 41 drive front-wheel 210, second dynamotor 42 to drive trailing wheel 220 jointly.This operating mode is mainly used in anxious acceleration, climbs the peak load occasions such as large slope.This operating mode major advantage is that double-motor and engine unit drive simultaneously, can play maximum tractive performance.Compared to forerunner and after drive, hybrid power 4 wheel driven has better acceleration capability, grade climbing performance, handling and cross country power.
In this embodiment, power drive system also has series connection operating mode: now double-clutch 31 engages, and synchro 6 cuts off, and engine unit 1 drives the first dynamotor 41 to generate electricity, and the second dynamotor drives trailing wheel.This operating mode is mainly used in moderate duty, and the situation that battery electric quantity is less.The advantage of this operating mode is that the second dynamotor 42 drives trailing wheel, has better acceleration capability, grade climbing performance and limit steering capability compared to front drive vehicle.First dynamotor 41 can, by moment of torsion and speed adjustment, make engine unit 1 remain on optimal economic area operation, reduces generating oil consumption.
In this embodiment, power drive system also has braking/deceleration feedback: double-clutch 31 cuts off, and synchro 6 engages, and engine unit 1 does not work, and abrupt deceleration vehicle while of the first dynamotor 41 and the second dynamotor 42 also generates electricity.When the advantage of this operating mode is car retardation or braking, two motors is braked simultaneously, braking energy can be absorbed to greatest extent, be converted into electric energy.And by cutting off double-clutch 31, eliminating the braking of engine unit friction moment to vehicle, more power can be left and absorb by motor.Before and after drive feedback braking together, can under the prerequisite ensureing car load braking force, better assignment system power to front and back motor, than independent forerunner or the more electric energy of rear-guard vehicle energy feedback.
Similarly, can switch between each operating mode of power drive system 100 in this embodiment, more classical pattern is that operating mode four switches to operating mode three or operating mode five, for this part, similar to the corresponding switching part principle described in above-described embodiment, repeat no more here.
Embodiment 12:
As shown in figure 13, power drive system 100 in this embodiment and the difference of the power drive system 100 in Fig. 9 are the position of the second dynamotor 42, in this embodiment, second dynamotor 42 is two and is wheel motor, second dynamotor 42 is for driving corresponding trailing wheel 220, then can basically identical with the power drive system 100 in Fig. 9 embodiment (transmission mode and Figure 11 similar) for remainder, repeat no more here.
Embodiment 13:
As shown in figure 14, engine unit 1 is connected with the input end 313 of double-clutch 31, first mouth 311 of double-clutch 31 is connected with the first input shaft 21, and the second mouth 312 of double-clutch 31 is connected with the second input shaft 22, and the second input shaft 22 is set on the first input shaft 21 coaxially.
First input shaft 21 and the second input shaft 22 are fixedly installed a driving gear 25 respectively, namely output shaft 24 is set with dual gear 26(, driven gear), first gear part 261 of dual gear 26 engages with the driving gear 25 on the first output shaft 21, and the second gear part 262 of dual gear 26 engages with the driving gear 25 on the second output shaft 22.
Tween drive shaft 43 is fixedly installed the first countershaft-gear 431 and the second countershaft-gear 432, first countershaft-gear 431 engages with the driving gear 25 on the second input shaft 22, and the mouth of the first dynamotor 41 is by an intermediate idler 44 and the second countershaft-gear 432 indirect drive.
Synchro 6 to be fixed on output shaft 24 and for engaging dual gear 26.Main reduction gear driving gear 51 is fixed on output shaft 24.Main reduction gear driving gear 51 and main reduction gear driven gear 53 external toothing, main reduction gear driven gear 53 can be fixed on the housing of diff 54, with by transmission of power to diff 54, after diff 54 distributes power, adaptability passes to the half-bridge of both sides, thus drive wheel 200.
Embodiment 14:
As shown in figure 15, engine unit 1 is connected with the input end 313 of double-clutch 31, first mouth 311 of double-clutch 31 is connected with the first input shaft 21, and the second mouth 312 of double-clutch 31 is connected with the second input shaft 22, and the second input shaft 22 is set on the first input shaft 21 coaxially.
First input shaft 21 and the second input shaft 22 are fixedly installed a driving gear 25 respectively, namely output shaft 24 is set with dual gear 26(, driven gear), first gear part 261 of dual gear 26 engages with the driving gear 25 on the first output shaft 21, and the second gear part 262 of dual gear 26 engages with the driving gear 25 on the second output shaft 22.
Tween drive shaft 43 is fixedly installed the first countershaft-gear 431 and the second countershaft-gear 432, first countershaft-gear 431 engages with the driving gear 25 on the second input shaft 22, the mouth of the first dynamotor 41 directly with the second countershaft-gear 432 engaged transmission.
Synchro 6 to be fixed on output shaft 24 and for engaging dual gear 26.Main reduction gear driving gear 51 is fixed on output shaft 24.Main reduction gear driving gear 51 and main reduction gear driven gear 53 external toothing, main reduction gear driven gear 53 can be fixed on the housing of diff 54, with by transmission of power to diff 54, after diff 54 distributes power, adaptability passes to the half-bridge of both sides, thus drive wheel 200.
Embodiment 15:
As shown in figure 16, engine unit 1 is connected with the input end 313 of double-clutch 31, first mouth 311 of double-clutch 31 is connected with the first input shaft 21, and the second mouth 312 of double-clutch 31 is connected with the second input shaft 22, and the second input shaft 22 is set on the first input shaft 21 coaxially.
First input shaft 21 and the second input shaft 22 are fixedly installed a driving gear 25 respectively, namely output shaft 24 is set with dual gear 26(, driven gear), first gear part 261 of dual gear 26 engages with the driving gear 25 on the first output shaft 21, and the second gear part 262 of dual gear 26 engages with the driving gear 25 on the second output shaft 22.The mouth of the first dynamotor 41 directly with the first gear part 261 engaged transmission.
Synchro 6 to be fixed on output shaft 24 and for engaging dual gear 26.Main reduction gear driving gear 51 is fixed on output shaft 24.Main reduction gear driving gear 51 and main reduction gear driven gear 53 external toothing, main reduction gear driven gear 53 can be fixed on the housing of diff 54, with by transmission of power to diff 54, after diff 54 distributes power, adaptability passes to the half-bridge of both sides, thus drive wheel 200.
Embodiment 16:
As shown in figure 17, power drive system 100 in this embodiment is with the difference of the power drive system 100 in Figure 14: arrange the synchro 6 that power-transfer clutch 9 replaces Figure 14 medium power driving system 100, be fixedly installed on output shaft 24 by main reduction gear driving gear 51.
Embodiment 17:
As shown in figure 18, power drive system 100 in this embodiment is with the difference of the power drive system 100 in Figure 15: arrange the synchro 6 that power-transfer clutch 9 replaces Figure 15 medium power driving system 100, be fixedly installed on output shaft 24 by main reduction gear driving gear 51.
Embodiment 18:
As shown in figure 19, power drive system 100 in this embodiment is with the difference of the power drive system 100 in Figure 16: arrange the synchro 6 that power-transfer clutch 9 replaces Figure 16 medium power driving system 100, be fixedly installed on output shaft 24 by main reduction gear driving gear 51.
It should be noted that, shown in Figure 14-Figure 19, in the variant embodiment of this connection gear structure 26, it can also comprise the second dynamotor 42 and the 3rd dynamotor 43 or only include the second dynamotor 42(not shown in Figure 14-Figure 19), its concrete arrangement can to adopt in Fig. 2-Figure 13 corresponding arrangement (such as adopt wheel limit form, lean against be located at diff both sides etc. privately).Such as a kind of optional embodiment, the main reduction gear driving gear 51 of the power drive system 100 shown in Figure 14-Figure 19 can be used for driving front-wheel 210, its rear-guard can adopt the rear-guard pattern of Figure 12, namely drives trailing wheel 220 by second dynamotor 42 and a speed reduction gearing.
Such as, alternatively, the second dynamotor 42 is arranged for and drives front-wheel or trailing wheel.For another example, alternatively, the second dynamotor 42 is arranged for driving front-wheel, and the 3rd dynamotor 43 is arranged for driving trailing wheel.
Embodiment 19:
As shown in figure 22, the power drive system 100 in this embodiment is with the difference of the power drive system 100 in Figure 14: arrange the second independent dynamotor 42 and drive two trailing wheels 220 by a speed-changing mechanism 75.Speed-changing mechanism 75 can be speed reduction gearing, and speed reduction gearing can be primary speed-down mechanism or more step reduction mechanism.Speed reduction gearing can be gear type speed reduction gearing, Worm-gear type speed reduction gearing etc.
In addition, the vehicle comprising power drive system 100 as above is further provided according to embodiments of the invention.Should be understood that, all be well known for ordinary skill in the art for prior art as driving system, steering swivel system, brake system etc. according to other configuration example of the vehicle of the embodiment of the present invention, therefore the detailed description of conventional construction omitted herein.
In the description of this specification sheets, specific features, structure, material or feature that the description of reference term " embodiment ", " some embodiments ", " example ", " concrete example " or " some examples " etc. means to describe in conjunction with this embodiment or example are contained at least one embodiment of the present invention or example.In this manual, to the schematic representation of above-mentioned term not must for be identical embodiment or example.And the specific features of description, structure, material or feature can combine in an appropriate manner in any one or more embodiment or example.In addition, the different embodiment described in this specification sheets or example can carry out engaging and combining by those skilled in the art.
Although illustrate and describe embodiments of the invention above, be understandable that, above-described embodiment is exemplary, can not be interpreted as limitation of the present invention, and those of ordinary skill in the art can change above-described embodiment within the scope of the invention, revises, replace and modification.
Claims (17)
1. for a power drive system for vehicle, it is characterized in that, comprising:
Engine unit;
Multiple input shaft, when described engine unit transmits power to described input shaft, described engine unit optionally engages with in described multiple input shaft, and each described input shaft is provided with driving gear;
Output shaft and connection gear structure, described gear structure can be rotated by differential relative to described output shaft, described gear structure has multiple gear part, described multiple gear part engages accordingly with the driving gear on described multiple input shaft respectively, and wherein said multiple gear part is interlock;
Efferent, described efferent to be fixed on described output shaft and to drive the front-wheel of described vehicle;
Synchro, described synchro is arranged on described output shaft, and is arranged to optionally engage described gear structure;
First dynamotor, a direct-drive in described first dynamotor and described input shaft and described output shaft or indirect drive; And
Second dynamotor, described second dynamotor is arranged for the trailing wheel driving described vehicle.
2. the power drive system for vehicle according to claim 1, is characterized in that, described multiple input shaft is coaxial nested setting successively, each described input shaft is fixed with a driving gear.
3. the power drive system for vehicle according to claim 1 and 2, is characterized in that,
Described multiple input shaft comprises the first input shaft and the second input shaft, and described second input shaft is set on described first input shaft; And
Described gear structure is dual gear, and described dual gear has the first gear part and the second gear part, and described first gear part and described second gear part engage accordingly with two described driving gears respectively.
4. the power drive system for vehicle according to claim 3, is characterized in that, also comprise:
Double-clutch, described double-clutch has input end, the first mouth and the second mouth, described engine unit is connected with the input end of described double-clutch, and the first mouth of described double-clutch is connected with described first input shaft and the second mouth of described double-clutch is connected with described second input shaft.
5. the power drive system for vehicle according to claim 4, is characterized in that, the mouth of described first dynamotor and one of them driving gear direct-drive or indirect drive.
6. the power drive system for vehicle according to claim 4, is characterized in that, also comprise:
Tween drive shaft, described tween drive shaft is fixedly installed the first countershaft-gear and the second countershaft-gear, and one in described first countershaft-gear and described second countershaft-gear is engaged with driving gear described in one of them;
Wherein, another one direct-drive in the mouth of the first dynamotor and described first countershaft-gear and described second countershaft-gear, or the another one in the mouth of described first dynamotor and described first countershaft-gear and described second countershaft-gear is by intermediate idler indirect drive.
7. the power drive system for vehicle according to claim 1, is characterized in that, the side towards described synchro of described gear structure is fixedly installed joint gear ring, and described synchro is suitable for engaging described joint gear ring.
8. the power drive system for vehicle according to claim 1, is characterized in that, described efferent comprises main reduction gear driving gear.
9. the power drive system for vehicle according to claim 2, it is characterized in that, described multiple input shaft comprises the first input shaft, the second input shaft and the 3rd input shaft, described second input shaft is set on described first input shaft, and described 3rd input shaft is set on described second input shaft; And
Described gear structure is triple gear, and described triple gear has the first gear part, the second gear part and the 3rd gear part, and described first gear part, described second gear part and the 3rd gear part engage accordingly with three described driving gears respectively.
10. the power drive system for vehicle according to claim 9, is characterized in that, also comprise:
Three power-transfer clutchs, described three power-transfer clutchs have input end, the first mouth, the second mouth and the 3rd mouth, described engine unit is connected with the input end of described three power-transfer clutchs, and the first mouth of described three power-transfer clutchs is connected with described first input shaft, the second mouth of described three power-transfer clutchs is connected with described second input shaft and the 3rd mouth of described three power-transfer clutchs is connected with described 3rd input shaft.
11. power drive systems for vehicle according to claim 2, is characterized in that,
Described multiple input shaft comprises the first input shaft, the second input shaft, the 3rd input shaft and the 4th input shaft, described second input shaft is set on described first input shaft, described 3rd input shaft is set on described second input shaft, and described 4th input shaft is set on described 3rd input shaft;
Described gear structure is two and is dual gear, and each described dual gear has the first gear part and the second gear part, and each described first gear part and each described second gear part engage with corresponding driving gear respectively; And
Synchro is arranged between two described dual gear structures.
12. power drive systems for vehicle according to claim 11, is characterized in that, also comprise:
Four clutches, described four clutches has input end, the first mouth, the second mouth, the 3rd mouth and the 4th mouth, described engine unit is connected with the input end of described four clutches, and the first mouth of described four clutches is connected with described first input shaft, the second mouth of described four clutches is connected with described second input shaft, the 3rd mouth of described four clutches is connected with described 3rd input shaft and the four-input terminal of described four clutches is connected with described 4th input shaft.
13. power drive systems for vehicle according to claim 1, it is characterized in that, described second dynamotor is one, and described second genemotor drive two described trailing wheels by a speed-changing mechanism.
14. power drive systems for vehicle according to claim 13, is characterized in that, described speed-changing mechanism is speed reduction gearing.
15. power drive systems according to claim 1, is characterized in that, also comprise: diff, and described diff to be located between described front-wheel and to coordinate transmission with described efferent.
16. 1 kinds for the power drive system of vehicle, is characterized in that, comprising:
Engine unit;
Double-clutch, described double-clutch has input end, the first mouth and the second mouth, and the mouth of described engine unit is connected with the input end of described double-clutch;
First input shaft and the second input shaft, described first input shaft is connected with described first mouth and described second input shaft is connected with described second mouth, described second input shaft is set on described first input shaft coaxially, and described first input shaft and described second input shaft are fixedly installed a driving gear respectively;
Output shaft, described output shaft is set with dual gear, described dual gear has the first gear part and the second gear part, and described first gear part engages with the driving gear on described first input shaft and described second gear part engages with the driving gear on described second input shaft;
Tween drive shaft, described tween drive shaft is fixedly installed the first countershaft-gear and the second countershaft-gear, and described first countershaft-gear engages with the driving gear on described second input shaft;
First dynamotor, the mouth of described first dynamotor and described second countershaft-gear direct-drive or by intermediate idler and described second intermediate gear indirect drive;
Main reduction gear driving gear, described main reduction gear driving gear is fixed on described output shaft;
Diff, described diff is provided with main reduction gear driven gear, and described main reduction gear driven gear engages with described main reduction gear driving gear, and described diff is located between two front-wheels;
Synchro, described synchro to be arranged on described output shaft and optionally to engage described dual gear;
Second dynamotor, described second dynamotor drives two trailing wheels by speed reduction gearing.
17. 1 kinds of vehicles, is characterized in that, comprise the power drive system for vehicle according to any one of claim 1-16.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410044457.2A CN104290587B (en) | 2014-01-30 | 2014-01-30 | For vehicle power drive system and there is its vehicle |
PCT/CN2014/089824 WO2015113414A1 (en) | 2014-01-30 | 2014-10-29 | Power transmission system for vehicle and vehicle comprising the same |
US14/527,496 US9568082B2 (en) | 2014-01-30 | 2014-10-29 | Power transmission system for vehicle and vehicle comprising the same |
EP14191714.6A EP2902231B1 (en) | 2014-01-30 | 2014-11-04 | Power transmission system for vehicle and vehicle comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410044457.2A CN104290587B (en) | 2014-01-30 | 2014-01-30 | For vehicle power drive system and there is its vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104290587A CN104290587A (en) | 2015-01-21 |
CN104290587B true CN104290587B (en) | 2015-09-02 |
Family
ID=52310631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410044457.2A Active CN104290587B (en) | 2014-01-30 | 2014-01-30 | For vehicle power drive system and there is its vehicle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104290587B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106696691B (en) * | 2016-11-18 | 2019-02-15 | 精进电动科技股份有限公司 | A kind of horizontal single power source vehicle traction assembly |
CN106523629A (en) * | 2016-11-18 | 2017-03-22 | 精进电动科技股份有限公司 | Transversely-arranged vehicle driving assembly provided with double power sources |
CN106882041A (en) | 2017-01-24 | 2017-06-23 | 精进电动科技股份有限公司 | A kind of horizontal vehicle traction assembly |
CN106627078A (en) * | 2017-01-24 | 2017-05-10 | 精进电动科技股份有限公司 | Transversely-arranged double-power-source vehicle driving assembly |
CN106740024A (en) * | 2017-01-24 | 2017-05-31 | 精进电动科技股份有限公司 | A kind of horizontal dual power source vehicle traction assembly |
CN115675054B (en) * | 2021-07-30 | 2024-10-29 | 比亚迪股份有限公司 | Power system and vehicle |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4315226B2 (en) * | 2007-11-09 | 2009-08-19 | トヨタ自動車株式会社 | Driving force control device |
AR075776A1 (en) * | 2009-03-03 | 2011-04-27 | Honda Motor Co Ltd | POWER TRANSMISSION DEVICE FOR HYBRID VEHICLE |
DE102010006043A1 (en) * | 2010-01-28 | 2011-08-18 | Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 | Hybrid powertrain |
CN102259584B (en) * | 2010-05-31 | 2014-07-02 | 比亚迪股份有限公司 | Hybrid power driven system and vehicle comprising same |
CN201777113U (en) * | 2010-05-31 | 2011-03-30 | 比亚迪股份有限公司 | Hybrid power driving system and automobile with same |
CN103029558A (en) * | 2011-09-30 | 2013-04-10 | 比亚迪股份有限公司 | Hybrid power system and vehicles including the same |
US8738207B2 (en) * | 2012-04-30 | 2014-05-27 | GM Global Technology Operations LLC | Hybrid vehicle with electric transmission and electric drive module |
CN204055300U (en) * | 2014-01-30 | 2014-12-31 | 比亚迪股份有限公司 | For vehicle power drive system and there is its vehicle |
-
2014
- 2014-01-30 CN CN201410044457.2A patent/CN104290587B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN104290587A (en) | 2015-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104276026B (en) | For vehicle power drive system and there is its vehicle | |
CN104290586B (en) | For vehicle power drive system and there is its vehicle | |
CN104279311B (en) | The controlling method of synchronizer and vehicle in vehicle | |
CN104276028B (en) | For vehicle power drive system and there is its vehicle | |
CN104276025B (en) | For vehicle power drive system and there is its vehicle | |
CN204055299U (en) | For vehicle power drive system and there is its vehicle | |
CN104276163B (en) | The control method of engine in vehicle unit and vehicle | |
CN204055300U (en) | For vehicle power drive system and there is its vehicle | |
CN104276176B (en) | The cruise control method of vehicle and vehicle | |
CN104276030B (en) | For vehicle power drive system and there is its vehicle | |
CN104494599B (en) | Vehicle and slide back-feed control method | |
CN104276050B (en) | Vehicle and feedback braking control method | |
CN104276031B (en) | Vehicle and drived control method thereof | |
CN204055303U (en) | For vehicle power drive system and there is its vehicle | |
CN104290587B (en) | For vehicle power drive system and there is its vehicle | |
WO2015113424A1 (en) | Vehicle and power transmission system thereof | |
CN204055296U (en) | For vehicle power drive system and there is its vehicle | |
CN104290589B (en) | For vehicle power drive system and there is its vehicle | |
US10670123B2 (en) | Power transmission system for vehicle and vehicle comprising the same | |
CN206201954U (en) | Power-driven system and vehicle | |
WO2015113422A1 (en) | Vehicle and power transmission system thereof | |
CN104276027B (en) | For vehicle power drive system and there is its vehicle | |
WO2015113425A1 (en) | Vehicle and power transmission system thereof | |
CN204055301U (en) | For vehicle power drive system and there is its vehicle | |
CN204055297U (en) | For vehicle power drive system and there is its vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |