CN104199022A - Target modal estimation based near-space hypersonic velocity target tracking method - Google Patents

Target modal estimation based near-space hypersonic velocity target tracking method Download PDF

Info

Publication number
CN104199022A
CN104199022A CN201410439348.0A CN201410439348A CN104199022A CN 104199022 A CN104199022 A CN 104199022A CN 201410439348 A CN201410439348 A CN 201410439348A CN 104199022 A CN104199022 A CN 104199022A
Authority
CN
China
Prior art keywords
target
motion
model
tracking
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410439348.0A
Other languages
Chinese (zh)
Other versions
CN104199022B (en
Inventor
易伟
董天发
苟清松
郝凯利
崔国龙
孔令讲
杨建宇
李小龙
夏玫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201410439348.0A priority Critical patent/CN104199022B/en
Publication of CN104199022A publication Critical patent/CN104199022A/en
Application granted granted Critical
Publication of CN104199022B publication Critical patent/CN104199022B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention provides a target modal estimation based near-space hypersonic velocity target tracking method, which comprises the steps of: tracking a target by utilizing an interactive multi-model tracking algorithm, estimating a target movement mode dynamically and in real time, judging the target movement mode by counting target characteristics, and finally turning to corresponding single-mode matched tracking based on the estimated target movement mode. Competition among multiple models is avoided, and the problems of low tracking precision and the like caused by complex calculation and great model competition of an existing near-space hypersonic velocity tracking algorithm are solved. The target modal estimation based near-space hypersonic velocity target tracking method is low in calculation amount and high in tracking precision, and effectively improves the integral performance of the tracking system.

Description

Near space hypersonic target tracking method based on target modal estimation
Technical Field
The invention belongs to a radar signal processing technology, and particularly relates to a technology for tracking a hypersonic typical moving target in an adjacent space.
Background
The near space refers to an airspace with the height of 20-100 Km from the ground, and the speed of the near space hypersonic aerocraft can reach Mach 4-20. Currently, near space hypersonic target tracking is a hot spot in the tracking field. The complexity of the movement of the maneuvering target in the adjacent space and the variability of the operation environment cause that an accurate tracking model is difficult to establish for the targets, and the development of the stealth technology further increases the difficulty of tracking the hypersonic target in the adjacent space.
At present, the tracking algorithm based on an interactive multi-model (IMM) structure is a tracking algorithm which is recognized as the most effective near space hypersonic speed target. In the documents "Research of Method for Tracking High Speed and High throughput target, International Conference on ITS Telecommunications projects, 1236-1239, 2006", a Tracking algorithm based on an interactive multimode structure is proposed, which utilizes a plurality of different maneuvering models to interactively track a hypersonic target in an adjacent space, and has a wider coverage range and greater maneuvering adaptability compared with single mode Tracking; however, the mutual competition among the algorithm models results in poor tracking accuracy and large calculation amount.
Disclosure of Invention
The invention aims to solve the technical problem of providing a method for tracking a hypersonic target in a near space, which has high tracking precision and small calculation amount.
The invention adopts the technical scheme that a near space hypersonic target tracking method based on target mode estimation comprises the following steps:
step 1, carrying out target track initiation on measurement data acquired by a radar;
step 2, estimating the state of a next frame target, a state covariance matrix and corresponding model transition probabilities corresponding to a uniform motion model, a uniform accelerated motion model and a turning motion model by utilizing an interactive multimode tracking IMM algorithm; the target state comprises a target position, a speed and an acceleration; when the transition probability, the target speed and the acceleration corresponding to the uniform motion model, the uniform acceleration motion model and the turning motion model under the L frames are continuously counted, the current motion mode of the target can be determined, the step 3 is carried out, and otherwise, the step 2 is returned;
if in the time of L frames, the transition probability u of the uniform velocity modelcvAlways keeping maximum speed variation quantity delta vk≤τvAcceleration change amount Δ ak≤τaJudging that the target is in a uniform motion stage;
if in the L frame time, the transition probability u of the uniform acceleration modelcaAlways keeping maximum speed variation quantity delta vk≥τvAcceleration change amount Δ ak≤τaJudging that the target is in a uniform motion stage;
if in the L frame time, the transition probability u of the uniform acceleration modelctAlways keeping maximum speed variation quantity delta vk≥τvAcceleration Δ ak≥τaJudging that the target is in a jumping motion stage;
wherein, tauvRepresenting the speed fluctuation threshold, tauaRepresenting an acceleration fluctuation threshold;
step 3, single-mode matching tracking:
3-1, after determining a target motion mode, switching to single-mode matching tracking; initializing single mode parameters and a target initial state;
3-2, estimating the target state of the next frame by utilizing a single-mode matching tracking algorithm;
3-3 calculating the normalized residual squared epsilon for the current time kvComprises the following steps:vxfor the current measurement residual, SxRepresenting the current residual covariance matrix, the subscript x representing the motion model matching the true motion of the target, i.e., x ∈ { CV, CA, CT }, CV representing uniform motion, CA representing uniform acceleration motion, CT representing jerking motion, (·)TRepresenting a matrix transposition; normalized residual squared epsilon of AngelicavWhen the target motion state is less than or equal to the threshold tau, the target motion state is considered to be unchanged, the step 3-2 is returned, and the normalized residual error squared epsilon is obtainedvAnd when the motion state of the target is larger than the threshold tau, the motion state of the target is considered to be changed, and the step 2 is returned.
The method comprises the steps of tracking a target by utilizing an interactive multi-model tracking algorithm, dynamically estimating a target motion mode in real time, and judging the target motion mode by counting target characteristics; and finally, switching to corresponding single-mode matching tracking according to the estimated target motion mode, avoiding competition among multiple models, and solving the problems of complex calculation, high model competition, low tracking precision and the like of the conventional near space hypersonic tracking algorithm.
The invention has the advantages of small calculation amount and high tracking precision, and effectively improves the overall performance of the tracking system.
Drawings
FIG. 1 is a flow chart of a tracking algorithm based on interactive multiple models and dynamic estimation of target motion modalities.
FIG. 2 is a graph of tracking error for the new tracking algorithm and the interactive multi-mode tracking algorithm.
FIG. 3 shows that the new tracking algorithm and the interactive multi-mode tracking algorithm track success probability curves under different detection probabilities.
FIG. 4 shows that the new tracking algorithm and the interactive multi-mode tracking algorithm track success probability curves at different sampling rates.
Detailed Description
The effect of the invention is verified by adopting a computer simulation method, and the implementation steps are as shown in fig. 1 through MATLAB-R2010 b:
step 1, radar data conversion
The tracked target enters a ground radar scanning area, and data collected by the radar is measured dataAnd Doppler information (Doppler) f of the targetdR represents a target distance, θ represents a target azimuth,Representing the target pitch angle. Measuring data of polar coordinate system by using correction measurement deflection-free conversion MUCMKFConverting the measured data into a rectangular coordinate system to obtain converted measured dataWhereinRespectively representing the target positions measured in the rectangular coordinate system after conversion;
<math> <mrow> <msubsup> <mi>x</mi> <mi>m</mi> <mi>u</mi> </msubsup> <mo>=</mo> <msub> <mi>&lambda;</mi> <mi>&theta;</mi> </msub> <msub> <mi>&lambda;</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>&gamma;</mi> <mi>m</mi> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> <mi>cos</mi> <msub> <mi>&epsiv;</mi> <mi>m</mi> </msub> </mrow> </math>
<math> <mrow> <msubsup> <mi>y</mi> <mi>m</mi> <mi>u</mi> </msubsup> <mo>=</mo> <msub> <mi>&lambda;</mi> <mi>&theta;</mi> </msub> <msub> <mi>&lambda;</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>&gamma;</mi> <mi>m</mi> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>m</mi> </msub> <mi>cos</mi> <msub> <mi>&epsiv;</mi> <mi>m</mi> </msub> </mrow> </math>
<math> <mrow> <msubsup> <mi>z</mi> <mi>m</mi> <mi>u</mi> </msubsup> <mo>=</mo> <msub> <mi>&lambda;</mi> <mi>&epsiv;</mi> </msub> <msub> <mi>&gamma;</mi> <mi>m</mi> </msub> <mi>sin</mi> <msub> <mi>&epsiv;</mi> <mi>m</mi> </msub> </mrow> </math>
wherein the compensation factorMean square error, θ, representing the azimuth and pitch angles, respectivelymmRespectively, azimuth and pitch.
Step 2, target track initiation
2.1 store the measurement data after 3 frames conversion, and the k-th time data z (k) ═ z1(k),z2(k),z3(k),...zm1(k) The data set obtained at the k +1 th time is Z (k +1) ═ Z1(k+1),z2(k+1),z3(k+1),...zm2(k +1) }, and the data set obtained at the k +2 th time is Z (k +2) ═ Z1(k+2),z2(k+2),z3(k+2),...zm3(k +2) }, traversing and associating continuous three-frame data, and utilizing height constraint hmin<h<hmaxAnd velocity constraint vmin<v<vmaxAnd Doppler information fdAnd removing partial clutter traces. Wherein z isi(k) I-th measurement at the k-th time, m1, m2, m3 respectively represent the number of measurements at 3 times, hmin,hmaxRespectively representing the minimum and maximum flying heights, vmin,vmaxMinimum and maximum flight speeds.
2.2 projecting the rest continuous 3 frames of data to two planes (x-z and y-z planes), and transforming the two planes of data to a parameter space, wherein rho is xcos theta + ysin theta, wherein (theta, rho) are coordinates in the parameter space, and (x, y) are observation data in a rectangular coordinate system; and respectively carrying out track initiation on the two-plane measurement data by using modified Hough transform, and comparing and associating the two-plane initiated tracks so as to determine the target track initiation. In order to suppress false tracks as much as possible, a modified Hough transform is preferably used here. Other track initiation methods in the art, such as direct track initiation, correction logic, for target track initiation in the near space, can result in an increase in false tracks, which is not conducive to target tracking.
Step 3, tracking the target by utilizing an interactive multimode tracking IMM algorithm
3.1 after the target track is initiated, the target state is initialized first <math> <mrow> <mi>X</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>x</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> <mtd> <mi>y</mi> </mtd> <mtd> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> <mtd> <mi>z</mi> </mtd> <mtd> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>z</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>&prime;</mo> </msup> <mo>.</mo> </mrow> </math> Each model transition probability u ═ ucv uca uct]And each model state covariance matrix Pcv,Pca,Pct. Assume that the measurement values at the first 3 times are Z (1), Z (2), Z (3), and Z (i) ([ x (i), y (i), Z (i))]TObserving a noise covariance matrix R;
wherein R is directly obtained through a measurement conversion equation;
initializing a system state:
X = x ( 3 ) ( x ( 3 ) - x ( 2 ) ) / T ( ( x ( 3 ) - x ( 2 ) ) / T - ( x ( 2 ) - x ( 1 ) ) / T ) / T y ( 3 ) ( y ( 3 ) - y ( 2 ) ) / T ( ( y ( 3 ) - y ( 2 ) ) / T - ( y ( 2 ) - ( 1 ) ) / T ) / T z ( 3 ) ( z ( 3 ) - z ( 2 ) ) / T ( ( z ( 3 ) - z ( 2 ) ) / T - ( z ( 2 ) - z ( 1 ) ) )
wherein, <math> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>x</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> <mtd> <mi>y</mi> </mtd> <mtd> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> <mtd> <mi>z</mi> </mtd> <mtd> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>z</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>&prime;</mo> </msup> </math> representing position, velocity and acceleration on the x, y and z axes, respectively; [ u ] ofcv,uca,uct],[Pcv,Pca,Pct]Are respectively at uniform speedModel probabilities and state covariance matrices corresponding to the model, the uniform acceleration model, and the cornering model, and ucv+uca+uct=1;
3.2 predicting the target states of the next frame corresponding to the uniform velocity motion CV model, the uniform acceleration motion CA model and the turning motion CT model respectively by utilizing an interactive multi-model tracking algorithmThe corresponding state covariance matrix is
3.3 estimating the target states corresponding to the models by using the predicted valuesTarget state covariance matrixAnd updating transition probabilities for each model
Updating the states of the models:
updating covariance of each model state:
estimating the transition probability of each model:
<math> <mrow> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>p</mi> <mi>ij</mi> </msub> <msub> <mi>u</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msup> <mi>&Lambda;</mi> <mi>x</mi> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>&pi;</mi> <mo>|</mo> <msub> <mi>S</mi> <mi>x</mi> </msub> <mo>|</mo> </msqrt> </mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mi>v</mi> <mi>x</mi> <mi>T</mi> </msubsup> <msubsup> <mi>S</mi> <mi>x</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </msup> </mrow> </math>
<math> <mrow> <mi>c</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&Lambda;</mi> <mi>j</mi> </msub> <msub> <mi>C</mi> <mi>j</mi> </msub> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> <msup> <mi>&Lambda;</mi> <mi>x</mi> </msup> <msub> <mi>C</mi> <mi>x</mi> </msub> </mrow> </math>
wherein N represents the number of interaction models, ui(K-1) represents the transition probability of the model i in the previous frame, p is the known model transition probability matrix, Ki、viAnd SiRespectively representing a gain matrix, a residual error matrix and a residual error covariance matrix of a Kalman filter corresponding to the model i, wherein a subscript i belongs to { CV, CA, CT };
3.4 transition probability according to model u = u ^ cv u ^ ca u ^ ct And the estimated target states of the modelsAnd interactively outputting the estimated target state X.
<math> <mrow> <mi>X</mi> <mo>=</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>cv</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>cv</mi> </msub> <mo>+</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>ca</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>ca</mi> </msub> <mo>+</mo> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>ct</mi> </msub> <mo>&CenterDot;</mo> <msub> <mover> <mi>u</mi> <mo>^</mo> </mover> <mi>ct</mi> </msub> </mrow> </math>
Step 4, estimating the motion mode of the target
When the target is tracked by using the interactive multi-mode tracking algorithm, the model transition probability and the target state at the k-th moment are assumed to be u (k) ═ u respectivelycv(k) uca(k) uct(k)]And <math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>x</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> <mtd> <mi>y</mi> </mtd> <mtd> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> <mtd> <mi>z</mi> </mtd> <mtd> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>z</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>&prime;</mo> </msup> <mo>,</mo> </mrow> </math> velocity and acceleration are respectively vk,ak(ii) a Counting the transition probability u, the target speed and the acceleration information of the continuous L-frame model, counting the motion characteristics of the target in the L-frame time, and judging the current motion mode of the target:
the target motion mode identification method comprises the following steps:
if in the time of L frames, the probability u of the uniform modelcvAlways keeping maximum speed variation quantity delta vk≤τvAcceleration change amount Δ ak≤τaAnd judging that the target is in a uniform motion stage.
If in the L frame time, the probability u of the uniform acceleration modelcaAlways keeping maximum speed variation quantity delta vk≥τvAcceleration change amount Δ ak≤τaAnd judging that the target is in a uniform motion stage.
If in the L frame time, the probability u of the uniform acceleration modelctAlways keeping maximum speed variation quantity delta vk≥τvAcceleration Δ ak≥τaThen, the target is judged to be in the jumping motion stage.
Wherein, tauvRepresenting the speed fluctuation threshold, tauaRepresenting an acceleration fluctuation threshold.
Step 5, single-mode matching tracking algorithm
5.1, after determining a target motion mode, switching to single-mode matching tracking; initializing single mode parameters, target initial state <math> <mrow> <mi>X</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>x</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> <mtd> <mi>y</mi> </mtd> <mtd> <mover> <mi>y</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>y</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> <mtd> <mi>z</mi> </mtd> <mtd> <mover> <mi>z</mi> <mo>&CenterDot;</mo> </mover> </mtd> <mtd> <mover> <mi>z</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>&prime;</mo> </msup> </mrow> </math> And the object transition probability matrix Po
5.2 predicting the next frame state of the target by utilizing a single-mode matching tracking algorithmAnd corresponding error covariance matrix
Where the subscript x denotes the motion model that matches the true motion of the target, i.e., x ∈ { CV, CA, CT }. CV represents uniform motion; CA represents uniform acceleration motion; CT denotes curve motion.
5.3 estimating the target state and the corresponding state covariance matrix by using the predicted values:
wherein, KxIs the Kalman filter gain, vxTo measure residual errors, SxRepresenting the residual covariance matrix.
5.4, residual errors and residual error covariance of the estimated state of the target at each moment are evaluated, and the normalized residual error square at the k moment is as follows:
<math> <mrow> <msub> <mi>&epsiv;</mi> <mi>v</mi> </msub> <mo>=</mo> <msup> <msub> <mi>v</mi> <mi>x</mi> </msub> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msubsup> <mi>S</mi> <mi>x</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein epsilonvObeying with a degree of freedom of nzChi of2Distribution, nzRepresenting the measurement dimension.
When epsilonvAnd when the threshold tau is exceeded, the motion state of the target is considered to be changed, and the step 3 is returned.
The simulation results are shown in fig. 2, fig. 3 and fig. 4, compared with the tracking of the existing IMM algorithm, the tracking algorithm of the invention has the advantages of smaller calculated amount, higher tracking precision, higher tracking success probability under different detection probabilities and higher tracking success probability under different sampling rates, thereby improving the overall tracking performance.

Claims (2)

1. A near space hypersonic target tracking method based on target mode estimation is characterized by comprising the following steps:
step 1, carrying out target track initiation on measurement data acquired by a radar;
step 2, estimating model transition probabilities and target states of a next frame corresponding to the uniform motion model, the uniform accelerated motion model and the turning motion model by utilizing an interactive multimode tracking IMM algorithm; the target state comprises a target position, a speed and an acceleration; when the transition probability, the target speed and the acceleration corresponding to the uniform motion model, the uniform acceleration motion model and the turning motion model under the L frames are continuously counted, the current motion mode of the target can be determined, the step 3 is carried out, and otherwise, the step 2 is returned;
if in the time of L frames, the transition probability u of the uniform velocity modelcvAlways keeping maximum speed variation quantity delta vk≤τvAcceleration change amount Δ ak≤τaJudging that the target is in a uniform motion stage;
if in the L frame time, the transition probability u of the uniform acceleration modelcaAlways keeping maximum speed variation quantity delta vk≥τvAcceleration change amount Δ ak≤τaJudging that the target is in a uniform motion stage;
if in the L frame time, the transition probability u of the turning modelctAlways keeping maximum speed variation quantity delta vk≥τvAcceleration Δ ak≥τaJudging that the target is in a jumping motion stage;
wherein, tauvRepresenting the speed fluctuation threshold, tauaRepresenting an acceleration fluctuation threshold;
step 3, single-mode matching tracking:
3-1, after determining a target motion mode, switching to single-mode matching tracking; initializing single mode parameters and a target initial state;
3-2, predicting the target state of the next frame by utilizing a single-mode matching tracking algorithm;
3-3 calculating the normalized residual squared epsilon for the current time kvComprises the following steps:vxfor the current measurement residual, SxRepresenting the current residual covariance matrix, the subscript x representing the motion model matching the true motion of the target, i.e., x ∈ { CV, CA, CT }, CV representing uniform motion, CA representing uniform acceleration motion, CT representing jerking motion, (·)TRepresenting a matrix transposition; normalized residual squared epsilon of AngelicavWhen the target motion state is less than or equal to the threshold tau, the target motion state is considered to be unchanged, the step 3-2 is returned, and the normalized residual error squared epsilon is obtainedvGreater than threshold tauAnd (4) considering that the motion state of the target is changed, and returning to the step 2.
2. The near space hypersonic target tracking method based on target mode estimation as claimed in claim 1, characterized in that the specific method for estimating the target state of the next frame corresponding to the uniform velocity motion model, the uniform acceleration motion model and the turning motion model by using the interactive multimode tracking IMM algorithm is as follows: obtaining a next frame uniform motion model, a uniform accelerated motion model and a target prediction state value under a turning motion model by utilizing an interactive multimode tracking IMM algorithmAnd corresponding state covariance matrixThen, the target state corresponding to each model is updatedAnd corresponding covariance matrixRe-estimating each model transition probability matrixAnd finally outputting a target estimation state X:
the specific method for estimating the next frame target state by the single-mode matching tracking algorithm comprises the following steps: obtaining the next frame target prediction state value by utilizing a single-mode matching tracking algorithmSum state covariance matrixRe-updating target statesSum state covariance matrix Kx、vxAnd SxAnd respectively representing a gain matrix, a residual error matrix and a residual error covariance matrix of the Kalman filter corresponding to the model x, and the subscript x belongs to { CV, CA, CT }.
CN201410439348.0A 2014-08-30 2014-08-30 Target modal estimation based near-space hypersonic velocity target tracking method Active CN104199022B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410439348.0A CN104199022B (en) 2014-08-30 2014-08-30 Target modal estimation based near-space hypersonic velocity target tracking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410439348.0A CN104199022B (en) 2014-08-30 2014-08-30 Target modal estimation based near-space hypersonic velocity target tracking method

Publications (2)

Publication Number Publication Date
CN104199022A true CN104199022A (en) 2014-12-10
CN104199022B CN104199022B (en) 2017-01-11

Family

ID=52084334

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410439348.0A Active CN104199022B (en) 2014-08-30 2014-08-30 Target modal estimation based near-space hypersonic velocity target tracking method

Country Status (1)

Country Link
CN (1) CN104199022B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019304A (en) * 2016-05-31 2016-10-12 张雅声 System and method for early warning detection of hypersonic flight vehicle in near space
CN106296722A (en) * 2015-05-25 2017-01-04 联想(北京)有限公司 A kind of information processing method and electronic equipment
CN106886788A (en) * 2015-12-11 2017-06-23 上海交通大学 Single goal emulation Track In Track difficulty detection method based on multi -index decision
CN106950562A (en) * 2017-03-30 2017-07-14 电子科技大学 A kind of state fusion method for tracking target based on predicted value measurement conversion
CN107065933A (en) * 2017-04-19 2017-08-18 中国人民解放军海军航空工程学院 The hypersonic method for tracking target of near space based on aerodynamic model
CN107289968A (en) * 2017-06-23 2017-10-24 深圳大学 A kind of method for estimating state and device of turning maneuvering target
CN108226920A (en) * 2018-01-09 2018-06-29 电子科技大学 A kind of maneuvering target tracking system and method based on predicted value processing Doppler measurements
WO2018232740A1 (en) * 2017-06-23 2018-12-27 深圳大学 State estimation method and device for target performing turn maneuver
CN111190172A (en) * 2020-01-08 2020-05-22 中国船舶重工集团公司第七二四研究所 Same-platform multi-radar track association judgment method by using target motion state model
CN111650577A (en) * 2020-06-12 2020-09-11 电子科技大学 Maneuvering target tracking method containing Doppler measurement under polar coordinate system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030200065A1 (en) * 2001-04-20 2003-10-23 Li Luo Wen Maneuvering target tracking method via modifying the interacting multiple model (IMM) and the interacting acceleration compensation (IAC) algorithms
US7705780B1 (en) * 2007-12-20 2010-04-27 The United States Of America As Represented By The Secretary Of The Navy Electronic support measures (ESM) tracking system and method
CN102568004A (en) * 2011-12-22 2012-07-11 南昌航空大学 Tracking algorithm for high maneuvering targets
CN102663771A (en) * 2012-03-14 2012-09-12 北京航空航天大学 Interactive multi-model estimation method based on covariance intersection
CN103487800A (en) * 2013-09-08 2014-01-01 西安电子科技大学 Multi-model high-speed high-mobility target tracking method based on residual feedback
EP2027489B1 (en) * 2006-06-13 2014-08-20 BAE Systems PLC Improvements relating to target tracking

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030200065A1 (en) * 2001-04-20 2003-10-23 Li Luo Wen Maneuvering target tracking method via modifying the interacting multiple model (IMM) and the interacting acceleration compensation (IAC) algorithms
EP2027489B1 (en) * 2006-06-13 2014-08-20 BAE Systems PLC Improvements relating to target tracking
US7705780B1 (en) * 2007-12-20 2010-04-27 The United States Of America As Represented By The Secretary Of The Navy Electronic support measures (ESM) tracking system and method
CN102568004A (en) * 2011-12-22 2012-07-11 南昌航空大学 Tracking algorithm for high maneuvering targets
CN102663771A (en) * 2012-03-14 2012-09-12 北京航空航天大学 Interactive multi-model estimation method based on covariance intersection
CN103487800A (en) * 2013-09-08 2014-01-01 西安电子科技大学 Multi-model high-speed high-mobility target tracking method based on residual feedback

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
秦雷等: "基于交互式多模型算法跟踪临近空间目标", 《系统工程与电子技术》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106296722A (en) * 2015-05-25 2017-01-04 联想(北京)有限公司 A kind of information processing method and electronic equipment
CN106296722B (en) * 2015-05-25 2020-06-23 联想(北京)有限公司 Information processing method and electronic equipment
CN106886788B (en) * 2015-12-11 2020-02-18 上海交通大学 Single-target simulation track tracking difficulty detection method based on multi-index decision
CN106886788A (en) * 2015-12-11 2017-06-23 上海交通大学 Single goal emulation Track In Track difficulty detection method based on multi -index decision
CN106019304A (en) * 2016-05-31 2016-10-12 张雅声 System and method for early warning detection of hypersonic flight vehicle in near space
CN106950562A (en) * 2017-03-30 2017-07-14 电子科技大学 A kind of state fusion method for tracking target based on predicted value measurement conversion
CN107065933B (en) * 2017-04-19 2020-04-21 中国人民解放军海军航空大学 Near space hypersonic target tracking method based on pneumatic model
CN107065933A (en) * 2017-04-19 2017-08-18 中国人民解放军海军航空工程学院 The hypersonic method for tracking target of near space based on aerodynamic model
CN107289968B (en) * 2017-06-23 2018-12-21 深圳大学 A kind of method for estimating state and device of maneuvering target of turning
WO2018232740A1 (en) * 2017-06-23 2018-12-27 深圳大学 State estimation method and device for target performing turn maneuver
CN107289968A (en) * 2017-06-23 2017-10-24 深圳大学 A kind of method for estimating state and device of turning maneuvering target
CN108226920A (en) * 2018-01-09 2018-06-29 电子科技大学 A kind of maneuvering target tracking system and method based on predicted value processing Doppler measurements
CN111190172A (en) * 2020-01-08 2020-05-22 中国船舶重工集团公司第七二四研究所 Same-platform multi-radar track association judgment method by using target motion state model
CN111650577A (en) * 2020-06-12 2020-09-11 电子科技大学 Maneuvering target tracking method containing Doppler measurement under polar coordinate system
CN111650577B (en) * 2020-06-12 2022-05-24 电子科技大学 Maneuvering target tracking method containing Doppler measurement under polar coordinate system

Also Published As

Publication number Publication date
CN104199022B (en) 2017-01-11

Similar Documents

Publication Publication Date Title
CN104199022B (en) Target modal estimation based near-space hypersonic velocity target tracking method
CN113866742B (en) Method for point cloud processing and target classification of 4D millimeter wave radar
CN103729859B (en) A kind of probability nearest neighbor domain multi-object tracking method based on fuzzy clustering
KR101628154B1 (en) Multiple target tracking method using received signal strengths
CN106842165B (en) Radar centralized asynchronous fusion method based on different distance angular resolutions
CN106443661B (en) Motor-driven extension method for tracking target based on Unscented kalman filtering
CN104730537B (en) Infrared/laser radar data fusion target tracking method based on multi-scale model
CN101221238B (en) Dynamic deviation estimation method based on gauss average value mobile registration
CN104715154B (en) Core K average Data Associations based on KMDL criterion criterions
CN107255805B (en) The prediction technique of radar target RCS based on weighted least-squares
CN108152812B (en) Improved AGIMM tracking method for adjusting grid spacing
CN110187337B (en) LS and NEU-ECEF space-time registration-based high maneuvering target tracking method and system
CN111929676B (en) X-band radar target detection and tracking method based on density clustering
CN111830501B (en) HRRP history feature assisted signal fuzzy data association method and system
CN110738275A (en) UT-PHD-based multi-sensor sequential fusion tracking method
CN104964690A (en) Expectation-maximization-based aerial maneuvering target track segment association method
CN107169299B (en) Tracking method for formation target in decentralized maneuvering mode
CN113702940B (en) Spatial cluster target resolution method based on multi-element characteristic information hierarchical fusion and application
CN108010066A (en) Multiple hypotheis tracking method based on infrared target gray scale cross-correlation and angle information
CN113311430B (en) Swarm unmanned aerial vehicle quantity estimation and track generation method
CN105842686A (en) Fast TBD detection method based on particle smoothness
CN105353352B (en) The MM PPHDF multiple-moving target tracking methods of improved search strategy
CN115220002B (en) Multi-target data association tracking method and related device for fixed single station
CN114445456B (en) Data-driven intelligent maneuvering target tracking method and device based on partial model
CN112379366A (en) Radar target tracking algorithm based on particle swarm filtering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant