04/003740 A2 I 0K O AR 0RO O

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
8 January 2004 (08.01.2004)

AT Y00 R

(10) International Publication Number

WO 2004/003740 A2

(51) International Patent Classification’: GOGF 9/46
(21) International Application Number:
PCT/EP2003/050265

(22) International Filing Date: 25 June 2003 (25.06.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

02014326.9 27 June 2002 (27.06.2002) EP

(71) Applicant (for all designated States except US): THOM-
SON LICENSING SA [FR/FR]; 46 quai Alphonse Le
Gallo, F-92100 Boulogne-Billancourt (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHAMPEL,
Mary-Luc [FR/FR]; 4 rue de la Croix Beucher, F-35220
Marpiré (FR). COGNE, Laurent [FR/FR]; 24 rue Jules
Ferry, F-35320 La Couyere (FR). LUBBERS, Willem
[FR/FR]; 17 bis rue Armand Rebillon, F-35000 Rennes
(FR).

(74) Agent: KOHRS, Martin; Thomson, 46 quai Alphonse Le
Gallo, F-92648 Boulogne Cedex (FR).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG,
US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Buropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— asto the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for the following desig-
nation US

of inventorship (Rule 4.17(iv)) for US only

[Continued on next page]

(54) Title: A DATA PROCESSING DEVICE AND METHOD FOR INTERACTIVE TELEVISION

(57) Abstract: A programmable data processing device for a digital TV set-top box comprises: - a loading engine (LE) for receiving
portions of code of a first type and/or data from a DSM-CC carousel (DC), - a storage means (C) for storing the portions received by
the loading engine, - an execution engine (EE) for executing an application embodied by the received portions; and - a translating
engine (TE) for translating the first type code into a native code of the execution engine (EE). The translating engine (TE) is adapted
to compile at least a certain one of said received portions into native code and to store the thus compiled portion in the storage means
(C), and to interpret other portions of code, and the execution engine (EE) is adapted to process compiled code and interpreted code

within a same application.

WO 2004/003740 A2 I} 110 A08OH0 0T 00000 0 00000 AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

A data processing device and method for interactive television

The present invention relates to a data processing device and method
which are specifically adapted for transmitting applications from a central station
of a network to a plurality of terminal stations and carrying out the applications
at the terminal stations, in which network data rates for downlink transmission
(central to terminal stations) are far higher than for uplink transmission (terminal
stations to central station).

A typical network of this type is an interactive TV network. In such a net-
work, the terminal stations are formed of TV sets equipped with a so-called set-
top-box, and the central station is a broadcasting station. In downlink, Au-
dio/Video data (AV data) and application data are transmitted at a high rate to
the individual TV sets; uplink data rates are far lower and may be zero for appli-
cations not requiring feedback to the broadcasting station.

Although the topology of such a network is similar to a common computer
network with a plurality of work-stations connected to a common server, the na-
ture of these networks poses a number of new problems. One is that in an in-
teractive TV network, the number of terminal stations is extremely large, it may
be a million terminals or more. Whereas in a local computer network, each ter-
minal may be free to request a particular application to be downloaded to it at
any given time, allowing the same in an interactive TV network would require
prohibitively high data transmission capacities. In the art of interactive television
this problem is solved using the so-called DSM-CC (Digital Storage Media
Command and Control) carousel. The DSM-CC carousel is a data stream
transmitted by the broadcasting station along with the AV data in which a se-
quence of modules is transmitted, each of the modules comprising code and/or
data of one or more applications that can be carried out by the terminal stations.
The transmission of this sequence of modules is repeated endlessly. Since the
number of applications is limited, transmission of every module is repeated after
a certain time interval. In order to be able to carry out an application, a terminal
station has to collect all modules belonging to this a.pplication.

If a terminal station starts to collect modules of a given application only
after having received an instruction from the user to launch this application, a

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

noticeable delay between the instruction and the launching may result which is
annoying for the user.

In order to relieve the this problem, according to the MHP (Multimedia
Home Platform) standard of the DVB (Digital Video Broadcast Forum,
www.dvb.org), the broadcasting station may transmit so-called pre-fetch signali-
zation which indicates, for each module transmitted on the carousel, whether it
might be worth while to store this module at the terminal station because there
is a probability that this module may have to be executed in the near future.
Correspondingly, the terminal stations may have a storage means for storing
therein the modules specified by the pre-fetch signalization, so that in case that
such a module has to be executed, execution can begin straight away, without
having to wait for retransmission of the module.

This might be a satisfying solution if the code broadcast on the DSM-CC
carousel were a native code that could be executed by the terminal stations
without need for further preliminary processing. But since the use of native code
would have the drawback of requiring an extremely high degree of standardiza-
tion of the terminal stations and since there are many diffe rent manufacturers of
such terminal stations, for which such a standardization is difficult to impose the
industry sought to provide the terminal stations with a Java virtual machine and
transmit the applications from the broadcasting station to the terminal stations
as Java intermediate code. This solution has indeed the advantage to have
DVB-MHP applications running on any DVB-MHP platform whatever the spe-
cific underlying hardware.

However, the price of this solution is the need for a powerful Java virtual
machine, implying significant processor speed and an important amount of
memory. On the market, this need for a relatively expensive hardware platform
is commonly seen as an important drawback of the DVB-MHP solution to inter-
active digital television and can be considered as a serious limit to the quick
expansion of the DVB-MHP solution.

In classical Java execution environments, application processing speed
is often gained by reducing execution time. This is done by means of compila-
tion of Java classes to native code that can be directly carried by a processor of

10

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

the Java virtual machine and not to intermediate code that must first be inter-
preted by the machine before it can be executed.

In a digital TV network of the type described above, it is obvious that
such a compilation can only be done at the terminal stations. If the broadcasting
station already transmitted a ready-compiled application, interoperability would
be lost. If compilation is done at the terminal station, execution speed can be
improved, but load latency will increase, because when the user has given an
instruction to launch a given application, he not only has to wait until all modules
of this application have been received from the carousel, but, additionally, the
time required for their compilation.

The object of the present invention is, therefore, to provide a program-
mable data processing device and a data processing method for use in a net-
work in which applications are transmitted by portions in a common stream, in
which a small delay between inputting a decision to launch an application and
the actual start of the application can be achieved without requiring high proc-
essing power.

This object is achieved by a programmable data processing device
comprising:

- a loading engine for receiving portions of code of a first type and/or data
from a stream of a broadcast network in which said portions are repeatedly
transmitted,

- a storage means for storing the portions received by the loading engine,

- an execution engine for executing an application embodied by the re-
ceived portions,

- a translating engine for translating the first type code into a native code

of the execution engine,
- characterised in that the translating engine (TE) is adapted to store the thus
compiled portion in the storage means (C), to compile at least a certain one of
said received portions into native code when a predetermined signalling infor-
mation is received from a stream, and to interpret other portions of code, and
that the execution engine (EE) is adapted to process compiled code and inter-
preted code within a same application.

This object is also achieved by a data processing method, comprising the
stens of

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

-a) receiving portions of code of a first type and/ or data from a stream of a
broadcast network in which said portions are repeatedly transmitted, wherein
the set of portions transmitted in said stream embodies one or more data proc-
essing applications
-b) storing predetermined ones of said portions in a storage means,

-¢c) when a predetermined signalling information is received from a stream, ,
compiling in a translation engine at least one of said portions comprising first
type code into native code of an execution engine,

-d) in the execution engine, carrying out one of said data processing applica-
tions by executing the compiled native code of the selected portions belonging
to said one application and by interpreting non-selected portions of this applica-
tion.

In this device and method, a delay in transmitting parts of the code of a
given application to the data processing device can be made use of by having
the translating engine compile portions of code that have already been received
at the data processing device. As soon as the complete code of an application
has been received, execution of the application can be started; code portions
that have not yet been compiled at that time can be carried out by interpretation.

Preferably, execution of an application will begin only when an instruction
to this effect has been input by a user. Before this happens, the device should
best have collected and compiled code portions of this application already.

Already, the fact that, when execution is started, parts of the code are
compiled increases execution speed over that of a conventional device in which
all code is interpreted. In data processing devices in which execution engine
and translating engine share processing power, the main reason for this speed
increase is that when interpreting, processing power is spent on translating a
portion of intermediate code into native code of the execution engine each time
this portion is executed, whereas, when compiling, the code is translated once
and for all, so that interpretation always absorbs processing power that might
better be used for execution of the application. But even in systems where exe-
cution engine and translating engine do not compete for processing power, a
speed increase is possible because compiled code can be made more efficient
than interpreted code.

10

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

If the execution engine and the translating engine of the device are
physically separate units, a further improvement can be achieved by having the
translating unit compile further portions of the code at execution time of the ap-
plication. This is possible without having to provide a particularly powerful trans-
lation engine because when the execution engine carries out compiled code,
the translation engine has spare time that is available for compiling. In this way,
the ratio of compiled to interpreted codes will continue to increase during execu-
tion until, finally, all code of the application is compiled.

If the translating engine and the execution engine are virtual devices
implemented in a time sharing fashion in a common processor, compilation can
also continue at execution time as described above, or, alternatively, when
compiled code is being executed, all processing power of the common proces-
sor can be assigned to the execution engine.

Most advantageously, the translating engine is adapted to select the
code portions it compiles according to signalling i nformation it receives.

One source of said signalling information may be the stream in which the
portions of code are transmitted. If the stream is a DSM-CC carousel, the pre-
fetch signalling conventionally transmitted in such a carousel may be used as
said signalling information. That is, whereas conventionally, a DVB-MHP plat-
form will only store a DSM-CC module specified by pre-fetch signalling in the
form in which it was transmitted and will eventually later interpret it, the data
processing device of the present invention may additionally compile such a
module.

Of course, the portions to be compiled might also be fractions of a DSM-
CC module. In that case, in order to specify the fractions to be compiled, an-
other type of signalling information besides the DSM-CC pre-fetch signalling
would have to be transmitted on the carousel. Such signalling information might
be defined by a person who develops the application based e.g. on the relative
frequency with which one or another portion of code are executed or the ex-
pected increase in efficiency of compiled code over interpreted code, which may
be different for various portions of code.

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

As an alternative or additionally, in a first time, the pre-fetch information
indicates for each module transmitted on the carousel whether it must be stored
at the terminal station in the first type form. Then,_the translating engine re-
ceives a predetermined signalling information indicating portions of code to be
compiled from the execution engine. This is particularly useful at run time of an
application. The broadcaster can launch the translation at the good time, for
example just before the execution of the application. Such an application may
be composed of a plurality of modules or portions, some of which may be exe-
cuted hundreds of times and others not at all. The broadcaster knows which
modules or portions will be executed soon and can anticipate the execution.
Usually, when an application is developed, it is possible to estimate which por-
tions of the code are executed frequently and which are not, or which portions
will be executed soon. Compiling instructions for frequently executed portions of
code may be comprised in other portions of the code of an application, e.g. in
an initializing portion, so that when the initializing portion is carried out, signal-
ling information according to these compiling instructions may be sent from the
execution e ngine to the translating engine.

The translating engine should further be adapted to decide whether to
compile or to interpret a given portion of first type code depending on signalling
information it receives from the execution engine. Namely, the translating en-
gine will also have to receive signalling information specifying a certain address
in the code when the execution engine has to carry out a jump or branch in-
struction to that address. If the corresponding code portion is not yet compiled
at the time the instruction has to be carried out, the translating engine will have
to interpret the code designated in the jump or branch instruction in order to
avoid a processing delay.

If a code portion comprising the target address of the jump or branch in-
struction is under compilation at the time the instruction is carried out, one pos-
sibility of proceeding is that the translating engine ignores the signalling infor-
mation from the execution engine requiring interpretation and that it finishes
compiling the code portion. In that case the execution engine may have to wait
for some time before it can carry out the jump or branch instructions, but this
delay may be compensated by increased processing speed afterwards.

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

An alternative possibility is that in such a case the translating engine
abandons compilation of this code portion and starts interpreting it, in order to
keep the execution engine from waiting. It can also be provided that the
translating engine chooses between these two alternatives based on an esti-
mate of the processing time required for finishing compilation of the portion.

Further features and advantages of the present invention become appar-
ent from the subsequent description of preferred embodiments given in connec-
tion with the appended drawings.

Fig. 1 is a schematic block diagram of a programmable data processing
device according to the present invention;

Fig. 2 is a first flow chart of processes carried out by the device of Fig. 1;

Fig. 3 is a second flow chart of alternative processes carried out by the
device of Fig. 1;

Figs. 4A, 4B show two possible embodiments of a detail of Fig. 3; and

Fig. 5 is a block diagram of a second embodiment of the device of the
inve ntion.

The data processing device, delimited by a dashed frame in Fig. 1, com-
prises a loading engine LE, a translating engine TE made up of a compiling en-
gine CE and an interpreting engine |E, a cache C and an execution engine EE.
The device is part of a set-top-box for digital television.

The loading engine LE is adapted to receive modules of code and data
from a DSM-CC carousel DC. In this carousel, a set of payload modules is cy-
clically transmitted. There are two types of payload modules, data modules rep-
resented as sheets of paper bearing a letter D and code modules represented
as sheets with a letter I. Code and data modules will accordingly also be -
ferred to as | and D modules, respectively. Code in the code modules | may be-
long one or more applications that can be executed by the execution engine EE.
The code contained in the code modules | is an intermediate code, i.e. a code
which may be more compact than code in a high level language in which the
application was originally written, but which is not executable by the execution

7

5

30

35

WO 2004/003740 PCT/EP2003/050265

engine without prior translation. Preferably, the high level language from which

the intermediate code is derived is the Java programming language. The use of
the intermediate code is necessary in order to ensure operability of the code in
a wide variety of set-top-boxes made by different manufacturers.

There is a connection 1 between the loading engine LE and the cache C
by which the loading engine LE may store | and D modules received from the
carousel DC in cache C. There is another connection 2 between the loading
engine LE and the compiling engine CE by which the loading engine LE may
forward | modules to the compiling engine CE for compilation. The compiling
engine CE compiles these into modules of native code represented as sheets of
paper bearing the letter N, which, as shown in the Fig., can be forwarded to
cache C via a connection 3 or which may also be directly forwarded to the
execution engine EE for immediate execution via connection 4. The cache may
thus contain three types of modules, namely |, D and N modules.

When the execution unit EE carries out an application, it informs the
loading engine LE of a required code module via connection 5. The loading en-
gine LE will then fetch the corresponding module from the cache C and forward
it to the execution engine EE via connection 6, if the module is compiled, or via
connection 7 to the interpreting engine IE, if the module is in intermediate code.

Obviously, each of the various engines of the device may be a circuit dis-
tinct from the others, or one or more of these engines may be embodied by a
microprocessor which, at different times, carries out the different tasks of the
various engines as described above.

The processes executed by the various engines of the device will now be
described in detail referring to Figs. 2 and 3.

In this description, it is assumed that the device of the invention is a set
top-box for digital television that can execute various applications continuously

transmitted by the DSM-CC carousel according to the choice of an operator.

Fig. 2 shows two processes preferred to as process a and process b
executed by the loading engine LE and the compiling engine CE in a set-top-
box immediately after switching on, before an operator has chosen an applica-

8

15

25

30

35

WO 2004/003740 PCT/EP2003/050265

tion to be executed. Processes a and b are executed concurrently. In step a1
of process a, the loading engine LE receives a module from the DSM-CC car-
ousel DC. The module can be an | module or a D module. In step a2, the load-
ing engine LE judges whether the module is accompanied by pre-fetch signali-
zation. In principle, the question of whether a module is signalized to be pre-
fetched is at the discretion of the operator of the carousel DC. In general, a
module will at least be signalized to be pre-fetched if it contains code or data
that are necessary to begin execution of any of the applications transmitted on
carousel DC, for this will allow the set-top-box to begin execution without delay,
as soon as the operator has chosen an application.

If the module is not signalized to be pre-fetched, the loading engine will
ignore it and will wait for the next module to arrive.

If the module is signalized to be pre-fetched, the loading engine LE will
check in step a3 whether it is present in the cache C already. If yes, the process
may return to step a1l to wait for the next module. Alternatively, if there is a
possibility of modules being updated between subsequent transmissions on the
carousel DG, it may be provided that the earlier version of the module present in
cache C is overwritten by the new one.

If the module is not present in the cache C, the loading engine LE checks
in step a4 whether there is space available in cache C for storing it. If there is
no space available, the loading engine LE selects a module stored in the cache
which may be overwritten in step a5. Selection criteria might be how long a
module has been stored in the cache C without being used. Alternatively, the
pre-fetch signalization might specify various priority levels, and the module se-
lected for overwritting might have a lower pre-fetch priority level than the mod-
ule currently received. If there is no module having a lower pre-fetch priority
level than the presently received one, the latter one would have to be discarded.
If there is space available in the cache or if it has been made available by se-
lecting a module for overwriting, the presently received module is stored in the
cache in step a5, and the loading engine LE is ready to receive another module
from the carousel DC.

Concurrently, the compiling engine CE cyclically repeats the steps b1 of
selectina an uncompiled module. b2 of compiling it and b3 of storina the com-

9

10

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

piled module in the cache C. As soon as the module is compiled, the storage
space in cache C containing the original intermediate code module is released,
so that any newly received module may be stored therein.

Processes a and b may be completely unsynchronized; i.e. whenever the
compiling engine CE has finished step b3 for one module, it immediately returns
to step b1 and searches the cache C for another module to be compiled. When
there is more than one uncompiled module in the cache and there are pre-fetch
priority levels defined for these, the compiling engine CE will always select the
module having the highest priority.

When the loading engine LE and the compiling engine CE are embodied
in a single microprocessor or other appropriate electronic circuit and share its
processing power, neither of processes a and b must keep the microprocessor
completely occupied. In this case, it is preferable to have the microprocessor
act as the loading engine LE, e.g., triggered by an interrupt, whenever a module
is received and it has to be decided whether to store the module or not, and to
have it act as the compiling engine CE whenever the loading engine would be
idle. l.e. process a is executed as a foreground or high priority task, and proc-
ess b is executed as a low priority or background task which may be interrupted
in favor of process a whenever necessary.

In an alternative embodiment, the processes a and b may also be
synchronized, namely in that process b is triggered when step a6 has been
carried out, and selects the module stored in step a6

If the processes a, b are synchronized, according to a further alternative,
step a6 may be dispensed with, and instead of storing the received module in
the cache C, it is supplied directly from the loading engine LE to the compiling
engine CE and is written to the cache C after compilation only.

Not synchronizing processes a and b may be preferable if loading engine
LE and compiling engine CE share the processing power of a common process-
ing drcuit and there is a risk that compilation of a module may not be finished
when a further module is received accompanied by pre-fetch signalization.
However, this risk may be decreased by selecting the sequence in which mod-

10

10

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

ules are transmitted on the carousel DC such that modules to be pre-fetched
are regularly interspersed between madules without pre-fetch signalization.

In general, the modules in the DSM-CC carousel DC that are signalized
to be pre-fetched will be the modules comprising code and data necessary for
starting any of the various applications. Accordingly, if the capacity of the cache
is large enough, starting code portions for all applications transmitted on the
carousel DC will be present in the cache in compiled form, so that when an op-
erator selects a particular application at the set-top-box, execution of this appli-
cation can commence without delay. If the storage capacity of the cache is large
enough, other important modules of the various applications may also be stored
therein and, eventually, be compiled. A code section is said to be important in
this context if it has a high probability of being executed frequently and/or sub-
sequently to the starting portion of the application.

Since the DSM-CC carousel of a broadcasting station may serve various
set-top-boxes having different cache storage capacities, the pre-fetch signali-
zation should preferably comprise a priority level indicating enabling the loading
engine LE to select only the most important code portions for storing them in the
cache.

When the operator chooses an application to be executed on the set-top-
box and inputs this choice, there is a possibility that all code required for the
application is present in the cache already, be it in compiled or uncompiled
form. If so, process a can be stopped and the execution engine EE will begin to
run process c¢ of Fig. 3.

In most cases, however, not all code of the application will be present in
the cache, so that process a replaced by a modified process a’ of Fig. 3, the
object of which is to gather the missing code portions from the carousel DC.

In process a’, the loading engine LE receives a module from the carousel
DC in step a1’. If it is found in step a2’ that the same module is present in the
cache already, be it in compiled or uncompiled form, the process returns to step
al’ to wait for the next module. If the module is not in the cache, step a3
checks whether the received module is part of the application selected to be
executed. If it is. the process branches to step a6’. described later. If the answer

11

15

25

30

35

WO 2004/003740 PCT/EP2003/050265

is no, the loading engine LE checks in step a4’ whether it has received any
control information from the executing engine EE indicating that this module
might be wanted by the execution engine. The execution engine might send
such control information concerning a specific module of a second application
not currently executed based on an instruction to do so in the presently exe-
cuted application, if there is a possibility of the present application invoking said
second application.

If the answer in step a4’ is yes, the process branches to step a6’, if not,
step a5’ checks whether the module is signalized to be pre-fetched. If it is, the
process also switches to a6, if not, it returns to a1’ to wait for another module.

In step a6’, the module is assigned a priority level. If it is a pre-fetch sig-
nalized module and the pre-fetch signalling specifies a priority level, this level
may be assigned. If the module belongs to the current application or if it is
wanted by the execution engine EE, it is assigned a priority level higher than
any pre-fetch signalling priority level.

Step a7’ then checks whether there is cache space available. If not, a
module in cache C must be selected for overwriting in step a8’. This selection
takes account of the priority level assigned to the present module in step a6’
and of the priority levels of modules already in the cache C. Since a module
belonging to the present application or wanted by the execution engine always
has a higher priority level then a pre-fetch signalized module that may belong to
any other application, these latter modules may always be overwritten in order
to be able to store a module of the current application or a wanted module. If
the priority of the present module is so low, that there is no other module in the
cache that may be overwritten, the module will be discarded. If there is free
space available in the cache C, or if there is a module in the cache C that may
be overwritten, the present module will be stored in the cache C in step a9'.

If the cache capacity is sufficient, all modules of an application will be in
cache C after one cycle of the carousel DC.

While the loading engine LE is carrying out process a’, the compiling en-
gine CE may continue process b of Fig. 2, so that after a certain time, the com-
plate code of tha selacted annlication will be available in compiled form.

12

15

25

30

35

WO 2004/003740 PCT/EP2003/050265

In an embodiment where the compiling engine CE and execution engine
EE share the processing power of common processing circuit, and processing
power is short, process b may also be stopped when execution of the applica-
tion begins.

Process c of Fig. 3 relates to the execution of the selected application by
execution unit EE.

In a first step ¢1, the execution unit EE will execute the start module of
the application. The start module is assumed to be present in cache C in com-
piled form. Eventually, it may become necessary for the execution unit EE to
jump to another module of the code of the application in step ¢2. To this end,
the execution unit EE sends control information to the loading engine LE identi-
fying the required module.

In step ¢3, the loading engine LE determines whether this required mod-
ule is present in cache C. If it is not, it is necessary to wait until the module is
received from the carousel DC (step c4). If the module is present in the cache,
the loading engine LE further determines whether the module is compiled or not
(step ¢5). If the module is compiled, the compiled code is forwarded directly
from cache C to execution unit EE in step ¢6; otherwise, it is forwarded to inter-
preting engine IE for interpretation, and the interpreting engine feeds interpreted
instructions to execution engine EE in step c7. Execution of the compiled code
or interpretation continues until either the process reverts to step ¢2 in order to
jump to another module or the application is finished.

According to advanced embodiments of process c, the dashed frame ¢
shown in the flow chart of process ¢ may comprise additional method steps
shown in Fig. 4A or 4B. Namely, if process b is continued concurrently with
process c, a situation may arise in which the module to which the execution en-
gine EE attempts to jump in step c2 is being compiled by compilation engine CE
(step ¢10). In such a situation, there are two possibilities of avoiding a conflict.
As shown in Fig. 4A, the execution engine EE may be obliged to wait until the
compilation engine CE has finished compiling the code (step c11) and then
branches to step ¢6 described above. Alternatively, as shown in Fig. 4B, if a

13

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

conflict is recognized in step ¢10, compilation may be aborted in step ¢11’, and
the module is interpreted in step c7.

In the embodiments described up to now, it has been assumed that when
the loading engine LE receives a module from the DSM-CC carousel DC, it will
use signalling information of the carousel such as the pre-fetch signalling for
deciding whether it is appropriate to compile the received code module or not.
Of course, this is a simple and convenient way of carrying out the present in-
vention which has the advantage that it can be employed with a conventional
DSM-CC carousel without requiring any modification in the signalling and pay-
load transferred by it.

In an advanced embodiment of the present invention, payload modules
are used as control information that enables the device of the invention to de-
cide whether a received code module should be compiled or not. To this end, a
third type of payload module for the DSM-CC carousel is provided. This module
is referred to as code analysis table in the following, and is represented by a
sheet of paper bearing the letter T in Fig. 5.

A code analysis table T may contain

a) control information identifying intermediate code modules | of the carou-
sel or portions of such modules which should be pre-compiled. Compila-
tion of portions of a module may be advantageous because one | module
of the carousel may comprise code belonging to various applications, not
all of which it may be useful to pre-compile. Further, among the code re-
lating to a single application, there may be portions that are likely to be
executed much more frequently than others. Accordingly, in order to
achieve optimum execution speed of an application from the beginning, it
may be wise to pre-compile only the important portions of an | module,
leaving the less important ones for interpretation, so that the processing
time of the compilation engine CE thus saved can be used for compiling
important portions of another | module. These portions may for example
be single functions or methods of the intermediate code.

This control information may also indicate priority levels for the compila-
tion of the individual portions. This enables the compiling engine first to
compile portions of an | module havina maximum prioritv level. then to

14

15

30

35

WO 2004/003740 PCT/EP2003/050265

compile portions having the same priority level of other modules, and, as soon
as compilation time can be spared, to begin compiling portions of the
modules having a lower priority level.

b) compiling optimization information. This information may give hints to the
compilation engine CE on how to compile a given portion of code in order
to achieve optimum system performance. Optimization specified in this
information may involve e.g. function inlining, loop unrolling, register ws-
age, pipelining, switch rewriting, etc. This information may be prepared
by the developer of a given application. It is not necessary that a set-top-
box heeds the compilation hints given in the T modules; if it does not, it
will also be able to compile correctly, but if it does, it will be able to gen-
erate highly efficient native code although the algorithm of the compiling
engine may be quite simple. According to its level of sophistication, a set-
top-box may therefore be able to heed none, part or all of these hints.

By the present invention, the following main advantages are achieved.
First of all, due to the compilation of at least part of the code of an application,
the execution speed of the application is strongly increased. Interpretation of
code is clearly slower than execution of compiled code, and this is mainly due to
the fact, that when interpreting, processing power is spent on translating a por-
tion of intermediate code into native code of the execution engine EE each time
this portion is executed, whereas, when compiling, the code is translated once
and for all.

The invention is extremely efficient when bottleneck parts of the applica-
tion get compiled. In fact, it may not be necessary to compile all parts of an ap-
plication when only some parts of it are causing a heavy load on the execution
engine. Obviously, when there are portions of code repeated many times over,
the increase in efficiency achieved by compiling these may be considerable. On
the other hand, there may be portions of code that are executed only once or
have a low probability of being executed. For these, compilation will not lead to
an increase in efficiency, so that it may not be worth while to compile them. A
second advantage is that in general, compilation makes a code more compact.
Accordingly, if code is compiled, it will be possible to store more modules in a
given cache size than without compilation.

15

10

WO 2004/003740 PCT/EP2003/050265

Thanké to the more efficient use of memory, it becomes possible for a
given MHP to host much more applications simultaneously. From a user’s point
of view, this makes the box appear more powerful.

Last but not least, by judiciously preparing the code analysis table, the
developer of an application has increased control on how the code he writes is
translated into native instructions of the execution engine. In this way, highly
efficient native code can be generated using a rather simple compilation and/or
interpreting engine.

16

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

Claims

1. A programmable data processing device comprising :
- a loading engine (LE) for receiving portions of code of a first type and/or data
from a stream (DC) of a broadcast network in which said portions are repeat-
edly transmitted,

- a storage means (C) for storing the portions received by the loading
engine,

- an execution engine (EE) for executing an application embodied by the
received portions,

- a translating engine (TE) for translating the first type code into a native
code of the execution engine (EE)
- characterised in that the translating engine (TE) is adapted to store the thus
compiled portion in the storage means (C), to compile at least a certain one of
said received portions into native code when a predetermined signalling infor-
mation is received from a stream, and to interpret other portions of code, and
that the execution engine (EE) is adapted to process compiled code and inter-
preted code within a same application.

2. The data processing device according to claim 1, wherein the translating
engine (TE) is adapted to select said certain portions according to control
information received by it.

3. The data processing device according to claim 1 or 2, wherein the stream
(DC) is a DSM-CC carousel.

4, The data processing device according to claim 3, wherein said portion is
a DSM-CC module (I).

5. The data processing device according to claim 3, wherein said portion is
a fraction of a DSM-CC module.

6. The data processing device according to one of claims 2 to 5, wherein
the translating engine (TE) is adapted to receive said control information
from said stream (DC).

17

10

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

7.

10.

11.

12.

13.

14.

The data processing device according to claims 3, 4 and 6, wherein the
control information is DSM-CC pre-fetch signalling.

The data processing device according to claims 3 and 6 and one of
claims 4 and 5, wherein the translating engine (TE) is adapted to extract
the control information from a payload module (T) of the DSM-CC carou-
sel (DC).

The data processing device according to claim 8, wherein the translating
engine (TE) is adapted to extract compiling optimization information relat-
ing to a portion of code to be compiled from said payload module (T) and
to heed the compiling optimization in the process of compiling said por-
tion of code.

The data processing device according to one of claims 2 to 9, wherein
the translating engine (TE) is adapted to receive control information from
the execution engine (EE).

The data processing device according to one of claims 1 to 10, wherein
the translating engine (TE) is adapted to decide whether to compile or to
interpret a given portion of first type code according to control information
received from the executionengine (EE).

The data processing device according to claim 11, wherein the
translating engine (TE), during compilation of a given first type code
portion, is adapted to ignore control information requiring said portion to
be interpreted, and to finish compiling the portion.

The data processing device according to claim 11, wherein the translat-
ing engine (TE) , when receiving control information requiring a given first
type code portion to be interpreted during compilation of said portion, is
adapted to abandon the compilation and to start interpreting the portion.

A data processing method, comprising the steps of:
-a) receiving (a1, a1’) portions of code (I) of a first type and/ or data
(D) from a stream (DC) of a broadcast network in which said portions (1.

18

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

15.

16.

17.

18.

19.

20.

21.

D) are repeatedly transmitted, wherein the set of portions transmitted in
said stream (DC) embodies one or more data processing applications
-b) storing (a6, a9’, b3) predetermined ones of said portions in a stor-
age means (C),
-c) when a predetermined signalling information is received from a
stream, , compiling in a translation engine at least one of said portions
comprising first type code into native code of an execution engine,
-d) in the execution engine (EE), carrying out one of said data proc-
essing applications by executing (c6) the compiled native code (N) of the
selected portions belonging to said one application and by interpreting
(c7) non-selected portions of this application.

The data processing method of claim 14, comprising, between steps ¢
and d, the step of receiving an instruction from a user specifying the ap-
plication to be carried out in step d.

The data processing method according to claim 14 or 15, wherein in step
c, said at least one portion is selected (a2, a3’, a4’, a5’) based on control
information supplied to the translation engine (TE).

The data processing method according to one of claims 14 to 16,
wherein the stream (DC) is a DSM-CC carousel.

The data processing method according to claim 17, wherein said portion
is a DSM-CC module.

The data processing method according to claim 17, wherein said portion
is a fraction of a DSM-CC module (I).

The data processing method according to one of claims 16 to 19,
wherein said control information is received (a2, a5’) from said stream

(DC).

The data processing method according to claims 18 and 20, wherein the
control information is DSM-CC pre-fetch information.

19

15

20

25

30

35

WO 2004/003740 PCT/EP2003/050265

22.

23.

24.

25.

26.

27.

28.

The data prdcessing method according to one of claims 18 or 19 and
claim 20, wherein the control information is a payload module (T) of the
DSM-CC carousel (DC).

The data processing method of claim 22 wherein the control information
further comprises compiling optimization information relating to a portion
of code to be compiled, and the translation engine heeds the compiling
optimization information when compiling said portion of code.

The data processing method according to one of claims 14 to 19,
wherein said control information is received (a4’) from said execution en-
gine (EE).

The data processing method according to claim 24, wherein the translat-
ing engine (TE) decides based on said control information from the exe-
cution engine (EE) whether to compile or to interpret a given first type
code portion.

The data processing method according to claim 25, wherein if the trans-
lation engine (TE) receives control information requiring a given portion
to be interpreted during compilation of said portion, it ignores (c11) the
control information and finishes compiling the portion.

The data processing method according to claim 25, wherein if the trans-
lation engine (TE) receives control information requiring a given portion
to be interpreted during compilation of said portion, it abandons the com-
pilation (c11’) and starts interpreting the portion.

The data processing method according one of claims 14 to 27 in which,

after step c), memory space allocated to the first type code of the com-
piled portion is released for overwriting.

20

WO 2004/003740 PCT/EP2003/050265

1/3

Fig. 1

Fig. 2

Process a

Process b

START
b1
‘ al \ L
receive |/ select uncompiled
module module
— b2
compile
b3 -

‘store compiled
module in cache

/a5

select module
for overwriting

36 ~ L3 l
store received
module Iin cache

WO 2004/003740 PCT/EP2003/050265

2/3
Fig. 3
Process g’ Process ¢
i, , execute star| ¢1
?neggi‘;:?j module of +/
, _application
| jump to
other uﬂz
| module

other
module in

'module
wanted by

ad’ n
-]
7 as LN e mnm———— _E
assign IO N .
priority - ‘
} o7
execute |)
‘compiled | [interpret |
| _code

store received
muodule in cache

WO 2004/003740 PCT/EP2003/050265

3/3
Fig. 4A
o5
~T module
~gompiled?
. ¢

t
!
'
]
)
3
¥
¥
3

c‘i'i\‘

wait until
compilation
finished |

A 0 2 e e i A A e A3 AN 4 e b 05 e e
st Bt 1 0 it 2 B e 8 i o e

et e e e e R Y . e T Sy T

cH c7

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

