087082530 A1 |1 0 0000 R R0

O

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O 0O

International Bureau

(43) International Publication Date
10 July 2008 (10.07.2008)

(10) International Publication Number

WO 2008/082530 Al

(51) International Patent Classification:
GOG6F 13/42 (2006.01)

(21) International Application Number:
PCT/US2007/025866

(22) International Filing Date:
19 December 2007 (19.12.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
11/618,865
11/618,367

31 December 2006 (31.12.2006)
31 December 2006 (31.12.2006)

Us
Us

(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 601 Mccarthy Boule-
vard, Milpitas, CA 95035 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LIU, Baojing
[CN/US]; 1792 Magnolia Lake Court, San Jose, CA
95131 (US). NAIR, Radhakrishnan [US/US]; 3725
Langdon Common, Fremont, CA 94538 (US). LASSA,
Paul [US/US]; 242 Carmelita Drive, Mountain View, CA
94040 (US).

(74) Agent: HETZ, Joseph, F.; Brinks Hofer Gilson & Lione,
P.o. Box 10087, Chicago, IL. 60610 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: METHOD AND APPARATUS FOR PERFORMING FULL TRANSFER AUTOMATION IN A USB CONTROLLER

28 ”\ —— 18 32 “\ /— 30 //— 40
]
HIM \ \
\ \ MICROPROCESSOR INTERFACE J
I T
0 USBDPDM | o\ UTMI MAC il DMA T0
HOST g ~ 7| CONTROLLER || BLOCK [T BMU
> Y T 1]
Y | A
RXFIFO| [TX FIFO
FTA FTA
AUKIF o= peeisTERS [™ MODULE [| |
: - L
T N
50 . 46 L48 g S

(57) Abstract: A USB controller and method of Implementing a full transfer automation mode is described. The USB controller
& may have a host interface module configured to generate hardware logic signals for communication to a backend module having
& buffer memory. The backend module may be configured to generate hardware logic signals for communication with the host interface
module such that data transfer within the USB device may be implemented without the need for processor intervention to handle

routing of data packets during a USB bulk data transfer.

WO 2008/082530 PCT/US2007/025866

METHOD AND APPARATUS FOR PERFORMING FULL TRANSFER
AUTOMATION IN A USB CONTROLLER
TECHNICAL FIELD
[0001] This application relates to Universal Serial Bus (USB) data transfer
architecture and methods. More specifically, this application relates to USB data
transfer architecture and methods for increasing data throughput in USB peripheral

devices.

BACKGROUND

“[0002] USB peripheral devices, such as data storage devices containing non-
volatile memory, are corhmonly used in home and business computing
environments for reliable data storage in a compact and portable package. This
type of USB peripheral device may include a USB controller that utilizes a
protocol handler to interface with a USB physical layer (PHY) device and a
backend circuit that communicates with flash memory. When a host connected
via the USB connector of the USB device wishes to write data to, or read data
from, the USB device, the commands and data are presented with the appropriate
USB protocols and in the appropriate formats according to an agreed upon
standard. The USB standards are designed with theoretical maximum data transfer
rates. Although the USB standard will theoretically support these maximum data
rates, the performance of USB data storage devices may not actually achieve the
maximum data rates due to limitations of the storage medium and associated
circuitry.
[0003] A USB controller in a USB data storage device manages the transfer of
data to and from the USB data storage device. Typically, the data is transferred in
batches of a known length and handshaking messages are exchanged between the
host and the USB device to manage timing and error checking during data transfer.
One way to handle the data exchange in the USB peripheral device is for the USB
controller to execute a number of firmware instructions on an internal

microprocessor in response to processor interrupts generated as each of the

WO 2008/082530 PCT/US2007/025866

batches of data is moved to or from buffers. Firmware involvement, however, can
significantly impact data transfer performance. Each interrupt will delay other
activities the internal microprocessor may be engaged in, or wake the
microprocessor up from any temporary sleep or idle mode, and likely require time
to identify, interpret and act on firmware instructions related to the interrupt.
Accordingly, microprocessor activity in a USB controller can slow down the

achievable data transfer rate and increase power consumption in the USB device.

SUMMARY
[0004] | In order to address the need for an improved USB controller
architecture and method of transferring data, a USB controller with full transfer
automation that can reduce or avoid the use of firmware and microprocessor

- overhead during certain data transfer functions is set forth.
[0005] According to a first aspect, a method of implementing full transfer
automation in a Universal Serial Bus (USB) controller is disclosed. The method
includes receiving a USB bulk data transfer initiation message at the USB
controller from a host and transferring data packets during a USB bulk data
transfer operation. Hardware generated logic signals are exchanged between a
host interface module and a backend module of the USB controller during a data
transfer phase of the bulk data transfer operation, relating to a data transfer status
within the USB controller. In one implementation, exchanging hardware
generated logic signals may include generating at least one backend hardware
logic signal in a backend module of the USB controller indicative of a readiness of
a buffer memory to transfer data in or out of a mass storage media during the USB
bulk data transfer operation. In addition, exchanging hardware generated logic
signals may include generating at least one host interface module hardware logic
signal in a host interface module of the USB controller so that, during a USB bulk
data transfer read or write operation, the backend module and host interface
module are configured to communicate with each other relating to the data transfer

status within the USB controller.

WO 2008/082530 PCT/US2007/025866

[0006] In another aspect, a method of implementing full transfer automation in
a Universal Serial Bus (USB) controller includes receiving a USB bulk data
transfer initiation message for a USB bulk transfer write operation at the USB
controller and initializing a full transfer automation mode within the USB
controller. Data packets are received from the host at the USB controller during
the USB bulk transfer write operation and hardware generated logic signals are
exchanged between a host interface module and a backend module of the USB
controller relating to a data transfer status within the USB controller while
receiving the data packets.

[0007] In yet another alternative implantation, a method of implementing full
transfer automation in a Universal Serial Bus (USB) controller is disclosed where
a USB bulk data transfer initiation message for a USB bulk transfer read operation
is received at the USB controller from a host and the USB controller initiates a full
transfer automation mode within the USB controller. During the bulk transfer
read operation, the full transfer automation mode may include transmitting data
packets to the host from the USB controller and exchanging hardware generated
logic signals between a host interface module and a backend module of the USB
controller regarding data transfer status within the USB controller while
transmitting the data packets.

[0008] According to another aspect, a Universal Serial Bus (USB) controller
for use in a USB peripheral device is disclosed. The USB controller may include a
backend module having buffer memory configured to transfer data in or out of a
mass storage media such as a non-volatile memory. In addition, a host interface
module is in communication with the backend module and configured to
communicate with a host. The backend module and host interface module are
also configured to communicate with each other via hardware logic signals
relating to a data transfer status within the USB controller during a USB bulk data
transfer read or write operation.

[0009] In another aspect, a Universal Serial Bus (USB) peripheral device is
described. The USB peripheral device may include mass storage media, such as
non-volatile memory, adapted for receiving data from or providing data to a host

-3-

WO 2008/082530 PCT/US2007/025866

and a USB controller. The USB controller may include a backend module having
buffer memory configured to transfer data in or out of the mass storage media. In
addition, the controller may include a host interface module in communication
with the backend module and configured to communicate with the host, where
during a USB bulk data transfer read or write operation the backend module and
host interface module are configured to communicate with each other via hardware
logic signals relating to a data transfer status within the USB controller.

[0010] Other features and advantages of the invention will become apparent

upon review of the following drawings, detailed description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] FIG. 1 is a block diagram of a USB peripheral device. connected with a
host.
[0012] FIG. 2 is a block diagram of a host interface module in the USB
peripheral device of FIG. 1.

| [0013] FIG. 3 is a block diagram of a backend of a USB controller suitable for
use in the USB peripheral device of FIG. 1.
[0014] FIG. 4 is a flow diagram of a USB bulk transfer operation.
[0015] FIG. 5 is a register table of data prepared for facilitating full transfer
automation in the USB peripheral device of FIGS. 1-3.
[0016] FIG. 6 is a data structure for use in bulk data transfer in the USB
peripheral device of FIG 1.
[0017] FIG. 7 is an example of a USB high speed bulk out transaction utilizing
the USB peripheral device of FIG. 1.
[0018] FIG. 8 is a state table illustrating logic for generating USB handshake
packets in response to receipt of bulk data transfer tokens.
[0019] FIG. 9 is an example of a USB high speed bulk in transaction utilizing
the USB peripheral device of FIG. 1.

WO 2008/082530 PCT/US2007/025866

DETAILED DESCRIPTION

[0020] FIG. 1 illustrates a block diagram of a universal serial bus (USB)
peripheral device 10 connected with a host 12 via a USB communication line 14.
The host 12 may be a USB port of a personal computer or any electronic
component with USB capability, for example MP3 players, cell phones, etc. The
USB communication line 14 may be a direct USB connection of the USB
peripheral device 10 to the host 12 via a standard USB connector, or may include
intervening USB functions, such as a hub. As shown in FIG. 1, the USB
peripheral device 10 may be a flash memory thumb drive configured for mass data
storage. The USB peripheral device includes a USB controller 16 consisting of a
host interface module (HIM) 18, a buffer management unit (BMU) 20, a flash
memory interface module (FIM) 22 and a central processing unit (CPU) 24. The
USB controller 16 communicates with the USB communication line 14 outside of
the USB peripheral device 10 and also with the flash memory 26 contained within
the USB peripheral device 10. Although one or more components of the USB
controller 16 may be configured as discrete components, in one embodiment the
HIM 18, BMU 20, FIM 22, and CPU 24 are all formed on a single application
specific integrated circuit (ASIC). Also, although flash memory is illustrated,
other non-volatile memory or mass storage media are contemplated.

[0021] Referring now to FIG. 2, the HIM 18 is shown in greater detail. The
HIM 18 includes a physical layer interface 28, such as a USB 2.0 physical
interface for interfacing with USB serial bus data lines on one side and with a
UTMI interface on the other side. The physical layer interface 28 extracts clock
information and data from the serial stream, checks for errors in received data,
performs NRZI decoding, bit un-stuffing, serial-to-parallel conversion and then
sends this data to the USB device core 30. The physical layer interface 28 also
performs the reverse function, translating data received from the USB device core
30 in a UTMI parallel data format to the USB serial data format. In one
implementation, the UTMI transmission may be a parallel 30 MHz 16 bit bus. In

other implementations, any of a number of digital interface standards for USB

-5-

WO 2008/082530 PCT/US2007/025866

applications, such as UTMI+ or ULPI may be used in place of UTMI. The
physical layer interface 28 may be implemented with any of a number of USB 2.0
PHY IP core arrangements such as those available from Chipidea
Microelectronica S.A. of Lisbon, Portugal. Also, the physical layer interface 28
may support the high speed (480 Mbps), full speed (12 Mbps) and low speed (1.5
Mbps) data transfer rates in compliance with the USB 2.0 specification.
[0022] The USB device core 30 includes a media access control (MAC)
controller 32 and a direct memory access (DMA) block 36. Each communicate
with the CPU 24 via a microprocessor interface 40 to allow the CPU 24 to read
and write to the USB device core 30 registers, to setup and trigger USB
transactions and to respond to transaction events and status changes reported by
the USB device core 30. The MAC controller 32 communicates with the physical
layer interface 28 over the UTMI data path, parses all USB tokens received from a
host and generates response packets. Additionally, the MAC controller 32 also is
responsible for all error checking, check fill generation, USB handshake formats,
ping and data response packets, and any signals that must be generated based on a
USB timing requirement.
[0023] The DMA block 36 communicates with the MAC controller 32 and is
responsible for moving all of the data to be transferred to and from the flash
memory 26 in the USB peripheral device 10 between the USB device core and the
buffer RAM (BRAM) in the BMU 20. In one implementation, the DMA block 36
communicates over a USB full transfer automation (FTA) interface with the BMU
20 in the USB peripheral device 10 to exchange hardware logic generated

" handshake signals when managing data transfers, such as USB bulk data in or out
transfers (also referred to as bulk data read or write transfers, respectively). A
data bus connection, such as a BVCI interface, connects the DMA block 36 with
the CPU 24. Additionally, the DMA block 36 maintains context information and
builds configurable FIFO buffers 42, 44 between the MAC controller 32 and the
DMA block 36. These FIFO’s decouple the system processor memory bus request
from the tight timing required by the USB protocol itself and balance out
differences in internal clock frequencies that affect the timing of data transfer

-6-

WO 2008/082530 PCT/US2007/025866

between the DMA block 36 and the MAC controller 32. Multiple FIFO channels
may be maintained for each of the active endpoints in the system. The size of the
TX and RX FIFO buffers is determined based on the number of device endpoints
supported and the worst case latency to acquire the bus and fetch a block of data.
[0024] In one implementation, the USB core 30 may be an IP core from
Chipidea Microelectrénica S.A. of Lisbon, Portugal. Any of a number of other IP
cores from other USB IP core providers may also be used. The HIM 18 also
includes FTA registers 46 and an FTA logic module 48. The FTA registers 46 are
configured to receive set up information for enabling a full transfer automation'
mode where, as describe in greater detail below, the USB controller 16 can utilize
hardware generated logic signals, rather than CPU activity via interrupts and
firmware instructions, to mahage movement of data blocks to and from BRAM.
The FTA registers also maintain information such as current transfer status as
hardware generated logic signals increment the number of completed data block
transfers in an expected bulk data transfer. The FTA module 48 contains hardware
logic for generating internal handshake signals when the USB controller 16 is
operating in an FTA mode. An auxiliary interface 50 may contain auxiliary.
registers having firmware for use by the processor to handle various tasks such as
CPU sleep or wake-up routines.

[0025] FIG. 3 illustrates the remaining portions of the USB controller 16, and
the flash memory 26 of the USB peripheral device 10, the combination of which is
herein referred to as the backend 52 of the USB peripheral device 10, is shown.
The buffer management unit (BMU) 20 may include an automatic buffer manager
(ABM) 54 in communication with BRAM 56. The BRAM 56 may be partitioned
in multiple ways, for example to provide first and second buffers 58, 60 for
transmitting or receiving data packets, such as 512 bit blocks in USB high speed
applications, of bulk daté transfer to be written to, or read from, flash memory 26.
The BMU 20 communicates with a flash interface module (FIM) 22 which
mediates between the BMU 20 and the flash memory 26.

[0026] In order to implement full transfer automation in the USB peripheral
device 10 and, accordingly, assist in increasing data speed and reducing power

-7 -

WO 2008/082530 PCT/US2007/025866

consumption, the USB peripheral device 10 includes several modifications to
standard USB controller architecture to provide for additional internal
handshaking in the USB controller 16 using hardware logic. These additional
internal handshaking messages for communicating between the HIM 18 and the
backend 52 may be implemented in hardware logic in the controller to remove the
need for certain traditionally firmware implemented steps requiring the
involvement of the CPU 24.
[0027] The USB standard supports four transfer/endpoint types: control
transfers, interrupt transfers, isochronous transfers, and bulk transfers. As noted
below, bulk transfers involve large bursts of data that are handled in fixed length
blocks and can benefit most from the full transfer automation described herein. In
one implementation, the USB controller 16 only invokes the full transfer
automation described herein during a bulk data transfer task and utilizes any of a
number of standard or known CPU-based transfer mechanisms for isochronous,
control or interrupt endpoints.
[0028] With respect to bulk data transfers under the USB standard, three
phases are provided as illustrated in FIG. 4. In a first phase, a CBW (Command
Block Wrapper) message is sent by the host 12 to the USB peripheral device 10
and placed into the BRAM 46 of the buffer management unit 20 (at step 62). The
CBW message is 31 bytes and includes information regarding the type of transfer
that the USB peripheral device 10 is to perform. Upon receiving the CBW
message, firmware in the USB peripheral device, for example in the main RAM
(MRAM) of the CPU 24 reads this message and writes data to full transfer
automation (FTA) registers 46 in the HIM 18. Discussed in more detail below, the
FTA registers 46 include information such as the starting address in the BRAM
56, buffer size and the direction of transfer. After the CBW phase, the data phase
of the bulk data transfer takes place and the host 12 sends packets of data to (a
bulk out transfer or write operation), or receives data packets from (a bulk in
transfer or read operation), the USB peripheral device 10 depending on the
direction of transfer indicated in the CBW message (at steps 64, 66). The final

" phase of the USB bulk data transfer is the CSW (Command Status Wrapper)

-8-

WO 2008/082530 PCT/US2007/025866

message that concludes the exchange between the host 12 and the USB peripheral
device 10 (at step 68).

[0029] Referring to FIG. 5, upon receipt of a CBW message from a host 12 in
the first phase, the CPU executes firmware to write data to the FTA registers 46
data necessary to implement the FTA procedure. The table of registers 76 in
FIG. 5 includes a memory unit address 78 representing the memory unit of the
circular buffer (BRAM), a circular buffer base address 80, end address 82 and
containing the word address of the BRAM base and end addresses. Current
address 84 is updated by hardware while FTA transfer goés ori, to point to the
memory location currently involved in the transfer. The FTA register table 76 also
includes transfer size 86, in terms of the total number of blocks (data packets)
expected. Current trénsfer size 88 is a field updated by hardware during an
ongoing FTA transfer that keeps track of how many data packets have already
been transferred. A transfer descriptor link list base address 90 contains the word
base address of the data transfer descriptor (dTD) link list, transfer automation
control for transmit (Tx) 92 and receive (Rx) 94 automation contain information
that controls the transfer automation feature on an endpoint basis, and the endpoint
transfer complete register 96 indicates the status of the end of a bulk out transfer
(data out from the host) or a bulk data in transfer (data into the host) after all data
packets have been transferred. The endpoint MISC control 98 includes
instructions for forcing the USB device core 30 to respond with an
acknowledgement (ACK) token during an out transfer from the host. The stop
transfer control 100 register includes a control bit to stop the full transfer
automation process and transfer automation of status 102 contains status of
hardware updates as each data transfer descriptor and data query header setup is
completed. The Tx FIFO low mark configuration register 104 defines the
threshold for initiating pre-fetch to the TX FIFO register for a read(IN) transfer.
[0030] When enabling the FTA mode of the USB controller 16 and populating
the FTA registers 46 with data shown in the data table 76 of FIG. 5, the USB
controller 16 also prepares endpoint data transfer descriptor (dTD) and endpoint
data queue head (dQH) data structures. In the initial data structure set-up, as

-9.

WO 2008/082530 PCT/US2007/025866

shown in FIG. 6, the USB controller 16 also generates FTA enablement data that
includes a fta_enable bit 70 flagging to the USB device core 30 that full transfer
automation is to be enabled for a particular data transfer data exchange, as well as
a xfer_direction bit 72 indicating the direction of transfer. The packet length 106
for the transaction and the total expected bytes 108 may also be recorded in the
data structure, along with the DMA pointers 109 to the BRAM buffer addresses
needed for each expected data packet. These data structures may be generated by
hardware logic in the FTA module 48 of the HIM 18 or may be implemented in
firmware executed by the CPU 24. Depending on the amount of data expected,
more than one data structure may need to be generated to identify pointers 109 for
each of the sets of addresses needed to handle all of the component data blocks in
the bulk data transfer. The dTD and dQH data structure information is written to
the location pointed to by Transfer Descriptor Link List Base Address 90 of the
FTA register set with the appropriate offset to account for the sizes of dTD and
dQH. The dTD and dQH data structures inform the DMA block 36 in the HIM 18
of the total transfer size, DMA source/destination address and other transfer
information.
[0031] Once the CBW message has been processed, where the dTD and dQH
data has been set up and initial information in the FTA registers generated, the
USB controller 16 is prepared to handle data transfer in FTA mode and eliminate
or reduce firmware involvement in the bulk data transfer. As shown in FIG. 7, one
possible high speed device bulk out transaction utilizing the FTA mode of the
USB controller 16 is illustrated. This example illustrates the case where, to begin
with, there are two buffers available in BRAM for supporting data transfer. The
bulk out data transfer phase begins when a host 12 transmits an out token 110
followed by a data trahsfer 112 of a block of data, also referred to as a data packet.
Assuming that the USB peripheral device 10 is operating in high speed mode, the
data packet size may be 512 bytes. The USB peripheral device 10 receives the
information at the HIM 18 and passes the data to the BMU 20 for storage in one of
the buffers 58, 60 configured in the BRAM 56. The ABM 54 in the BMU 20
provides hardware logic generated signals, buf_rdyl and buf_rdy2 114, 116,

-10 -

WO 2008/082530 PCT/US2007/025866

indicating that the buffers are ready to receive information. For a bulk out data
transfer, the ABM 54 generates the buf rdyl and buf rdy?2 signals based on buffer
counters that count the number of free buffers in BRAM. Any of a number of
types of digital counter circuits may be used to form the buffer counters that
produce the digital logic signals for buf_rdyl and buf_rdy2. The buf_rdyl signal
indicates availability of at least one buffer in BRAM and buf rdy2 indicates
availability of two or more buffers in BRAM. The term buffer refers to, in this
embodiment, contiguous 512 byte locations in BRAM.
[0032] Upon completion of transfer of the first packet of data to the buffer, the
HIM 18 triggers the MAC controller 32 to send an acknowledgement (ACK) 116
message to the host 12 because buf rdy2 and buf_rdy! are both “1” (high) at the
beginning of the transfer. Concurrently, the FTA module 48 in the HIM 18
generates via hardware an “early release” signal pulse that is communicated back
to the BMU 20 to inform the BMU 20 that the transfer of the data packet is
complete. In response to this release signal, BMU 20 asserts buf_rdy2 as low
representative of the fact that two or more buffers are not available. In turn, the
BMU may then instruct the FIM 22 to begin writing this data to the flash memory
26.
[0033] The next out token from the host is received at the USB peripheral
device 10 and the accompanying data packet transfer places data in the second of
the two dedicated buffers in BRAM 56. The HIM 18 interprets the combination of
buf rdyl and buf rdy? in its state table at the beginning of the transfer and sends
out a NYET handshake message 120 to the host 12 (buf_rdy2=0, buf_rdy1=1).
Concurrently, the HIM 18 sends another early release signal 122 (or the identical
final release signal) to the BMU 20 in the backend so that the BMU 20 knows that
the transfer has completed. Upon noticing this release, the backend 52, via the |
BMU 20, sends a buf_rdyl low signal in addition to the already low buf_rdy2
signal to indicate to the HIM 18 that no buffers 58, 60 are currently available. The
NYET message 120 conveys to the host 12 that the immediately prior data transfer
was received, but that the host 12 might not send more information without first
checking on the status. In the scenario of FIG. 7, the host 12 sends a PING token
- 11 -

WO 2008/082530 PCT/US2007/025866

124 to the USB peripheral device 10. Noting thaf the buf rdy2 and buf rdyl
signals are both at logical lows, representing that no buffers are currently
available, the HIM 18 responds with a NAK response 126. A subsequent PING
from the host is received by the USB peripheral device as one of the buffers
becomes available, signified by the logical high setting of buf rdyl generated by
the ABM 54 hardware logic, and the HIM responds with an ACK response 128
notifying the host of the readiness to receive subsequent data.
[0034] In the example of FIG. 7, for a bulk out data transfer the buffer ready
signals (buf_rdy2 and buf rdy1) are hardware signals generated by the automatic
buffer manager 44 in the BMU 20. The hardware implemented signals may be
based on basic digital logic responsive to data occupying the first and second
buffers 48, 50, where buf rdy2 may be derived from a counter in the BMU 20 that
maintains the count of valid buffers present in the BRAM 56. The ABM will
assert a buf_rdy2 high signal if the count value from the counter exceeds a
threshold value. The threshold value is configurable and may be set by firmware.
In USB data transfers, the threshold value is set to 2. Additional hardware
implemented logic in the ABM 54 generates a buf_rdy1 high signal when the
count value of the counter in the BMU is greater than or equal to 1. Thus, the
buf rdyl and buf_rdy2 handshake signals generated by the ABM and sent to the
HIM are high when both buffers are ready, low when both buffers are not ready,
and buf_rdyl is high and buf rdy2 is low when only one buffer is available. In
one implementation the buf rdyl and buf_-rdy2 signals are generated using
counters to identify the number of free buffers in BRAM 56.
[0035] The HIM 18 utilizes the buffer availability signals of buf rdyl and
buf_rdy2 to generate responses to OUT and PING tokens received from the host
12. A state table 130 of the USB handshake packets generated by the USB
controller 16 in response to the three valid combinations of buf rdyl and buf rdy2
signals for an OUT token and for a PING token is shown in FIG. 8. An ACK
response packet is generated by the HIM 18 in reply to either an OUT or a PING
token when both buffers are ready (both availability signals at a logical high or 1).
A NAK response packet is generated by the HIM 18 in reply to either an OUT or a
212 -

WO 2008/082530 PCT/US2007/025866

PING token when both buffers are unavailable (both availability signals at a
logical low or 0). The response packet generated differs for the OUT and PING
tokens when only 1 buffer is ready: an ACK is generated for a PING and a NYET
is generated for an OUT.
[0036] In the reverse direction, handshake signals from the HIM 18 to the
BMU 20 in the backend 52 are also generated, the early release and final release
signals are hardware generated logic Signals that my be implemented as digital
logic in the FTA module 38 of the HIM 18. The FTA module 38 bases the early
release and final release handshake messages on different input information
depending on whether the USB controller 16 is handling a bulk out data transfer,
an example of which is seen in FIG. 7, or a bulk in data transfer, an example of
which is shown in FIG. 9. For bulk out data transfers, the early release and final
release signals are identical. In the case of a bulk out data transfer, the FTA
module 48 derives the early release signal from the successful data packet transfer
signal generated by the MAC controller 32 of the USB core 30. The successful
data packet transfer signal, for a high speed USB bulk out transfer, is triggered as
soon as a 512 byte packet is received. In the case of full speed or low speed USB
bulk out transfers, where the data packet size may be 64 bytes, the MAC controller
information is used to count 8 successful data packet transfers before the early
release/final release signal is triggered.
[0037] Referring to FIG. 9, a bulk in transfer scénario is illustrated using the
buffer availability (buf rdyl and buf rdy2) and buffer release (early release and
final release) hardware generated handshake messages discussed above. In the
bulk in transfer, data is transferred from the flash memory in the USB peripheral
device to the host. Similar to the bulk out transfer, a CBW message is received by
the HIM 18, which places the CBW message in the BRAM 56 of the BMU 20.
The HIM 18 then informs thé CPU 24 that a CBW message has been received and
the CPU 24 then reads the message from the BRAM 56 and initializes the FTA
register 48 in the HIM. The data transfer descriptors and data queue heads
necessary for the amount of data indicated in the CBW message is generated and
the FIM 22 begins to read a packet of data from the flash memory 26 into a buffer
-13 -

WO 2008/082530 PCT/US2007/025866

of the BRAM 56. Again assuming a two buffer configuration in BRAM 46, as
soon as the data from a first buffer is transmitted to the HIM from the BMU the
HIM 18 sends an early release logic pulse to the BMU 20.

[0038] The early release hardware signal is generated by the FTA module 48.
In this instance, the early release and final release hardware signals differ because
the FTA module 48 derives the early release and final release signals separately.
The early release signal is used by the BMU 20 to check buffer availability for
prefilling transmit (read) data to the TX FIFO 44. If the BMU receives an early
release signal when the buffer in BRAM is not ready, the BMU de-asserts the
buf_rdyl signal (i.e, the signal goes low) so that the HIM 18 is prevented from
pre-fetching data from the buffer. In bulk in data transfers, the FTA module 48
generates an early release based on the logic signal generated in the MAC
controller 32 when the HIM 18 starts sending read data from the TX FIFO 44 to
the host 12. The final release signal confirms the early release and signals to the
BMU that a packet may be finally released now that an ACK response has been
received from a host. The final release signal is generated by the FTA module 48
based on a logic signal generated in the MAC controller 32 indicating receipt of
the ACK from the host. Because these signals from the MAC controller 32 are
generated in a different clock frequency domain than used by the FTA module 48,
the FTA module also includes circuitry to convert the MAC controller 32 signals
from the USB PHY clock domain of the MAC controller to the system clock
domain in which the FTA module operates.

[0039] The first early release signal 132 in the bulk in transfer scenario of
FIG. 9 indicates to the BMU 20 that it is now appropriate to fill in read data in the
buffer space in the second BRAM buffer 50 if the buffer is available. Due to the
typically slower data transfer rate between flash memory 26 and BRAM buftfers
58, 60 than from the BRAM buffers 58, 60 through the HIM 18 to the host 12, the
HIM 18 will pre-fetch data from the BRAM to the TX FIFO register 44 and
simultaneously send data from the TX FIFO 44 register to the host 12. The final
release hardware signal 134 is sent from the HIM 18 to the BMU 20 only after an
ACK message 136 is received from the host indicative of a successful receipt of

- 14 -

WO 2008/082530 PCT/US2007/025866

the previous data packet. Second and third IN tokens 138, 140 and data transfer
packets 142, 144 are illustrated in FIG. 7. Between the second and third transfers,
there is a bus timeout 146 generated within the USB peripheral device 10 because
no ACK meséage was received by the USB peripheral device from the host.
Because no acknowledgement was received from the host, a final release signal is
not generated by the HIM and no early release signal is seen for the next transfer.
This is because the same data from the second transfer must be sent again in
absence of an acknowledgement that the first attempt was properly received. The
above example assumes that the buf rdy! signal is always high indicating that
flash memory 26 has completed a read operation and that valid data is available in
a BRAM buffer. If the BMU determined that the buffer is not ready for some
reason, a buf rdyl signal would remain low and the HIM 18 would transmit a
NAK handshake packet to the host based on this buf rdyl low signal.

[0040] At the conclusion of the USB bulk data in or out transfer, the FTA
engine 48 automatically stops the transfer when the transfer size 86 is reached. A
request for a CSW message is received from the host also at the end of a bulk
transfer. In response, firmware prepares CSW and sends it back to the host also at
the end of a bulk transfer. In response, firmware prepares CSW and sends it back
to the host. This implementation does not block transfers to other endpoints while
FTA enabled bulk data transfer goes on.

[0041] Illustrated in both the bulk out transfer and bulk in transfer scenarios is
the use of hardware signals generated in the HIM 18 and in the BMU 20 that
provide a hardware handshake to increase the ability for the USB peripheral
device to read and write data. No firmware interrupts requiring CPU intervention
are used or necessary for each burst of data. Transferring data in or out of the
flash memory, and the USB peripheral device in general, without the need to
engage and interrupt, avoids the time necessary for the interrupt to be triggered,
fead by the CPU, and acted upon. As logically follows, a CPU will not need to be
active during this phase of data transfer and thus may save overall power usage by

the USB peripheral device.

-15-

WO 2008/082530 PCT/US2007/025866

[0042] Another advantage of using hardware handshakes to communicate
between the backend and the HIM regarding the availability of buffer space is that
memory size in the buffer may be maintained at a lower level, freeing up the
otherwise blocked out buffer memory for other uses. Additionally, without the
need for interrupts and CPU intervention, the CPU overhead is reduced and CPU
clock speed may be reduced in comparison to implementations where firmware is
necessary to track data transfer and manage buffer space. A lower clock speed
implementation based on the lower CPU overhead may also contribute to
additional power savings.

[0043] Although examples have been provided of a backend 52 in a USB
controller 16 where two buffers have been allocated to implement the FTA mode
for bulk data transfer operations, in other implementations only a single buffer
may be used. The buffer may be the size of a single data transfer block (packet).
Alternatively, the USB controller and methods described above are equally
adaptable to using more than two buffers in BRAM where each of the buffers may
be the same size as a data packet. In other implementations, for example when
running the USB peripheral in full speed mode or low speed mode (12 Megabits
per second or 1.5 Megabits per second, respectively, rather than the 480 Megabits
per second of high speed mode), the FTA mode of operation may be adjusted to
account for the 64 byte data packet size supported in full speed or low speed
modes. In yet other implementations, the USB peripheral 10 may be configured
to behave as a host and utilize the same FTA mode for bulk transfer operations as
described. Also, although specific data packet sizes were discussed, for example
512 bytes for high speed and 64 bytes for full and low speeds, this size of data
processed by the back-end may be set for other lengths in accordance with the
flash memory type selected for use in the backend of the USB peripheral device.
[0044] The entirety of the following concurrently filed (December 31, 2006),
commonly owned U.S. patent applications (referenced by United States Patent
Application Serial Numbers “USSN™) are incorporated herein by reference:
“Selectively Powering Data Interfaces” (having USSN 11/649,325 and attorney
reference number SDA-1076x); “Selectively Powered Data Interfaces” (having

-16 -

WO 2008/082530 PCT/US2007/025866

USSN 11/649,326 and attorney reference number SDA-1076y); “Internally
Protecting Lines at Power Island Boundaries” (having USSN 11/618,874 and
attorney reference number SDA-1090x); “Integrated Circuit with Protected
Internal Isolation” (having USSN 11/618,875 and attorney reference number
SDA-1090y); “Updating Delay Trim Values” (having USSN 11/618,897 and
attorney reference number SDA-1091x); “Module with Delay Trim Value Updates
on Power-Up” (having USSN 11/618,898 and attorney reference number SDA-
1091y); “Limiting Power Island Inrush Current” (having USSN 11/618,855 and
attorney reference number SDA-1092x); “Systems and Integrated Circuits with
Inrush-Limited Power Islands” (having USSN 11/618,854 and attorney reference
number SDA-1092y); “Method for Performing Full Transfer Automation in a USB
Controller” (having USSN 11/618,865 and attorney reference number SDA-1094x
(10519/201)); “USB Controller with Full Transfer Automation" (having USSN
11/618,867 and attorney reference number SDA-1094y (10519/202)); “Method
for Configuring a USB PHY to Loopbaclé Mode” (having USSN 11/618,849 and
attorney reference number SDA-1095x (10519/203)); and “Apparatus for
Configuring a USB PHY to Loopback Mode” (having USSN 11/618,852 and
attorney reference number SDA-1095y (10519/204)).

[0045] From the foregoing, a method and apparatus for implementing full
transfer automation in a USB controller has been described. Four new hardware
generated logic signals internal to a USB controller in a USB peripheral device
have been provided for a handshake between a host interface module and a
backend module. The internal handshake signals, generated via hardware logic
rather than through use of firmware and microprocessor time, may improve data
transfer speed and reduce power consumption by the USB controller.

[0046] It is therefore intended that the foregoing detailed description be
regarded as illustrative rather than limiting, and that it be understood that it is the
following claims, including all equivalents, that are intended to define the spirit

and scope of this invention.

-17 -

WO 2008/082530 PCT/US2007/025866

WE CLAIM:

1. A method of implementing full transfer automation in a Universal

Serial Bus (USB) controller, the method comprising:

receiving a USB bulk data transfer initiation message at a USB
controller from a host;

transferring data packets during a USB bulk data transfer operation;
and

exchanging hardware generated logic signals between a host
interface module and a backend module of the USB controller during a data
transfer phase of the bulk data transfer operation, relating to a data transfer status

within the USB controller.

2. The method of claim 1, wherein exchanging hardware generated

logic signals comprises:

generating at least one backend hardware logic signal in a backend
module of the USB controller indicative of a readiness of a buffer memory to
transfer data in or out of a mass storage media during the USB bulk data transfer
operation; and

generating at least one host interface module hardware logic signal
in a host interface module of the USB controller wherein during a USB bulk data
transfer read or write operation the backend module and host interface module are
configured to communicate with each other via the backend and host interface
module hardware logic signals relating to the data transfer status within the USB

controller.

3. The method of claim 2, wherein the USB bulk data transfer read or
write operation comprises a data transfer of data in a plurality of discrete portions,
each of the discrete portions having a having a fixed length, and wherein the at
least one backend hardware logic signal comprises a readiness of the buffer

memory to process one of the plurality of discrete portions.

-18 -

WO 2008/082530 PCT/US2007/025866

4. The method of claim 3, wherein the buffer memory comprises at

least one buffer having a buffer size equal to the fixed length.

5. The method of claim 3, wherein generating at least one backend
hardware logic signal comprises communicating to the host interface module that
at least one buffer is available for receiving one of the plurality of discrete portions

during a USB bulk data transfer write operation.

6. The method of claim 3, wherein the buffer comprises a first buffer
and a second buffer, each of the first and second buffers having a buffer size equal
to the fixed length, and wherein generating at least one backend hardware logic
signal comprises generating a first buffer readiness hardware logic signal when
only one buffer of the first and second buffers is available for receiving one of the
plurality of discrete portions during a USB bulk data transfer write operation, and
generating a second buffer readiness hardware logic signal when at least two
buffers are available for receiving one of the plurality of discrete portions during a

USB bulk data transfer write operation.

7. The method of claim 6, further comprising generating a USB
handshake message in response to receipt of a USB token packet received from
the host, and based on the first and second buffer readiness hardware logic signals

received from the backend module.

8. The method of claim 4, transmitting a buffer readiness hardware
logic signal from the backend module to the host interface module when at least
one buffer is available to receive one of the plurality of discrete portions during a

USB bulk data transfer read operation.

9. The method of claim 8, further comprising transmitting an early
buffer release hardware logic signal from the host interface module to the backend
module during a bulk data transfer read operation in response to initiating transfer

of data from a FIFO buffer in the host interface module to the host.

-19-

WO 2008/082530 PCT/US2007/025866

10. The method of claim 9, further comprising transmitting a final
buffer release hardware logié‘ signal from the host interface module to the backend
module during a bulk data transfer read operation in response to receipt of an

acknowledgement handshake token from the host.

11. The method of claim 9, further comprising transmitting a buffer
readiness hardware logic signal from the backend module to the host interface
module indicative of an availability of the at least one buffer for transmitting one
of the plurality of discrete portions during a USB bulk data transfer read operation,
and initiating a pre-fetch of data from the buffer memory to the FIFO buffer
during a bulk data transfer read operation if the buffer readiness hardware signal
indicates readiness of the buffer after receipt by the backend of the early buffer

release hardware logic signal.

12. A method of implementing full transfer automation in a Universal

Serial Bus (USB) controller, the method comprising:

receiving a USB bulk data transfer initiation message for a USB
bulk transfer write operation at the USB controller from a host and initializing a
full transfer automation mode within the USB controller;

receiving data packets from the host at the USB controller during
the USB bulk transfer write operation; and

exchanging hardware generated logic signals between a host
interface module and a backend module of the USB controller relating to a data

transfer status within the USB controller while receiving the data packets.

13. The method of claim 12, wherein receiving data packets comprises
receiving data in a plurality of discrete portions, each of the discrete portions
having a fixed length, and wherein exchanging hardware generated logic signals
comprises transmitting at least one buffer readiness hardware logic signal from the

backend module to the host interface module.

-20 -

WO 2008/082530 PCT/US2007/025866

14. The method of claim 13, wherein transmitting at least one buffer
readiness hardware signal comprises transmitting to the host interface module a
first buffer readiness hardware logic signal when only one buffer is available in
the backend module for receiving one of the plurality of discrete portions during a
USB bulk transfer write operation, and transmitting to the host interface module a
second buffer readiness hardware logic signal when at least two buffers are
available in the backend module for receiving one of the plurality of discrete

portions during a USB bulk data transfer write operation.

15. The method of claim 14, wherein exchanging hardware logic signals
further comprises transmitting a buffer release hardware logic signal from the host
interface module to the backend module when a complete data packet has been

received at the host interface unit.

16. The method of claim 15, wherein transmitting the buffer release
hardware logic signal comprises transmitting the buffer release hardware logic
signal upon receipt by the host interface module of a USB ACK handshake

message.

17. A method of implementing full transfer automation in a Universal

Serial Bus (USB) controller, the method comprising;:

receiving a USB bulk data transfer initiation message for a USB
bulk transfer read operation at the USB controller from a host and initializing a
full transfer automation mode within the USB controller;

transmitting data packets to the host from the USB controller during
the USB bulk transfer read operation; and

exchanging hardware generated logic signals between a host
interface module and a backend module of the USB controller relating to a data

transfer status within the USB controller while transmitting the data packets.

18. The method of claim 17, wherein transmitting data packets

comprises transmitting data in a plurality of discrete portions, each of the discrete

_21 -

WO 2008/082530 PCT/US2007/025866

portions having a fixed length, and wherein exchanging hardware generated logic
signals comprises transmitting at least one buffer release hardware logic signal

from the host interface module to the backend module.

19. The method of claim 18, wherein transmitting at least one buffer
release hardware logic signal comprises transmitting to the backend module a first
buffer release hardware logic signal when the host interface module begins
transmitting a data packet to the host and transmitting a second buffer release

hardware logic signal when transmission of the data packet is complete.

20. The method of claim 19, further comprising the backend module
transmitting a buffer readiness hardware logic signal to the host interface module
indicating when a buffer in the backend is ready to transfer data to the host

interface unit.

21. A Universal Serial Bus (USB) controller for use in a USB peripheral

device, the USB controller comprising:
a.backend module having buffer memory configured to transfer data

in or out of a mass storage media;
| a host interface module in communication with the backend module
and configured to communicate with a host, wherein during a USB bulk data
transfer read or write operation the backend module and host interface module are
configured to communicate with each other via hardware logic signals relating to a

data transfer status within the USB controller.

22. The USB controller of claim 21, wherein the USB bulk data transfer
read or write operation comprises a data transfer of data in a plurality of discrete
portions, each of the discrete portions having a having a fixed length, and wherein
the data transfer status comprises a readiness of the buffer memory to process one

of the plurality of discrete portions.

23. The USB controller of claim 22, wherein the buffer memory

comprises at least one buffer having a buffer size equal to the fixed length.

-22.

WO 2008/082530 PCT/US2007/025866

24. The USB controller of claim 23, wherein the backend module
comprises hardware logic configured to communicate a buffer readiness hardware
logic signal to the host interface module indicative of an availability of the at least
one buffer for receiving one of the plurality of discrete portions during a USB bulk

data transfer write operation.

25. The USB controller of claim 22, wherein the buffer memory
comprises a first buffer and a second buffer, each of the first and second buffers
having a buffer size equal to the fixed length, and wherein the backend module
comprises hardware logic configured to communicate a first buffer readiness
hardware logic signal to the host interface module indicative of an availability of
only one buffer of the first and second buffers for receiving one of the plurality of
discrete portions during a USB bulk data transfer write operation, and a second
buffer readiness hardware logic signal to the host interface module indicative of an
availability of at least two buffers for receiving one of the plurality of discrete

portions during a USB bulk data transfer write operation.

26. The USB controller of claim 25, wherein the host interface module
comprises USB handshake packet generating logic responsive to USB token
packets received from the host, and to first and second buffer readiness hardware
logic signals received from the backend module, to generate a USB handshake

packet for transmission to the host.

217. The USB controller of claim 21, wherein the host interface module

comprises:

a direct memory access (DMA) block arranged to manage data transfer

into and out of the buffer; and

a MAC controller in communication with the DMA block, the MAC
controller arranged to format and generate USB handshake and data response

packets for communication to the host.

223 -

WO 2008/082530 PCT/US2007/025866

28. The USB controller of claim 23, wherein the backend module
comprises hardware logic configured to communicate a buffer readiness hardware
logic signal to the host interface module indicative of an availability of the at least
one buffer for receiving one of the plurality of discrete portions during a USB bulk

data transfer read operation.

29. The USB controller of claim 28, wherein the host interface module
comprises a FIFO buffer and is configured to generate an early buffer release
hardware logic signal to the backend module during a bulk data transfer read

operation in response to initiating transfer of data from the FIFO buffer to the host.

30. The USB controller of claim 29, wherein the host interface module
is configured to generate a final buffer release hardware logic signal to the
backend module during a bulk data transfer read operation in response to receipt

of an acknowledgement handshake token from the host.

31. The USB controller of claim 29, wherein the backend module
comprises hardware logic configured to communicate a buffer readiness hardware
logic signal to the host interface module indicative of an availability of the at least
one buffer for transmitting one of the plurality of discrete portions during a USB
bulk data transfer read operation, and wherein the host interface module is further
configured to initiate a pre-fetch of data from the buffer memory to the FIFO
buffer during a bulk data transfer read operation if the buffer readiness hardware
signal indicates readiness of the buffer after receipt by the backend of the early

buffer release hardware logic signal.

32. The USB controller of claim 25, wherein the fixed length of the
buffer size is 512 bytes.

33. The USB controller of claim 25, wherein the first and second

buffers comprise contiguous memory space.

224 -

WO 2008/082530 PCT/US2007/025866

34. A Universal Serial Bus (USB) peripheral device, the USB

peripheral device comprising:

mass storage media adapted for receiving data from or providing data to a

host; and

a USB controller comprising:
a backend module having buffer memory configured to transfer data
in or out of the mass storage media; and
| a host interface module in communication with the backend module
and configured to communicate with the host, wherein during a USB bulk
data transfer read or write operation the backend module and host interface
module are configured to communicate with each other via hardware logic

signals relating to a data transfer status within the USB controller.

35. The USB peripheral device of claim 34, wherein the USB bulk data
transfer read or write operation comprises a data transfer of data in a plurality of
~ discrete portions, each of the discrete portions having a having a fixed length, and
wherein the data transfer status comprises a readiness of the buffer memory to

process one of the plurality of discrete portions.

36. The USB peripheral device of claim 35, wherein the buffer memory

comprises at least one buffer having a buffer size equal to the fixed length.

37. The USB peripheral device of claim 36, wherein the backend
module comprises hardware logic configured to communicate a buffer readiness
hardware logic signal to the host interface module indicative of an availability of
the at least one buffer for receiving one of the plurality of discrete portions during

a USB bulk data transfer write operation.

38. The USB peripheral device of claim 35, wherein the buffer memory
comprises a first buffer and a second buffer, each of the first and second buffers

having a buffer size equal to the fixed length, and wherein the backend module

-25-

WO 2008/082530 PCT/US2007/025866

comprises hardware logic configured to communicate a first buffer readiness
hardware logic signal to the host interface module indicative of an availability of
only one buffer of the first and second buffers for receiving one of the plurality of
discrete portions during a USB bulk data transfer write operation, and a second
buffer readiness hardware logic signal to the host interface module indicative of an
availability of both the first and second buffers for receiving one of the plurality of

discrete portions during a USB bulk data transfer write operation.

39. The USB peripheral device of claim 18, wherein the host interface
module comprises USB handshake packet generating logic responsive to USB
token packets received from the host, and to first and second buffer readiness
hardware logic signals received from the backend module, to generate a USB

handshake packet for transmission to the host.

40. The USB peripheral device of claim 34, wherein the mass storage

media memory comprises non-volatile memory.

41. The USB peripheral device of claim 40, wherein the non-volatile

memory comprises flash memory.

=26 -

PCT/US2007/025866

WO 2008/082530

1/7

[31

14!

9¢ 144
\\1 i
AYONIN
HSY 4
\
/
> Nd) |e— _— 81
Y
(Wi3) (nwe) (NIH)
IOVREIN | 1INN | JNCON |
HSY 4 INFNIDOYNYI A0V4YILNI asn
¥344n8 1SOH
¥3TI04LNOD 8SN
/ /

le\ 91 oml\

0w/

—> 1SOH

Nﬁk

PCT/US2007/025866

WO 2008/082530

2/7

nng

¢ 31

SRR TR T T

O

1

9¢

/
/ I
o w)

Lo n/ \La

/ — m_._Q.mum_E — mmm@.._m.bmvmm XNy
O4I4 XL 0414 XY #
'y ' X
] .
- Y0074 d3TIOHINOD | > AHd | » 1SOH
YING 5 OV INLN WQ/da asn Ol
3OV443LNI HOSSIO0HdOEIIN
WIH

WO 2008/082530

3/7

PCT/US2007/025866

Sl e
1

BACKEND
52 BMU /
BRAM FIM
| [BurFer 1| | e
| — MEMORY
8 e BUFFER 2
60 — I
10 FLASH
HM > ABM MEMORY
/
7 \
54 N 26
Fig. 3
»| READY
COMMAND 62
TRANSPORT /
(CBW)
Y a v
DATA OUT DATAIN | _— 66
(FROM HOST) (TO HOST)
| |
J(v vy
64 STATUS 68
IRANSPORT I .
(csw) Fig. 4

l

PCT/US2007/025866

WO 2008/082530

4/7

5 Oy

Dami NOILYENOIANOD MoV MO10414 X1 0080%0 My P8X0
Mwﬁ Dani SNLYLS NOILYWOLNY ¥34SNvHL 0000x0) 28X
001 I\lll TOYLINOD ¥34SNY¥L dOLS 0000%0 MY agx0
96 I\I- JOHLINOD OSIN LNIOJAN3 0L00%0 My egXx0
T TOYLNOO 3L1F1dINOD H34SNVYL LNIOJON3 0000x0 My 68X0
MM |\I\l- TOHLNOD NOILYWNOLNY ¥YIASNVHL XY 0000%0 MY 88X0
76 |\l i TOYLNOJ NOILYWOLNY ¥3JSNYHL X1 0000%0 MY L8X0
06 1 SSIUAAY ISVE ¥NITHOLdINISIA YIJSNYYL 0000%0 My 98x0
98 D! 3ZIS YF4SNVEL LINFHIND 0000%0) G8x0
03 el 3215 ¥34SNWHL 0000x0 MY ¥8%0
bs Dami SS3YAAY INIFHIND ¥344N8 ¥YINOHID 0000%0 MY £8X0
-~ e SS3¥AAY N3 ¥334n8 ¥YINOXIO - 0000%0 Mo ¢8X0
08 I\Iﬂ SSIYAAY ISVE ¥I44N8 ¥YINDYIO 0000%0 MY 18X0
o/ Fami SS3HAAY LINN AJOW3W yv00%0 My 08x0
138440

EIRARY 31I¥M | SS3¥aAav

NOILdI¥OS3a 1383y Qv3y [¥31SI193y

N

PCT/US2007/025866

WO 2008/082530

5/7

9 319

601

/ (" N¥344n8 0L ¥3LNIOd YW

2

¢ 4344N8 OL ¥31NIOd YING

_ } 4344N9 OL ¥3LINIOd YNQ

d31INIOd YNG LX3N

d3INIOd YINA LN3S3dd

S31A8 V1OL

HLONIT 13%Jvd

NOILOTHIQ ¥34X

EREVAERIE

0]}

4

£

b6

/ /- |ee]oe

35

- 801

7
ooﬁl\ Nhl\ omk

PCT/US2007/025866

WO 2008/082530

6/7

_ F18YIVAY _
| _ ¥344nd 1 AINO

_ _ _
_ m———==—=—" I
| F18YIvAY ¥3ang N, L |]
| | ———— — == _ |
[oo || I |
a3 1 319Y7IVAY ¥344Nn8 3NO | |
" Ty “ r_ ol 811 __/ “
| | _ _ |
m " _ | "
_ “ “ “ _
_ _ | _ |
“ | _ | }
_ _ | _ _
NV “ MOV “ MYN _ L3AN “ MOV “
_ _ _ | |
|| gFISNWAL _ ' || d3dSNwL || Y3ISNVAL
' vl 1No | ONId | ONId | “viva 1no | “viva 1no
8¢1 9Z1 vﬁk 0TI 9r1 Til & 011 &

ENVEREY|
VNI4

ENVERELS
ATV3

all
F>Emmr

C 911
ZAping

33IA3A

1SOH

PCT/US2007/025866

WO 2008/082530

3SVITIY ATHVI ON -3SYIN13Y ATHV3
1SV 4314V N33S 3SV¥37134 T¥NI4 ON

3SY3134 TYNI4 ON
"NOILOVSNVYL NI HOHY3

777

N\

n

l

T3-3¥d

Od4id AONILYT X}

\

X

Jpasoing x)"da

| “ . “ _ ISY313Y
| _ M _ _ TYNI4
_ | _ AL |
| | | | | ENVEREN
_ | _ | _I_ | :(ATHY3
_ _ _ _ _ cel
Y3JSNVAL LNOANIL ¥34SNVAL ¥3JSNVYL
MOV YIva NI o v NI | MOV TIva NI SNOILOYSNYY L
24l |v .oitv Nl L wl V 8¢l U@Q V
8 31
MOY MOY J18YIIVAY 39V S¥334N9 OML LSYIT 1Y) |
MOV 13AN 318V1IVAY SI¥343N8 INO AINO 0 |
YYN MYN T18YIIVAY SI ¥343nd ON 0 0
N3NOL ONId | N30L INO SIILMIGYTIVAY ¥343n4 Zfpijng LApijng

6 ‘31

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2007/025866

A, CLASSIFICATION OF SUBJECT MATTER
INV. GO6F13/42

According 1o International Patent Classification (IPG) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification.symbals)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO~Internai, WPI Data

C. DOCUMENTS CONSIDERED TQ BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 6 928 505 Bl (KLINGMAN EDWIN E [US]) 1,2,12,
9 August 2005 (2005-08-09) 17
column 2, line 38 - column 3, line 61
figure 4
column 4, line 40 - line 53
claim 14

Y "Universal Serial Bus Specification : 1-41

(révision 1.1)"
INTERNET CITATION, [OnTinel

23 September 1998 (1998-09-23),
XP002167362

Retrieved from the Internet:

URL :www.usb.org> [retrieved on 2001-05-15]
-paragraph [05.8] - paragraph [5.8.5]
paragraph [5.3.2]

-f—

‘ Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

'A" document defining the general state of the art which is not
considered to be of particular relevance

"E* earlier document but published on or after the internationat
filing date

"L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason {(as specified)

0O document referring to an oral disclosure, use, exhibition or
other means

‘P* document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
clted to understand the principle or theory underlying the
invention

"X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered o involve an inventive step when the
document is combined with one or more other such docu~
met:ms, such combination being obvicus to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual completion of the international search

18 March 2008

Date of mailing of the international search report

28/03/2008

Name and mailing address of the ISA/

European Patent Qffice, P.B. 5818 Patentlaan 2
NL -~ 2280 HV Bijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Ghidini, Mario

Fom PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2007/025866

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y TURN R: "Hardware-software Tradeoffs In
: Reliable Software Development™

11TH ASILOMAR CONFERENCE ON CIRCUITS,
SYSTEMS AND COMPUTERS, 1977,

7 November 1977 (1977-11-07), pages
282-288, XP010299617

page 283, column 2, Tine 50 - page 284,
cotumn 2, line 58

A US 2001/056513 Al (UEDA KENICHI [JP])

27 December 2001 (2001-12-27)

the whole document

A US 6 757 776 B1 (PEW FREDERICK [US])

29 June 2004 (2004-06-29)

the whole document

1-41

1-41

1-41

Fomm PCT/ISA/210 {continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

! International application No
Information on patent family members

PCT/US2007/025866
Patent document Publication . Patent family Publication
cited in search repprt ' date member(s) date
US 6928505 Bl 09-08-2005 US 7043568 Bl 09-05-2006"
UsS 2001056513 Al 27-12-2001 JP 3415567 B2 09-06-2003
‘ JP 2002009849 A 11-01-2002
US 6757776 . Bl 29-06-2004 NONE

Form PCT/ISA/210 {patent family annex) (April 2005}

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report
	Page 37 - wo-search-report

