(19)	Deut Pater	sches nt- und Markenam	t		
			⁽¹⁰⁾ D	E 11 201	8 001 812 T5 2020.02.20
(12)			Veröffe	entlichur	ng
(87) \ i (21) [(86) F (86) F (87) F (43) \ i	der internationaler Veröffentlichungs- n der deutschen I ntPatÜG) Deutsches Aktenz PCT-Aktenzeiche PCT-Anmeldetag: PCT-Veröffentlich Veröffentlichungs n deutscher Über	n Anmeldung mit de Nr.: WO 2018/2030 Übersetzung (Art. II zeichen: 11 2018 00 n: PCT/GB2018/05 04.05.2018 ungstag: 08.11.201 tag der PCT Anmele setzung: 20.02.202	er 082 I § 8 Abs. 2 01 812.1 1206 8 dung 0	(51) Int Cl.:	H01J 49/40 (2006.01)
(30) l	Jnionspriorität: 1707208.3	05.05.2017	GB	(74) Vertreter Dehns G	: Sermany, 80333 München, DE
(71) / L I	Anmelder: LECO Corporatio Micromass UK L	on, St. Joseph, Mic imited, Wilmslow,	ch., US; Cheshire, GB	(72) Erfinder: Hoyes, J Manches	John Brian, Stockport, Greater ster, GB; Verenchikov, Anatoly, Bar, ME

Prüfungsantrag gemäß § 44 PatG ist gestellt.

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen.

(54) Bezeichnung: Mehrfach reflektierendes Flugzeit-Massenspektrometer

(57) Zusammenfassung: Es wird ein mehrfach reflektierender Flugzeit-Massenanalysator offenbart, bei dem der Ionenflugweg relativ klein gehalten wird und das Tastverhältnis relativ hoch angelegt ist. Das räumliche Fokussieren der Ionen in der Dimension (Z-Dimension), in der die Spiegel 36 länglich sind, kann entfallen, wobei eine angemessen hohe Empfindlichkeit und Auflösung erhalten bleiben.

Beschreibung

KREUZVERWEIS AUF VERWANDTE ANMELDUNG

[0001] Die vorliegende Anmeldung nimmt die Priorität der Patentanmeldung Nr. 1707208.3 des Vereinigten Königsreichs, die am 5. Mai 2017 eingereicht wurde, in Anspruch. Der gesamte Inhalt dieser Anmeldung wird hiermit zur Bezugnahme übernommen.

GEBIET DER ERFINDUNG

[0002] Die vorliegende Erfindung betrifft im Allgemeinen Massenspektrometer und insbesondere mehrfach reflektierende Flugzeit-Massenspektrometer (MR-TOF-MS) und Verfahren zu ihrer Verwendung.

HINTERGRUND

[0003] Ein Flugzeit-Massenspektrometer ist ein weit verbreitetes Hilfsmittel in der analytischen Chemie, das durch eine schnelle Analyse von breiten Massenbereichen gekennzeichnet ist. Es hat sich herausgestellt, dass mehrfach reflektierende Flugzeit-Massenspektrometer (MR-TOF-MS) eine wesentliche Steigerung der Auflösungsleistung durch mehrfaches Reflektieren der Ionen, um den Flugweg der Ionen zu verlängern, bereitstellen. Eine derartige Verlängerung der Ionenflugwege wurde durch das Reflektieren von Ionen zwischen Ionenspiegeln erreicht.

[0004] Die SU 1725289 offenbart ein MR-TOF-MS-Instrument, das einen Ionenspiegel aufweist, der auf beiden Seiten einer feldfreien Region angeordnet ist. Eine Ionenquelle ist in der feldfreien Region angeordnet, die Ionen in einen der Ionenspiegel ausstößt. Die Ionen werden zwischen den Ionenspiegeln hin und her reflektiert, während sie entlang des Instruments driften, bis die Ionen einen Ionendetektor erreichen. Das Masse-/Ladungsverhältnis eines Ions kann dann bestimmt werden, indem die Zeit detektiert wird, die das Ion benötigte, um sich von der Ionenquelle zum Ionendetektor zu bewegen.

[0005] Die WO 2005/001878 offenbart ein ähnliches Instrument, das einen Satz von periodischen Linsen innerhalb der feldfreien Region zwischen den Ionenspiegeln aufweist, um zu verhindern, dass der Ionenstrahl in der Richtung, die zu der Dimension, in der die Ionen durch den Ionenspiegel reflektiert werden, orthogonal ist, erheblich abweicht, wodurch das Tastverhältnis des Spektrometers erhöht wird.

KURZDARSTELLUNG

[0006] Gemäß einem ersten Aspekt stellt die vorliegende Erfindung einen mehrfach reflektierenden Flugzeit-Massenanalysator bereit, umfassend: einen lonenbeschleuniger;

zwei lonenspiegel, die angeordnet sind, um lonen in einer ersten Dimension (X-Dimension) zu reflektieren, und die in einer zweiten Dimension (Z-Dimension) länglich sind; und

einen lonendetektor;

wobei der Ionenbeschleuniger angeordnet und konfiguriert ist, um Ionen in einen ersten der Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen;

wobei die Ionen in der zweiten Dimension (Z-Dimension) nicht räumlich fokussiert sind, während sie sich vom Ionenbeschleuniger zum Detektor bewegen; und

wobei der Massenanalysator ein Tastverhältnis von \geq 5 %, eine Auflösung von \geq 20000 aufweist, wobei der Entfernung in der ersten Dimension (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln \leq 1000 mm beträgt; und wobei der Massenanalysator derart konfiguriert ist, dass sich die Ionen über eine Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor von \leq 700 mm bewegen.

[0007] Es wird keine Fokussierung der Ionen in der zweiten Dimension (Z-Dimension) zwischen den Ionenspiegeln bereitgestellt, z. B. gibt es keine periodischen Linsen, welche die Ionen in der zweiten Dimension (Z-Dimension) fokussieren. Somit expandiert jedes lonenpaket in der zweiten Dimension (Z-Dimension), während es sich vom Ionenbeschleuniger zum Detektor bewegt. MR-TOF-MS-Instrumente waren herkömmlicherweise bemüht, eine sehr hohe Auflösung zu erzielen, und erforderten demnach eine hohe Anzahl von Reflexionen zwischen den lonenspiegeln. Daher wurde es herkömmlicherweise als notwendig angesehen, eine Fokussierung in der zweiten Dimension (Z-Dimension) zwischen den Ionenspiegeln bereitzustellen, um zu verhindern, dass die Breite des Ionenpakets so weit abweicht, dass es größer als die Detektorbreite wird, wenn es die hohe Anzahl von Spiegelungen beendet und den Detektor erreicht hat. Dies wurde als notwendig angesehen, um eine annehmbare Durchlässigkeit und damit Empfindlichkeit des Instruments zu bewahren. Falls die Ionenpakete in der zweiten Dimension (Z-Dimension) zu sehr abweichen, kann es auch sein, dass einige lonen, die nur mit einer ersten Häufigkeit reflektiert wurden, den Detektor erreichen, wohingegen andere lonen, die öfter reflektiert wurden, den Detektor erreichen können. Daher kann es sein, dass die lonen sehr unterschiedliche Flugweglängen durch die feldfreie Region hindurch auf dem Weg zum Detektor aufweisen, was bei Flugzeit-Massenanalysatoren unerwünscht ist.

[0008] Die Erfinder der vorliegenden Erfindung haben jedoch festgestellt, dass wenn der lonenflugweg innerhalb des Instruments relativ klein gehalten wird und das Tastverhältnis (wie hier nachstehend definiert, d. h. D/L) relativ hoch angelegt wird, dann die Fokussierung in der zweiten Dimension (Z-Dimension) entfallen kann, wobei eine relativ hohe Empfindlichkeit und Auflösung bewahrt werden können. Genauer gesagt expandiert jedes lonenpaket, das aus dem Ionenbeschleuniger heraus gepulst wird, in der zweiten Dimension (Z-Dimension), wenn es sich in Richtung auf den Detektor bewegt, auf Grund der thermischen Geschwindigkeiten der Ionen. Dies ist besonders problematisch bei mehrfach reflektierenden Flugzeit-Massenspektrometern, weil einerseits der Ionendetektor in der zweiten Dimension (Z-Dimension) relativ kurz sein muss, so dass die lonen nicht damit zusammenstoßen, bis die gewünschte Anzahl von lonenspiegelungen ausgeführt wurde, jedoch andererseits lang genug sein muss, um das expandierte lonenpaket zu empfangen. Je mehr das Ionenpaket in der zweiten Dimension (Z-Dimension) mit Bezug auf seine ursprüngliche Länge in dieser Dimension expandiert, desto problematischer wird diese Situation. Die Erfinder haben erkannt, dass dadurch, dass die anfängliche Größe des lonenpakets (d. h. D) relativ groß und die Entfernung zwischen dem Ionenbeschleuniger und dem Detektor (d. h. L) relativ klein gehalten wird (d. h. durch das Bereitstellen eines relativ hohen Tastverhältnisses, D/L), die proportionale Expansion des lonenpakets zwischen dem Ionenbeschleuniger und dem Detektor relativ gering bleibt.

[0009] Der erste Aspekt der Erfindung stellt auch ein Verfahren zur Flugzeit-Massenanalyse bereit, das folgende Schritte umfasst: Bereitstellen eines Massenanalysators wie zuvor beschrieben; Steuern des Ionenbeschleunigers, um die Ionen in den ersten Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die lonen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen, wobei die Entfernung in der ersten Dimension (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln ≤ 1000 mm ist, wobei sich die Ionen über eine Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor von ≤ 700 mm bewegen, und wobei die Ionen in der zweiten Dimension (Z-Dimension) nicht räumlich fokussiert sind, während sie sich vom lonenbeschleuniger zum Detektor bewegen; und wobei die Ionen durch den Detektor detektiert werden und eine Flugzeit-Massenanalyse mit einem Tastverhältnis von ≥ 5 % und einer Auflösung von \geq 20000 erfahren.

[0010] Nach einem zweiten Aspekt stellt die vorliegende Erfindung einen mehrfach reflektierenden Flugzeit-Massenanalysator bereit, umfassend:

einen lonenbeschleuniger;

zwei lonenspiegel, die angeordnet sind, um lonen in einer ersten Dimension (X-Dimension) zu reflektieren, und die in einer zweiten Dimension (Z-Dimension) länglich sind; und

einen lonendetektor;

wobei der Ionenbeschleuniger angeordnet und konfiguriert ist, um Ionen in einen ersten der Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen; und

wobei die lonen reflektiert werden, um n-mal von einem der lonenspiegel zu einem anderen der lonenspiegel zu gehen, und wobei die lonen in der zweiten Dimension (Z-Dimension) während \geq 60 % dieser n Male nicht räumlich fokussiert sind.

[0011] Der zweite Aspekt der Erfindung stellt auch ein Verfahren zur Flugzeit-Massenanalyse bereit, das folgende Schritte umfasst: Bereitstellen eines Massenanalysators wie zuvor beschrieben; und Steuern des Ionenbeschleunigers, um die Ionen in den ersten Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen, wobei die Ionen reflektiert werden, um nmal von einem der Ionenspiegel zu einem anderen der Ionenspiegel zu gehen, und wobei die Ionen in der zweiten Dimension (Z-Dimension) während ≥ 60 % dieser n Male nicht räumlich fokussiert sind.

[0012] Nach einem dritten Aspekt stellt die vorliegende Erfindung einen mehrfach reflektierenden Flugzeit-Massenanalysator bereit, umfassend:

einen lonenbeschleuniger;

zwei lonenspiegel, die angeordnet sind, um lonen in einer ersten Dimension (X-Dimension) zu reflektieren, und die in einer zweiten Dimension (Z-Dimension) länglich sind; und

einen lonendetektor;

wobei der lonenbeschleuniger angeordnet und konfiguriert ist, um lonen in einen ersten der lonenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die lonen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen.

[0013] Der dritte Aspekt der Erfindung stellt auch ein Verfahren zur Flugzeit-Massenanalyse bereit, das folgende Schritte umfasst: Bereitstellen eines Massenanalysators wie zuvor beschrieben; und Steuern des Ionenbeschleunigers, um die Ionen in den ersten Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen.

[0014] Die vorliegenden Spektrometer können eine Ionenquelle umfassen, die aus der Gruppe ausgewählt wird, die besteht aus: (i) einer Elektrospray-Ionisations- ("ESI") Ionenquelle; (ii) einer Ionenquelle mit Photoionisation bei Atmosphärendruck ("AP-PI"); (iii) einer lonenguelle mit chemischer lonisation bei Atmosphärendruck ("APCI"); (iv) einer lonenquelle mit matrixunterstützter Laserdesorptionsionisation ("MALDI"); (v) einer Laserdesorptionsionisations- ("LDI") Ionenquelle; (vi) einer Ionenquelle mit Ionisation bei Atmosphärendruck ("API"); (vii) einer Ionenquelle mit Desorptionsionisation auf Silizium ("DIOS"); (viii) einer Elektronenstoß- ("EI") lonenquelle; (ix) einer lonenquelle mit chemischer lonisation ("CI"); (x) einer Feldionisations- ("FI") Ionenquelle; (xi) einer Felddesorptions-("FD") Ionenquelle; (xii) einer lonenquelle mit induktiv gekoppeltem Plasma ("ICP"); (xiii) einer lonenquelle mit schnellem Atombeschuss ("FAB"); (xiv) einer lonenquelle mit Flüssig-Sekundärionen-Massenspektrometrie ("LSIMS"); (xv) einer lonenquelle mit Desorptions-Elektrospray-Ionisation ("DESI"); (xvi) einer Ionenquelle mit radioaktivem Nickel-63; (xvii) einer Ionenquelle mit matrixunterstützter Laserdesorptionsionisation bei Atmosphärendruck; (xviii) einer Thermospray-lonenquelle; (xix) einer lonenquelle mit Glimmentladungsionisation mit Probenahme bei Atmosphärendruck ("ASGDI"); (xx) einer Glimmentladungs-("GD") Ionenquelle; (xxi) einer Impaktor-Ionenquelle; (xxii) einer Ionenquelle mit Direktanalyse in Echtzeit ("DART") Ionenquelle; (xxiii) einer Laserspray-Ionisations- ("LSI") Ionenquelle; (xxiv) einer Sonicspray-Ionisations- ("SSI") lonenquelle; (xxv) einer lonenquelle mit matrixunterstützter Einlassionisation ("MAII"); (xxvi) einer lonenquelle mit lösungsmittelunterstützter Einlassionisation ("SAII"); (xxvii) einer Ionenquelle mit Desorptions-Elektrospray-Ionisation ("DESI"); (xxviii) einer Ionenquelle mit Laserablations-Elektrospray-Ionisation ("LAESI"); und (xxix) einer oberflächenunterstützten Laserdesorptionsionisation ("SAL-DI").

[0015] Das Spektrometer kann eine oder mehrere kontinuierliche oder gepulste lonenquellen umfassen.

[0016] Das Spektrometer kann eine oder mehrere lonenführungen umfassen.

[0017] Das Spektrometer kann eine oder mehrere lonenmobilitätstrennvorrichtungen und/oder eine oder mehrere feldasymmetrische lonenmobilitäts-Spektrometervorrichtungen umfassen.

[0018] Das Spektrometer kann eine oder mehrere lonenfallen oder eine oder mehrere loneneinfangregionen umfassen.

[0019] Das Spektrometer kann eine oder mehrere Kollisions-, Fragmentierungs- oder Reaktionszellen umfassen, die aus der Gruppe ausgewählt werden, die besteht aus: (i) einer Fragmentierungsvorrichtung zur kollisionsinduzierten Dissoziation ("CID") ; (ii) einer Fragmentierungsvorrichtung zur oberflächeninduzierten Dissoziation ("SID"); (iii) einer Fragmentierungsvorrichtung zur Elektronentransfer-Dissoziation ("ETD"); (iv) einer Fragmentierungsvorrichtung zur Elektroneneinfangdissoziation ("ECD"); (v) einer Fragmentierungsvorrichtung zur Elektronenkollisions- oder Stoßdissoziation; (vi) einer Fragmentierungsvorrichtung zur photoinduzierten Dissoziation ("PID"); (vii) einer Fragmentierungsvorrichtung zur laserinduzierten Dissoziation; (viii) einer Vorrichtung zur durch Infrarotstrahlung induzierten Dissoziation; (ix) einer Vorrichtung zur durch Ultraviolettstrahlung induzierten Dissoziation; (x) einer Fragmentierungsvorrichtung mit Düsen-Skimmer-Schnittstelle; (xi) einer quelleninternen Fragmentierungsvorrichtung; (xii) ein Fragmentierungsvorrichtung zur quelleninternen kollisionsinduzierten Dissoziation; (xiii) einer Fragmentierungsvorrichtung mit thermischer oder Temperaturquelle; (xiv) einer Vorrichtung zur durch ein elektrisches Feld induzierten Fragmentierung; (xv) einer Vorrichtung zur durch ein Magnetfeld induzierten Fragmentierung; (xvi) einer Fragmentierungsvorrichtung zum Enzymaufschluss oder zur Enzymzersetzung; (xvii) einer Fragmentierungsvorrichtung zur Ionen-Ionen-Reaktion; (xviii) einer Fragmentierungsvorrichtung zur Ionen-Molekül-Reaktion; (xix) einer Fragmentierungsvorrichtung zur Ionen-Atome-Reaktion; (xx) einer Fragmentierungsvorrichtung zur Ionen-metastabile Ionen-Reaktion; (xxi) einer Fragmentierungsvorrichtung zur Ionen-metastabile Moleküle-Reaktion; (xxii) einer Fragmentierungsvorrichtung zur Ionen-metastabile Atome-Reaktion; (xxiii) einer Fragmentierungsvorrichtung zur Ionen-Ionen-Reaktion zum Reagieren von Ionen zum Bilden von Addukt- oder Produkt-Ionen; (xxiv) einer Ionen-Moleküle-Reaktionsvorrichtung zum Reagieren von Ionen zum Bilden von Addukt- oder Produkt-Ionen; (xxv) einer Ionen-Atome-Reaktionsvorrichtung zum Reagieren von Ionen zum Bilden von Addukt- oder Produktlonen; (xxvi) einer Ionen-metastabile Ionen-Reaktionsvorrichtung zum Reagieren von Ionen zum Bilden von Addukt- oder Produkt-Ionen; (xxvii) einer Ionenmetastabile Moleküle-Reaktionsvorrichtung zum Reagieren von Ionen zum Bilden von Addukt- oder Produkt-Ionen; (xxviii) einer Ionen-metastabile Atome-Reaktionsvorrichtung zum Reagieren von Ionen zum Bilden von Addukt- oder Produkt-Ionen; und (xxix) einer Fragmentierungsvorrichtung zur Elektronenionisationsdissoziation ("EID").

[0020] Die lonen-Moleküle-Reaktionsvorrichtung kann konfiguriert sein, um eine Ozonolyse für die Auffindung von olefinischen (doppelten) Bindungen in Lipiden auszuführen.

[0021] Das Spektrometer kann einen Massenanalysator umfassen, der aus der Gruppe ausgewählt wird, die besteht aus: (i) einem Quadrupol-Massenanalysator; (ii) einem 2D- oder Linear-Quadrupol-Massenanalysator; (iii) einem Paul- oder 3D-Quadrupol-Massenanalysator; (iv) einem Penning-Fallen-Massenanalysator; (v) einem Ionenfallen-Massenanalysator; (vi) einem Magnetsektor-Massenanalysator; (vii) einem Ionen-Cyclotronresonanz- ("ICR") Massenanalysator; (viii) einem Ionen-Cyclotronresonanz-("FHCR») Massenanalysator mit Fourier-Transformation; (ix) einem elektrostatischen Massenanalysator, der angeordnet ist, um ein elektrostatisches Feld zu generieren, das eine quadrologarithmische Potentialverteilung aufweist; (x) einem elektrostatischen Massenanalysator mit Fourier-Transformation; und (xi) einem Massenanalysator mit Fourier-Transformation.

[0022] Das Spektrometer kann einen oder mehrere Energieanalysatoren oder elektrostatische Energieanalysatoren umfassen.

[0023] Das Spektrometer kann ein oder mehrere Massenfilter umfassen, die aus der Gruppe ausgewählt werden, die besteht aus: (i) einem Quadrupol-Massenfilter; (ii) einer 2D- oder Linear-Quadrupol-lonenfalle; (iii) einer Paul- oder 3D-Quadrupol-lonenfalle; (iv) einer Penning-lonenfalle; (v) einer lonenfalle; (vi) einem Magnetsektor-Massenfilter; (vii) einem Flugzeit-Massenfilter; und (viii) einem Wien-Filter.

[0024] Das Spektrometer kann eine Vorrichtung oder ein lonengatter zum Pulsen von lonen; und/oder eine Vorrichtung zum Umwandeln eines im Wesentlichen kontinuierlichen lonenstrahls in einen gepulsten lonenstrahl umfassen.

[0025] Das Spektrometer kann eine C-Falle und einen Massenanalysator umfassen, der eine äußere zylinderartige Elektrode und eine koaxiale innere spindelartige Elektrode umfasst, die ein elektrostatisches Feld mit einer quadrologarithmischen Potentialverteilung bilden, wobei in einem ersten Be-

triebsmodus Ionen zur C-Falle durchgelassen werden und dann in den Massenanalysator eingeschossen werden, und wobei in einem zweiten Betriebsmodus Ionen zur C-Falle und dann zu einer Kollisionszelle oder einer Elektronentransfer-Dissoziationsvorrichtung durchgelassen werden, in der mindestens einige Ionen zu Fragment-Ionen fragmentiert werden, und wobei die Fragment-Ionen dann zur C-Falle durchgelassen werden, bevor sie in den Massenanalysator eingeschossen werden.

[0026] Das Spektrometer kann eine Stapelring-lonenführung umfassen, die eine Vielzahl von Elektroden umfasst, die jeweils eine Blende aufweisen, durch die im Gebrauch Ionen durchgelassen werden, und wobei die Beabstandung der Elektroden entlang der Länge des Ionenwegs zunimmt, und wobei die Blenden in den Elektroden in einem stromaufwärtigen Teilabschnitt der Ionenführung einen ersten Durchmesser aufweisen, und wobei die Blenden in den Elektroden in einem stromabwärtigen Teilabschnitt der Ionenführung einen zweiten Durchmesser aufweisen, der kleiner als der erste Durchmesser ist, und wobei im Gebrauch an aufeinanderfolgende Elektroden entgegengesetzte Phasen einer AC- oder HF-Spannung angelegt werden.

[0027] Das Spektrometer kann eine Vorrichtung umfassen, die angeordnet und angepasst ist, um den Elektroden eine AC- oder HF-Spannung zuzuführen. Die AC- oder HF-Spannung weist wahlweise eine Amplitude auf, die aus der Gruppe ausgewählt wird, die besteht aus: (i) etwa < 50 V Spitze-Spitze; (ii) etwa 50 bis 100 V Spitze-Spitze; (iii) etwa 100 bis 150 V Spitze-Spitze; (iv) etwa 150 bis 200 V Spitze-Spitze; (v) etwa 200 bis 250 V Spitze-Spitze; (vi) etwa 250 bis 300 V Spitze-Spitze; (vii) etwa 300 bis 350 V Spitze-Spitze; (viii) etwa 350 bis 400 V Spitze-Spitze; (ix) etwa 400 bis 450 V Spitze-Spitze; (x) etwa 450 bis 500 V Spitze-Spitze; und (xi) mehr als etwa 500 V Spitze-Spitze.

[0028] Die AC- oder HF-Spannung kann eine Frequenz aufweisen, die aus der Gruppe ausgewählt wird, die besteht aus: (i) < etwa 100 kHz; (ii) etwa 100 bis 200 kHz; (iii) etwa 200 bis 300 kHz; (iv) etwa 300 bis 400 kHz; (v) etwa 400 bis 500 kHz; (vi) etwa 0,5 bis 1,0 MHz; (vi) etwa 1,0 bis 1,5 MHz; (vii) etwa 1,5 bis 2,0 MHz; (ix) etwa 2,0 bis 2,5 MHz; (x) etwa 2,5 bis 3,0 MHz; (xi) etwa 3,0 bis 3,5 MHz; (xi) etwa 3,5 bis 4,0 MHz; (xii) etwa 4,0 bis 4,5 MHz; (xiv) etwa 4,5 bis 5,0 MHz; (xv) etwa 5,0 bis 5,5 MHz; (xvi) etwa 4,5 bis 6,0 MHz; (xvii) etwa 6,0 bis 6,5 MHz; (xviii) etwa 6,5 bis 7,0 MHz; (xix) etwa 7,0 bis 7,5 MHz; (xxi) etwa 7,5 bis 8,0 MHz; (xxi) etwa 8,0 bis 8,5 MHz; (xxii) etwa 8, 5 bis 9,0 MHz; (xxiii) etwa 9,0 bis 9,5 MHz; (xxiv) etwa 9,5 bis 10,0 MHz; und (xxv) mehr als etwa 10,0 MHz.

[0029] Das Spektrometer kann eine Chromatographie- oder andere Trennvorrichtung stromaufwärts

von einer Ionenquelle umfassen. Die Chromatographie-Trennvorrichtung kann eine Flüssigchromatographie- oder Gaschromatographie-Vorrichtung umfassen. Alternativ kann die Trennvorrichtung umfassen: (i) eine Kapillarelektrophorese- ("CE") Trennvorrichtung; (ii) eine Kapillarelektrochromatographie-("CEC") Trennvorrichtung; (iii) eine Trennvorrichtung mit einem im Wesentlichen steifen keramikbasierten, mehrschichtigen mikrofluidischen Substrat ("Keramikplatte"); oder (iv) eine Chromatographie-Trennvorrichtung mit überkritischen Fluiden.

[0030] Die Ionenführung kann auf einem Druck gehalten werden, der aus der Gruppe ausgewählt wird, die besteht aus: (i) < etwa 0,0001 mbar; (ii) etwa 0, 0001 bis 0,001 mbar; (iii) etwa 0,001 bis 0,01 mbar; (iv) etwa 0,01 bis 0,1 mbar; (v) etwa 0,1 bis 1 mbar; (vi) etwa 1 bis 10 mbar; (vi) etwa 10 bis 100 mbar; (viii) etwa 100 bis 1000 mbar; und (ix) mehr als etwa 1000 mbar.

[0031] Analyt-Ionen können einer Elektronentransferdissoziations- ("ETD") Fragmentierung in einer Elektronentransferdissoziations-Fragmentierungsvorrichtung unterzogen werden. Es kann veranlasst werden, dass Analyt-Ionen mit ETD-Reagens-Ionen innerhalb einer Ionenführung oder Fragmentierungsvorrichtung interagieren.

[0032] Das Spektrometer kann in diversen Betriebsmodi betätigt werden, wozu ein Massenspektrometrie- ("MS") Betriebsmodus; ein Tandemmassenspektrometrie- ("MS/MS") Betriebsmodus; ein Betriebsmodus, in dem Stamm- oder Vorläuferionen abwechselnd fragmentiert oder reagiert werden, um Fragment- oder Produktionen zu erzeugen, und nicht fragmentiert oder reagiert oder weniger fragmentiert oder reagiert werden; ein Betriebsmodus mit Überwachung mehrerer Reaktionen ("MRM"); ein Betriebsmodus mit datenabhängiger Analyse ("DDA"); ein Betriebsmodus mit datenunabhängiger Analyse ("DIA"), ein Quantisierungsbetriebsmodus oder ein Betriebsmodus zur Ionenmobilitätsspektrometrie ("IMS") gehören.

Figurenliste

[0033] Es werden nun diverse Ausführungsformen rein beispielhaft und mit Bezug auf die beiliegenden Zeichnungen beschrieben. Es zeigen:

Fig. 1 ein MR-TOF-MS-Instrument aus dem Stand der Technik;

Fig. 2 ein anderes MR-TOF-MS-Instrument aus dem Stand der Technik;

Fig. 3 ein Schema einer Ausführungsform der Erfindung;

Fig. 4 ein Schema einer anderen Ausführungsform der Erfindung;

Fig. 5A-5B die Auflösung und das Tastverhältnis, die für MR-TOF-MS-Instrumente unterschiedlicher Größe für Ionen, die eine Energie in der feldfreien Region zwischen den Spiegeln von 9,2 keV aufweisen, modelliert sind;

Fig. 6A-6B Daten für Parameter, die denjenigen entsprechen, die in **Fig. 5A-5B** gezeigt werden, außer dass die Daten für Ionen, die eine Energie in der feldfreien Region zwischen den Spiegeln von 6 keV aufweisen, modelliert sind;

Fig. 7 Daten für Parameter, die denjenigen entsprechen, die in **Fig. 5A-5B** gezeigt werden, außer dass die Daten für Ionen, die eine Energie in der feldfreien Region zwischen den Spiegeln von 3 keV, 4 keV und 5 keV aufweisen, modelliert sind;

Fig. 8 Daten für Parameter, die denjenigen entsprechen, die in **Fig. 5A-5B** gezeigt werden, außer dass die Daten für Ionen, die in den Spiegeln fünfmal reflektiert werden und eine Energie in der feldfreien Region zwischen den Spiegeln von zwischen 4 bis 10 keV aufweisen, modelliert sind;

Fig. 9 Daten für Parameter, die denjenigen entsprechen, die in **Fig. 8** gezeigt werden, außer dass die Daten für Ionen, die in den Spiegeln sechsmal reflektiert werden, modelliert sind;

Fig. 10 Daten für Parameter, die denjenigen entsprechen, die in **Fig. 5A-5B** gezeigt werden, außer dass die Daten modelliert sind, um ein Tastverhältnis von ungefähr 10 % zu erreichen; und

Fig. 11 Daten für Parameter, die denjenigen entsprechen, die in **Fig. 5A-5B** gezeigt werden, für Instrumente, die eine mittlere Größe aufweisen.

AUSFÜHRLICHE BESCHREIBUNG

[0034] Fig. 1 zeigt das MR-TOF-MS-Instrument aus der SU 1725289. Das Instrument umfasst zwei Ionenspiegel 10, die in der X-Dimension durch eine feldfreie Region 12 getrennt sind. Jeder Ionenspiegel 10 umfasst drei Paare von Elektroden 3 bis 8, die in der Z-Dimension länglich sind. Eine Ionenquelle 1 ist in der feldfreien Region 12 an einem Ende des Instruments (in der Z-Dimension) angeordnet, und ein Ionendetektor 2 ist an dem anderen Ende des Instruments (in der Z-Dimension) angeordnet.

[0035] Im Gebrauch beschleunigt die Ionenquelle **1** Ionen in einen ersten der Ionenspiegel **10** mit einem Neigungswinkel zu der X-Achse. Die Ionen weisen daher eine Geschwindigkeit in der X-Dimension und auch eine Drift-Geschwindigkeit in der Z-Dimension auf. Die Ionen treten in den ersten Ionenspiegel **10** ein und werden zurück auf den zweiten der Ionenspiegel **10** reflektiert. Die Ionen treten dann in den zweiten Spiegel ein und werden zurück auf den ersten lonenspiegel reflektiert. Der erste lonenspiegel reflektiert dann die lonen zurück auf den zweiten lonenspiegel. Dies geht weiter, und die lonen werden kontinuierlich zwischen den beiden lonenspiegeln reflektiert, während sie entlang der Vorrichtung in der Z-Dimension driften, bis die lonen auf den lonendetektor **2** stoßen. Die lonen folgen daher einer im Wesentlichen sinusförmigen mittleren Trajektorie innerhalb der X-Z-Ebene zwischen der lonenquelle **1** und der lonendetektor **2**.

[0036] Fig. 2 zeigt ein MR-TOF-MS-Instrument, das in der WO 2005/001878 offenbart wird. Dieses Instrument ist dadurch ähnlich wie das aus der SU 1725289, dass lonen aus einer lonenguelle 24 zwischen zwei lonenspiegeln 21 mehrfach reflektiert werden, während sie in der Z-Dimension in Richtung auf einen lonendetektor 26 driften. Das Instrument aus der WO 2005/001878 umfasst jedoch auch einen Satz von periodischen Linsen 23 innerhalb der feldfreien Region 27 zwischen den Ionenspiegeln 21. Diese Linsen 23 sind derart angeordnet, dass die lonenpakete durch sie hindurchgehen, wenn sie zwischen den lonenspiegeln 21 reflektiert werden. Es werden Spannungen an die Elektroden der Linsen 23 angelegt, um die Ionenpakete in der Z-Dimension räumlich zu fokussieren. Dies verhindert, dass die Ionenpakete zu sehr in der Z-Dimension abweichen und sich überlappen, und dass sie länger als der Detektor 26 in der Z-Dimension werden, wenn sie den Detektor 26 erreichen.

[0037] Die Ausführungsformen der vorliegenden Erfindung betreffen ein MR-TOF-MS-Instrument, das keinen Satz von Linsen **23** innerhalb der feldfreien Region zwischen den Ionenspiegeln aufweist.

[0038] Gemäß einem ersten Aspekt stellt die vorliegende Erfindung einen mehrfach reflektierenden Flugzeit-Massenanalysator bereit, umfassend:

einen lonenbeschleuniger;

zwei lonenspiegel, die angeordnet sind, um lonen in einer ersten Dimension (X-Dimension) zu reflektieren, und die in einer zweiten Dimension (Z-Dimension) länglich sind; und

einen lonendetektor;

wobei der Ionenbeschleuniger angeordnet und konfiguriert ist, um Ionen in einen ersten der Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen;

wobei die Ionen in der zweiten Dimension (Z-Dimension) nicht räumlich fokussiert sind, während sie sich vom Ionenbeschleuniger zum Detektor bewegen; und wobei der Massenanalysator ein Tastverhältnis von \geq 5 % und eine Auflösung von \geq 20000 aufweist, wobei die Entfernung in der ersten Dimension (X-Dimension) zwischen den Reflexionspunkten in den beiden lonenspiegeln \leq 1000 mm ist; und wobei der Massenanalysator derart konfiguriert ist, dass die lonen eine Entfernung in der zweiten Dimension (Z-Dimension) vom lonenbeschleuniger zum Detektor von \leq 700 mm zurücklegen.

[0039] Obwohl der Begriff "Tastverhältnis" für den Fachmann wohlbekannt ist, ist das Tastverhältnis, um Zweifel zu vermeiden, die Proportion der Zeit, während der Ionen aus einer kontinuierlichen Ionenquelle in einen Massenanalysator angenommen werden. Für Ionenbeschleuniger mit orthogonaler Beschleunigung, wie etwa die gemäß den Ausführungsformen der Erfindung, ist das Tastverhältnis gegeben durch:

Tastverhältnis =
$$\frac{D}{L} \sqrt{\frac{m/z}{(m/z)_{max}}}$$
,

wobei D die Länge in der zweiten Dimension (Z-Dimension) des Ionenpakets ist, wenn es durch den Ionenbeschleuniger orthogonal beschleunigt wird (d. h. die Länge in der zweiten Dimension der orthogonalen Beschleunigungsregion des Ionenbeschleunigers); L die Entfernung in der zweiten Dimension vom Mittelpunkt der orthogonalen Beschleunigungsregion des Ionenbeschleunigers zum Mittelpunkt der Detektionsregion des Ionendetektors ist; (m/z) das Masse-/ Ladungsverhältnis eines analysierten Ions ist; und (m/ z)_{max} das betreffende maximale Masse-/Ladungsverhältnis, das analysiert werden soll, ist.

[0040] Daher ist ersichtlich, dass das Tastverhältnis des Massenanalysators masseabhängig ist. Dies ist der Fall, weil Ionen mit einem höheren Masse-/Ladungsverhältnis länger brauchen, um durch die Extraktionsregion des Ionenbeschleunigers hindurchzugehen und diese auszufüllen. Wenn der Fachmann jedoch einen Massenanalysator beschreibt, sieht er das Tastverhältnis des Massenanalysators als das Tastverhältnis für das betreffende maximale Masse-/ Ladungsverhältnis an, d. h. das Tastverhältnis, wenn (m/z) = (m/z)_{max} in der obigen Gleichung. Entsprechend bezieht sich das Tastverhältnis, wenn es hier erwähnt wird, auf das Verhältnis von D/L (prozentual), wobei es sich um einen Wert handelt, der nur durch die geometrischen Parameter D und L des Massenanalysators definiert wird. Dies kann auch als "Probenahmeeffizienz" bezeichnet werden.

[0041] Ebenfalls um Zweifel zu vermeiden, hat der hier verwendete Begriff Auflösung seine normale Be-

deutung in der Technik, d. h. $m/(\Delta m)$ bei FWHM, wobei m das Masse-/ Ladungsverhältnis ist.

[0042] Die folgenden Merkmale werden mit Bezug auf den ersten Aspekt der Erfindung offenbart.

[0043] Jeder Spiegel kann mindestens vier Elektroden aufweisen, die derart angeordnet und konfiguriert sind, dass die Flugzeit-Ionenfokussierung erster Ordnung von der Position der Ionen in der Ebene, die zu der ersten Dimension (Y-Z-Ebene) orthogonal ist, im Wesentlichen unabhängig ist.

[0044] Daher kann die Flugzeit-Ionenfokussierung erster Ordnung von der Position der Ionen sowohl in der zweiten Dimension (Z-Dimension) als auch in einer dritten Dimension (Y-Dimension), die zu den ersten und zweiten Dimensionen (X- und Z-Dimensionen) orthogonal ist, im Wesentlichen unabhängig sein.

[0045] Der Massenanalysator kann Spannungsquellen zum Anlegen von mindestens vier verschiedenen Spannungen an die vier verschiedenen Elektroden in jedem Ionenspiegel zum Reflektieren von Ionen und Erreichen der Flugzeit-Fokussierung umfassen.

[0046] Die Ionen sind in der zweiten Dimension (Z-Dimension) nicht räumlich fokussiert, während sie sich vom Ionenbeschleuniger zum Detektor bewegen. Somit werden keine Ionenlinsen zwischen den Ionenspiegeln zum räumlichen Fokussieren von Ionen in der zweiten Dimension (Z-Dimension) bereitgestellt. Ähnlich sind die Ionenspiegel nicht konfiguriert, um die Ionen in der zweiten Dimension (Z-Dimension) räumlich zu fokussieren.

[0047] Der Ionendetektor kann von dem Ionenbeschleuniger in der zweiten Dimension (Z-Dimension) beabstandet sein. Alternativ können sich die Ionen vom Ionenbeschleuniger aus in einer ersten Richtung in der zweiten Dimension (Z-Dimension) bewegen, und können dann durch eine reflektierende Elektrode reflektiert werden, um sich in einer zweiten, entgegengesetzten Richtung in der zweiten Dimension (Z-Dimension) zum Detektor zu bewegen. Eine oder mehrere weitere Reflexionselektroden können bereitgestellt werden, um eine oder mehrere weitere Z-Dimensionsreflexionen zu bewirken, wobei der Detektor geeignet positioniert ist, um die Ionen nach diesen Z-Dimensionsreflexionen zu detektieren.

[0048] Die Ausführungsformen der Erfindung stellen ein Spektrometer bereit, das den hier beschriebenen Massenanalysator umfasst.

[0049] Das Spektrometer kann eine Ionenquelle zum Zuführen der Ionen zu dem Ionenbeschleuniger umfassen, wobei die Ionenquelle derart angeordnet ist, dass der Ionenbeschleuniger Ionen aus der Ionenquelle, die sich in der zweiten Dimension (Z-Dimension) bewegen, empfängt.

[0050] Diese Anordnung stellt ein relativ hohes Tastverhältnis für den Massenanalysator bereit. Wie zuvor beschrieben, ist das Tastverhältnis das Verhältnis der Länge in der zweiten Dimension (Z-Dimension) des lonenpakets, wenn es durch den lonenbeschleuniger beschleunigt wird, zu der Entfernung vom Mittelpunkt des Ionenbeschleunigers zum Mittelpunkt des Detektors. Die Ausführungsformen der Erfindung betreffen einen relativ kleinen Massenanalysator, und daher ist es erwünscht, dass der lonenbeschleuniger ein relativ längliches Ionenpaket (in der zweiten, Z-Dimension) pulst, um ein relativ hohes Tastverhältnis zu erreichen. Das relativ längliche Ionenpaket in der zweiten Dimension (Z-Dimension) wird dadurch ermöglicht, dass die lonen, die sich in der zweiten Dimension (Z-Dimension) bewegen, dem lonenbeschleuniger bereitgestellt werden. Dies ist anders als bei herkömmlichen mehrfach reflektierenden TOF-Spektrometern, bei denen es erwünscht ist, dass das Ionenpaket in der zweiten Dimension (Z-Dimension) sehr klein bleibt, so dass eine hohe Anzahl von Ionenspiegelreflexionen erfolgen kann, bevor die Ionenpakete in der zweiten Dimension (Z-Dimension) so weit abweichen, dass sie sich in der zweiten Dimension (Z-Dimension) überlappen. Um dies zu erreichen, stellen diese herkömmlichen Instrumente die Ionen dem Ionenbeschleuniger in einer Richtung bereit, die einer dritten Dimension entspricht, die zu den hier beschriebenen ersten und zweiten Dimensionen rechtwinklig ist. Folglich leiden diese herkömmlichen Instrumente unter einem relativ niedrigen Tastverhältnis.

[0051] Die lonenquelle kann eine kontinuierliche lonenquelle sein, um im Wesentlichen kontinuierliche lonen zu generieren, oder kann eine gepulste lonenquelle sein.

[0052] Der Massenanalysator kann ein Tastverhältnis von \ge 10 % aufweisen.

[0053] Wie zuvor beschrieben, weist der Massenanalysator ein Tastverhältnis von ≥ 5 % auf. Es wird in Betracht gezogen, dass der Massenanalysator ein Tastverhältnis aufweisen kann von: ≥ 6 %, ≥ 7 %, \ge 8 %, ≥ 9 %, ≥ 10 %, ≥ 11 %, ≥ 12 %, ≥ 13 %, ≥ 14 %, ≥ 15 %, ≥ 16 %, ≥ 17 %, ≥ 18 %, ≥ 19 %, ≥ 20 %, ≥ 25 %, ≥ 30 %. Zusätzlich oder alternativ wird in Betracht gezogen, dass der Massenanalysator ein Tastverhältnis aufweisen kann von: ≤ 30 %, ≤ 25 %, ≤ 20 %, ≤ 19 %, ≤ 18 %, ≤ 17 %, ≤ 16 %, ≤ 15 %, \le 14 %, ≤ 13 %, ≤ 12 %, ≤ 11 %, ≤ 10 %, ≤ 9 %, ≤ 8 %, ≤ 7 % oder ≤ 6 %.

[0054] Jeder beliebige dieser aufgeführten oberen Endpunkte des Tastverhältnisses kann mit jedem beliebigen der unteren Endpunkte des zuvor aufgeführ-

ten Tastverhältnisses kombiniert werden (wobei der obere Endpunkt höher als der untere Endpunkt ist). Jeder beliebige oder eine Kombination dieser Endpunkte kann auch mit einem der Bereiche (oder einer Kombination von Bereichen), die mit Bezug auf einen beliebigen oder eine beliebige Kombination der anderen hier besprochenen Parameter beschrieben werden, kombiniert werden. Beispielsweise kann jeder beliebige oder eine Kombination der Endpunkte oder Bereiche, die mit Bezug auf das Tastverhältnis beschrieben werden, mit jedem beliebigen oder einer beliebigen Kombination von Bereichen kombiniert werden, die beschrieben werden mit Bezug auf: Auflösung; und/oder Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor; und/oder Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln; und/oder Anzahl von Reflexionen; und/oder Ionenenergie in der zweiten Dimension; und/oder elektrische Feldstärke; und/oder kinetische Energie.

[0055] Der Massenanalysator kann derart konfiguriert sein, dass die Ionen eine erste Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor zurücklegen, wobei der Ionenbeschleuniger angeordnet und konfiguriert ist, um Pakete von Ionen zu pulsen, die eine anfängliche Länge in der zweiten Dimension (Z-Dimension) aufweisen, und wobei die erste Entfernung und die anfängliche Länge derart sind, dass das Spektrometer ein Tastverhältnis von ≥ 5 % aufweist.

[0056] Die erste Entfernung und die anfängliche Länge können jedoch derart angeordnet sein, dass das Tastverhältnis einer der anderen Bereiche von Tastverhältnissen ist, die hier offenbart werden.

[0057] Der Massenanalysator kann eine Auflösung von \geq 30000 aufweisen.

[0058] Es wird jedoch in Betracht gezogen, dass der Massenanalysator eine Auflösung aufweisen kann von: ≥ 22000 , ≥ 24000 , ≥ 26000 , ≥ 28000 , ≥ 30000 , ≥ 35000 , ≥ 40000 , ≥ 45000 , ≥ 50000 , ≥ 60000 , ≥ 70000 , ≥ 80000 , ≥ 90000 oder ≥ 100000 . Zusätzlich oder alternativ wird in Betracht gezogen, dass der Massenanalysator eine Auflösung aufweisen kann von: ≤ 100000 , ≤ 90000 , ≤ 80000 , ≤ 70000 , ≤ 60000 , ≤ 50000 , ≤ 45000 , ≤ 40000 , ≤ 35000 , ≤ 30000 , ≤ 28000 , ≤ 26000 , ≤ 24000 oder ≤ 22000 .

[0059] Jeder beliebige dieser aufgeführten oberen Endpunkte der Auflösung kann mit jedem beliebigen der unteren Endpunkte der zuvor aufgeführten Auflösung kombiniert werden (wobei der obere Endpunkt höher als der untere Endpunkt ist). Jeder beliebige oder eine Kombination dieser Endpunkte kann auch mit jedem beliebigen der Bereiche (oder einer Kombination von Bereichen), die mit Bezug auf einen be-

liebigen oder eine beliebige Kombination der anderen hier besprochenen Parameter beschrieben werden, kombiniert werden. Beispielsweise kann jeder beliebige oder eine Kombination der Endpunkte oder Bereiche, die mit Bezug auf die Auflösung beschrieben werden, mit jedem beliebigen oder einer beliebigen Kombination von Bereichen kombiniert werden, die beschrieben werden mit Bezug auf: Tastverhältnis; und/oder Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor; und/oder Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln; und/oder Anzahl von Reflexionen; und/oder Ionenenergie in der zweiten Dimension; und/oder elektrische Feldstärke; und/oder kinetische Energie.

[0060] Die Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor kann eine sein von: ≤ 650 mm; ≤ 600 mm; ≤ 550 mm; ≤ 500 mm; ≤ 480 mm; ≤ 460 mm; ≤ 440 mm; ≤ 420 mm; ≤ 400 mm; ≤ 380 mm; ≤ 360 mm; ≤ 340 mm; ≤ 320 mm; ≤ 300 mm; ≤ 280 mm; ≤ 260 mm; ≤ 240 mm; ≤ 220 mm; oder ≤ 200 mm; und/oder die erste Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor kann eine sein von: ≥ 100 mm; ≥ 120 mm; ≥ 140 mm; ≥ 160 mm; ≥ 180 mm; ≥ 200 mm; ≥ 220 mm; ≥ 240 mm; ≥ 260 mm; ≥ 280 mm; ≥ 300 mm; ≥ 320 mm; ≥ 340 mm; ≥ 360 mm; ≥ 380 mm; oder ≥ 400 mm.

[0061] Jeder beliebige dieser aufgeführten oberen Endpunkte der ersten Entfernung in der zweiten Dimension (Z-Dimension) kann mit jedem beliebigen der unteren Endpunkte der ersten Entfernung in der zweiten Dimension (Z-Dimension), die zuvor ausgeführt wurden, kombiniert werden (wobei der obere Endpunkt höher als der untere Endpunkt ist). Jeder beliebige oder eine Kombination dieser Endpunkte kann auch mit jedem beliebigen der Bereiche (oder einer Kombination von Bereichen), die mit Bezug auf einen beliebigen oder eine beliebige Kombination der anderen hier besprochenen Parameter beschrieben werden, kombiniert werden. Beispielsweise kann jeder beliebige oder eine Kombination der Endpunkte oder Bereiche, die mit Bezug auf die Entfernung vom Ionenbeschleuniger zum Detektor beschrieben werden, mit jedem beliebigen oder einer beliebigen Kombination von Bereichen kombiniert werden, die beschrieben werden mit Bezug auf: Tastverhältnis; und/oder Auflösung; und/oder Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden lonenspiegeln; und/oder Anzahl von Reflexionen; und/oder lonenenergie in der zweiten Dimension; und/oder elektrische Feldstärke; und/oder kinetische Energie.

[0062] Die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden lonenspiegeln kann sein: \leq 950 mm; \leq 900 mm; ≤ 850 mm; ≤ 800 mm; ≤ 750 mm; ≤ 700 mm; ≤ 650 mm; ≤ 600 mm; ≤ 550 mm; ≤ 500 mm; ≤ 450 mm; oder ≤ 400 mm; und/oder die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden lonenspiegeln kann sein: ≥ 350 mm; ≥ 360 mm; ≥ 380 mm; ≥ 400 mm; ≥ 450 mm; ≥ 500 mm; ≥ 550 mm; ≥ 600 mm; ≥ 650 mm; \geq 700 mm; ≥ 750 mm; ≥ 800 mm; ≥ 850 mm; oder \geq 900 mm.

[0063] Jeder beliebige dieser aufgeführten oberen Endpunkte der Entfernung zwischen den Reflexionspunkten in den beiden lonenspiegeln kann mit jedem beliebigen der unteren Endpunkte der Entfernung zwischen den Reflexionspunkten in den beiden Ionenspiegeln, die zuvor ausgeführt wurden, kombiniert werden (wobei der obere Endpunkt höher als der untere Endpunkt ist). Jeder beliebige oder eine Kombination dieser Endpunkte kann auch mit jedem beliebigen der Bereiche (oder einer Kombination von Bereichen), die mit Bezug auf einen beliebigen oder eine beliebige Kombination der anderen hier besprochenen Parameter beschrieben werden, kombiniert werden. Beispielsweise kann jeder beliebige oder eine Kombination der Endpunkte oder Bereiche, die mit Bezug auf die Entfernung zwischen den Reflexionspunkten beschrieben werden, mit jedem beliebigen oder einer beliebigen Kombination von Bereichen kombiniert werden, die beschrieben werden mit Bezug auf: Tastverhältnis; und/oder Auflösung; und/ oder Entfernung in der zweiten Dimension (Z-Dimension) vom lonenbeschleuniger zum Detektor; und/ oder Anzahl von Reflexionen; und/oder Ionenenergie in der zweiten Dimension; und/oder elektrische Feldstärke; und/oder kinetische Energie.

[0064] Der Ionenbeschleuniger, die Ionenspiegel und der Detektor können derart angeordnet und konfiguriert sein, dass die Ionen mindestens x-mal durch die Ionenspiegel reflektiert werden, während sie vom Ionenbeschleuniger zum Detektor gehen; wobei x: \geq 2, \geq 3, \geq 4, \geq 5, \geq 6, \geq 7, \geq 8, \geq 9, \geq 10, \geq 11, \geq 12, \geq 13, \geq 14 oder \geq 15; und/oder wobei x: \leq 15; \leq 14; \leq 13; \leq 12; \leq 11; \leq 10; \leq 9; \leq 8; \leq 7; \leq 6; \leq 5; \leq 4; \leq 3; oder \leq 2; und/oder wobei x 3 bis 10 ist; wobei x 4 bis 9 ist; wobei x 5 bis 10 ist; wobei x 3 bis 6 ist; wobei x 4 bis 5 ist; oder wobei x 5 bis 6 ist.

[0065] Jeder beliebige dieser aufgeführten oberen Endpunkte der Anzahl von Reflexionen kann mit jedem beliebigen der unteren Endpunkte der Anzahl von Reflexionen, die zuvor ausgeführt wurden, kombiniert werden (wobei der obere Endpunkt höher als der untere Endpunkt ist). Jeder beliebige oder eine Kombination dieser Endpunkte kann auch mit jedem beliebigen der Bereiche (oder einer Kombination von Bereichen), die mit Bezug auf jeden beliebigen oder eine beliebige Kombination der anderen hier besprochenen Parameter beschrieben werden, kombiniert werden. Beispielsweise kann jeder beliebige oder eine Kombination der Endpunkte oder Bereiche, die mit Bezug auf die Anzahl von Reflexionen beschrieben werden, mit jedem beliebigen oder einer beliebigen Kombination von Bereichen kombiniert werden, die beschrieben werden mit Bezug auf: Tastverhältnis; und/oder Auflösung; und/oder Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor; und/oder Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln; und/oder Ionenenergie in der zweiten Dimension; und/oder elektrische Feldstärke; und/oder kinetische Energie.

[0066] Die Ionen können sich zwischen 100 mm und 450 mm in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor bewegen; wobei die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln zwischen 350 und 950 mm liegen kann; und wobei die Ionen zwischen 2- und 15-mal durch die Ionenspiegel reflektiert werden können, während sie vom Ionenbeschleuniger zum Detektor gehen.

[0067] Alternativ können sich die Ionen zwischen 150 mm und 400 mm in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor bewegen; wobei die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln zwischen 400 und 900 mm betragen kann; und wobei die lonen zwischen 3und 10-mal durch die Ionenspiegel reflektiert werden können, während sie sich vom lonenbeschleuniger zum Detektor bewegen. Alternativ können sich die lonen zwischen 150 mm und 350 mm in der zweiten Dimension (Z-Dimension) bewegen. Alternativ oder zusätzlich kann die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln zwischen 400 und 600 mm betragen.

[0068] Es wird in Betracht gezogen, dass die lonen zwischen 100 mm und 400 mm in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor zurücklegen können; wobei die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln zwischen 300 und 700 mm liegen kann; und wobei die Ionen zwischen 3- und 6-mal durch die Ionenspiegel reflektiert werden können, während sie sich vom Ionenbeschleuniger zum Detektor bewegen. Alternativ können die Ionen zwischen 150 mm und 350 mm in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor zurücklegen. Alternativ oder zusätzlich beträgt die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden lonenspiegeln zwischen 400 und 600 mm. Zusätzlich zu oder anstelle eines oder beider dieser Parameter können die Ionen zwischen 4- und 5-mal oder zwischen 5- und 6-mal durch

die lonenspiegel reflektiert werden, während sie sich vom lonenbeschleuniger zum Detektor bewegen.

[0069] Das Spektrometer kann konfiguriert sein, um zu bewirken, dass sich die Ionen in der zweiten Dimension (Z-Dimension) mit einer Energie bewegen von: \leq 140 eV; \leq 120 eV; \leq 100 eV; \leq 90 eV; \leq 80 $eV; \le 70 eV; \le 60 eV; \le 50 eV; \le 40 eV; \le 30 eV;$ ≤ 20 eV; oder ≤ 10 eV; und/oder das Spektrometer kann konfiguriert sein, um zu bewirken, dass sich die Ionen in der zweiten Dimension (Z-Dimension) mit einer Energie bewegen von: \geq 120 eV; \geq 100 eV; \geq 90 $eV; \ge 80 eV; \ge 70 eV; \ge 60 eV; \ge 50 eV; \ge 40 eV;$ \geq 30 eV; \geq 20 eV; oder \geq 10 eV. Das Spektrometer kann konfiguriert sein, um zu bewirken, dass sich die Ionen in der zweiten Dimension (Z-Dimension) mit einer Energie bewegen von zwischen: 15 bis 70 eV; 10 bis 65 eV; 10 bis 60 eV; 20 bis 100 eV; 25 bis 100 eV; 20 bis 90 eV; 40 bis 60 eV; 30 bis 50 eV; 20 bis 30 eV; 20 bis 45 eV; 25 bis 40 eV; 15 bis 40 eV; 10 bis 45 eV; oder 10 bis 25 eV.

[0070] Jeder beliebige dieser aufgeführten oberen Endpunkte der Energie kann mit jedem beliebigen der unteren Endpunkte der Energie, die zuvor ausgeführt wurden, kombiniert werden (wobei der obere Endpunkt höher als der untere Endpunkt ist). Jeder beliebige oder eine Kombination dieser Endpunkte kann auch mit jedem beliebigen der Bereiche (oder einer Kombination von Bereichen), die mit Bezug auf einen beliebigen oder eine beliebige Kombination der anderen hier besprochenen Parameter beschrieben werden, kombiniert werden. Beispielsweise kann jeder beliebige oder eine Kombination der Endpunkte oder Bereiche, die mit Bezug auf die Energie in der zweiten Dimension beschrieben werden, mit jedem beliebigen oder einer beliebigen Kombination von Bereichen kombiniert werden, die beschrieben werden mit Bezug auf: Tastverhältnis; und/oder Auflösung; und/oder Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor; und/oder Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln; und/oder Anzahl von Reflexionen; und/oder elektrische Feldstärke; und/oder kinetische Energie.

[0071] Die Bereiche von Auflösung, Tastverhältnis und Größe des Massenanalysators (d. h. die Entfernung in der ersten Richtung zwischen den Reflexionspunkten in den beiden Ionenspiegeln, und die Entfernung, die zwischen dem Ionenbeschleuniger und dem Detektor in der zweiten Dimension zurückgelegt wird), die hier beschrieben werden, dienen als praktische Werte von Flugzeitenergien und Spiegelspannungen.

[0072] Der Ionenbeschleuniger kann konfiguriert sein, um ein elektrisches Feld von y V/mm zu generieren, um die Ionen zu beschleunigen; wobei y: ≥

 $\begin{array}{l} 700; \geq 650; \geq 600; \geq 580; \geq 560; \geq 540; \geq 520; \geq 500; \\ \geq 480; \geq 460; \geq 440; \geq 420; \geq 400; \geq 380; \geq 360; \geq \\ 340; \geq 320; \geq 300; \geq 280; \geq 260; \geq 240; \geq 220; \text{ oder} \\ \geq 200; \text{ und/oder wobei } y: \leq 700; \leq 650; \leq 600; \leq 580; \\ \leq 560; \leq 540; \leq 520; \leq 500; \leq 480; \leq 460; \leq 440; \leq \\ 420; \leq 400; \leq 380; \leq 360; \leq 340; \leq 320; \leq 300; \leq 280; \\ \leq 260; \leq 240; \leq 220; \text{ oder } \leq 200. \end{array}$

[0073] Jeder beliebige dieser aufgeführten oberen Endpunkte des elektrischen Feldes kann mit jedem beliebigen der unteren Endpunkte des elektrischen Feldes kombiniert werden, die zuvor ausgeführt wurden (wobei der obere Endpunkt höher als der untere Endpunkt ist). Jeder beliebige oder eine Kombination dieser Endpunkte kann auch mit jedem beliebigen der Bereiche (oder einer Kombination von Bereichen) kombiniert werden, die mit Bezug auf einen beliebigen oder eine beliebige Kombination der anderen hier besprochenen Parameter beschrieben werden. Beispielsweise kann jeder beliebige oder eine Kombination der Endpunkte oder Bereiche, die mit Bezug auf die elektrische Feldstärke beschrieben werden, mit jedem beliebigen oder einer beliebigen Kombination von Bereichen kombiniert werden, die beschrieben werden mit Bezug auf: Tastverhältnis; und/oder Auflösung; und/oder Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor; und/oder Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln; und/oder Anzahl von Reflexionen; und/oder Ionenenergie in der zweiten Dimension; und/oder kinetische Energie.

[0074] Eine Region, die im Wesentlichen frei von elektrischen Feldern ist, kann zwischen den Ionenspiegeln derart angeordnet sein, dass sich die Ionen, wenn sie zwischen den Ionenspiegeln reflektiert werden, durch diese Region hindurch bewegen.

[0075] Die Ionen können eine kinetische Energie E aufweisen, wenn sie sich zwischen den Ionenspiegeln und/oder in der Region befinden, die im Wesentlichen frei von elektrischen Feldern ist; wobei E: \geq 1 keV; \geq 2 keV; \geq 3 keV; \geq 4 keV; \geq 5 keV; \geq 6 keV; \geq 7 keV; \geq 8 keV; \geq 9 keV; \geq 10 keV; \geq 11 keV; \geq 12 keV; \geq 13 keV; \geq 14 keV; oder 15 keV; und/oder wobei E < 15 keV; \leq 14 keV; \leq 13 keV; \leq 12 keV; \leq 11 keV; \leq 10 keV; \leq 9 keV; \leq 8 keV; \leq 7 keV; \leq 6 keV; oder \leq 5 keV; und/oder zwischen 5 und 10 keV.

[0076] Jeder beliebige dieser aufgeführten oberen Endpunkte der kinetischen Energie kann mit jedem beliebigen der unteren Endpunkte der kinetischen Energie, die zuvor ausgeführt wurden, kombiniert werden (wobei der obere Endpunkt höher als der untere Endpunkt ist). Jeder beliebige oder eine Kombination dieser Endpunkte kann auch mit jedem beliebigen der Bereiche (oder einer Kombination von Bereichen), die mit Bezug auf einen beliebigen oder eine beliebige Kombination der anderen hier bespro-

chenen Parameter beschrieben werden, kombiniert werden. Beispielsweise kann jeder beliebige oder eine Kombination der Endpunkte oder Bereiche, die mit Bezug auf die kinetische Energie beschrieben werden, mit jedem beliebigen oder einer beliebigen Kombination von Bereichen kombiniert werden, die beschrieben werden mit Bezug auf: Tastverhältnis; und/oder Auflösung; und/oder Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor; und/oder Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln; und/oder Anzahl von Reflexionen; und/oder Ionenenergie in der zweiten Dimension; und/oder elektrische Feldstärke.

[0077] Das Spektrometer kann eine Ionenführung zum Führen von Ionen in den Ionenbeschleuniger und ein Heizelement **39** zum Erhitzen der Ionenführung umfassen.

[0078] Das Spektrometer kann ein Heizelement zum Erhitzen der Elektroden des Ionenbeschleunigers umfassen.

[0079] Das Spektrometer kann ein Heizelement umfassen, das angeordnet und konfiguriert ist, um die lonenführung und/oder den Beschleuniger auf eine Temperatur zu erhitzen von: ≥ 100 °C, ≥ 110 °C, ≥ 120 °C, ≥ 130 °C, ≥ 140 °C, oder ≥ 150 °C. Das Erhitzen der diversen Bestandteile, wie hier beschrieben, kann dazu beitragen, die Schnittstellenladung zu reduzieren.

[0080] Der hier offenbarte lonenbeschleuniger kann ein gitterloser lonenbeschleuniger sein. Wenn der lonenbeschleuniger erhitzt wird, dann ist ein gitterloser lonenbeschleuniger nicht von dem Durchhängen des Gitters betroffen, das ansonsten durch das Erhitzen verursacht würde.

[0081] Das Spektrometer kann einen Kollimator zum Kollimieren der Ionen, die in Richtung auf den Ionenbeschleuniger vorbeigehen, umfassen, wobei der Kollimator konfiguriert ist, um Ionen in der ersten Dimension (X-Dimension) und/oder einer Dimension (Y-Dimension), die sowohl zu der ersten als auch der zweiten Dimension orthogonal ist, zu kollimieren.

[0082] Das Spektrometer kann eine Ionenoptik **33** umfassen, die angeordnet und konfiguriert ist, um den Ionenstrahl, der in Richtung auf den Ionenbeschleuniger vorbeigeht, in der ersten Dimension (X-Dimension) und/oder einer Dimension (Y-Dimension), die sowohl zu der ersten als auch der zweiten Dimension orthogonal ist, zu expandieren.

[0083] Das Spektrometer kann eine Ionentrennwand umfassen, um Ionen räumlich oder gemäß einem Masse-/Ladungsverhältnis oder der Ionenmobilität in der zweiten Dimension (Z-Dimension) zu trennen, bevor die Ionen in den Ionenbeschleuniger eintreten.

[0084] Gemäß einem zweiten Aspekt stellt die vorliegende Erfindung einen mehrfach reflektierenden Flugzeit-Massenanalysator bereit, umfassend:

einen lonenbeschleuniger;

zwei Ionenspiegel, die angeordnet sind, um Ionen in einer ersten Dimension (X-Dimension) zu reflektieren, und die in einer zweiten Dimension (Z-Dimension) länglich sind; und

einen lonendetektor;

wobei der Ionenbeschleuniger angeordnet und konfiguriert ist, um Ionen in einen ersten der Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen; und

wobei die lonen reflektiert werden, um n-mal von dem einen der lonenspiegel zu dem anderen der lonenspiegel zu gehen, und wobei die lonen in der zweiten Dimension (Z-Dimension) während $\ge 60 \%$ dieser n Male nicht räumlich fokussiert sind.

[0085] Der Massenanalysator gemäß dem zweiten Aspekt kann jedes beliebige der Merkmale aufweisen, die hier mit Bezug auf den ersten Aspekt offenbart wurden, außer dass der Massenanalysator darauf eingeschränkt sein kann oder nicht, dass die lonen in der zweiten Dimension (Z-Dimension) nicht räumlich fokussiert sind, während sie sich vom lonenbeschleuniger zum Detektor bewegen (z. B. während des gesamten Flugs vom Ionenbeschleuniger zum Detektor), wie es mit Bezug auf den ersten Aspekt beschrieben wurde. Es wird in Betracht gezogen, dass es eine gewisse räumliche Fokussierung in der zweiten Dimension (Z-Dimension) zwischen einigen der Spiegelungen geben kann. Daher sind gemäß dem zweiten Aspekt der Erfindung die Ionen in der zweiten Dimension (Z-Dimension) während ≥ 60 % der n Male nicht räumlich fokussiert. Wahlweise sind die Ionen in der zweiten Dimension (Z-Dimension) während ≥ 65 %, ≥ 70 %, ≥ 75 %, ≥ 80 %, ≥ 85 %, ≥ 90 %, ≥ oder 95 % der n Male nicht räumlich fokussiert.

[0086] Der Massenanalysator gemäß dem zweiten Aspekt kann jedes beliebige der Merkmale aufweisen, die hier mit Bezug auf den ersten Aspekt offenbart wurden, außer dass der Massenanalysator darauf eingeschränkt sein kann oder nicht, dass das Tastverhältnis ≥ 5 % beträgt, wie es mit Bezug auf den ersten Aspekt beschrieben wurde.

[0087] Der Massenanalysator gemäß dem zweiten Aspekt kann jedes beliebige der Merkmale aufwei-

sen, die hier mit Bezug auf den ersten Aspekt offenbart wurden, außer dass der Massenanalysator darauf eingeschränkt sein kann oder nicht, dass die Auflösung ≥ 20000 ist, wie es mit Bezug auf den ersten Aspekt beschrieben wurde.

[0088] Der Massenanalysator gemäß dem zweiten Aspekt kann jedes beliebige der Merkmale aufweisen, die hier mit Bezug auf den ersten Aspekt offenbart wurden, außer dass der Massenanalysator darauf eingeschränkt sein kann oder nicht, dass die Entfernung in der ersten Dimension (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln ≤ 1000 mm ist, wie es mit Bezug auf den ersten Aspekt beschrieben wurde.

[0089] Der Massenanalysator gemäß dem zweiten Aspekt kann jedes beliebige der Merkmale aufweisen, die hier mit Bezug auf den ersten Aspekt offenbart wurden, außer dass der Massenanalysator darauf eingeschränkt sein kann oder nicht, dass die Entfernung, welche die Ionen in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor zurücklegen, ≤ 700 mm ist, wie es mit Bezug auf den ersten Aspekt beschrieben wurde.

[0090] Der erste Aspekt der Erfindung stellt auch ein Verfahren zur Flugzeit-Massenanalyse bereit, das folgende Schritte umfasst:

Bereitstellen eines Massenanalysators, wie mit Bezug auf den ersten Aspekt der Erfindung beschrieben; und

Steuern des Ionenbeschleunigers, um die Ionen in den ersten Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die lonen zwischen den lonenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen, wobei die Entfernung in der ersten Dimension (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln ≤ 1000 mm ist, wobei die Ionen eine Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor von ≤ 700 mm zurücklegen, und wobei die Ionen in der zweiten Dimension (Z-Dimension) nicht räumlich fokussiert sind, während sie sich vom Ionenbeschleuniger zum Detektor bewegen;

wobei die Ionen durch den Detektor detektiert werden und einer Flugzeit-Massenanalyse mit einem Tastverhältnis von \geq 5 % und einer Auflösung von \geq 20000 unterzogen werden.

[0091] Der zweite Aspekt der Erfindung stellt auch ein Verfahren zur Flugzeit-Massenanalyse bereit, das folgende Schritte umfasst:

Bereitstellen eines Massenanalysators, wie mit Bezug auf den zweiten Aspekt der Erfindung beschrieben; und

Steuern des Ionenbeschleunigers, um die Ionen in den ersten Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen, wobei die Ionen reflektiert werden, um n-mal von dem einen der Ionenspiegel zu dem anderen der Ionenspiegel zu gehen, und wobei die Ionen in der zweiten Dimension (Z-Dimension) während ≥ 60 % dieser n Male nicht räumlich fokussiert sind.

[0092] Es werden nun spezifische Ausführungsformen der Erfindung mit Bezug auf die Zeichnungen beschrieben, um zum Verständnis der Erfindung beizutragen.

[0093] Fig. 3 zeigt ein Schema einer Ausführungsform der vorliegenden Erfindung. Das Spektrometer umfasst einen Ioneneingang 30 zum Empfangen eines lonenstrahls 32 entlang einer Eingangsachse, einen Ionenbeschleuniger 34 zum gepulsten orthogonalen Beschleunigen der empfangenen Ionen, ein Paar von Ionenspiegeln 36 zum Reflektieren der Ionen, und einen lonendetektor 38 zum Detektieren der Ionen. Jeder Ionenspiegel 36 umfasst eine Vielzahl von Elektroden (die entlang der X-Dimension angeordnet sind), so dass unterschiedliche Spannungen an die Elektroden angelegt werden können, um zu bewirken, dass die Ionen reflektiert werden. Die Elektroden sind in der Z-Dimension länglich, wodurch die Ionen durch jeden Spiegel mehrmals reflektiert werden können, wie es nachstehend ausführlicher beschrieben wird. Jeder Ionenspiegel kann ein zweidimensionales elektrostatisches Feld in der X-Y-Ebene bilden. Der Drift-Raum 40, der zwischen den lonenspiegeln 36 angeordnet ist, kann im Wesentlichen elektrisch feldfrei sein, so dass sich die Ionen, wenn sie reflektiert werden und sich in dem Raum zwischen den Ionenspiegeln bewegen, durch eine im Wesentlichen feldfreie Region hindurch bewegen.

[0094] Im Gebrauch werden Ionen dem Ioneneingang **30** entweder als ein kontinuierlicher Ionenstrahl oder intermittierend oder gepulst zugeführt. Die Ionen werden wünschenswerterweise in den Ioneneingang entlang einer Achse durchgelassen, die auf die Z-Dimension ausgerichtet ist. Dadurch kann das Tastverhältnis des Instruments hoch bleiben. Es wird jedoch in Betracht gezogen, dass die Ionen entlang einer Eingangsachse eingeführt werden könnten, die auf die Y-Dimension ausgerichtet ist. Die Ionen gehen vom Ioneneingang zum Ionenbeschleuniger **34**, der die Ionen (z. B. periodisch) in der X-Dimension pulst, so dass sich Pakete von Ionen **31** in der X-Dimension in Richtung auf und in einen ersten der Ionenspiegel **36** bewegen. Die Ionen behalten eine Geschwindigkeitskomponente in der Z-Dimension von derjenigen, die sie hatten, als sie in den Ionenbeschleuniger **34** gingen, oder erhalten eine derartige Geschwindigkeitskomponente in der Z-Dimension (z. B. falls das Ion in den Ionenbeschleuniger entlang der Y-Dimension eingetreten ist). Somit werden die Ionen in die Flugzeitregion **40** des Instruments mit einem kleinen Neigungswinkel zur X-Dimension mit einer größeren Geschwindigkeitskomponente in der X-Dimension in Richtung auf den Ionenspiegel **36** und einer kleineren Geschwindigkeitskomponente in der Z-Dimension in Richtung auf den Detektor **38** eingeschossen.

[0095] Die lonen gehen in einen ersten der lonenspiegel und werden zurück in Richtung auf den zweiten der lonenspiegel reflektiert. Die lonen gehen durch die feldfreie Region 40 zwischen den Spiegeln 38, während sie sich in Richtung auf den zweiten lonenspiegel bewegen, und sie trennen sich gemäß ihren Masse-/Ladungsverhältnissen, wie es bei Flugzeit-Massenanalysatoren bekannt ist. Die Ionen treten dann in den zweiten Spiegel ein und werden zurück auf den ersten Ionenspiegel reflektiert, wobei sie wieder durch die feldfreie Region zwischen den Spiegeln hindurchgehen, während sie sich in Richtung auf den ersten lonenspiegel bewegen. Der erste lonenspiegel reflektiert dann die lonen zurück auf den zweiten lonenspiegel. Dies geht weiter, und die lonen werden kontinuierlich zwischen den beiden Ionenspiegeln reflektiert, während sie entlang der Vorrichtung in der Z-Dimension driften, bis die Ionen auf den Ionendetektor stoßen. Die lonen folgen daher einer im Wesentlichen sinusförmigen mittleren Trajektorie innerhalb der X-Z-Ebene zwischen der Ionenquelle und dem Ionendetektor. Obwohl vier Ionenreflexionen in Fig. 3 gezeigt sind, werden andere Anzahlen von lonenreflexionen in Betracht gezogen, wie es hier an anderer Stelle beschrieben wird.

[0096] Die Zeit, die zwischen dem Zeitpunkt, zu dem ein gegebenes Ion vom Ionenbeschleuniger gepulst wird, bis zu dem Zeitpunkt, zu dem das Ion detektiert wird, verstreicht, kann bestimmt und zusammen mit der Kenntnis der Flugweglänge verwendet werden, um das Masse-/Ladungsverhältnis dieses Ions zu berechnen.

[0097] Wie zuvor beschrieben, wenn hier auf das Tastverhältnis Bezug genommen wird, bezieht es sich auf das Verhältnis von D/L (prozentual), wobei D die Länge in der Z-Dimension des Ionenpakets 31 ist, wenn es durch den Ionenbeschleuniger 34 orthogonal beschleunigt wird (d. h. die Länge in der Z-Dimension der orthogonalen Beschleunigungsregion des Ionenbeschleunigers 31), und L die Entfernung in der Z-Dimension vom Mittelpunkt der orthogonalen Beschleunigungsregion des Ionenbeschleunigers 34 zum Mittelpunkt der Detektionsregion des Ionendetektors 38 ist.

[0098] Es wird keine Fokussierung der Ionen in der Z-Dimension zwischen den Ionenspiegeln bereitgestellt, z. B. gibt es keine periodischen Linsen, welche die Ionen in der Z-Dimension fokussieren. Somit expandiert jedes Paket von Ionen in der Z-Dimension, wenn es sich vom Ionenbeschleuniger zum Detektor bewegt. MR-TOF-MS-Instrumente waren herkömmlicherweise bemüht, eine hohe Anzahl von Reflexionen zwischen den Ionenspiegeln. Daher wurde es herkömmlicherweise als notwendig angesehen, eine Fokussierung in der Z-Dimension zwischen den Ionenspiegeln bereitzustellen, um zu verhindern, dass die Breite des Ionenpakets so weit abweicht, dass es größer als die Detektorbreite wird, wenn es die hohe Anzahl von Spiegelungen beendet und den Detektor erreicht hat. Dies wurde als notwendig angesehen, um eine annehmbare Empfindlichkeit und damit Empfindlichkeit des Instruments zu bewahren. Falls die Ionenpakete in der Z-Dimension zu sehr abweichen, kann es auch sein, dass dann einige Ionen, die nur mit einer ersten Häufigkeit reflektiert wurden, den Detektor erreichen, wohingegen andere Ionen, die öfter reflektiert wurden, den Detektor erreichen können. Daher kann es sein, dass die lonen sehr unterschiedliche Flugweglängen durch die feldfreie Region hindurch auf dem Weg zum Detektor aufweisen, was bei Flugzeit-Massenanalysatoren unerwünscht ist. Die Erfinder der vorliegenden Erfindung haben jedoch festgestellt, dass wenn der lonenflugweg innerhalb des Instruments relativ klein gehalten wird und das Tastverhältnis (d. h. D/L) relativ hoch angelegt wird, die Fokussierung in der Z-Dimension dann entfallen kann.

[0099] Daher wird die Entfernung S zwischen den Reflexionspunkten in den beiden Ionenspiegeln relativ klein gehalten, und die Entfernung W, welche die Ionen in der Z-Dimension vom Ionenbeschleuniger zum Detektor zurücklegen, wird relativ klein gehalten.

[0100] Es wird in Betracht gezogen, dass Kollimatoren bereitgestellt werden können, um die Ionenpakete in der Z-Dimension zu kollimieren, während sie sich vom Ionenbeschleuniger zum Detektor bewegen. Dies stellt sicher, dass alle Ionen die gleiche Anzahl von Reflexionen in den Ionenspiegeln zwischen dem Ionenbeschleuniger und dem Detektor ausführen (d. h. verhindert Einfaltungen am Detektor).

[0101] Wahlweise kann jeder lonenspiegel mindestens vier Elektroden aufweisen, an die vier verschiedene (nicht geerdete) Spannungen angelegt werden. Jeder lonenspiegel kann zusätzliche Elektroden umfassen, die geerdet sein können oder auf den gleichen Spannungen wie andere Elektroden in dem Spiegel gehalten werden können. Jeder Spiegel weist wahlweise mindestens vier Elektroden auf, die derart angeordnet und konfiguriert sind, dass die Flugzeit-lonenfokussierung erster Ordnung von der Position der Ionen in der Y-Z-Ebene im Wesentlichen

unabhängig ist, d. h. von der Position der Ionen sowohl in der Y-Dimension als auch in der Z-Dimension (für die Näherung erster Ordnung) unabhängig ist. Fig. 3 zeigt beispielhafte Spannungen, die an die Elektroden eines der lonenspiegel angelegt werden können. Obwohl dies nicht abgebildet ist, können die gleichen Spannungen an den anderen Ionenspiegel symmetrisch angelegt werden. Beispielsweise wird die Eingangselektrode jedes Ionenspiegels auf einer Drift-Spannung (z. B. -5 kV) gehalten, wodurch eine feldfreie Region zwischen den Ionenspiegeln bewahrt wird. Ein Elektrode weiter in den Ionenspiegel hinein kann auf einer niedrigeren (oder je nach lonenpolarität höheren) Spannung (z.B. -10 kV) gehalten werden. Eine Elektrode weiter in den Ionenspiegel hinein kann auf der Drift-Spannung (z. B. -5 kV) gehalten werden. Eine Elektrode weiter in den Ionenspiegel hinein kann auf einer niedrigeren (oder höheren) Spannung (z.B. -10 kV) gehalten werden. Eine oder mehrere Elektroden weiter in den Ionenspiegel hinein können auf einer oder mehreren höheren, wahlweise allmählich höheren, Spannungen (z. B. 11 kV und +2 kV) gehalten werden, um die Ionen zurück aus dem Spiegel zu reflektieren.

[0102] Der Ioneneingang kann Ionen von einer Ionenführung **33** empfangen, die beispielsweise die Ionen in der Y-Dimension und/oder X-Dimension, z. B. unter Verwendung eines Schlitzkollimators, kollimieren kann. Die Ionenführung kann z. B. auf \geq 100 °C, \geq 110°C, \geq 120 °C, \geq 130 °C, \geq 140°C oder \geq 150 °C erhitzt werden.

[0103] Es wird in Betracht gezogen, dass der lonenstrahl in der Y-Dimension und/oder X-Dimension expandiert werden kann, bevor er in den Ionenbeschleuniger **34** eintritt. Alternativ oder zusätzlich können die Ionen in der Z-Dimension getrennt werden, bevor sie in den Ionenbeschleuniger **34** eintreten.

[0104] Die Elektroden des Ionenbeschleunigers **34** können z. B. auf ≥ 100 °C, ≥ 110 °C, ≥ 120 °C, \ge 130 °C, ≥ 140 °C oder ≥ 150 °C erhitzt werden. Alternativ oder zusätzlich kann ein gitterloser Ionenbeschleuniger verwendet werden. Wenn der Ionenbeschleuniger erhitzt wird, dann ist ein gitterloser Ionenbeschleuniger nicht von einem Durchhängen des Gitters betroffen, das ansonsten durch das Erhitzen verursacht würde.

[0105] Das Erhitzen der diversen Bestandteile, wie hier beschrieben, kann dazu beitragen, eine Schnittstellenladung zu reduzieren.

[0106] Obwohl der Ionenbeschleuniger **34** beschrieben wurde, wie er einen Ionenstrahl empfängt, wird in Betracht gezogen, dass der Ionenbeschleuniger alternativ eine gepulste Ionenquelle umfassen kann.

[0107] Fig. 4 zeigt eine andere Ausführungsform der vorliegenden Erfindung. Diese Ausführungsform ist im Wesentlichen die gleiche wie die in Fig. 3 gezeigte, außer dass sich der Detektor 38 auf der gleichen Seite des Instruments (in der Z-Dimension) wie der Ionenbeschleuniger 34 befindet, und das Instrument eine Reflexionselektrode 42 umfasst, um die Ionen zurück in der Z-Dimension auf den Detektor 38 zu reflektieren. Im Gebrauch gehen die Ionen wie in Fig. 3 durch das Instrument und werden zwischen den lonenspiegeln 36 mehrmals reflektiert, während sie in eine erste Richtung in der Z-Dimension gehen. Nach einer Anzahl von Reflexionen gehen die Ionen zu der Reflexionselektrode 42, die zwischen den Ionenspiegeln angeordnet sein kann. Die Reflexionselektrode 42 reflektiert die Ionen zurück in der Z-Dimension, so dass sie in einer zweiten Richtung driften, die der ersten Richtung entgegengesetzt ist. Wenn die Ionen in der zweiten Richtung driften, werden sie weiter zwischen den Ionenspiegeln 36 reflektiert, bis sie auf den Ionendetektor 38 stoßen. Die vorliegende Ausführungsform ermöglicht es im Vergleich zu der Ausführungsform aus Fig. 3, dass eine größere Anzahl von Reflexionen in einem gegebenen physischen Raum vorkommt. Es wird in Betracht gezogen, dass die Ionen in der Z-Dimension ein oder mehrere weitere Male reflektiert werden könnten, und dass der Detektor geeignet platziert wäre, um Ionen nach diesen ein oder mehreren weiteren Z-Reflexionen zu empfangen.

[0108] Fig. 5A-5B zeigen die Auflösung und das Tastverhältnis, die für MR-TOF-MS-Instrumente unterschiedlicher Größe modelliert sind (d. h. die verschiedene W- und S-Entfernungen aufweisen) und keine Fokussierung in der Z-Dimension aufweisen. Die Daten sind für Ionen modelliert, die eine Energie in der feldfreien Region zwischen den Spiegeln von 9,2 keV aufweisen.

[0109] Fig. 6A-6B zeigen Daten für Parameter, die denjenigen entsprechen, die in Fig. 5A-5B gezeigt werden, außer dass die Daten für Ionen modelliert sind, die eine Energie in der feldfreien Region zwischen den Spiegeln von 6 keV aufweisen.

[0110] Fig. 7 zeigt Daten für Parameter, die denjenigen entsprechen, die in Fig. 5A-5B gezeigt werden, außer dass die Daten für Ionen modelliert sind, die eine Energie in der feldfreien Region zwischen den Spiegeln von 3 keV, 4 keV und 5 keV aufweisen.

[0111] Fig. 8 zeigt Daten für Parameter, die denjenigen entsprechen, die in Fig. 5A-5B gezeigt werden, außer dass die Daten für Ionen modelliert sind, die in den Spiegeln fünfmal reflektiert werden und eine Energie in der feldfreien Region zwischen den Spiegeln zwischen 4 bis 10 keV aufweisen. **[0112]** Fig. 9 zeigt Daten für Parameter, die denjenigen entsprechen, die in Fig. 8 gezeigt werden, außer dass die Daten für Ionen modelliert sind, die in den Spiegeln sechsmal reflektiert werden.

[0113] Fig. 10 zeigt Daten für Parameter, die denjenigen entsprechen, die in Fig. 5A-5B gezeigt werden, außer dass die Daten ist modelliert sind, um ein Tastverhältnis von etwa 10 % zu erreichen.

[0114] Fig. 11 zeigt Daten für Parameter, die denjenigen entsprechen, die in Fig. 5A-5B gezeigt werden, für Instrumente mittlerer Größe.

[0115] Obwohl die vorliegende Erfindung mit Bezug auf bevorzugte Ausführungsformen beschrieben wurde, wird der Fachmann verstehen, dass diverse Änderungen von Form und Einzelheiten vorgenommen werden können, ohne den Umfang der Erfindung zu verlassen, wie er in den beiliegenden Ansprüchen dargelegt wird.

ZITATE ENTHALTEN IN DER BESCHREIBUNG

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.

Zitierte Patentliteratur

- WO 2005/001878 [0005, 0036]

Patentansprüche

1. Mehrfach reflektierender Flugzeit-Massenanalysator, umfassend:

einen lonenbeschleuniger;

zwei lonenspiegel, die angeordnet sind, um lonen in einer ersten Dimension (X-Dimension) zu reflektieren, und die in einer zweiten Dimension (Z-Dimension) länglich sind; und

einen lonendetektor;

wobei der Ionenbeschleuniger angeordnet und konfiguriert ist, um Ionen in einen ersten der Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen;

wobei die Ionen in der zweiten Dimension (Z-Dimension) nicht räumlich fokussiert sind, während sie sich vom Ionenbeschleuniger zum Detektor bewegen; und

wobei der Massenanalysator ein Tastverhältnis von \geq 5 %, eine Auflösung von \geq 20000 aufweist, wobei die Entfernung in der ersten Dimension (X-Dimension) zwischen den Reflexionspunkten in den beiden lonenspiegeln \leq 1000 mm ist; und wobei der Massenanalysator derart konfiguriert ist, dass die lonen eine Entfernung in der zweiten Dimension (Z-Dimension) vom lonenbeschleuniger zum Detektor von \leq 700 mm zurücklegen.

2. Massenanalysator nach Anspruch 1, wobei jeder Spiegel mindestens vier Elektroden aufweist, die angeordnet und konfiguriert sind, so dass die Flugzeitlonenfokussierung erster Ordnung von der Position der Ionen in der Ebene, die zu der ersten Dimension (Y-Z-Ebene) orthogonal ist, im Wesentlichen unabhängig ist.

3. Massenanalysator nach Anspruch 1 oder 2, gekoppelt mit einer Ionenquelle, um dem Ionenbeschleuniger Ionen zuzuführen, wobei die Ionenquelle derart angeordnet ist, dass der Ionenbeschleuniger Ionen aus der Ionenquelle empfängt, die sich in der zweiten Dimension (Z-Dimension) bewegen.

4. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei der Massenanalysator ein Tastverhältnis von \geq 10 % aufweist.

5. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei der Massenanalysator derart konfiguriert ist, dass die Ionen eine erste Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor zurücklegen, wobei der Ionenbeschleuniger angeordnet und konfiguriert ist, um Ionenpakete zu pulsen, die eine anfängliche Länge in der zweiten Dimension (Z-Dimension) aufweisen, und wobei die erste Entfernung und die anfängliche Länge derart sind, dass das Spektrometer ein Tastverhältnis von ≥ 5 % aufweist.

6. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei der Massenanalysator eine Auflösung von ≥ 30000 aufweist.

7. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei die Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor eine ist von: $\leq 650 \text{ mm}$; $\leq 600 \text{ mm}$; $\leq 550 \text{ mm}$; $\leq 500 \text{ mm}$; $\leq 480 \text{ mm}$; $\leq 460 \text{ mm}$; $\leq 440 \text{ mm}$; $\leq 420 \text{ mm}$; $\leq 440 \text{ mm}$; $\leq 420 \text{ mm}$; $\leq 380 \text{ mm}$; $\leq 360 \text{ mm}$; $\leq 340 \text{ mm}$; $\leq 320 \text{ mm}$; $\leq 300 \text{ mm}$; $\leq 280 \text{ mm}$; $\leq 260 \text{ mm}$; $\leq 240 \text{ mm}$; $\leq 220 \text{ mm}$; oder $\leq 200 \text{ mm}$; und/oder wobei die erste Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor eine ist von: $\geq 100 \text{ mm}$; $\geq 120 \text{ mm}$; $\geq 140 \text{ mm}$; $\geq 160 \text{ mm}$; $\geq 180 \text{ mm}$; $\geq 200 \text{ mm}$; $\geq 220 \text{ mm}$; $\geq 240 \text{ mm}$; $\geq 260 \text{ mm}$; $\geq 280 \text{ mm}$; $\geq 300 \text{ mm}$; $\geq 320 \text{ mm}$; $\geq 340 \text{ mm}$; $\geq 360 \text{ mm}$; $\geq 380 \text{ mm}$; oder $\geq 400 \text{ mm}$.

8. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln ist: \leq 950 mm; \leq 900 mm; \leq 850 mm; \leq 800 mm; \leq 750 mm; \leq 700 mm; \leq 650 mm; \leq 600 mm; \leq 550 mm; \leq 500 mm; \leq 450 mm; oder \leq 400 mm; und/oder wobei die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln ist: \geq 350 mm; \geq 360 mm; \geq 380 mm; \geq 400 mm; \geq 450 mm; \geq 500 mm; \geq 550 mm; \geq 600 mm; \geq 650 mm; \geq 900 mm; \geq 750 mm; \geq 800 mm; \geq 850 mm; oder \geq 900 mm.

9. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei der Ionenbeschleuniger, die Ionenspiegel und der Detektor angeordnet und konfiguriert sind, so dass die Ionen mindestens x-mal durch die Ionenspiegel reflektiert werden, während sie sich vom Ionenbeschleuniger zum Detektor bewegen;

wobei $x: \ge 2, \ge 3, \ge 4, \ge 5, \ge 6, \ge 7, \ge 8, \ge 9, \ge 10, \ge 11, \ge 12, \ge 13, \ge 14$, oder ≥ 15 ; und/oder

wobei x: ≤ 15 ; ≤ 14 ; ≤ 13 ; ≤ 12 ; ≤ 11 ; ≤ 10 ; ≤ 9 ; ≤ 8 ; ≤ 7 ; ≤ 6 ; ≤ 5 ; ≤ 4 ; ≤ 3 ; oder ≤ 2 ; und/oder

wobei x 3 bis 10 ist; wobei x 4 bis 9 ist; wobei x 5 bis 10 ist; wobei x 3 bis 6 ist; wobei x 4 bis 5 ist; oder wobei x 5 bis 6 ist.

10. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei die Ionen zwischen 100 mm und 450 mm in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor zurücklegen;

wobei die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln zwischen 350 und 950 mm liegt; und wobei die lonen zwischen 2- und 15-mal durch die lonenspiegel reflektiert werden, während sie sich vom lonenbeschleuniger zum Detektor bewegen.

11. Massenanalysator nach einem der Ansprüche 1 bis 9:

wobei die Ionen zwischen 150 mm und 400 mm in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor zurücklegen;

wobei die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln zwischen 400 und 900 mm liegt; und

wobei die lonen zwischen 3- und 10-mal durch die lonenspiegel reflektiert werden, während sie sich vom lonenbeschleuniger zum Detektor bewegen.

12. Massenanalysator nach einem der vorhergehenden Ansprüche:

wobei die Ionen zwischen 100 mm und 400 mm in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor zurücklegen;

wobei die Entfernung in der ersten Richtung (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln zwischen 300 und 700 mm liegt; und

wobei die Ionen zwischen 3- und 6-mal durch die Ionenspiegel reflektiert werden, während sie sich vom Ionenbeschleuniger zum Detektor bewegen.

13. Massenanalysator nach einem der vorhergehenden Ansprüche,

wobei sich die Ionen in der zweiten Dimension (Z-Dimension) mit einer Energie bewegen von: $\leq 140 \text{ eV}$; $\leq 120 \text{ eV}$; $\leq 100 \text{ eV}$; $\leq 90 \text{ eV}$; $\leq 80 \text{ eV}$; $\leq 70 \text{ eV}$; $\leq 60 \text{ eV}$; $\leq 50 \text{ eV}$; $\leq 40 \text{ eV}$; $\leq 30 \text{ eV}$; $\leq 20 \text{ eV}$; oder $\leq 10 \text{ eV}$; und/oder

wobei sich die Ionen in der zweiten Dimension (Z-Dimension) mit einer Energie bewegen von: \geq 120 eV; \geq 100 eV; \geq 90 eV; \geq 80 eV; \geq 70 eV; \geq 60 eV; \geq 50 eV; \geq 40 eV; \geq 30 eV; \geq 20 eV; oder \geq 10 eV.

14. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei der Ionenbeschleuniger konfiguriert ist, um ein elektrisches Feld von y V/mm zum Beschleunigen der Ionen zu generieren;

wobei y: \geq 700; \geq 650; \geq 600; \geq 580; \geq 560; \geq 540; \geq 520; \geq 500; \geq 480; \geq 460; \geq 440; \geq 420; \geq 400; \geq 380; \geq 360; \geq 340; \geq 320; \geq 300; \geq 280; \geq 260; \geq 240; \geq 220; oder \geq 200; und/oder

wobei y: $\leq 700; \leq 650; \leq 600; \leq 580; \leq 560; \leq 540; \leq 520; \leq 500; \leq 480; \leq 460; \leq 440; \leq 420; \leq 400; \leq 380; \leq 360; \leq 340; \leq 320; \leq 300; \leq 280; \leq 260; \leq 240; \leq 220; oder \leq 200.$

15. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei eine Region, die im Wesentlichen frei von elektrischen Feldern ist, zwischen den Ionenspiegeln angeordnet ist, so dass sich die lonen, wenn sie zwischen den lonenspiegeln reflektiert werden, durch diese Region hindurch bewegen.

16. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei die Ionen eine kinetische Energie E aufweisen, wenn sie sich zwischen den Ionenspiegeln und/oder in der Region, die im Wesentlichen frei von elektrischen Feldern ist, befinden; wobei E: $\geq 1 \text{ keV}$; $\geq 2 \text{ keV}$; $\geq 3 \text{ keV}$; $\geq 4 \text{ keV}$; $\geq 5 \text{ keV}$; $\geq 6 \text{ keV}$; $\geq 7 \text{ keV}$; $\geq 8 \text{ keV}$; $\geq 9 \text{ keV}$; $\geq 10 \text{ keV}$; $\geq 11 \text{ keV}$; $\geq 12 \text{ keV}$; $\geq 13 \text{ keV}$; $\geq 14 \text{ keV}$; oder 15 keV; $\leq 11 \text{ keV}$; $\leq 11 \text{ keV}$; $\leq 12 \text{ keV}$; $\leq 11 \text{ keV}$; $\leq 11 \text{ keV}$; $\leq 10 \text{ keV}$; $\leq 9 \text{ keV}$; $\leq 3 \text{ keV}$; $\leq 6 \text{ keV}$; oder $\leq 5 \text{ keV}$; und/oder zwischen 5 und 10 keV ist.

17. Massenanalysator nach einem der vorhergehenden Ansprüche, gekoppelt mit einer Ionenführung zum Führen von Ionen in den Ionenbeschleuniger und einem Heizelement zum Erhitzen der Ionenführung.

18. Massenanalysator nach einem der vorhergehenden Ansprüche, umfassend ein Heizelement zum Erhitzen der Elektroden des Ionenbeschleunigers.

19. Massenanalysator nach Anspruch 17 oder 18, umfassend ein Heizelement, das angeordnet und konfiguriert ist, um die Ionenführung und/oder den Beschleuniger auf eine Temperatur zu erhitzen von: ≥ 100 °C, ≥ 110 °C, ≥ 120 °C, ≥ 130 °C, ≥ 140 °C, oder ≥ 150 °C.

20. Massenanalysator nach einem der vorhergehenden Ansprüche, wobei der Ionenbeschleuniger ein gitterloser Ionenbeschleuniger ist.

21. Massenanalysator nach einem der vorhergehenden Ansprüche, gekoppelt mit einem Kollimator zum Kollimieren der Ionen, die in Richtung auf den Ionenbeschleuniger gehen, wobei der Kollimator konfiguriert ist, um Ionen in der ersten Dimension (X-Dimension) und/oder einer Dimension (Y-Dimension), die sowohl zu der ersten als auch der zweiten Dimension orthogonal ist, zu kollimieren.

22. Massenanalysator nach einem der vorhergehenden Ansprüche, gekoppelt mit einer Ionenoptik, die angeordnet und konfiguriert ist, um den Ionenstrahl, der in Richtung auf den Ionenbeschleuniger geht, in der ersten Dimension (X-Dimension) und/ oder einer Dimension (Y-Dimension), die sowohl zu der ersten als auch der zweiten Dimension orthogonal ist, zu expandieren.

23. Massenanalysator nach einem der vorhergehenden Ansprüche, gekoppelt mit einer Ionentrennwand, um Ionen räumlich oder gemäß einem Masse-/ Ladungsverhältnis oder einer Ionenmobilität in der zweiten Dimension (Z-Dimension) zu trennen, bevor die Ionen in den Ionenbeschleuniger eintreten. 24. Mehrfach reflektierender Flugzeit-Massenanalysator, umfassend:

einen Ionenbeschleuniger;

zwei Ionenspiegel, die angeordnet sind, um Ionen in einer ersten Dimension (X-Dimension) zu reflektieren, und die in einer zweiten Dimension (Z-Dimension) länglich sind; und

einen lonendetektor;

wobei der Ionenbeschleuniger angeordnet und konfiguriert ist, um Ionen in einen ersten der Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen; und wobei die Ionen reflektiert werden, um n-mal von dem einen der Ionenspiegel zu dem anderen der Ionen-

spiegel zu gehen, und wobei die lonen in der zweiten Dimension (Z-Dimension) während \geq 60 % dieser n Male nicht räumlich fokussiert sind.

25. Massenanalysator nach Anspruch 24, wobei die Ionen in der zweiten Dimension (Z-Dimension) während $\geq 65 \%$, $\geq 70 \%$, $\geq 75 \%$, $\geq 80 \%$, $\geq 85 \%$, $\geq 90 \%$ oder $\geq 95 \%$ der n Male nicht räumlich fokussiert sind.

26. Massenanalysator nach Anspruch 24 oder 25, wobei der Massenanalysator ein Tastverhältnis von \geq 5 % aufweist.

27. Massenanalysator nach Anspruch 24, 25 oder 26, wobei der Massenanalysator eine Auflösung von ≥ 20000 aufweist.

28. Massenanalysator nach einem der Ansprüche 24 bis 27, wobei die Entfernung in der ersten Dimension (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln \leq 1000 mm ist.

29. Massenanalysator nach einem der Ansprüche 24 bis 28, wobei der Massenanalysator derart konfiguriert ist, dass die Ionen eine Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor von \leq 700 mm zurücklegen.

30. Mehrfach reflektierender Flugzeit-Massenanalysator, umfassend:

einen lonenbeschleuniger;

zwei lonenspiegel, die angeordnet sind, um lonen in einer ersten Dimension (X-Dimension) zu reflektieren, und die in einer zweiten Dimension (Z-Dimension) länglich sind; und

einen lonendetektor;

wobei der Ionenbeschleuniger angeordnet und konfiguriert ist, um Ionen in einen ersten der Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen.

31. Verfahren zur Flugzeit-Massenanalyse, umfassend folgende Schritte:

Bereitstellen eines Massenanalysators nach einem der Ansprüche 1 bis 23; und

Steuern des Ionenbeschleunigers, um die Ionen in den ersten Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen, wobei die Entfernung in der ersten Dimension (X-Dimension) zwischen den Reflexionspunkten in den beiden Ionenspiegeln ≤ 1000 mm ist, wobei die Ionen eine Entfernung in der zweiten Dimension (Z-Dimension) vom Ionenbeschleuniger zum Detektor von ≤ 700 mm zurücklegen, und wobei die Ionen in der zweiten Dimension (Z-Dimension) nicht räumlich fokussiert sind, während sie sich vom Ionenbeschleuniger zum Detektor bewegen;

wobei die Ionen durch den Detektor detektiert werden und eine Flugzeit-Massenanalyse mit einem Tastverhältnis von \geq 5 % und einer Auflösung von \geq 20000 erfahren.

32. Verfahren zur Flugzeit-Massenanalyse, umfassend folgende Schritte:

Bereitstellen eines Massenanalysators nach einem der Ansprüche 24 bis 29; und

Steuern des Ionenbeschleunigers, um die Ionen in den ersten Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen,

wobei die lonen reflektiert werden, um n-mal von dem einen der lonenspiegel zu dem anderen der lonenspiegel zu gehen, und wobei die lonen in der zweiten Dimension (Z-Dimension) während \geq 60 % dieser n Male nicht räumlich fokussiert sind.

33. Verfahren zur Flugzeit-Massenanalyse, umfassend folgende Schritte:

Bereitstellen eines Massenanalysators nach Anspruch 30; und

Steuern des Ionenbeschleunigers, um die Ionen in den ersten Ionenspiegel in einem Winkel zu der ersten Dimension zu beschleunigen, so dass die Ionen zwischen den Ionenspiegeln in der ersten Dimension (X-Dimension) wiederholt reflektiert werden, während sie sich in der zweiten Dimension (Z-Dimension) bewegen.

Es folgen 26 Seiten Zeichnungen

Anhängende Zeichnungen

Fig. 3

Fig. 4

(Rk=25)	Fig.	5A						
(1111 201	Variante Nr	1	2	3	4	5 6	7	8
	Systemaröße (mm)	· ·	2005	(500			,	
	oyotomgrotoo (mm)		200,					j
Parameter	Auflösung, K	10	14	20	27	10	13	15
	Tastverhältnis	21,3%	14,9%	9,8%	5,7%	21,3%	16,0%	12,8%
Größe	Reflexionen	2	3	4	5	2	3	4
	Länge L, mm	400	400	400	400	400	400	400
	Breite W, mm	150	150	150	150	200	200	200
TOF	Energia in TOE, aV	0200	9200	9200	0200	9200	0200	0200
TOP		42.00	42.00	42.00	42.00	42.00	12 00	42.00
	v toi, minius	42,30	42,30	42,30	42,30	42,30	42,30	42,30
		1200	1000	2000	2400	1200	1000	2000
		20	57	4/	50	20	57	
Strahl	Z-Energie eV	100	80	50	30	100	100	100
otrain	V-Strahl mm/us	4 47	4 00	3 16	2 45	4 47	4 47	4 47
Traiektorie	Z-Schritt mm	42	37	29	2,10	42	42	42
najektone	Neigung mrad	104	93	74	57	104	104	104
	Neigung, deg	6.1	5.5	4.3	34	61	61	6.1
	Spiegel-7-Kante mm	33	19	-,0 16	18	58	37	17
		00		10	10			l
OA	Strahl d, mm	1,2	1,2	1,2	1,2	1,2	1,2	1,2
	Strahl ang, mrad	17	17	17	17	17	17	17
	OA-Länge	27	22	14	8	27	27	27
	OA-Zeit, us	5,97	5,58	4,58	3,20	5,97	5,97	5,97
	Tastverhältnis	0,213	0,149	0,098	0,057	0,213	0,160	0,128
dK	Beschleunigerfeld, V/mm	600	600	600	600	600	600	580
	dK, eV	720	720	720	720	720	720	696
R(6%)	dK/K	7,83%	7,83%	7,83%	7,83%	7,83%	7,83%	7,57%
250000	Res(dK)	86371	86371	86371	86371	86371	86371	98914
	dT(dK)	0,16	0,22	0,27	0,32	0,16	0,22	0,24
Pakete	Vx, m/s	76,03	68,00	53,76	41,64	76,03	76,03	76,03
	Bearbeitungszeit, ns	1,27	1,13	0,90	0,69	1,27	1,27	1,31
	DAS und Det, ns	0,7	0,7	0,7	0,7	0,7	0,7	0,7
Auflösung	FWHM, ns	1,46	1,35	1,17	1,04	1,46	1,46	1,50
	Auflösung	9603	13820	19949	26962	9603	12742	15495
Gittor	Winkol mrad	6.52	6.52	6.52	6.52	6.52	6.52	6 30
Gitter	V Spanne mm	1.83	1.83	1.83	1.83	1.83	1.83	0,30
	r-opanne, mm	1,00	1,00	1,00	1,00	1,00	1,00	1,77
	Leff	1,2	1,6	2	2,4	1,2	1,6	2
	Quadrat	0,1	0,1	0,1	0,1	0,125	0,125	0,125
	Auflösung	9603	13820	19949	26962	9603	12742	15495
	Tastverhältnis	0,213	0,149	0,098	0,057	0,213	0,160	0,128
	Transm OA	1	1	1	0,6	1	1	1
	Res*DC*Transm	2050	2066	1960	925,6	2050	2040	1984

ł

Fig. 5A (Fortsetzung I													
! 9	10	11	12	# 14	1 15	16	17	18	20	21			
250x500	1					250x70	0						
										ĺ			
22	29	35	42	1:	3 20	29	40	49	22	28			
8,9%	6,2%	4,3%	2,2%	28,5%	19,5%	13,4%	8,2%	5,7%	16,3%	13,1%			
5	6	7	8		2 3	4	5	6	4	5			
400	400	400	400	600	0 600	600	600	600	600	600			
200	200	200	200	200	200	200	200	200	350	350			
9200	9200	9200	9200	9200	9200	9200	9200	9200	9200	9200			
42,90	42,90	42,90	42,90	42,90	42,90	42,90	42,90	42,90	42,90	42,90			
2400	2800	3200	3600	1600) 2200	2800	3400	4000	2800	3400			
56	65	75	84	3	7 51	65	79	93	65	79			
	10	0.0		1.00	20			37	100	0.5			
60	2 02	30	20	100	70 70	41	20	15	100	80			
3,46	2,83	2,45	∠,00	4,4,	3,74	2,86	2,00	1,73	4,47	4,12			
<u> </u>	20	23 57	19	10	o ⊃∠ 1 07	40	20	24	104	06			
	30	3.4	47	104	+ 0/	30	47	2.4	61	90 5.7			
4,0 19		20	2,7	3	7 21	2,3	2,7	2,4	50	3,7			
	21	20	20		21	20		21	50				
12	12	12	12	11	2 12	12	12	12	12	12			
17	17	17	17	13	7 17	17	17	17	17	17			
17	11		4	48	3 37	25	13	9	48	43			
4.99	4.02	3.20	1.83	10.6	9.98	8.75	6.49	5.33	10.63	10.35			
0,089	0,062	0,043	0,022	0,28	5 0,195	0,134	0,082	0,057	0,163	0,131			
								1000 1000					
580	580	580	560	600	0 600	600	550	530	600	600			
696	696	696	672	720) 720	720	660	636	720	720			
7,57%	7,57%	7,57%	7,30%	7,83%	7,83%	7,83%	7,17%	6,91%	7,83%	7,83%			
98914	98914	98914	113820	8637	1 86371	86371	122327	141863	86371	86371			
0,28	0,33	0,38	0,37	0,22	2 0,30	0,38	0,32	0,33	0,38	0,46			
58,89	48,08	41,64	34,00	76,03	8 63,61	48,68	34,00	29,44	76,03	70,09			
1,02	0,83	0,72	0,61	1,2	7 1,06	0,81	0,62	0,56	1,27	1,17			
0,7	0,7	0,7	0,7	0,1	7 0,7	0,7	0,7	0,7	0,7	0,7			
	1 10	4.07	4.00				0.00	0.05	4.50				
1,27	1,13	1,07	1,00	1,4	5 1,30	1,14	0,99	0,95	1,50	1,44			
22110	28779	34818	42078	1274:	2 19656	28724	40093	48966	21815	2/5//			
630	6.30	6 30	6.00	6.5	0 652	6.52	5.98	5 76	6.52	6.52			
1 77	1 77	1 77	0,03	2.7	1 2.74	2.74	2.51	2 / 2	2.74	2.74			
1,77	1,11	1,11	1,70	2,7	7 2,74	2,14	2,01	2,72	2,74	2,74			
				⊢┼───	1								
2.4	2.8	3.2	3.6	1.6	2.2	2.8	3.4	4	2.8	3.4			
0.125	0.125	0.125	0,125	0.17	0.175	0.175	0.175	0.175	0.28	0.28			
l .,. <u>_</u>	, · _	_,	_,. _		_,0			,5	_,				
22110	28779	34818	42078	1274:	2 19656	28724	40093	48966	21815	27577			
0,089	0,062	0,043	0,022	0,28	5 0,195	0,134	0,082	0,057	0,163	0,131			
1	0,8	0,6	0,4		1 1	0,82	0,4	0,3	1	1			
1974	1418	896,5	366,009	3633	3 3824	3157	1313	839,2183	3554	3601			

Fig. 5A (Fortsetzung II)													
22	23	24	25	26	28	29	30	31	32	33			
	400x700						4(00x1000					
35	44	53	61	70	35	48	61	75	90	105			
10.4%	8.2%	6.6%	5.4%	4.3%	17.9%	13.5%	10.6%	8.4%	6.6%	5.2%			
10,470	0,270	0,070	0,470	4,070	17,070	10,070	10,070	0,470	0,070	0,2 %			
6	7	8	9	10	4	5	6	7	8	9			
600	600	600	600	600	900	900	900	900	900	900			
350	350	350	350	350	350	350	350	350	350	350			
9200	9200	9200	9200	9200	9200	9200	9200	9200	9200	9200			
42,90	42,90	42,90	42,90	42,90	42,90	42,90	42,90	42,90	42,90	42,90			
4000	4600	5200	5800	6400	4000	4900	5800	6700	7600	8500			
93	107	121	135	149	93	114	135	156	177	198			
60	42	32	25	20	60	36	25	18	13	10			
3,46	2,90	2,53	2,24	2,00	3,46	2,68	2,24	1,90	1,61	1,41			
48	41	35	31	28	73	56	47	40	34	30			
81	68	59	52	47	81	63	52	44	38	33			
4,8	4,0	3,5	3,1	2,7	4,8	3,7	3,1	2,6	2,2	1,9			
30	33	33	34	35	30	34	34	36	40	41			
10	10	1.2	10	1.0	1.0	1 0	1.0	1 0	10	1.0			
1,2	1,∠ 17	1,Z	1,∠ 17	1,∠ 17	1,2	1,2	1,2	,∠ 17	1,2	17			
33	26	20	16	17	58	17	32	25	10	17			
9 66	8.81	20 8.06	7 28	6.49	16.65	15 39	14.27	13.08	11 68	10 37			
0.104	0.082	0,00	0.054	0,40	0 179	0 135	0 106	0.084	0.066	0.052			
0,104	0,002	0,000	0,004	0,040	0,170	0,100	0,100	0,004	0,000	0,002			
600	540	520	500	440	600	580	500	480	440	420			
720	648	624	600	528	720	696	600	576	528	504			
7,83%	7,04%	6,78%	6,52%	5,74%	7,83%	7,57%	6,52%	6,26%	5,74%	5,48%			
86371	131643	153094	179098	298649	86371	98914	179098	210866	298649	359728			
0,54	0,41	0,40	0,38	0,25	0,54	0,58	0,38	0,37	0,30	0,28			
58,89	49,27	43,01	38,01	34,00	58,89	45,62	38,01	32,26	27,41	24,04			
0,98	0,91	0,83	0,76	0,77	0,98	0,79	0,76	0,67	0,62	0,57			
0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7			
1,32	1,22	1,15	1,10	1,07	1,32	1,20	1,10	1,04	0,98	0,95			
35298	43950	52543	61448	69580	35298	47564	61448	75193	90128	104816			
0.50	5 07	E DE	E 40	4 70	0.50	0.00	E 40	5 00	1 70	4 57			
6,52	5,87	5,65	5,43	4,78	6,52	6,30	5,43	5,22	4,78	4,57			
2,74	2,47	2,37	2,28	∠,01	4,11	3,97	3,42	3,29	3,01	2,88			
4	4.6	5.2	5.8	6.4	1	ΔQ	5 8	67	7.6	8.5			
0.28	0.28	0.28	0.28	0.28	0.4	-,5 0.4	0,0	0,7	7,0 0.4	0,0			
5,25	5,20	5,25	5,25	5,25	<u>,</u> ,,	<u></u> , т	0, 4	<u>о,</u> -т	0,1				
35298	43950	52543	61448	69580	35298	47564	61448	75193	90128	104816			
0,104	0,082	0,066	0,054	0,043	0,179	0,135	0,106	0,084	0,066	0.052			
1	0,84	0,64	0,5	0,4	1	0,72	0,5	0,36	0,26	0,2			
3656	3034	2235,33	1654,06	1210,2	6303	4614	3243,24	2266,1	1544,638	1097,551			
1				~					97 F				

(Rk=80k	Sig.	5B							ļ
(Variante Nr	1	2	3	А		5	6	-i
	Systemaröße (mm)	<u> </u>	200	v500				0	
	System grobe (mm)		200	V.) ()		_			
Parameter	Resn, K	9	13	17	23		9	12	14
	Tastverhältnis	21.3%	14.9%	9.8%	5.7%		21.3%	16.0%	12.8%
			,	-1			,. /.		12,070
Größe	N refl	2	3	4	5		2	3	4
	Länge L. mm	400	400	400	400		400	400	400
	Breite W. mm	150	150	150	150		200	200	200
		100	100	100	100		200	200	200
TOF	K. eV	9200	9200	9200	9200		9200	9200	9200
	V tof. mm/us	47.9	42.9	42.9	47.9		42.9	47.9	42.9
	Leff. mm	1200	1600	2000	2400		1200	1600	2000
	TOF US	27.98	373	46.63	55.95		27 98	373	46.63
		27,50	37,5	40,00	33,33		27,50	57,5	40,05
Strahl	Strahl eV	100	80	50	30		100	100	100
Strum	V-Strahl_mm/us	4 472		3 167	2 1 1 9	-	100	1 172	1 172
Trajektorie	7-Schritt mm	-,+,2 /17	27.2	20 40	2,445	_	4,472	4,472	4,472
hujektone	Neigung mrad	104.3	02.75	72 73	57.1		104.2	41,7	104.2
		6 1 2 2	5 / 95	1 2 2 7	2 2 5 0		6 1 2 2	6 1 2 2	6 1 2 2
	Sniegel-7-Kante mm	22.2	10.05	4,337	3,339		6,155	27 /5	16 50
	Spieger-2-Kante, min	55,5	19,05	10,02	17,9	-	56,5	57,45	10,59
04	Strahld mm	1 7	1 7	17	1 7		1 7	1 7	1.2
U.A.	Strahl and mrad	17	1,2	1,2	⊥,Z	_	1,2	1,2	17
		26.7	22.2	14.40	7 9 4 2	_	1/	1/	- 1/
	OA Zoit un	20,7	22,3	14,49	7,842	_	20,7	26,7	26,7
	DA-Zeit, us	5,9/1	5,5/5	4,582	3,201	_	5,971	5,971	5,971
		0,213	0,149	0,098	0,057		0,213	0,16	0,128
qĸ	E V/mm	600	580	540	460		600	600	580
un	dK eV	720	500	540	400 550	_	720	710	500
R(6%)		0.079	0.076	040	0.06	_	0.079	720	0.076
80000	Boc(dK)	17620	0,070	42126	0,06		0,078	0,078	0,076
80000		27039	21022	42120	0.25	_	27639	27639	31653
		0,506	0,569	0,555	0,35	_	0,506	0,675	0,737
Pakete	Vy m/s	76.03	68	52 76	41 64	_	76.02	76.02	76.02
Tukete	Bearbeitungszeit ns	1 267	1 1 7 7	0.006	0.005	-	1 267	1 267	1 211
	DAS und Det ins	1,207	0.7	0,550	0,505		1,207	1,207	0.7
		0,7	0,7	0,7	0,7	+	0,7	0,7	0,7
Auflösung	EW/HM_ns	1 534	1 4 8 7	1 3 3 7	1 197	-	1 5 3 4	1 5 9 7	1 659
Autosung	Auflösung	9121	125/1	17/28	72280	-	0121	11677	14056
	Autosung	5121	12341	17430	25560	-	9121	11077	14050
Gitter	Winkel mrad	6 5 2 2	6 304	5.87	5	-	6 5 2 2	6 5 2 2	6 304
	Y-Snanne mm	1 826	1 765	1 643	1 /	+	1 826	1 876	1 765
	·	1,020	1,705	1,040	±,+	-	1,020	1,020	1,705
	Leff	12	16	2	24	+	12	16	2
	Ouadrat	0.1	0.1	01	2,4 0.1	┥	0 1 25	0 1 25	0 1 25
		0,1	0,1	0,1	U,1	+	0,123	0,123	0,123
	Auflösung	9171	125/1	17/129	72290	┥	Q1 7 1	11677	1/056
	Tastverhältnis	0 2121	0 1/0	0 009	0.057	+	0 2121	0.16	0 1 2 0
	Transm OA	0,213	0,149	0,098	0,037	┥	0,215	0,10	0,120
	Res*DC*Transm	10/7	⊥ 187/	171 <i>/</i>	0,0 202 C	┥	1047	1960	1800
	neo de Hanam	174/	10/4	1/14	002,0		174/	1003	1000

Fig. 5B (Fortsetzung I)													
I 8	9	10	11	12	13	14	15	16	17	- 18	19		
250x50	0					250x70)0				i		
19	25	30	36	12	17	25	34	43	19	23	29		
8,9%	6,2%	4,3%	2,6%	28,5%	19,5%	13,4%	9,0%	6,0%	16,3%	13,2%	10,5%		
5	6	7	8	2	3	4	5	6	4	5	6		
400	400	400	400	600	600	600	600	600	600	600	600		
200	200	200	200	200	200	200	200	200	350	350	350		
9200	9200	9200	9200	9200	9200	9200	9200	9200	9200	9200	9200		
42,9	42,9	42,9	42,8952	42,9	42,9	42,9	42,9	42,89522	42,9	42,9	42,9		
2400	2800	3200	3600	1600	2200	2800	3400	4000	2800	3400	4000		
55,95	65,28	74,6	83,9254	37,3	51,29	65,28	79,26	93,25048	65,28	79,26	93,25		
60	40	30	22	100	70	41	24	16	100	90	65		
3,464	2,828	2,449	2,09762	4,472	3,742	2,864	2,191	1,788854	4,472	4,243	3,606		
32,3	26,38	22,84	19,5604	62,55	52,34	40,05	30,65	25,02173	62,55	59,34	50,43		
80,76	65,94	57,1	48,901	104,3	87,23	66,76	51,08	41,70288	104,3	98,91	84,05		
4,75	3,879	3,359	2,87653	6,133	5,131	3,927	3,004	2,453111	6,133	5,818	4,944		
19,24	20,87	20,05	21,7585	37,45	21,49	19,89	23,39	24,93481	49,89	26,64	23,7		
1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2		
17	17	17	17	17	17	17	17	17	17	17	17		
17,3	11,38	7,842	4,56039	47,55	37,34	25,05	15,65	10,02173	47,55	44,34	35,43		
4,995	4,022	3,201	2,17408	10,63	9,979	8,749	7,141	5,602317	10,63	10,45	9,827		
0,089	0,062	0,043	0,0259	0,285	0,195	0,134	0,09	0,060078	0,163	0,132	0,105		
530	480	450	420	600	540	500	450	420	530	510	480		
636	576	540	504	720	648	600	540	504	636	612	576		
0,069	0,063	0,059	0,05478	0,078	0,07	0,065	0,059	0,054783	0,069	0,067	0,063		
45396	67477	87352	115113	27639	42126	57311	87352	115112,9	45396	52947	67477		
0,616	0,484	0,427	0,36454	0,675	0,609	0,569	0,454	0,405039	0,719	0,749	0,691		
58,89	48,08	41,64	35,6595	76,03	63,61	48,68	37,25	30,41052	76,03	72,12	61,29		
1,111	1,002	0,925	0,84904	1,267	1,178	0,974	0,828	0,72406	1,434	1,414	1,277		
0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7		
1,451	1,314	1,236	1,1592	1,597	1,499	1,327	1,175	1,085504	1,751	1,747	1,612		
19285	24832	30169	36199,7	11677	17103	24586	33726	42952,61	18644	22692	28926		
5,761	5,217	4,891	4,56522	6,522	5,87	5,435	4,891	4,565217	5,761	5,543	5,217		
1,613	1,461	1,37	1,27826	2,739	2,465	2,283	2,054	1,917391	2,42	2,328	2,191		
2,4	2,8	3,2	3,6	1,6	2,2	2,8	3,4	4	2,8	3,4	4		
0,125	0,125	0,125	0,125	0,175	0,175	0,175	0,175	0,175	0,28	0,28	0,28		
19285	24832	30169	36199,7	11677	17103	24586	33726	42952,61	18644	22692	28926		
0,089	0,062	0,043	0,0259	0,285	0,195	0,134	0,09	0,060078	0,163	0,132	0,105		
1	0,8	0,6	0,44	1	1	0,82	0,48	0,32	1	1	1		
1722	1224	776,8	412,609	3329	3328	2702	1458	825,7643	3037	2992	3048		

(Fig	. 5E	3 (Fort	set	zung	JII)
20	21	22	23	24	25	26	27	28	29
400x70	0					40	00x1000		
36	43	51	60	29	40	52	65	78	91
8,5%	6,9%	5,7%	4,6%	18,0%	13,7%	10,7%	8,5%	6,8%	5,5%
7	8	9	10	4	5	6	/	8	9
500	600	500	500	900	900	900	900	900	900
350	350	350	350	350	350	350	350	350	350
9200	9200	9200	9200	9200	9200	9200	9200	9200	9200
42.9	42 8952	42 8952	42 8952	42 895	42.9	42 8952	42 8952	42 89522	42 89522
4600	5200	5800	6400	4000	4900	5800	6700	7600	8500
107.2	121,226	135,213	149,201	93.25	114.2	135,213	156,195	177,1759	198,1573
107,2	101,000	100,010	1.5,201	30,23	,_	100,010	100,100	117,1755	100,107.0
48	36	28	22	65	40	27	19	14	11
3,098	2,68328	2,36643	2,09762	3,6056	2,828	2,32379	1,94936	1,67332	1,48324
43,34	37,5326	33,1006	29,3406	75,649	59,34	48,7563	40,9002	35,10853	31,12038
72,23	62,5543	55,1677	48,901	84,055	65,94	54,1736	45,4447	39,00947	34,5782
4,249	3,67967	3,24516	2,87653	4,9444	3,879	3,18668	2,67322	2,294675	2,034012
23,31	24,8696	26,0471	28,2971	23,701	26,64	28,7312	31,8493	34,56589	34,95827
1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
17	17	17	17	17	17	17	17	17	17
28,34	22,5326	18,1006	14,3406	60,649	44,34	33,7563	25,9002	20,10853	16,12038
9,146	8,3974	7,64892	6,8366	16,821	15,68	14,5264	13,2865	12,01714	10,86836
0,085	0,06927	0,05657	0,04582	0,1804	0,137	0,10743	0,08506	0,067826	0,054847
450	430	420	380	480	440	410	380	360	350
540	516	504	456	576	528	492	456	432	420
0,059	0,05609	0,05478	0,04957	0,0626	0,057	0,05348	0,04957	0,046957	0,045652
87352	104773	115113	171786	67477	95568	126761	171786	213260,9	238698,2
0,614	0,57852	0,58731	0,43426	0,691	0,598	0,53334	0,45462	0,415397	0,415079
52,67	45,6158	40,2293	35,6595	61,294	48,08	39,5044	33,1391	28,44644	25,21507
1,1/1	1,06083	0,95784	0,93841	1,277	1,093	0,96352	0,87208	0,790179	0,720431
0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
1 406	1 206 4 4	1 22270	1 74969	1 6 1 1 0	1 4 2 0	1 20402	1 20715	1 124422	1 006001
35851	1,59044	51070 9	597/3 5	28026	30075	51808 8	6/695 7	72000 1	01158 65
77071	43403,2	51070,5	55745,5	20920	נופנ	51000,0	04095,7	78030,1	91136,03
4 891	4 67391	4 56522	4 13043	5 2174	4 783	4 45652	4 13043	3 913043	3 804348
2 054	1,07351	1 91739	1 73478	3 287	3 013	2 80761	2 60217	2 465217	2 396739
2,05 .	1,50501	1,51,55	1,10110	5,207	3,013	2,007.01	2,00217	2,105217	2,000,00
4.6	5.2	5.8	6.4	4	4.9	5.8	6.7	7.6	8.5
0,28	0,28	0,28	0,28	0,4	0,4	0,4	0,4	0,4	0,4
ŕ							,		,
35851	43405,2	51070,9	59743,5	28926	39975	51808,8	64695,7	78090,1	91158,65
0,085	0,06927	0,05657	0,04582	0,1804	0,137	0,10743	0,08506	0,067826	0,054847
0,96	0,72	0,56	0,44	1	0,8	0,54	0,38	0,28	0,22
2935	2164,83	1617,87	1204,52	5217,9	4389	3005,63	2091,24	1483,032	1099,954

(Rk=25)	_{эк)} Fi	g.	6A						ļ
(==	Variante Nr.	1	2	3	4	6	7	8	9
	Systemgröße (mm)		200	<500		Children (250>	(500
Parameter	Resn, K	10	16	22	30	10	13	18	24
	Tastverhältnis	23,7%	14,7%	9,4%	5,6%	23,7%	17,7%	12,5%	9,0%
Größe	Reflexionen	2	3	4	5	2	3	4	5
	Länge L, mm	400	400	400	400	400	400	400	400
	Breite W, mm	150	150	150	150	200	200	200	200
TOF	K, eV	6000	6000	6000	6000	6000	6000	6000	6000
	V tof, mm/us	34,64	34,64	34,64	34,64	34,64	34,64	34,64	34,64
	Leff, mm	1200	1600	2000	2400	1200	1600	2000	2400
	TOF, us	35	46	58	69	35	46	58	69
									i
Strahl	Strahl, eV	100	50	30	19	100	100	60	40
+ · · · ·	V-Strahl, mm/us	4,47	3,16	2,45	1,95	4,47	4,47	3,46	2,83
l rajektorie	Z-Schritt, mm	52	37	28	23	52	52	40	33
	Neigung, mrad	129	91	/1	56	129	129	100	82
	Neigung, deg	7,6	5,4	4,2	3,3	7,6	7,6	5,9	4,8
	Spiegei-Z-Kante, mm	23	20	18	19	48	23	20	18
~^	Strohl d. mm	10	10	10	10	10	10	10	10
UA	Strahl ong mrod	1,2	1,∠	1,2	1,2	1,2	,∠ 17	1,2	17
		11	22	12	17	11	17	17	10
		9 10	6 22	5 42	2 05	0 10	27 210	7 23	6 24
	DA-zeit, us Tastvorhältnis	0,13	0,00	0.094	0.056	0,13	0,177	0.125	0,24
	Tastvernaltins	0,237	0,147	0,094	0,000	0,237	0,177	0,125	0,090
dK	F V/mm	500	450	420	400	550	500	450	420
urt	dK eV	600	540	504	480	660	600	540	504
R(6%)	dK/K	10.0%	9.0%	8.4%	8.0%	11.0%	10.0%	9.0%	8.4%
250000	Res(dK)	32400	49383	65077	79102	22130	32400	49383	65077
200000	dT(dK)	0.53	0.47	0.44	0.44	0.78	0.71	0.58	0.53
		- 1	-1		.=1 .	-,	-,		
Pakete	Vx, m/s	76,03	53,76	41,64	33,14	76,03	76,03	58,89	48,08
	Bearbeitungszeit, ns	1,52	1,19	0,99	0,83	1,38	1,52	1,31	1,14
	DAS und Det, ns	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
Auflösung	FWHM, ns	1,76	1,46	1,29	1,17	1,74	1,82	1,60	1,44
	Auflösung	9857	15802	22340	29616	9978	12694	18098	23996
Gitter	Winkel, mrad	8,33	7,50	7,00	6,67	9,17	8,33	7,50	7,00
	Y-Spanne, mm	2,33	2,10	1,96	1,87	2,57	2,33	2,10	1,96
	Leff	1,2	1,6	2	2,4	1,2	1,6	2	2,4
	Quadrat	0,1	0,1	0,1	0,1	0,125	0,125	0,125	0,125
	Auflösung	9857	15802	22340	29616	9978	12694	18098	23996
	Tastverhältnis	0,237	0,147	0,094	0,056	0,237	0,177	0,125	0,090
	Transm OA	1	1	0,6	0,38	1	1	1	0,8
	Res*DC*Transm	2331	2328	1259	625,7	2360	2252	2262	1730

Fig. 6A (Fortsetzung I)

L				-						ī
i 10	11	12	14	15	16	17	18	20	21	22
i			PERSON MON		250x700)			SAL MORPHUS	
31	38	45	12	21	31	42	54	20	28	36
6,0%	4,2%	2,8%	30,2%	19,4%	13,1%	9,1%	5,8%	17,3%	13,3%	10,5%
6	7	8	2	3	4	5	6	4	5	6
400	400	400	600	600	600	600	600	600	600	600
200	200	200	200	200	200	200	200	350	350	350
6000	6000	6000	6000	6000	6000	6000	6000	6000	6000	6000
34,64	34,64	34,64	34,64	34,64	34,64	34,64	34,64	34,64	34,64	34,64
2800	3200	3600	1600	2200	2800	3400	4000	2800	3400	4000
81	92	104	46	64	81	98	115	81	98	115
25	19	15	100	45	25	16	10	100	62	42
2,24	1,95	1,73	4,47	3,00	2,24	1,79	1,41	4,47	3,52	2,90
26	23	20	77	52	39	31	24	77	61	50
<u>65</u>	56	50	129	87	65	52	41	129	102	84
3,8	3,3	2,9	7,6	5,1	3,8	3,0	2,4	7,6	6,0	4,9
23	21	20	23	22	23	23	27	20	23	24
	10	4.0	10	10	10		10		1.0	
1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2	1,2
1/	17	17	17	17	17	17	17	17	17	17
	205	2 90	12.07	3/	24	16	9	12.07	46	35
4,84	3,85	2,89	13,97	12,32	10,61	8,94	6,/1	13,97	13,06	12,15
0,080	0,042	0,028	0,502	0,194	0,151	0,091	0,056	0,175	0,155	0,105
420	380	360	460	420	380	350	310	/30	410	300
504	456	432	552	504	456	420	372	516	410	468
8/1%	7.6%	7.2%	9.7%	8.4%	7.6%	7.0%	6.7%	8.6%	8.7%	7.8%
65077	97116	120563	45227	65077	97116	134944	219270	59231	71662	87532
0.62	0.48	0.43	0.51	0.49	0.42	0.36	0.26	0.68	0.68	0.66
	0,10	0,10	0,01	0,10	0, 12	0,00	0,20	0,00	0,00	0,00
38.01	33.14	29.44	76.03	51.00	38.01	30.41	24.04	76.03	59.86	49.27
0,91	0.87	0.82	1.65	1,21	1,00	0,87	0,78	1.77	1,46	1.26
0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
							and a second			
1,30	1,22	1,16	1,87	1,48	1,29	1,17	1,08	2,02	1,76	1,59
31044	38008	44809	12376	21396	31331	41818	53587	20004	27914	36362
7,00	6,33	6,00	7,67	7,00	6,33	5,83	5,17	7,17	6,83	6,50
1,96	1,77	1,68	3,22	2,94	2,66	2,45	2,17	3,01	2,87	2,73
2,8	3,2	3,6	1,6	2,2	2,8	3,4	4	2,8	3,4	4
0,125	0,125	0,125	0,175	0,175	0,175	0,175	0,175	0,28	0,28	0,28
31044	38008	44809	12376	21396	31331	41818	53587	20004	27914	36362
0,060	0,042	0,028	0,302	0,194	0,131	0,091	0,058	0,173	0,133	0,105
0,5	0,38	0,3	1	0,9	0,5	0,32	0,2	1	1	0,84
929,2	602,3	373,4	3742	3736	2057	1218	623,2	3457	3715	3213

Fig. 6A (Fortsetzung II)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
400x700 $400x1000$ 45 55 64 75 36 51 66 82 96 11 8,4% 6,9% 5,6% 4,5% 18,0% 13,6% 10,7% 8,4% 6,9% 5,6% 7 8 9 10 4 5 6 7 8 600 600 600 900	33
45 55 64 75 36 51 66 82 96 11 $8,4\%$ $6,9\%$ $5,6\%$ $4,5\%$ $18,0\%$ $13,6\%$ $10,7\%$ $8,4\%$ $6,9\%$ $5,6\%$ 7 8 9 10 4 5 6 7 8 600 600 600 600 900 <td></td>	
45 55 64 75 36 51 66 82 96 11 8,4% 6,9% 5,6% 4,5% 18,0% 13,6% 10,7% 8,4% 6,9% 5,6% 7 8 9 10 4 5 6 7 8 600 600 600 600 900	
8,4% $6,9%$ $5,6%$ $4,5%$ $18,0%$ $13,6%$ $10,7%$ $8,4%$ $6,9%$ $5,6%$ 7 8 9 10 4 5 6 7 8 600 600 600 600 900 800 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 6000 800 1133 150 1617 185 1115 141 167	13
789104567860060060060090090090090090090090035035035035035035035035035035035035060006000600060006000600060006000600034,6434,6434,6434,6434,6434,6434,6434,6434,6434,644600520058006400400049005800670076008501331501671851151411671932192430231814422517129,57,2,452,141,901,672,902,241,841,551,381,2423733297558484036371625548846553454034,23,63,22,84,93,83,12,62,32,1,2 <t< td=""><td>%</td></t<>	%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
600 600 600 600 900 900 900 900 900 900 350 6000 850 133 150 167 185 1115 1141 167 193 219 24 30 23 18 14 422 25 17 12 $9,5$ $7,7$ $2,45$ $2,14$ $1,90$ $1,67$ $2,90$ $2,24$ $1,84$ $1,55$ $1,38$ $1,22$ $4,2$ $3,6$ <	9
350 360 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 3600 360 330 310 34 32 37 32 37 32 35 31 34 32 33 37 36 32 32 32 32 32 32	00
6000 8500 6700 7600 8500 133 150 167 185 115 141 167 193 219 24 30 23 18 14 42 25 17 12 9,5 7, 2,45	50
6000 6000	
34,64 34,64 <td< td=""><td>00</td></td<>	00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64
133 150 167 185 115 141 167 193 219 24 30 23 18 14 42 25 17 12 9,5 7, 2,45 2,14 1,90 1,67 2,90 2,24 1,84 1,55 1,38 1,2 42 37 33 29 75 58 48 40 36 33 71 62 55 48 84 65 53 45 40 33 4,2 3,6 3,2 2,8 4,9 3,8 3,1 2,6 2,3 2, 27 26 27 30 24 30 31 34 32 33 1,2 1,1 1,1 1,1 1,1 1,1 1,1	00
30 23 18 14 42 25 17 12 $9,5$ $7,$ $2,45$ $2,14$ $1,90$ $1,67$ $2,90$ $2,24$ $1,84$ $1,55$ $1,38$ $1,2$ 42 37 33 29 75 58 48 40 36 33 71 62 55 48 84 65 53 45 40 33 $4,2$ $3,6$ $3,2$ $2,8$ $4,9$ $3,8$ $3,1$ $2,6$ $2,3$ $2,7$ 27 26 27 30 24 30 31 34 32 33 $1,2$ $1,3$ $1,2$ $1,2$ $1,2$ $1,2$ $1,2$ $1,2$	45
30 23 10 14 42 25 17 12 9,5 7 2,45 2,14 1,90 1,67 2,90 2,24 1,84 1,55 1,38 1,2 42 37 33 29 75 58 48 40 36 33 71 62 55 48 84 65 53 45 40 33 4,2 3,6 3,2 2,8 4,9 3,8 3,1 2,6 2,3 2, 27 26 27 30 24 30 31 34 32 33 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	
2,45 2,14 1,50 1,67 2,90 2,24 1,84 1,55 1,38 1,2 42 37 33 29 75 58 48 40 36 33 71 62 55 48 84 65 53 45 40 33 4,2 3,6 3,2 2,8 4,9 3,8 3,1 2,6 2,3 2, 27 26 27 30 24 30 31 34 32 33 1,2<	,5 22
42 37 33 29 75 58 48 40 36 33 71 62 55 48 84 65 53 45 40 33 4,2 3,6 3,2 2,8 4,9 3,8 3,1 2,6 2,3 2,4 27 26 27 30 24 30 31 34 32 33 1,2	22
71 62 55 48 84 65 53 45 40 3 4,2 3,6 3,2 2,8 4,9 3,8 3,1 2,6 2,3 2, 27 26 27 30 24 30 31 34 32 3 1,2 </td <td>32</td>	32
4,2 3,0 3,2 2,0 4,9 3,8 3,1 2,0 2,3 2,7 27 26 27 30 24 30 31 34 32 3 1,2	50
27 28 27 36 24 36 31 34 32 33 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,1 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,1 1,7 17 17 17 17 17 17 17 27 22 18 14 60 43 33 25 21 1 11,20 10,33 9,41 8,36 20,81 19,27 17,85 16,30 15,10 13,7 0,084 0,069 0,056 0,045 0,180 0,136 0,107 0,084 0,069 0,055 370 350 330 310 390 360 330 310 300 27 444 420 206 272 468 422 206 272 260 22	2.7
1,2 1,2 <td>52</td>	52
17 13 13,7 0,084 0,069 0,055 0,045 0,180 0,136 0,107 0,084 0,069 <td>2</td>	2
27 22 18 14 60 43 33 25 21 1 11,20 10,33 9,41 8,36 20,81 19,27 17,85 16,30 15,10 13,7 0,084 0,069 0,056 0,045 0,180 0,136 0,107 0,084 0,069 0,055 370 350 330 310 390 360 330 310 300 27 444 420 206 272 468 422 206 272 260 22	,∠ 17
11,20 10,33 9,41 8,36 20,81 19,27 17,85 16,30 15,10 13,7 0,084 0,069 0,056 0,045 0,180 0,136 0,107 0,084 0,069 0,055 370 350 330 310 390 360 330 310 300 27 444 420 206 272 468 422 206 272 260 22	17
11/10 10/15 5/15 5/15 10/15 1	73
370 350 330 310 390 360 330 310 300 27 444 420 306 373 468 433 306 370 320	56
370 350 330 310 390 360 330 310 300 27 444 420 306 373 468 433 306 373 360 330 310 300 27	_
444 420 206 272 469 422 206 272 260 22	70
444 420 390 372 406 432 390 372 300 32	24
7,4% 7,0% 6,6% 6,2% 7,8% 7,2% 6,6% 6,2% 6,0% 5,4	%
108048 134944 170753 219270 87532 120563 170753 219270 250000 38103	39
0,61 0,56 0,49 0,42 0,66 0,59 0,49 0,44 0,44 0,3	32
41,64 36,46 32,26 28,45 49,27 38,01 31,35 26,34 23,43 20,8	82
1,13 1,04 0,98 0,92 1,26 1,06 0,95 0,85 0,78 0,7	77
0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7),7
1,46 1,37 1,30 1,23 1,59 1,40 1,28 1,19 1,14 1,0	09
45448 54673 64478 75186 36362 50659 65518 81549 96484 11254	46
6,17 5,83 5,50 5,17 6,50 6,00 5,50 5,17 5,00 4,5	50
2,59 2,45 2,31 2,17 4,10 3,78 3,47 3,26 3,15 2,8	84
4,6 5,2 5,8 6,4 4 4,9 5,8 6,7 7,6 8,	8,5
0,28 0,28 0,28 0,28 0,4 0,4 0,4 0,4 0,4 0,4),4
	_
45448 54673 64478 75186 36362 50659 65518 81549 96484 11254	46
0,084 0,069 0,056 0,045 0,180 0,136 0,107 0,084 0,069 0,05	56
0,6 0,46 0,36 0,28 0,84 0,5 0,34 0,24 0,19 0,1	15
<u>2299 1730 1305 952,2 5503 3451 2374 1649 1262 944,</u>	,9

L

(Rk=80)		g. (bВ							
·	, Variante Nr.	1	2	3	4		5	6	7	8
	Systemgröße (mm)		200	×500		П				
	, , ,									
Parameter	Resn. K	8	13	19	25	П	8	10	15	20
	Tastverhältnis	23.7%	14.7%	94%	5.6%	H	23.7%	17.7%	12.5%	9.0%
			1 1,1 74	-,	0,070	H	20,1 70	11,1 %	12,070	0,070
Größe	Reflexionen	2	3	4	5	H	2	3	4	5
	länge L. mm	400	400	400	400	H	400	400	400	400
	Breite W. mm	150	150	150	150	H	200	200	200	200
		100	100	100	100	┢┼╴	200	200	200	200
TOF	K eV	6000	6000	6000	6000	H	6000	6000	6000	6000
	V tof mm/us	34 64	34 64	34.64	34.64	H	3/ 6/	3/ 6/	34 64	31 61
	Leff mm	1200	1600	2000	2400	H	1200	1600	2000	2400
	TOF US	35	46	58	69	H	35	1000	2000	2400
					00	Η	55	40		03
Strahl	Strahl eV	100	50	30	10	╟	100	100	60	40
- u writ	V-Strahl mm/us	4 4 7	3 16	2 / 5	1 05	╟┼	4 47	1.17	3 16	2 93
Traiektorie	7-Schritt mm	52	3,10	2,43	1,90	╟┼	4,47	4,47	3,40	2,00
najentone	Neigung mrad	120	91	71	23	╟┼	120	120	100	
	Neigung, Inrau	76	54	11	20	╟┼	7 6	7.6	500	02
	Spiegel-7-Kante mm	7,0	20	4,2	3,3	╟┼	7,0	7,0	5,9	4,0
	Spieger-2-Kante, min	23	20	10	19	⊢	40	25	20	10
$\gamma \wedge$	Strahl d. mm	12	10	10	10	H	10	10	10	10
0A	Strahl and mrad	1,2	1,2	1,2	1,∠ 17	H	1,∠ 17	1,∠	1,2	1,2
		17	17	17	17	\vdash	17	1/	1/	17
	OA-Lange	3/	22	13	8 2.05	\vdash	37	3/	25	18
	UA-Zeit, us Taatuarbälteia	8,19	6,80	5,42	3,85	\vdash	8,19	8,19	7,22	6,24
	Tastvernaitnis	0,237	0,147	0,094	0,056	\vdash	0,237	0,177	0,125	0,090
AIZ		400	440	240	240	\vdash	400	110	070	0.40
un		420	410	340	310	\vdash	430	410	3/0	340
	ak, ev	504	492	408	372	H	516	492	444	408
		8,40%	8,20%	6,80%	6,20%	H	8,60%	8,20%	7,40%	6,80%
80000	Res(dK)	20825	22932	48491	70166	\vdash	18954	22932	34575	48491
		0,83	1,01	0,60	0,49	Н-	0,91	1,01	0,83	0,71
N = 1 4 -	N	70.00								
akete	Vx, m/s	76,03	53,76	41,64	33,14	\square	76,03	76,03	58,89	48,08
	Bearbeitungszeit, ns	1,81	1,31	1,22	1,07	\square	1,77	1,85	1,59	1,41
	DAS und Det, ns	0,7	0,7	0,7	0,7	\square	0,7	0,7	0,7	0,7
		0.11	1.00	1.50		4				
Autiosung	FWHM, ns	2,11	1,80	1,53	1,37	_	2,11	2,22	1,93	1,73
	Auflosung	8203	12863	18854	25288	_	8210	10388	14966	19999
2.11						4				
Sitter	Winkel, mrad	7,00	6,83	5,67	5,17		7,17	6,83	6,17	5,67
	Y-Spanne, mm	1,96	1,91	1,59	1,45	4	2,01	1,91	1,73	1,59
						\square				
	Lett	1,2	1,6	2	2,4	\square	1,2	1,6	2	2,4
	Quadrat	0,1	0,1	0,1	0,1	Щ	0,125	0,125	0,125	0,125
	Auflösung	8203	12863	18854	25288		8210	10388	14966	19999
	Tastverhältnis	0,237	0,147	0,094	0,056		0,237	0,177	0,125	0,090
	Transm OA	1	1	0,6	0,38		1	1	1	0,8
	Res*DC*Transm	1940	1895	1063	534,3		1942	1843	1871	1442

9 27	10	11										ј <u>т</u>
27				12	13	14	15	16	17	18	19	
27					í	250x700)					
27												
	32	38		10	18	27	36	47	16	23	30	
6,0%	4,2%	2,8%		30,2%	19,4%	13,1%	9,1%	5,8%	17,3%	13,3%	10,5%	
6	7	8		2	3	4	5	6	4	5	6	
400	400	400		600	600	600	600	600	600	600	600	
200	200	200		200	200	200	200	200	350	350	350	
6000	6000	6000		6000	6000	6000	6000	6000	6000	6000	6000	
34,64	34,64	34,64		34,64	34,64	34,64	34,64	34,64	34,64	34,64	34,64	
2800	3200	3600		1600	2200	2800	3400	4000	2800	3400	4000	
81	92	104		46	64	81	98	115	81	98	115	
25	40	45	Ц	400	45	05	40	40	400		40	
25	19	15	Н	100	2 00	25	10	10	100	62	42	
2,24	1,95 22	1,/3	Н	4,4/	3,00	2,24	1,79	1,41	4,4/	3,52	2,90	
20	23	20	Н	120	52	59	51	Z4	120	102	50	
20	20	20	Η	7 5	ŏ/ ۲ 1	00 00	20	41 27	129	102	<u> </u>	
3,0	2,5 21	2,9		7,0	5,1 22	0,C 22	3,0	2,4	7,0	0,0	24,9	
25	21	20		25	22	25	25	27	20	23	24	
12	12	12		12	12	12	12	12	12	12	12	
17	17	1,2		17	1,2	1,2	1,2	1,2	1,2	17	17!	
11	8	5	_	62	37	24	16	9	62	46	35	
4 84	3 85	2 89		13.97	12 32	10.61	8 94	671	13.97	13.06	12 15	
0.060	0.042	0.028		0.302	0.194	0.131	0.091	0.058	0.173	0.133	0.105	
0,000	0,012	0,020		0,002	0,101	0,101	0,001	0,000	0,1/0	0,100	0,100	
310	290	280		400	330	310	280	260	330	310	290	
372	348	336		480	396	372	336	312	396	372	348	
6,20%	5,80%	5,60%		8,00%	6,60%	6,20%	5,60%	5,20%	6,60%	6,20%	5,80%	
70166	91618	105425		25313	54641	70166	105425	141802	54641	70166	91618	
0,58	0,50	0,49		0,91	0,58	0,58	0,47	0,41	0,74	0,70	0,63	
38,01	33,14	29,44		76,03	51,00	38,01	30,41	24,04	76,03	59,86	49,27	
1,23	1,14	1,05		1,90	1,55	1,23	1,09	0,92	2,30	1,93	1,70	
0,7	0,7	0,7		0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	
1,52	1,43	1,36		2,22	1,79	1,52	1,37	1,23	2,52	2,17	1,94	
26503	32259	38319		10396	17707	26503	35732	46972	16045	22617	29721	
		Se success		100 MARCON			2 . A. A	20 MAR 201		1000 - 1000 - 1000		
5,17	4,83	4,67		6,67	5,50	5,17	4,67	4,33	5,50	5,17	4,83	
1,45	1,35	1,31	Ц	2,80	2,31	2,17	1,96	1,82	2,31	2,17	2,03	
							100 C 100					
2,8	3,2	3,6	Ц	1,6	2,2	2,8	3,4	4	2,8	3,4		
0,125	0,125	0,125	Ц	0,175	0,175	0,175	0,175	0,175	0,28	0,28	0,28	
00555	00055	00015	Ц	10000	4	00504	05705	40075	1001-	00015	0070	
26503	32259	38319	Ц	10396	17707	26503	35/32	46972	16045	22617	29721	
0,060	0,042	0,028	Н	0,302	0,194	0,131	0,091	0,058	0,1/3	0,133	0,105	
0,5	0,38	0,3	Н	2144	0,9	0,5	0,32	0,2		2010	0,84	
793,3	511,2	319,3	Ц	3144	3092	1/40	1041	546,2	2//2	3010	2626	

				F	Fig	. 6	В (Fo	rts	etz	zung	II]
20	21	22	23		24	25	26	27	28	29		
400x70	0						400x	1000				
				_							1	
38	46	54	64		30	42	54	69	83	98		
8,4%	6,9%	5,6%	4,5%	_	18,0%	13,6%	10,7%	8,4%	6,9%	5,6%		
7	0		10		1	5	6	7	0	0		
600	0 600	9	600	_	4	000	000	/	000	9000		
350	350	350	350		350	350	350	350	350	350		
550		550	550		550	550	550	550	550	550		
6000	6000	6000	6000		6000	6000	6000	6000	6000	6000		
34.64	34.64	34.64	34.64		34.64	34.64	34.64	34.64	34.64	34.64		
4600	5200	5800	6400		4000	4900	5800	6700	7600	8500		
133	150	167	185		115	141	167	193	219	245		
30	23	18	14		42	25	17	12	9,5	7,5		
2,45	2,14	1,90	1,67		2,90	2,24	1,84	1,55	1,38	1,22		
42	37	33	29		75	58	48	40	36	32		
71	62	55	48		84	65	53	45	40	35		
4,2	3,6	3,2	2,8		4,9	3,8	3,1	2,6	2,3	2,1		
27	26	27	30		24	30	31	34	32	32		
1,2	1,2	1,2	1,2		1,2	1,2	1,2	1,2	1,2	1,2		
17	17	17	17		17	17	17	17	17	17		
27	22	18	14		60	43	33	25	21	17		
11,20	10,33	9,41	8,36		20,81	19,27	17,85	16,30	15,10	13,73		
0,084	0,069	0,056	0,045		0,180	0,136	0,107	0,084	0,069	0,056		
200	270	200	250		200	200	200	250	240	220		
280	270	260	250	_	300	290	280	250	240	220		
550	524	512	500		360	548	550	500	288	204		
105425	5,40%	3,20%	3,00%	_	8,00%	5,80%	3,00%	3,00%	4,80%	4,40%		
0.63	0.62	141002 0 50	0.56	_	0.72	0.77	0.79	0.58	0.56	0.44		
0,00	0,02	0,00	0,50	_	0,72	0,77	0,13	0,00	0,00	0,44		
41 64	36.46	32.26	28.45	_	49 27	38.01	31 35	26 34	23 43	20.82		
1 49	1 35	1 24	1 14		1 64	1 31	1 12	1.05	0.98	0.95		
0.7	0.7	0.7	0.7		0.7	0.7	0.7	0.7	0.7	0.7		
,					· ·							
1,76	1,64	1,54	1,45		1,93	1,67	1,54	1,39	1,33	1,26		
37720	45741	54292	63824		29982	42236	54335	69438	82716	97531		
4,67	4,50	4,33	4,17		5,00	4,83	4,67	4,17	4,00	3,67		
1,96	1,89	1,82	1,75		3,15	3,05	2,94	2,63	2,52	2,31		
4,6	5,2	5,8	6,4		4	4,9	5,8	6,7	7,6	8,5		
0,28	0,28	0,28	0,28		0,4	0,4	0,4	0,4	0,4	0,4		
37720	45741	54292	63824		29982	42236	54335	69438	82716	97531		
0,084	0,069	0,056	0,045		0,180	0,136	0,107	0,084	0,069	0,056		
0,6	0,46	0,36	0,28		0,84	0,5	0,34	0,24	0,19	0,15		
1908	1447	1099	808,3		4538	2877	1969	1404	1082	818,8		

Rk=1001	K K=5keV F	ig.	7										;
1111-1001	Variante Nr	1	2	3	4		5	6	7	8	9		10
	Systemgröße (mm)		150	(300					, 200x300)		Т	
										-		╈	
Parameter	Resn K	4	7	11	15		4	6	8	12	15	╈	7
	Tastverhältnis	26.9%	14.4%	7.3%	2.8%		24.8%	17.7%	12.1%	7.5%	4.4%		26.0%
			,	.,	_,				,		.,	T	
Größe	Reflexionen	2	3	4	5		2	3	4	5	6	╈	2
	Länge L, mm	250	250	250	250		250	250	250	250	250	1	350
	Breite W, mm	110	110	110	110		160	160	160	160	160	T	110
												T	
TOF	K, eV	3000	3000	3000	3000		4000	4000	4000	4000	4000		5000
	V tof, mm/us	24,49	24,49	24,49	24,49		28,28	28,28	28,28	28,28	28,28		31,62
	Leff, mm	625	875	1125	1375		625	875	1125	1375	1625		875
	TOF, us	26	36	46	56		22	31	40	49	57		28
Strahl	Strobl a)(100	14	24	15		100	100	70	40	20	╉	75
Shan	Strahl mm/ur	100	2 07	24	1 72		4 47	4 47	274	2 00	20	+	2 07
Trajektorio	7 Schritt mm	4,47	2,97	2,19	1,75		4,47	4,47	3,74	2,90	2,37	╉	3,67
пајектопе	Z-Schntt, mm	102	121	22	10 71	_	150	159	122	102	21	╉	45
	Neigung, miau Neigung, deg	10.7	71	52	/1		1.20	130	70	6.0	04 / 0	╉	7.2
	Spiegel_7-Kante mm	10,7	10		4,2		<i>3,3</i> //0	2,3 21	1/1	16	4,5	╉	12
	spieger-z-kante, mm		10	10			40	21	14	10	1/	╉	
OA	Strahl d. mm	12	12	12	12	_	12	12	12	12	12	╉	12
0/1	Strahl and mrad	1,2	1,2	1,2	1,2		1,2	1,2	1,2	1,2	17	╈	17
	OA-Länge	31	15	7			25	25	18	11	6	╈	28
	OA-Zeit, us	6,85	5.15	3,36	1.55		5,48	5,48	4,83	3.66	2,50	+	7.19
	Tastverhältnis	0,269	0,144	0,073	0,028		0,248	0.177	0.121	0.075	0.044	╈	0.260
				,			,		,	,		╈	<u> </u>
dK	E, V/mm	280	230	210	190		360	330	300	280	260	╈	380
	dK, eV	336	276	252	228		432	396	360	336	312	Т	456
R(6%)	dK/K	11,2%	9,2%	8,4%	7,6%		10,8%	9,9%	9,0%	8,4%	7,8%	T	9,1%
100000	Res(dK)	8236	18091	26031	38846		9526	13492	19753	26031	35013	Т	18734
	dT(dK)	1,55	0,99	0,88	0,72		1,16	1,15	1,01	0,93	0,82		0,74
												Τ	
Pakete	Vx, m/s	76,03	50,43	37,25	29,44		76,03	76,03	63,61	49,27	40,23		65,84
	Bearbeitungszeit, ns	2,72	2,19	1,77	1,55		2,11	2,30	2,12	1,76	1,55		1,73
	DAS und Det, ns	0,7	0,7	0,7	0,7		0,7	0,7	0,7	0,7	0,7	_	0,7
A Cl		0.00	0.50	0.40	4.05	_	0.54	0.07	0.45	0.14	4.00	╉	0.01
Autiosung	Evv Hivi, ns	3,20	∠,50 7420	∠,10 10020	1,00		∠,⊃1 4404	∠,07	2,40	∠, 11	1,09	╉	2,01
	Autrosung	3903	7152	10930	10191		4404	0000	0120	11012	10231	╉	0000
Gitter	Winkel mrad	9 33	7.67	7.00	6 33		9.00	8 25	7 50	7.00	6 50	╉	7 60
ondor	Y-Spanne, mm	1.63	1.34	1,00	1.11		1.58	1.44	1.31	1,23	1.14	╈	1.86
		2,00	2,01	2,20	_,		1,50	_,	1,01	2,20	_,_ ,	╈	2,00
	Leff	0,625	0,875	1,125	1,375		0,625	0,875	1,125	1,375	1,625	+	0,875
	Quadrat	0,045	0,045	0,045	0,045		0,06	0,06	0,06	0,06	0,06	╉	0,06
	Auflösung	3983	7132	10930	15191		4404	5800	8120	11512	15231	╉	6885
	Tastverhältnis	0,269	0,144	0,073	0,028		0,248	0,177	0,121	0,075	0,044	╈	0,260
	Transm OA	2	0,88	0,48	0,3		2	2	1.4	0.84	0.56	╈	1,5
	Res*DC*Transm	2139	904,7	383,8	125,5		2186	2057	1380	728,7	371.2	╈	2686

:				F	Fiq	. 7	(F	or	t	se	tzu	Ing	I)	l	;
11	12	13		15	16	17	18	19		20	21	22	23	24	25
150>	(400					200x400)					250	x400		1
	10		_		0		10		-				4.5		
12	18	24	_	6	9	14	7.00	24		6	8	11	15	19	25
13,9%	6,8%	2,3%	_	27,9%	18,9%	12,1%	7,8%	⊃,U%		27,9%	19,9%	14,9%	10,7%	7,7%	5,4%
	4	5		2	3	4	5	6		2	3	4	5	6	
350	350	350	_	350	350	350	350	350		350	350	350	350	350	350
110	110	110		160	160	160	160	160	-	210	210	210	210	210	210
5000	5000	5000		5000	5000	5000	5000	5000		5000	5000	5000	5000	5000	5000
31,62	31,62	31,62		31,62	31,62	31,62	31,62	31,62		31,62	31,62	31,62	31,62	31,62	31,62
1225	1575	1925		875	1225	1575	1925	2275		875	1225	1575	1925	2275	2625
39	50	61		28	39	50	61	72		28	39	50	61	72	83
35	19	12		100	80	44	28	20		100	100	85	54	37	26
2,65	1,95	1,55		4,47	4,00	2,97	2,37	2,00		4,47	4,47	4,12	3,29	2,72	2,28
29	22	17		49	44	33	26	22		49	49	46	36	30	25
i84	62	49	_	141	126	94	75	63		141	141	130	104	86	72
4,9	3,6	2,9	_	8,3	7,4	5,5	4,4	3,/		8,3	8,3	1,1	5,1	5,1	4,2
· · · ·	12	12	_	्य	14	14	15	14		50	31	14	14	.15	17
12	1.2	1.2	_	12	12	1.2	1 2	1.2		12	1.2	1.2	12	1.2	1.2
1,2	1,2	1,2	_	1,2	17	1,2	1,2	1,2		17	1,2	1,2	1,2	17	17
14	7	2	_	34	29	18	11	7		34	34	31	21	15	10
5.40	3.37	1.39	_	7.71	7.32	6.01	4.73	3.57		7.71	7.71	7.43	6.50	5.55	4.49
0,139	0.068	0.023		0,279	0.189	0.121	0.078	0.050		0,279	0.199	0.149	0.107	0.077	0.054
<u> </u>															
340	300	280		390	370	330	300	280		410	400	350	330	300	280
408	360	336		468	444	396	360	336		492	480	420	396	360	336
8,2%	7,2%	6,7%		9,4%	8,9%	7,9%	7,2%	6,7%		9,8%	9,6%	8,4%	7,9%	7,2%	6,7%
29231	48225	63552		16885	20843	32939	48225	63552		13824	15259	26031	32939	48225	63552
0,66	0,52	0,48		0,82	0,93	0,76	0,63	0,57		1,00	1,27	0,96	0,92	0,75	0,65
44,98	33,14	26,34	_	76,03	68,00	50,43	40,23	34,00		76,03	76,03	70,09	55,87	46,24	38,77
1,32	1,10	0,94	_	1,95	1,84	1,53	1,34	1,21		1,85	1,90	2,00	1,69	1,54	1,38
0,7	0,7	0,7	_	0,7	0,7	0,7	0,7	0,7		0,7	0,7	0,7	0,7	0,7	0,7
1.64	4 44	1.07	_	2.02	0.10	1 0 4	1.64	1.51		2.22	2.20	0.00	2.05	1 05	1 60
1,04	1,41	24022	_	2,20	2,10	12512	1,04	1,01		2,22	2,39	2,00	2,00	1,00	1,00
1 11034	17712	24032	_	0211	0900	13012	10070	20191		0231	0103	10701	14034	19444	24007
6.80	6.00	5.60	_	7 80	7 40	6.60	6.00	5 60		8 20	8.00	7.00	6.60	6.00	5.60
1.67	1.47	1.37	_	1,91	1.81	1.62	1.47	1.37		2.01	1.96	1.72	1.62	1.47	1.37
	-,	2,07				2,02		2,07						_, .,	
1,225	1,575	1,925		0,875	1,225	1,575	1,925	2,275		0,875	1,225	1,575	1,925	2,275	2,625
0,06	0,06	0,06		0,08	0,08	0,08	0,08	0,08		0,1	0,1	0,1	0,1	0,1	0,1
11834	17712	24032		6211	8905	13512	18570	23797		6231	8103	10701	14834	19444	24657
0,139	0,068	0,023		0,279	0,189	0,121	0,078	0,050		0,279	0,199	0,149	0,107	0,077	0,054
0,7	0,38	0,24		2	1,6	0,88	0,56	0,4		2	2	1,7	1,08	0,74	0,52
1154	455,8	131,3		3463	2691	1435	807,9	472,1		3474	3227	2714	1712	1111	693,5
1															

				F	-ig	. 7		(Fc	orts	set	zu	ng	II)
26	2	27	28	29	30	31		34	35	36	37	38	39	40
			1	200x500)					2	250x500)		
30		8	13	19	26	34		8	10	15	21	27	35	43
3,6%	30,69	%	19,0%	12,3%	8,1%	5,3%		30,6%	21,5%	14,8%	11,0%	8,1%	5,7%	3,8%
														-
8		2	3	4	5	6		2	3	4	5	6	7	8
350	45	50	450	450	450	450		450	450	450	450	450	450	450
210	16	<u>60</u>	160	160	160	160		210	210	210	210	210	210	210
	_													
5000	500)0 **	5000	5000	5000	5000	_	5000	5000	5000	5000	5000	5000	5000
31,62	31,6	52	31,62	31,62	31,62	31,62	_	31,62	31,62	31,62	31,62	31,62	31,62	31,62
2975	112	25	1575	2025	2475	2925		1125	15/5	2025	24/5	2925	33/5	3825
94		50	50	64	/8	92		36	50	64	/8	92	107	121
10	10	10	50	20	10	10		100	00	50	20	25	17	10
19		17	2.16	20	1 00	1 61	_	4 4 7	90	216	30	20	1 0/	1 55
1,95	4,4	+/ :/	3,10	2,37	1,90	1,01	_	4,47	4,24	3,10	2,00	2,24	1,04	1,55
62	1/)4 11	100	54	27 60	51	_	1/1	12/	100	20		50	77
3.6	8	ז± ז	59	44	35	3.0	_	83	79	5.9	5.0	4 2	34	79
19		,5 16	13	- 1 7 13	13	11		41	14	15	10	-,2 10	13	2,5
			15	15	15			71		15	10	10	13	11
12	1	2	12	12	12	12		12	12	12	12	12	12	12
17	1	,-	17	17	17	17		17	17	17	17	17	17	17
7	4	19	30	19	12	8		49	45	30	23	17	11	7
3,37	10,8	38	9,49	7,89	6,32	4,93		10,88	10,69	9,49	8,64	7,52	6,10	4,55
0,036	0,30)6	0,190	0,123	0,081	0,053		0,306	0,215	0,148	0,110	0,081	0,057	0,038
260	38	30	330	300	270	260		400	380	350	290	260	250	240
312	45	56	396	360	324	312		480	456	420	348	312	300	288
6,2%	9,1	%	7,9%	7,2%	6,5%	6,2%		9,6%	9,1%	8,4%	7,0%	6,2%	6,0%	5,8%
85480	1873	34	32939	48225	73503	85480		15259	18734	26031	55229	85480	100000	117738
0,55	0,9	95	0,76	0,66	0,53	0,54		1,17	1,33	1,23	0,71	0,54	0,53	0,51
		_												-
33,14	76,0)3	53,76	40,23	32,26	27,41		76,03	72,12	53,76	45,62	38,01	31,35	26,34
1,27	2,0)0	1,63	1,34	1,19	1,05		1,90	1,90	1,54	1,57	1,46	1,25	1,10
0,7	0,	,7	0,7	0,7	0,7	0,7		0,7	0,7	0,7	0,7	0,7	0,7	0,7
i	-			1.05				0.01	0.10	0.00			1.50	
1,55	2,3	32 50	1,93	1,65	1,48	1,38	_	2,34	2,42	2,09	1,86	1,/1	1,53	1,40
30254	765	59	12920	19382	26380	33603	_	7611	10288	15330	21019	27063	34833	43221
E 20		<u>~0</u>	C C0	C 00	E 40	E 20	_	0.00	7.00	7.00	E 90	F 70	F 00	1.90
5,20	7,0	20	0,00	1.90	5,40	5,20	_	8,00	7,60	7,00	5,6U 1 00	5,20	5,00	4,80
1,27	Z,3	כמ	2,00	1,09	1,70	1,04	_	2,52	2,39	2,21	1,00	1,04	1,50	1,51
	_	_					_							
2 975	1 1 7	75	1 575	2 025	2 475	2 925	_	1 1 2 5	1 575	2 025	2 475	2 925	3 3 75	3 875
0.1		1	0.1	2,023	2,473	2,525	_	0.125	0.125	0 1 25	0.125	0.125	0.125	0 1 2 5
0,1		,±	0,1	0,1	0,1	0,1	-	0,123	0,120	5,125	0,120	0,120	5,125	5,125
30254	765	59	12920	19382	26380	33603		7611	10288	15330	21019	27063	34833	43221
0.036	0.30)6	0.190	0.123	0.081	0.053		0.306	0.215	0.148	0.110	0.081	0.057	0.038
0.38		2	1	0.56	0.36	0.26		2	1.8	1	0.72	0.5	0.34	0.24
412,2	468	33	2461	1338	767,4	465,4		4654	3976	2271	1671	1100	676.4	390
		-												

200x500, N=5 Reflexionen, Optimierung DC

	Variante Nr.	27	28	29	30	31	30	31	
	Systemgröße (mm)				200x500	0			
Parameter	Resn, K	31	30	29	28	28	27	26	
	Tastverhältnis	7,7%	7,8%	7,7%	7,8%	7,7%	7,7%	7,6%	
Größe	Reflexionen	5	5	5	5	5	5	5	
	Länge L, mm	450	450	450	450	450	450	450	
	Breite W, mm	160	160	160	160	160	160	160	
									T
TOF	K, eV	4000	5000	6000	7000	8000	9000	10000	
	V tof, mm/us	28,28	31,62	34,64	37,42	40,00	42,43	44,72	
	Leff, mm	2475	2475	2475	2475	2475	2475	2475	
	TOF, us	88	78	71	66	62	58	55	
Strahl	Strahl, eV	13,5	17	20	24	27	30	33	
	V-Strahl, mm/us	1,64	1,84	2,00	2,19	2,32	2,45	2,57	
Trajektorie	Z-Schritt, mm	26	26	26	26	26	26	26	
	Neigung, mrad	58	58	58	59	58	58	57	
	Neigung, deg	3,4	3,4	3,4	3,4	3,4	3,4	3,4	
	Spiegel-Z-Kante, mm	15	14	15	14	15	15	15	
OA	Strahl d, mm	1,2	1,2	1,2	1,2	1,2	1,2	1,2	
	Strahl ang, mrad	17	17	17	17	17	17	17	
	OA-Länge	11	11	11	11	11	11	11	
	OA-Zeit, us	6,78	6,10	5,49	5,18	4,80	4,48	4,22	
	Tastverhältnis	0,077	0,078	0,077	0,078	0,077	0,077	0,076	
dK	E, V/mm	260	320	380	450	520	570	640	
	dK, eV	312	384	456	540	624	684	768	
R(6%)	dK/K	7,8%	7,7%	7,6%	7,7%	7,8%	7,6%	7,7%	
200000	Res(dK)	70026	74506	77693	73190	70026	77693	74506	
	dT(dK)	0,62	0,53	0,46	0,45	0,44	0,38	0,37	
Pakete	Vx, m/s	27,93	31,35	34,00	37,25	39,50	41,64	43,67	
	Bearbeitungszeit, ns	1,07	0,98	0,89	0,83	0,76	0,73	0,68	
	DAS und Det, ns	0,7	0,7	0,7	0,7	0,7	0,7	0,7	
Auflösung	FWHM, ns	1,43	1,31	1,23	1,17	1,12	1,08	1,05	_
	Auflösung	30673	29792	29149	28162	27536	27028	26461	_
								-	
Gitter	Winkel, mrad	6,50	6,40	6,33	6,43	6,50	6,33	6,40	
	Y-Spanne, mm	2,05	2,02	2,00	2,03	2,05	2,00	2,02	
	Leff	2,475	2,475	2,475	2,475	2,475	2,475	2,475	
	Quadrat	0,1	0,1	0,1	0,1	0,1	0,1	0,1	
	Auflösung	30673	29792	29149	28162	27536	27028	26461	Ĺ
	Tastverhältnis	0,077	0,078	0,077	0,078	0,077	0,077	0,076	
	Transm OA	0,27	0,34	0,4	0,48	0,54	0,6	0,66	
	Res*DC*Transm	641,79	788,86	895,99	1058,6	1152,3	1246,2	1332,8	
									ļ

Fig. 8 (Fortsetzung)

i				Г	g.	0 (FUI
	34	35	36	37	38	39	40
				250x500			
	25	24	24	23	23	23	22
	10,7%	10,7%	10,7%	10,7%	10,7%	10,7%	10,7%
-							
_	5	5 450	5 450	5 450	5 450	5 450	450
1	210	450 210	210	210	210	210	210
	4000	5000	6000	7000	8000	9000	10000
6	28,28	31,62	34,64	37,42	40,00	42,43	44,72
	2475	2475	2475	2475	2475	2475	2475
	88	78	/1	66	62	58	55
	26	33	39	46	52	59	65
-	2.28	2.57	2.79	3.03	3.22	3.44	3.61
	36	37	36	36	36	36	36
	81	81	81	81	81	81	81
	4,7	4,8	4,7	4,8	4,7	4,8	4,7
Ĺ	14	14	14	14	14	14	14
i_	10	10	10	10	10	10	10
ŀ	1,∠ 17	1,∠ 17	1,∠ 17	1,Z	1,∠ 17	1,∠ 17	1,∠ 17
⊢	21	22	21	21	21	21	21
F	9,33	8,39	7,62	7,08	6,60	6,24	5,90
	0,107	0,107	0,107	0,107	0,107	0,107	0,107
_	270	350	410	460	520	600	650
_	324	420	492	552	624	720	780
-	8,1%	8,4%	8,2%	7,9%	7,8%	8,0%	7,8%
	0.73	0.75	0.62	0 49	0 44	0.46	0 40
	0,10	0,10	0,02	0,10		0,10	0,10
	38,77	43,67	47,48	51,56	54,82	58,40	61,29
	1,44	1,25	1,16	1,12	1,05	0,97	0,94
_	0,7	0,7	0,7	0,7	0,7	0,7	0,7
	1 75	1.60	1.40	1 11	1 2 4	1 00	1 74
<u> </u>	1,70	1,0Z	1,49	1,41	23080	1,28	1,24
-	24352	24215	20900	20440	20000	22103	22002
F	6,75	7,00	6,83	6,57	6,50	6,67	6,50
	2,13	2,21	2,15	2,07	2,05	2,10	2,05
Ĺ							
Ļ		• • • • •	à 175	A 175	A 475		<u> </u>
ŀ	2,475	2,475	2,475	2,475	2,475	2,475	2,475
-	0,125	0,125	0,125	0,125	0,125	0,125	0,125
\vdash	24932	24213	23980	23445	23080	22709	22332
Г	0,107	0,107	0,107	0,107	0,107	0,107	0,107
	0,52	0,66	0,78	0,92	1,04	1,18	1,3
Ē	1382,6	1713,4	1994,7	2309,2	2559,9	2866,3	3096,1

. .

-

200x500, N=6 Reflexionen, Optimierung DC									1
				- Optimal	für R=20	Ж			
	Punkt	27	28	29	30	31	30	31	ļ
	System				200x500	L.			
Developmenter	Daam K		20	07	20	25	24		4
Parameter	Resn, K Taatuurk Killusia	39	38	3/	30	30 4 00/	34	33	닉
	l astvernaltnis	4,9%	4,9%	4,8%	4,7%	4,9%	4,8%	4,7%	닉
Größe	Reflexionen	6	6	6	6	6	6	6	-
	Länge L. mm	450	450	450	450	450	450	450	٦
	Breite W, mm	160	160	160	160	160	160	160	t
TOF	K, eV	4000	5000	6000	7000	8000	9000	10000	
	V tof, mm/us	28,28	31,62	34,64	37,42	40,00	42,43	44,72	
	Leff, mm	2925	2925	2925	2925	2925	2925	2925	
	TOF, us	103	92	84	78	73	69	65	
									4
Strahl	Strahl, eV	9,5	12	14	16	19	21	23	Ļ
Tesislatesi	V-Strahl, mm/us	1,38	1,55	1,67	1,79	1,95	2,05	2,14	-
гајектопе	Z-Schritt, mm	22	22	22	22	22	22	22	\dashv
	Neigung, mrad	49	49	48	48	49	48	48	╡
	Neigung, deg	2,9	2,9	Z,8	2,8	2,9	Z,8	Z,8	-
	Spiegei-z-Kante, mm	14	14	12	12	14	15	15	┥
ΩA	Strahl d. mm	12	12	12	12	12	12	12	4
	Strahl and mrad	17	1,2	1,2	17	1,2	1,2	17	H
	OA-Länge	7	7	7	7	7	7	7	i
	OA-Zeit, us	5.03	4.55	4.03	3.64	3.56	3.29	3.07	
	Tastverhältnis	0.049	0.049	0.048	0.047	0.049	0,048	0.047	i
							,	,	
dK	E, V/mm	240	280	340	410	490	540	590	
	dK, eV	288	336	408	492	588	648	708	
R(6%)	dK/K	7,2%	6,7%	6,8%	7,0%	7,4%	7,2%	7,1%	
200000	Res(dK)	96451	127104	121227	106210	88815	96451	103158	
	dT(dK)	0,54	0,36	0,35	0,37	0,41	0,36	0,32	
									_
Pakete	Vx, m/s	23,43	26,34	28,45	30,41	33,14	34,84	36,46	_
	Bearbeitungszeit, ns	0,98	0,94	0,84	0,74	0,68	0,65	0,62	4
	DAS und Det, ns	0,7	0,7	0,7	0,7	0,7	0,7	0,7	닉
A		1.00	1.00	4.45	1.00	1.00	1.00	0.00	ᆜ
Autiosung	FWHM, ns	1,32	1,23	1,15	1,08	1,06	1,02	0,99	-İ
	Autiosung	39304	3/0/3	30009	36030	34097	33900	33103	H
Gitter	Winkel mrad	6.00	5.60	5.67	5.86	6 13	6.00	5.90	╡
Onter	Y-Spanne mm	1.89	1 76	1 79	1 85	1.93	1.89	1.86	i
	r opume, min	1,05	1,70	2,7 2	1,00	1,55	1,00	1,00	
	Leff	2,925	2,925	2,925	2,925	2,925	2,925	2,925	
	Quadrat	0,1	0,1	0,1	0,1	0,1	0,1	0,1	
	Auflösung	39304	37673	36869	36050	34597	33900	33163	_
	Tastverhältnis	0,049	0,049	0,048	0,047	0,049	0,048	0,047	_
	Transm OA	0,19	0,24	0,28	0,32	0,38	0,42	0,46	_
	Res*DC*Transm	363,07	444,54	492,23	537,37	639,16	678,9	/15,71	4

Fig. 9 (Fortsetzung)

i				ГІ	y.	9 (FUI
Ĺ	34	35	36	37	38	39	40
ļ				250x500			
Ļ	20	24	24	20	20	20	20
Ŀ	3∠ 7.7%	7 7%	31 7 7%	3U 7 8%	29 7 7%	29 7 7%	7 7%
F	7,770	1,170	1,170	1,070	1,170	7,770	7,770
Ē	6	6	6	6	6	6	6
	450	450	450	450	450	450	450
Ĺ	210	210	210	210	210	210	210
Ľ							
Ē	4000	5000	6000	7000	8000	9000	10000
È	28,28	31,62	34,64	37,42	40,00	42,43	44,72
-	2925	2925	2925	2925	2925	2925	2925
H	103	92	84	/8	/3	69	60
Ļ	18	22	27	30	36	40	<u>Δ</u> Λ
ŀ	1.90	2.10	2.32	2.53	2,68	2.83	2.97
F	30	30	30	30	30	30	30
	67	66	67	68	67	67	66
Ē	3,9	3,9	3,9	4,0	3,9	3,9	3,9
Ē	14	15	14	14	14	15	15
Ľ							
Ľ	1,2	1,2	1,2	1,2	1,2	1,2	1,2
2	17	17	17	17	17	17	17
	15	15	15	15	15	15	15
H	8,00	7,08	6,54	6,10	5,66	5,30	5,01
Ļ	0,077	0,077	0,077	0,078	0,077	0,077	0,077
F	260	340	380	420	480	560	630
F	312	408	456	504	576	672	756
	7,8%	8,2%	7,6%	7,2%	7,2%	7,5%	7,6%
Ē	70026	58462	77693	96451	96451	83393	79350
Ĺ	0,74	0,79	0,54	0,41	0,38	0,41	0,41
ì							
Ì	32,26	35,66	39,50	43,01	45,62	48,08	50,43
È	1,24	1,05	1,04	1,02	0,95	0,86	0,80
È	0,7	0,7	0,7	0,7	0,7	0,7	0,7
H	1 60	1 49	1 37	1 30	1 24	1 18	114
1	32227	31069	30906	29954	29493	29153	28675
Ξ.	3636-64-92-9627	144 20 140312244	Sectors Science	17-164 Nr. 849 &	by COV Builds Store	Station in Monte	5676 (BRUN), 16
	6,50	6,80	6,33	6,00	6,00	6,22	6,30
	2,05	2,14	2,00	1,89	1,89	1,96	1,98
Ĺ							
Ë	2,925	2,925	2,925	2,925	2,925	2,925	2,925
Ë	0,125	0,125	0,125	0,125	0,125	0,125	0,125
H	30007	31060	30006	20054	20/02	20152	28675
E	0.077	0.077	0.077	0.078	<u>∠</u> 9493 0,077	0.077	0.077
H	0,36	0,44	0,54	0,64	0,72	0.8	0.88
E	897,97	1046,3	1291,7	1495,3	1643,6	1794,1	1931,3
					245 • 67 mm 24		

DC=10%

Fig. 10

								ļ
	Variante	1	2	3	4	5	6	7
Parameter	Resn, K	9	9	13	14	15	17	23
	Tastverhältnis	9,8%	11,9%	7,7%	12,8%	12,0%	10,7%	10,4%
Größe	Reflexionen	3	4	5	3	4	5	4
	Länge L, mm	250	250	250	350	350	350	450
	Breite W, mm	110	160	160	110	160	210	150
TOF	K, eV	6000	6000	6000	6000	6000	6000	9200
	V tof, mm/us	34,64	34,64	34,64	34,64	34,64	34,64	42,90
	Leff, mm	875	1125	1375	1225	1575	1925	2200
	TOF, us	25	32	40	35	45	56	51
Strahl	Strahl, eV	50	100	65	36	52	65	42
	V-Strahl, mm/us	3,16	4,47	3,61	2,68	3,22	3,61	2,90
Trajektorie	Z-Schritt, mm	23	32	26	27	33	36	30
	Neigung, mrad	91	129	104	77	93	104	68
	Neigung, deg	5,4	7,6	6,1	4,6	5,5	6,1	4,0
	Spiegel-Z-Kante, mm	21	15	15	14	15	14	14
OA	Strahl d, mm	1,2	1,2	1,2	1,2	1,2	1,2	1,2
	Strahl ang, mrad	17	17	17	17	17	17	17
	OA-Länge	8	17	11	12	18	21	15
	OA-Zeit, us	2,47	3,86	3,06	4,51	5,45	5,94	5,32
	Tastverhältnis	0,098	0,119	0,077	0,128	0,120	0,107	0,104
dK	E, V/mm	500	540	500	470	460	470	660
	dK, eV	600	648	600	564	552	564	792
R(6%)	dK/K	10,0%	10,8%	10,0%	9,4%	9,2%	9,4%	8,6%
250000	Res(dK)	32400	23815	32400	41499	45227	41499	58992
	d⊤(dK)	0,39	0,68	0,61	0,43	0,50	0,67	0,43
_						1		
Pakete	Vx, m/s	53,76	76,03	61,29	45,62	54,82	61,29	49,27
	Bearbeitungszeit, ns	1,08	1,41	1,23	0,97	1,19	1,30	0,75
	DAS und Det, ns	0,7	0,7	0,7	0,7	0,7	0,7	0,7
A		1.01	4 74	4.5.4	4.07	4 47	1.00	
Autiosung	EVVHM, ns	1,34	1,71	1,54	1,27	1,47	1,62	1,11
	Autiosung	9419	9475	12897	13920	15457	17104	23064
Ottor	18/inkal named	0.77	0.00	0.22	7 0 2	7 67	7 0 2	7 1 7
Gitter	vvinkei, mrad	8,33	9,00	8,33	1,83	1,07	1,83	7,17
	Y-Spanne, mm	1,46	1,58	1,46	1,92	1,88	1,92	2,26
	Loff	0.975	1 1 7 5	1 375	1 225	1 575	1.075	
	Quadrat	0,875	1,125	1,375	1,225	1,375	1,925	2,2
	Quadrat	0,045	0,06	0,06	0,06	0,08	0,1	0,1
	Aufläsung	0440	0.475	10007	12000	15157	17104	02004
	Tactuorhältnin	0,000	94/0	1209/	0 1 1 9 2 0	0 1 1 0	0 107	0 10/1
		0,098	0,119	1 2	0,120	1.04	1.0,107	0,104
	Res*DC*Transm	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2751	1701	1770	1079	1,5 7270	2,04 20021
	Res De Hansin	522,5	2234	1671	1213	1720	2370	2000
								1

Fig. 10 (Fortsetzung)

ļ				Гļ
	0	10	11	13
0 26	21	20	51	12
20	31 12.00/	30 10.00/	12 00/	10.09/
9,3%	13,9%	10,8%	13,8%	10,9%
5	4	6	5	6
450	650	650	950	950
200	200	350	350	350
9200	9200	9200	9200	9200
42,90	42,90	42,90	42,90	42,90
2650	3000	4300	5150	6100
62	70	100	120	142
50	38	60	36	25
3,16	2,76	3,46	2,68	2,24
33	42	52	59	50
74	64	81	63	52
4,3	3,8	4,8	3,7	3,1
17	16	18	26	26
12	1 0	1.2	10	10
1,2	1,2	1,2	1,2	1,2
18	77	37	17	35
5.75	9.71	10.87	16 56	15 44
0.093	0.139	0.108	0.138	0.109
-/	-/	-/	-/	-/
640	600	580	530	510
768	720	696	636	612
8,3%	7,8%	7,6%	6,9%	6,7%
66719	86371	98914	141863	165459
0,46	0,40	0,51	0,42	0,43
53,76	46,87	58,89	45,62	38,01
0,84	0,78	1,02	0,86	0,75
0,7	0,7	0,7	0,7	0,7
1 10	1 12	1 33	1 10	1 11
26014	31103	37593	50558	64106
20014	01100	07000	00000	04100
6,96	6,52	6,30	5,76	5,54
2,19	2,97	2,87	3,83	3,69
2,65	3	4,3	5,15	6,1
0,125	0,175	0,28	0,4	0,4
00044	31103	37593	50558	64106
20014	19835	-2000 2007		0 100
26014 0,093	0,139	0,108	0,138	0,109
26014 0,093 1	0,139 0,76	0,108	0,138	0,109

250x700mm

Fig. 11

i

								ļ
	Variante	1	2	3	4	5	6	7
Parameter	Resn, K	33	32	30	29	45	44	42
	Tastverhältnis	14,9%	14,9%	14,9%	14,8%	10,7%	10,6%	10,4%
Größe	Reflexionen	4	4	4	4	5	5	5
	Länge L, mm	650	650	650	650	650	650	650
	Breite W, mm	210	210	210	210	 210	210	210
Acc	Beschleunigung, V	3000	4000	6000	8000	 3000	4000	6000
Stoß	Stoßamplitude	1400	1400	2400	2400	 1400	1400	2400
TOF	K. eV	3700	4700	7200	9200	3700	4700	7200
	V tof, mm/us	27,20	30,66	37,95	42,90	27,20	30,66	37,95
	Leff, mm	2925	2925	2925	2925	3575	3575	3650
	TOF, us	108	95	77	68	131	117	96
Strahl	Strahl, eV	18	23	35	44	11,5	14,5	22
	V-Strahl, mm/us	1,90	2,14	2,65	2,97	1,52	1,70	2,10
Trajektorie	Z-Schritt, mm	45	45	45	45	36	36	36
	Neigung, mrad	70	70	70	69	 56	56	55
	Neigung, deg	4,1	4,1	4,1	4,1	3,3	3,3	3,3
	Spiegel-Z-Kante, mm	14	14	14	15	 14	15	15
$\cap \Lambda$	Strahl d. mm	10	10	10	10	10	10	12
UA .	Strahl and mrad	1,2	1,∠ 17	1,∠ 17	 17	 ,∠ 17	1,∠ 17	1,2
	OA-Länge	30	30	30	30	 21	21	21
	OA-Zeit us	15.99	14 71	11 46	10 10	 14 00	17 39	9 98
	Tastverhältnis	0.149	0.149	0.149	0.148	0.107	0.106	0.104
dK	E, V/mm	230	330	460	600	230	290	440
	dK, eV	276	396	552	720	276	348	528
R(6%)	dK/K	7,5%	8,4%	7,7%	7,8%	7,5%	7,4%	7,3%
250000	Res(dK)	104644	64292	93782	86371	104644	107800	112031
	dT(dK)	0,51	0,74	0,41	0,39	0,63	0,54	0,43
			25.45	11.00	50.43	25 70	20.05	75.55
Pakete	Vx, m/s	32,26	36,46	44,98	50,43	 25,78	28,95	35,66
	DAS und Dat no	1,40	1,10	0,90	0,04	1,12	1,00	0,01
	DAS und Del, ris	0,7	0,7	0,7	0,7	0,7	0,7	<u> </u>
Auflösuna	FWHM. ns	1.65	1.50	1.27	1.16	1.46	1.33	1.15
J	Auflösung	32594	31722	30328	29319	44910	43711	41685
Gitter	Winkel, mrad	6,22	7,02	6,39	6,52	6,22	6,17	6,11
	Y-Spanne, mm	2,83	3,19	2,91	2,97	2,83	2,81	2,78
	1	2.025	2.025	2 0 2 5	2.025	 2 5 7 5		
	Leff	2,925	2,925	2,925	2,925	3,575	3,575	3,65
	Quadrat	0,175	0,175	0,175	0,175	0,175	0,175	0,175
	Auflösung	32594	31722	30328	29310	44910	43711	41685
	Tastverhältnis	0.149	0.149	0.149	0.148	0.107	0.106	0.104
	Transm OA	0.36	0.46	0.7	0.88	0.23	0.29	0.44
	Res*DC*Transm	1745	2173	3156	3820	1101	1347	1903
	OA-Länge	13,04	12,12	13,04	13,33	13,04	13,79	13,64
	OA-Abstand	6,087	4,242	5,217	4	6,087	4,828	5,455

Fig. 11 (Fortsetzung)

				ГI
		1		
8	9	10	11	12
40	59	5/	52	7.60/
10,4%	7,0%	7,0%	7,0%	7,0%
5	6	6	6	6
650	650	650	650	650
210	210	210	210	210
8000	2000	4000	6000	8000
3400	1400	4000	3400	3400
9200	3700	4700	7200	2400 9200
42.90	27.20	30.66	37.95	12 90
3650	4300	4300	4300	42,50
85	158	140	113	100
28	8	10	15,5	20
2,37	1,26	1,41	1,76	2,00
36	30	30	30	30
55	46	46	46	47
3,2	2,7	2,7	2,7	2,7
15	14	15	15	14
1,2	1,2	1,2	1,2	1,2
1/	1/	1/	1/	17
21	12.04	10.50	15	- 15
8,81	12,04	10,59	0.076	0.076
0,104	0,070	0,070	0,070	0,070
560	210	270	420	520
672	252	324	504	624
7,3%	6,8%	6,9%	7,0%	6,8%
113820	150574	143468	134944	153094
0,37	0,52	0,49	0,42	0,33
40.23	21.50	24.04	20.03	3/1 00
0.72	1 02	0.89	25,53	0.65
0,72	0.7	0,03	0,71	0,00
-,.	-,.			-,.
1,07	1,35	1,23	1,08	1,01
39747	58681	56846	52287	49514
6.00	5.60	F 74	E 03	F 65
6,09	5,68	5,74	5,85	5,05
2,77	2,38	2,01	2,05	2,37
3,65	4,3	4,3	4,3	4,3
0,175	0,175	0,175	0,175	0,175
39747	58681	56846	52287	49514
0,104	0,076	0,076	0,076	0,076
1	0,16	1	0,31	0,4
4117	714,9	4294	1232	1512
14,29	14,29	14,81 5 105	5 71 /	15,38
4,280	0,007	5,185	5,714	4,015