
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0007925A1

US 2017.0007925A1

Archer (43) Pub. Date: Jan. 12, 2017

(54) ADAPTIVE OBJECT PLACEMENT IN A63F 3/25 (2006.01)
COMPUTER-IMPLEMENTED GAMES A63F 3/20 (2006.01)

(52) U.S. Cl.
(71) Applicant: Zynga Inc., San Francisco, CA (US) CPC A63F I3/52 (2014.09); A63F 13/20

2014.09): A63F 13/42 (2014.09): A63F 13/25
(72) Inventor: Andrew Dominic Archer, Vallejo, CA () () (2014.09)

(US)
(57) ABSTRACT

(21) Appl. No.: 15/175,714 Disclosed in some examples is a method of placing game
1-1. objects in a game, the method includes receiving user input

(22) Filed: Jun. 7, 2016 that indicates a desired placement of a new game object at
Related U.S. Application Data a target location in a virtual in-game environment of the

.S. App computer-implemented game; identifying the new game
(63) Continuation of application No. 13/478,217, filed on object as a current game object; processing the current game

May 23, 2012, now Pat. No. 9,373.213. object by: using one or more computer processors, deter
mining for the current game object a set of proximate game

(60) Eyinal application No. 61/556,920, filed on Nov. objects which are within a threshold distance from the
s current game object; and adapting a property of the current

O O game object based upon the set of proximate game objects
Publication Classification within the threshold proximity distance; and for each par

(51) Int. Cl. ticular game object in the set of proximate game objects,
A63F 3/52 (2006.01) identifying that particular game object as the current game
A63F 3/42 (2006.01) object and recursively processing the current game object.

Patent Application Publication Jan. 12, 2017. Sheet 1 of 13 US 2017/0007925 A1

s

Patent Application Publication Jan. 12, 2017. Sheet 2 of 13 US 2017/0007925 A1

-
FIG. 2

Patent Application Publication Jan. 12, 2017. Sheet 3 of 13 US 2017/0007925 A1

3050

8
» : X X X X X 3. X &
X. 3X X X X : x

:: x: X X X X.
's x X's

3040

3. 33

3XXXXXXXXXXXXXXXXXXXXXXXXXXXX xS 8. XXXXXXXXXXX38) : xxx xxxxxxxx XXXXXXXXXXXXXXXXXX: x x: X. & &x

FIG. 3

US 2017/0007925 A1 Jan. 12, 2017. Sheet 4 of 13 Patent Application Publication

FIG. 4

Patent Application Publication Jan. 12, 2017. Sheet 5 of 13 US 2017/0007925A1

soon

FIG. 5

Patent Application Publication Jan. 12, 2017. Sheet 6 of 13 US 2017/0007925 A1

GAVE PAYER COOSES OPACE A NEW
GAE OBJEC

GAME CREATES THE NEW OBJEC

GAfE OOKS P OREC NORAON N.
GAf. OAABASE

FN) COK. ABE EN GAE OBEC
NFORMATON FOR - E OBJEC

USER PACES HE OBEC

GO TO FG 63

FIG. 6A

Patent Application Publication Jan. 12, 2017. Sheet 7 of 13 US 2017/0007925 A1

FRC FG 6A

CECK GAME OBJECSA), ACEN TO NEW
CBECS CRREN POSON FOR ANY

SO60 ADAWE C3ECS N CAEGORIES

USNG OOKUP ARE, BASED ON
PROXAE OBEC CCAON

NFORMATON DETERNE E PROPER
8070 AAPAON AND ACY O HE ACE)

OBEC

C-ECK PROXVAE OBJECS N SAVE OR
OEPENDEN CAEGORIES O ERA NE
WHEEREY SCU) SE ADAPE)

68O NA. APPROPRAE OBJECTS ARE
ADAE)

FIG. 6B

Patent Application Publication Jan. 12, 2017. Sheet 8 of 13 US 2017/0007925 A1

FIG. 7

Patent Application Publication Jan. 12, 2017. Sheet 9 of 13 US 2017/0007925 A1

NPJ MODULE RENDERING FODULE

VEVORY

GAME OBEC
NORMATON GAME OGC VO)

GAME OBEC VAGES

FIG. 8

Patent Application Publication Jan. 12, 2017. Sheet 10 of 13 US 2017/0007925 A1

-9000
CEN SYSTEM

920

9040

SOCA
PAYER NEWORKING

SYSTEM 900

O
-->CNETWORK)-19030

GAME
NEWORKENG
SYSTEM

950

FIG. 9

US 2017/0007925 A1 Jan. 12, 2017. Sheet 11 of 13 Patent Application Publication

0 | ({DIH

0.100 ?.

Patent Application Publication Jan. 12, 2017. Sheet 12 of 13 US 2017/0007925 A1

SOCA NEWORKNG SYSTEM GAVE NETWORKNG SYSTEA
f 060 050 O5) 1060 11050 1050

NETWORK
C ()

104. $140

FIG. I. 1

Patent Application Publication Jan. 12, 2017. Sheet 13 of 13 US 2017/0007925 A1

PROCESSOR
2O2

224 NSTRUCT ONS

MAN MEMORY

2}}

2O24 NSTRUCTIONS

SATC
WEMORY 2O6

NETWORK
2O2O NTERFACE

DEWE

FIG. 12

/ 2OOO

WEC O
DSLAY

ALPHA-NUMERC
tpi is try trig i2O2 NPL DEVCE

UE CONTROL O4.
DEVCE }

RWE UNET
MACH NE- 26
REAT ABELE
MEUM

NSERUCTIONS 2024.

SiGNAL
GENERATION 28

EVICE

US 2017/0007925 A1

ADAPTIVE OBJECT PLACEMENT IN
COMPUTER-IMPLEMENTED GAMES

CLAIM Of PRIORITY

0001. This patent application is a continuation of U.S.
patent application Ser. No. 13/478,217, filed on May 23,
2012, which claims the benefit of priority of U.S. Provi
sional Patent Application Ser. No. 61/556,920, filed on Nov.
8, 2011, the benefit of priority of each of which is claimed
hereby, and each of which is hereby incorporated by refer
ence herein in its entirety.

COPYRIGHT NOTICE

0002. A portion of the disclosure of this patent document
contains material that is Subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc
tion by anyone of the patent document or the patent disclo
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever. The following notice applies to the software and
data as described below and in the drawings that form a part
of this document: Copyright Zynga, Inc., All Rights
Reserved.

TECHNICAL FIELD

0003. This disclosure generally relates to games and
applications in general and in particular to computer-imple
mented online games. Such as online role-playing games
(RPGs), playable by more than one person from more than
one location.

BACKGROUND

0004 Map-based computer games generally involve
visually representing a virtual in-game environment or Vir
tual world of a game instance in the game through a
map-based perspective. Typically, this involves displaying
the virtual world as a plane (e.g., rendered isometrically or
three-dimensionally) on which various game objects are
displayed in certain spatial locations relative to other game
objects. A player of the game navigates a player character
throughout the world by utilizing one or more inputs. The
graphical image of the player character may be moved in
response to those inputs on the map. The virtual in-game
environment may be customized or changed by the place
ment of predefined game objects in chosen locations on the
map.

BRIEF DESCRIPTION OF THE DRAWINGS

0005. In the drawings, which are not necessarily drawn to
scale, like numerals may describe similar components in
different views. Like numerals having different letter suf
fixes may represent different instances of similar compo
nents. The drawings illustrate generally, by way of example,
but not by way of limitation, various embodiments discussed
in the present document.
0006 FIG. 1 shows a line drawing representation of a
screenshot showing adaptive objects in various forms of
adaptation according to Some examples of the present dis
closure.
0007 FIG. 2 shows various example schematics of an
adaptive game object according to some examples of the
present disclosure.

Jan. 12, 2017

0008 FIG. 3 shows various example schematics of adap
tive game objects of different types connecting according to
Some examples of the present disclosure.
0009 FIG. 4 shows a line drawing representation of a
screenshot of various adaptive game objects of different
types connecting according to some examples of the present
disclosure.
0010 FIG. 5 shows a game map according to some
examples of the present disclosure.
0011 FIG. 6A shows a flowchart of a method of adapting
e game objects according to Some examples of the present
disclosure.
0012 FIG. 6B shows a flowchart of a method of adapting
the game objects according to Some examples of the present
disclosure.
0013 FIG. 7 shows a schematic of an adaptive game
object according to some examples of the present disclosure.
0014 FIG. 8 shows a schematic of a gaming application
according to some examples of the present disclosure.
0015 FIG. 9 shows a schematic of a gaming system
according to some examples of the present disclosure.
0016 FIG. 10 shows a schematic data flow of a gaming
system according to some examples of the present disclo
SUC.

0017 FIG. 11 shows a schematic of a gaming system
according to some examples of the present disclosure.
0018 FIG. 12 shows a schematic of a machine imple
mentation according to Some examples of the present dis
closure.

DETAILED DESCRIPTION

0019. The look, feel, or behavior of one or more game
objects may be modified based upon its proximity to one or
more other game objects. For example, a single piece of road
section may be displayed as having a rounded off dead-end,
but in proximity to another road section the two sections
may be automatically connected and may cause the com
bined road section to function in a connected manner. Other
examples include irrigating one or more crops based on
proximity to a water feature.
0020 Disclosed in some examples are systems, methods,
and machine-readable mediums which allow for efficient
and dynamic adaptation of one or more game objects based
upon a proximity to another game object. In some examples,
placement (or movement) of a game object may trigger a
proximity check wherein the game map is checked to
determine a set of game objects which are within a pre
defined proximity to the placed game object which may
affect the behavior or appearance of the game object. In
Some examples, the set of game objects which may affect the
behavior or appearance of the game object may comprise
objects of the same type as the placed object. In other
examples, the objects in the game may be categorized and
the set of game objects which may affect the behavior or
appearance of the placed game object may comprise objects
within the same category of objects as the placed object. The
appropriate adaptations (if any) may be determined using a
lookup table or other rule set where the inputs include the set
of game objects and the locations of each of the game
objects in the set relative to the placed object. Other game
objects in the set may be adapted as well as a result of the
placement of the game object (e.g., a water feature added
after crops may still affect the crops in the same way as if the
crops were added after the water feature). Therefore, a

US 2017/0007925 A1

recursive update function may then be triggered which
checks whether each object in a predefined proximity to the
placed game object needs to be adapted as a result of the
placement of the game object. If a particular game object
needs to be adapted, the set of objects within a predefined
proximity to that particular game object in the set is checked
and so on until all objects are adapted. If a particular game
object does not need to be adapted, no further checking is
done with respect to that particular object (e.g., the recursive
branch ends).
0021. In some examples, if the predefined proximity is
defined as directly adjacent game objects, the adaptive
system may see performance gains in that upon placement of
a game object, object adaptations recursively spread out
ward from the placed game object to only affected game
objects of the same category. Thus only the most likely
affected game objects are checked for adaptations, as
opposed to checking each game object on the map to
determine whether or not it is to be updated. In addition,
checking only for game objects within a predefined category
also saves time in that the lookup table or other rule set need
not be consulted for every object within the proximity of the
placed object. The use of categories to check for adaptations
may also allow for game objects which are of different types
to adapt to each other. Thus a gravel road may merge
seamlessly with a paved road.
0022. A game object may be any virtual in-game element
which may contribute to the look, feel, or playability of the
game which are visually represented in the game. Game
objects may include interactive and non-interactive ele
ments. Game objects may be represented by one or more
data structures which may store properties about the game
objects such as its state, its position in the virtual world, its
behavior, its graphical representation, and the like. Game
objects may include in-game entities like roads, bridges,
water features, and the like. As used herein, the terms 'game
object' or “in-game object” do not include other player
characters or non-player characters.
0023. An adaptive game object may be a game object
which may have one or more of its properties, behaviors, or
appearance automatically updated by the game as a result of
being in proximity to another game object of an associated
type or in an associated category of objects. In some
examples, adaptations may be limited to adaptations of a
newly placed game object, while in other examples, pre
existing game objects may also be adapted responsive to
proximate or adjacent placement of a new game object. In
Some examples, the adaptations are immediate upon place
ment of an adaptive game object and in other examples, the
adaptations may be delayed. For example, immediately upon
placement of a crop in proximity to a water feature the crop
may be irrigated. In other examples, the crop may he
irrigated after a predefined amount of time.
0024. In some examples the map may be divided into a
plurality of Sub section shapes or areas which may be called
“tiles.” For example, the game board may be divided into a
series of squares where each square may be described
uniquely by a row and a column number. While in some
examples, the tiles may be square shaped, in other examples,
the tiles may be any shape used to divide the map into Sub
sections. Other example tile shapes include diamonds, hexa
gons, and the like. Tile boundaries may or may not be visible
to a game player. These tiles may be used to locate one or
more game objects inside the virtual world. For example, if

Jan. 12, 2017

the tiles are squares, each tile may have a row number and
a column number. The position of a game object positioned
on the board may be described by the unique tile description.
For example, a game object may be described as placed at
tile (2.4) wherein the two represents the row and four
represents the column of the square tile where the game
object is located. The proximity between two game objects
may be defined with respect to a tile location. Thus for
example, an adaptive object may be proximate another game
object if it is located in one of the immediately touching
adjacent tiles. In some examples, diagonally adjacent tiles
may be considered immediately touching, but in other
examples, diagonally adjacent tiles may not be considered
immediately touching. In these examples, if the game object
is located at tile (2.4) and proximate is defined as immedi
ately adjacent, non-diagonal tiles, then any game objects in
tiles (1,4), (3,4), (2.3), and (2.5) would be considered
proximate. Other proximities may be used. For example,
crops may be irrigated if they are immediately proximate to
a water feature, but may also be irrigated if within a certain
tile radius within 2 tiles) of the water feature. Certain
adaptations may occur based on a particular proximity,
whereas other adaptations may occur based on a different
(e.g., closer or further) proximity.
0025. While the current disclosure discusses proximities
in relation to tile distances, in Vet other examples, proximity
may be defined in relation to a computed distance between
two game objects without the need for tiles. Thus for
example, the game might define a distance between certain
game objects and a threshold distance whereby two game
objects would be considered proximate each other for pur
poses of adaptive characteristics based upon that threshold.
0026. An example line drawing of the present disclosure
is shown in FIG. Game board 1000 represents a medieval
world in which various houses, castle walls, water features
and game characters are shown (note that the tile grid is not
shown). Castle wall 1010 represents a single castle wall
adaptive game object with no other castle wall adaptive
game objects in proximity. Castle wall 1010 thus corre
sponds in appearance to a default appearance for in-game
objects of a castle wall type. Castle wall segment 1020
represents a series of two or more castle wall adaptive game
Objects arranged in proximity. When placed in proximity to
each other, the castle wall adaptive game objects adapt to
form an appearance of a continuous wall as shown in FIG.
1. Placement of a new castle wall segment within a threshold
proximity of an existing castle wall segment may result in an
automatic adaptation of the appearance of the new castle
wall segment and an automatic adaptation of the appearance
of the old castle wall segment, such that the two segments
appear as a continuous wall 1020.
0027. In some examples, the adaptation of the adaptive
game object chosen may depend on the location and posi
tioning of other adaptive objects to the placed object. For
example, a castle wall segment placed in a target location
which has another castle wall object to the north may form
a wall segment such as wall segment 1020. However, if
another castle wall game object is placed at a ninety degree
angle to the previously placed castle wall objects (e.g.,
placed to the east or west), the previously placed castle wall
segment may be adapted to become a corner tower 1030.
Corner tower 1030 may be a connection of one or more
castle wall adaptive game objects or segments at a right
angle. Corner tower 1030 is formed by connecting two castle

US 2017/0007925 A1

wall adaptive game object segments at a right angle to each
other and is formed automatically by the game (e.g., the
player simply places castle wall segments and does not have
to select a specific corner piece for joining corners).
0028 FIG. 1 showed adaptations in the form of a change
in appearance of game objects e.g., connecting adjacent
sections of castle wall), in other examples, one or more game
play behaviors of the adjacent game objects and the placed
game object may change. Game play behaviors may be one
or more properties of the objects which control the objects
functionality within the rules of the game. For example, in
FIG. 1, connected castle walls may be stronger than a single
castle wall and thus more likely to withstand an attack from
in game characters. In other examples, crops placed near
water may require less irrigation or may grow better. In still
other examples, connected roads may allow for traffic across
them where single roads may not.
0029 FIG. 2 shows simplified side-view line drawings of
the various castle wall segments. Item 1010 shows the
appearance of a single castle wall adaptive game object.
Item 1015 shows the appearance of two castle wall segments
1010 placed next to each other without the adaptive changes.
Item 1020 shows an example of the adaptive appearance
modifications when two adaptive castle wall objects are
placed next to each other to produce a smoothly extending
elongated wall segment. Item 1030 shows a view of the
castle tower which is adaptively formed when two castle
walls connect at a ninety degree angle to each other. Also
shown 1060 is a view of what the castle tower looks like
connected to the two perpendicular castle wall segments
(1040 behind the castle tower and shown as a dotted line,
and 1050).
0030 The adaptive nature of the game objects may not be
limited to adaptations of the game object in response to
proximity to game objects of the same type only, but may
extend to game objects in a category of game objects. For
example, a dirt path may merge seamlessly with a paved
road. Each specific type of game object (e.g., a paved road,
rubble wall, castle wall, or the like) may be associated with
one or more game object categories. A game object category
may contain a plurality of game objects which may be
similar or may include common features or whose proximity
may influence the behavior or appearance of one another. In
other examples, the particular category may have similar
in-game functionality, but differing at least in general
appearance. For example, a category for walls may include
straw wall objects, rubble wall objects, brick wall objects,
castle wall objects, or the like. A category for transportation
infrastructure might include dirt path objects, gravel road
objects, cobblestone road objects, paved road objects, and
the like. In some examples, the different types of objects
within a specific category may merge seamlessly. Thus for
example, a single adaptive paved road object as placed in the
game may terminate on each edge as a rounded edge and
traffic on the road may not be allowed to go past the end of
the road. However, if the game player adds a gravel road in
a tile adjacent to the paved road, the paved road may adapt
such that it connects with the gravel road. While in some
examples, this may be a hard transition (e.g., the paved road
abruptly transitions to the gravel road), in further examples,
the newly placed gravel road object may automatically adapt
to provide transition tile or tiles which may gradually
transition the road from paved to gravel (e.g., tiles which
appear part paved and part gravel). Additionally, the behav

Jan. 12, 2017

ior of the two sections may be linked. Thus for example, the
traffic on the paved road may be able to continue travelling
on the gravel road.
0031 FIG. 3 shows two example objects adapting to
different object types within the same category. Transition
3000 shows a hard transition where paved road segment
3010 abruptly connects with gravel road section 3020.
Transition 3030 shows a smoother transition where paved
road section 3040 gradually transforms into gravel road
Section 3050. Transition 3050 shows the transition between
a gravel road and a paved road without adaptations. Both
paved road section 3060 and gravel road section 3070 fail to
connect and have rounded off edges suggesting that the road
ends.
0032 FIG. 4 shows an example line drawing represen
tation of a screenshot of two instances of two different types
of objects adapting to each other. Transition 4080 shows a
nibble wall segment 4090 and a castle wall segment 4100
joining in a hard transition. Notice how the walls meet each
other evenly. Additionally gate 4110 transitions with seg
ment 4100 joining in a hard transition. Notice how the walls
meet each other evenly. Additionally gate 4110 transitions
nicely with castle wall segment 4100.
0033 Each game object may include a category identi
fication in its data structure which may identify the category
to which it belongs. When checking proximate game
objects, the game may only have to compare the category of
the placed game object to the category of the proximate
game object to determine if an adaptation is necessary. This
is in contrast to checking for specific game object types in
complicated if-then-else statements and is therefore faster.
After all the proximate objects which have a category which
matches the placed game object are located, a table or
rule-set may be consulted to determine the appropriate
adaptation.
0034. In some examples, multiple object categories might
be associated with each other with a dependency relation
ship. In these examples, one category may have a dependent
relationship with another category. In these examples, for
ease of description, the category with the dependency rela
tionship may be referred to as dependent category (and
objects within that category may be referred to as dependent
objects)and the category with which the dependent category
is dependent upon may be considered the parent category
(and the parent objects). In these examples, the dependent
objects may adapt to objects in the parent category, but not
Vice versa. For example, a decoration category which may
be dependent on a wall category might include one or more
decorations which when placed next to a wall may adapt to
the shape and configuration of the wall so as to appear to be
“decorating the wall. Thus for example, a decoration on a
castle wall might follow the contours of the castle wall and
include special decorations for the corner towers. In con
trast, the decoration for a different type of wall may be
contoured to the different adaptations that exist for that wall.
Another example would include having a crop category
dependent on a water feature category. The crop category
may adapt to be irrigated as a result of being placed in
proximity to various water features; however the water
features may not adapt as a result of a crop being placed
nearby. In other examples, there may be multiple dependen
cies, in which case the system chooses the dependency based
on whichever parent category is closest in proximity to the
dependent objects, or, in the case of multiple different

US 2017/0007925 A1

dependent categories being the same proximity to the depen
dent object, allow the user to select which object is the
parent object for purposes of the adaptations.
0035. In some examples, once a first placed object is
adapted based on the set of proximate objects which are in
the particular categories of objects with which the first
placed object is a member or is dependent upon, each
particular adaptive object in the set is then checked to
determine whether any adaptations to that particular object
are necessary based upon the proximate objects to that
particular object which are in the particular categories of
objects with which that particular object is a member or is
dependent upon. This process may continue recursively until
no more objects are updated. By checking only objects
which are likely to be affected and within a particular
category or categories of objects, the system may eliminate
having to check every object in the game map to determine
if the object should be updated.
0036. For example, turning now to FIG. 5, an example
game map 5000 with a five tile wide by five tile height is
shown with various game objects denoted as “A.” “B,” “C.”
“D,” “E.” and “P” Proximity is defined in this example as
any object in the adjacent north, South, east, or west tiles
(e.g., diagonal tiles are not proximate). “P” is the placed
adaptive object, then objects “A” and “C” are used to
determine whether “P” is adapted (“E” is excluded since it
fails the definition of proximate which excludes diagonal
tiles). If objects “A” and “C” are both in the same category
of object (or in a dependent category) as object “P” then “A”
and “C” would be used to determine what (if any) adapta
tions “P” would take. If “P” is adapted, then “A” and “C” are
checked to determine whether or not they should adapt as
well. If “P” is not adapted, “A” and “C” may not be checked
to determine if they should adapt (which may increase
performance.) If “P” is adapted, then when 'A' is checked,
the proximate tiles that determine whether and how “A” is
adapted would be “P” and “B.” Assuming that “P” and “B,”
are both in the same category as “A,” the system may
determine whether or not to adapt “A” based upon “P” and
“B.” In the case of FIG. 5, if “A” is adapted, then “B” would
be likewise checked (the proximate tile being “A”), other
wise “B” would not be checked (again, increasing perfor
mance). If “P” was adapted, “C” is also checked. The
proximate tiles would include “E,” “P” and “D.” If “E” is
not in the same category as “C.” (and the categories of “E”
and “C” are not in a dependency relationship) then “E” is not
used to determine the adaptations, and “E” is therefore not
checked (again, increasing performance). If “C” adapts, then
“D” would be checked (with “C” as its proximate tiles),
otherwise if “C” does not adapt, then “D” would not be
checked (e.g., increasing performance). By recursively
checking the various game objects by fanning out from the
placed game object, the objects which are more likely to be
adapted are checked first and objects unlikely to be adapted
(e.g., objects further from the target location where the
object is placed) may not need to be checked.
0037 Turning now to FIG. 6A, an example method of
adapting a game object is shown. At operation 6010 a game
player chooses to place a new game object inside the virtual
in-game environment represented by the game map. At
operation 6020 the game creates anew game object data
structure (which may store attributes associated with the
game object) and looks up various information about the
object in the game database at operation 6030. At operation

Jan. 12, 2017

6040 a lookup table may be located which may describe the
image to be displayed given one or more adaptive neighbors
and their locations.
0038. The player may then position the object using one
or more inputs to select a target position or tile in the map.
and may then place the object in the target location, at
operation 6050. Turning now to FIG. 6B, at operation 6060,
whatever the current position of the object is, the map may
be checked for other game objects within a particular
proximity to the placed object which are in the same object
category or for any parent object categories for which there
is a dependency. If any adaptive objects are found, at
operation 6070, the lookup table is consulted to determine
the proper adaptations which are then applied to the object
(e.g., through modification of one or more properties to the
game object structure). At operation 6080, any of the proxi
mate objects to the placed object which are in the same
category or dependent categories may be recursively
checked to determine whether their presentation or behavior
is impacted. These objects may then go through the update
process of operations 6060-6080, including, possibly noti
fying other proximate objects of the update. Thus each
adaptive object may be recursively updated.
0039. In other examples,this update process may be done
real-time as the user positions the new object prior to final
placement. Thus for example, the user may position (but not
place) the object in a particular position and see the image
of the object and the Surrounding objects change based on
the positioning. The user may then place the object at that
location (finalizing the changes), or may move the object to
a different location (undoing the changes). Such provisional
placement with associated preview of object modification
based on the proximity of adaptive objects to the target
location may be implemented by drag-and-drop functional
ity in some embodiments. A user may thus select a particular
default object or object type and may drag an icon repre
sentative of the new object to a target location. As the icon
hovers over the target location, the icon or image represen
tative of the new object may be dynamically adapted or
modified to correspond to the modified appearance which it
will have once it is dropped in the target location. Existing,
previously placed objects may also update in response to the
current location of the hovering icon. If the positioned object
is then moved, the previously placed objects then may adapt
back to their old appearances and/or behaviors. If the
positioned object is then placed, the previously placed
objects may then be permanently adapted.
0040. In some examples, the lookup table may be used to
determine which image to use and which new behaviors to
set based on the associated category and dependent category
neighbors. Thus for example, if the system determines that
there is a castle wall to the south and a castle wall to the
west, the table may indicate that a corner tower image
should be placed. In other examples, the lookup table may
specify one or more modifications to one or more game
object properties. The system may then update the data
structure of that particular game object to reflect the change
in these properties.
0041. In some examples, to reduce the number of images
necessary to implement the adaptations, each game object
image may constitute any number of component images. For
example, each image for each tile may be further subdivided
into a number of re-usable components. Thus for example,
the castle wall 1010 may be a number of components and the

US 2017/0007925 A1

adapted image of two connected castle wall adaptive game
objects may be formed from one or more of the constituent
image components. For example, FIG. 7 shows three con
stituent components of the base image of a castle wall 1010
(shown separated by a dotted line). Center section 7010, left
side 7020, and right side 7030. When drawing the castle wall
1010 alone, all three may be rendered. However, when
drawing two castle walls together, an additional center
section 7010 may be drawn. This is in contrast to having
separate large images for both a single castle wall and a
double (or connected) castle wall.
0042. An example schematic of a game 8000 is shown in
FIG. 8. Game logic module 8010 comprises the algorithms
and rules that control the display, presentation, and func
tionality of the game, including commanding the rendering
module 8020 to render the game map and associated game
Objects to a display. Rendering module 8020 produces an
output of the game map, game objects, game characters and
other sprites onto the display in their proper position and
orientation.
0043. Input module 8030 may take as input one or more
inputs from the game player and pass along the input to
game logic module 8010. These inputs may include creating
new game objects and placing those game objects. Game
logic module 8010 may create new game objects and store
information related to the game object in the game object
information table 8050. Game object information table 8050
may also store one or more parameters and rules regarding
the behavior of each possible game Object, as well as state,
behavior, or other information pertaining to all the game
objects which have been created. For example, a default
behavior for game objects may be stored in the game object
information table and if game logic module 8010 detects that
a game object is in proximity to a behavior modifying game
object, the default behavior for only that object may be
modified. For example, a crop game object may have a
predetermined yield rate associated with it (e.g., a certain
amount of crops per tile per amount of time may he
harvested). This may be stored in the game object informa
tion table 8050. However, if game logic module 8010 detects
that a particular crop object is placed near a water feature,
the game logic module 8010 may increase the yield rate
associated with only that game object. New crop game
objects will still produce the default yield rate unless in
proximity to a water feature. In addition to storing game
object parameters for both default objects and for actual
instantiations of game objects, the game object information
may store a table for determining which of a set of one or
more actions are to be taken based on an object's proximity
to one or more other adaptive objects. Game logic module
8010 may consult the table in determining the appropriate
actions to take when adapting the various game objects to
any proximal adaptive objects.

Social Networking Based Games
0044) While the above described disclosures may be
applicable to any map-based computer game, in some
examples, the game may be a network based game, which
may also utilize social networking data. These games and
there operation may be described below in more detail.
004.5 FIG. 9 illustrates an example of a system 9000 for
implementing various example embodiments, in connection
with a user interface providing a network accessible game.
In some embodiments, the system 9000 may comprise a

Jan. 12, 2017

game player 9010, a client device 9020, a network 9030, a
Social networking system 9040, and a game networking
system 9050. The components of the system 9000 may be
connected directly or over the network 9030, which may be
any suitable network. In various embodiments, one or more
portions of the network 903.0 may include an ad hoc net
work, an intranet, an extranet, a virtual private network
(VPN), a local area network (LAN), a wireless LAN
(WLAN), a wide area network (WAN), a wireless WAN
(WWAN), a metropolitan area network (MAN), a portion of
the Internet, a portion of the Public Switched Telephone
Network (PSTN), a cellular telephone network, or any other
type of network, or a combination of two or more such
networks.

0046. The client device 9020 may be any suitable com
puting device (e.g., devices). Such as a Smart phone, a
personal digital assistant (PDA), a mobile phone, a personal
computer, a laptop, a computing tablet, and the like. The
client device 9020 may access the social networking system
9040 or the game networking system 9050 directly, via the
network 9030, or via a third-party system. For example, the
client device 9020 may access the game networking system
9050 via the social networking system 9040. The player
9010 may use the client device 9020 to play the virtual
game, within the user interface for the game.
0047. The social networking system 9040 may include a
network-addressable computing system that can host one or
more Social graphs, and may be accessed by the other
components of system 9000 either directly or via the net
work 9030. The social networking system 9040 may gen
erate, store, receive, and transmit social networking data.
Moreover, the game networking system 9050 may include a
network-addressable computing system (or systems) that
can host one or more virtual games, for example, online
games provided in Flash interactive displays. The game
networking system 9050 may generate, store, receive, and
transmit game-related data, Such as, for example, game
account data, game input, game state data, and game dis
plays. The game networking system 9050 may be accessed
by the other components of system 9000 either directly or
via the network 9030. The player 9010 may use the client
device 9020 to access, send data to, and receive data from
the social networking system 9040 and/or the game net
working system 9050.
0048 Although FIG. 9 illustrates a particular example of
the arrangement of the player 9010, the client device 9020,
the social networking system 9040, the game networking
system 9050, and the network 9030, this disclosure includes
any suitable arrangement or configuration of the these
components of system 9000.
0049 FIG. 10 illustrates an example data flow between
the components of an example system 10000. In particular
embodiments, system 10000 can include client system
10010, social networking system 10020, and game network
ing system 10030. A system 7000 such as that described with
reference to FIG. 7 may be provided by the client system
10010, the social networking system 10020, or the game
networking system 10030, or by any combination of these
systems. The components of system 10000 can be connected
to each other in any Suitable configuration, using any Suit
able type of connection. The components may be connected
directly or over any suitable network. Client system 10010,
Social networking system 10020, and game networking
system 10030 can each have one or more corresponding data

US 2017/0007925 A1

stores such as local data store 10040, social data store 10050,
and game data store 10060, respectively. Social networking
system 10020 and game networking system 10030 can also
have one or more servers that can communicate with client
system 10010 over an appropriate network. Social network
ing system 10020 and game networking system 10030 can
have, for example, one or more Internet servers for com
municating with client system 10010 via the Internet. Simi
larly, social networking system 10020 and game networking
system 10030 can have one or more mobile servers for
communicating with client system 10010 via a mobile
network (e.g., GSM, PCS, Wi-Fi, WPAN, etc.). In some
embodiments, one server may be able to communicate with
client system 10010 over both the triternet and a mobile
network. In other embodiments, separate servers can be
used.

0050 Client system 10010 can receive and transmit data
10070 to and from game networking system 10030. This
data can include, for example, webpages, messages, game
inputs, game displays, HTTP packets, data requests, trans
action information, updates, and other Suitable data. At some
other time, or at the same time, game networking system
10030 can communicate data 10080, 10090 (e.g., game state
information, game system account information, page info,
messages, data requests, updates, etc.) with other network
ing systems, such as Social networking system 10020 (e.g.,
Facebook, Myspace, Google+, etc.). Client system 10010
can also receive and transmit data 8100 to and from social
networking system 10020. This data can include, for
example, webpages, messages, social graph information,
Social network displays, HTTP packets, data requests, trans
action information, updates, and other Suitable data.
0051 Communication between client system 10010,
Social networking system 10020, and game networking
system 10030 can occur over any appropriate electronic
communication medium or network using any suitable com
munications protocols. For example, client system 10010, as
well as various servers of the systems described herein, may
include Transport Control Protocol/Internet Protocol (TCP/
IP) networking stacks to provide for datagram and transport
functions. Of course, any other Suitable network and trans
port layer protocols can be utilized.
0052. In addition, hosts or end-systems described herein
may use a variety of higher layer communications protocols,
including client-server (or request-response) protocols, such
as the HyperText Transfer Protocol (HTTP) and other com
munications protocols, such as HTTP-S, FTP, SNMP, TEL
NET, and a number of other protocols, may be used. In
addition, a server in one interaction context may be a client
in another interaction context. In particular embodiments,
the information transmitted between hosts may be formatted
as HyperTextMarkup Language (HTML) documents. Other
structured document languages or formats can be used. Such
as XML and the like. Executable code objects, such as
JavaScript and ActionScript, can also be embedded in the
structured documents.

0053. In some client-server protocols, such as the use of
HTML over HTTP, a server generally transmits a response
to a request from a client. The response may comprise one
or more data objects. For example, the response may com
prise a first data object, followed by Subsequently transmit
ted data objects. In particular embodiments, a client request
may cause a server to respond with a first data object, Such
as an HTML page, which itself refers to other data objects.

Jan. 12, 2017

A client application, Such as a browser, will request these
additional data objects as it parses or otherwise processes the
first data object.
0054. In particular embodiments, an instance of an online
game can be stored as a set of game state parameters that
characterize the state of various in-game objects, such as, for
example, player character state parameters, non-player char
acter parameters, and virtual item parameters. In particular
embodiments, game state is maintained in a database as a
serialized, unstructured string of text data as a so-called
Binary Large Object (BLOB). When a player accesses an
online game on game networking system 10030, the BLOB
containing the game State for the instance corresponding to
the player can be transmitted to client system 10010 for use
by a client-side executed object to process. In particular
embodiments, the client-side executable may be a FLASH
based game, which can de-serialize the game state data in
the BLOB. As a player plays the game, the game logic
implemented at client system 10010 maintains and modifies
the various game state parameters locally. The client-side
game logic may also batch game events, such as mouse
clicks, and transmit these events to game networking system
10030. Game networking system 10030 may itself operate
by retrieving a copy of the BLOB from a database or an
intermediate memory cache (memcache) layer. Game net
working system 10030 can also de-serialize the BLOB to
resolve the game state parameters and execute its own game
logic based on the events in the batch file of events trans
mitted by the client to synchronize the game state on the
server side. Game networking system 10030 may then
re-serialize the game state, now modified, into a BLOB, and
pass this to a memory cache layer for lazy updates to a
persistent database.
0055 With a client-server environment in which the
online games may run, one server system, Such as game
networking system 10030, may support multiple client sys
tems 10010. At any given time, there may be multiple
players at multiple client systems 10010 all playing the same
online game. In practice, the number of players playing the
same game at the same time may be very large. As the game
progresses with each player, multiple players may provide
different inputs to the online game at their respective client
systems 10010, and multiple client systems 10010 may
transmit multiple player inputs and/or game events to game
networking system 10030 for further processing. In addition,
multiple client systems 10010 may transmit other types of
application data to game networking system 10030.
0056. In particular embodiments, a computed-imple
mented game may be a text-based or turn-based game
implemented as a series of web pages that are generated after
a player selects one or more actions to perform. The web
pages may be displayed in a browser client executed on
client system 10010. As an example and not by way of
limitation, a client application downloaded to client system
10010 may operate to serve a set of webpages to a player. As
another example and not by way of limitation, a computer
implemented game may be an animated or rendered game
executable as a stand-alone application or within the context
of a webpage or other structured document. In particular
embodiments, the computer-implemented game may be
implemented using Adobe FLASH-based technologies. As
an example and not by way of limitation, a game may be
fully or partially implemented as a SWF object that is
embedded in a web page and executable by a Flash media

US 2017/0007925 A1

player plug-in. In particular embodiments, one or more
described webpages may be associated with or accessed by
social networking system 10020. This disclosure contem
plates using any suitable application for the retrieval and
rendering of structured documents hosted by any Suitable
network-addressable resource or website.

0057. Application event data of a game is any data
relevant to the game (e.g., player inputs). In particular
embodiments, each application datum may have a name and
a value, and the value of the application datum may change
(i.e., be updated) at any time. When an update to an
application datum occurs at client system 10010, either
caused by an action of a game player or by the game logic
itself, client system 10010 may need to inform game net
working system 10030 of the update. For example, if the
game is a farming game with a harvest mechanic (Such as
Zynga FarmVille), an event can correspond to a player
clicking on a parcel of land to harvest a crop. In such an
instance, the application event data may identify an event or
action e.g., harvest and an object in the game to which the
event or action applies. For illustration purposes and not by
way of limitation, system 10000 is discussed in reference to
updating a multi-player online game hosted on a network
addressable system (such as, for example, Social networking
system 10020 or game networking system 10030), where an
instance of the online game is executed remotely on a client
system 10010, which then transmits application event data
to the hosting system such that the remote game server
synchronizes the game state associated with the instance
executed by the client system 10010.
0058. In a particular embodiment, one or more objects of
a game may be represented as an Adobe Flash object. Flash
may manipulate vector and raster graphics, and Supports
bidirectional streaming of audio and video. "Flash” may
mean the authoring environment, the player, or the applica
tion files. In particular embodiments, client system 10010
may include a Flash client. The Flash client may be con
figured to receive and run Flash application or game object
code from any Suitable networking system (such as, for
example, Social networking system 10020 or game network
ing system 10030). In particular embodiments, the Flash
client may be run in a browser client executed on client
system 10010. A player can interact with Flash objects using
client system 10010 and the Flash client. The Flash objects
can represent a variety of in-game objects. Thus, the player
may perform various in-game actions on various in-game
objects by making various changes and updates to the
associated Flash objects. In particular embodiments, in
game actions can be initiated by clicking or similarly
interacting with a Flash object that represents a particular
in-game object. For example, a player can interact with a
Flash object to use, move, rotate, delete, attack, shoot, or
harvest an in-game object. This disclosure contemplates
performing any Suitable in-game action by interacting with
any suitable Flash object. In particular embodiments, when
the player makes a change to a Flash object representing an
in-game object, the client-executed game logic may update
one or more game state parameters associated with the
in-game object. To ensure synchronization between the
Flash object shown to the player at client system 10010, the
Flash client may send the events that caused the game state
changes to the in-game object to game networking system
10030. However, to expedite the processing and hence the
speed of the overall gaming experience, the Flash client may

Jan. 12, 2017

collect a batch of some number of events or updates into a
batch file. The number of events or updates may be deter
mined by the Flash client dynamically or determined by
game networking system 10030 based on server loads or
other factors. For example, client system 10010 may send a
batch file to game networking system 10030 whenever 50
updates have been collected or after a threshold period of
time, such as every minute.
0059. As used herein, the term “application event data'
may refer to any data relevant to a computer-implemented
game application that may affect one or more game state
parameters, including, for example and without limitation,
changes to player data or metadata, changes to player Social
connections or contacts, player inputs to the game, and
events generated by the game logic. In particular embodi
ments, each application datum may have a name and a value.
The value of an application datum may change at any time
in response to the game play of a player or in response to the
game engine (e.g., based on the game logic). In particular
embodiments, an application data update occurs when the
value of a specific application datum is changed. In particu
lar embodiments, each application event datum may include
an action or event name and a value (such as an object
identifier). Thus, each application datum may be represented
as a name-value pair in the batch file. The batch file may
include a collection of name-value pairs representing the
application data that have been updated at client system
10010. In particular embodiments, the batch file may be a
text file and the name-value pairs may be in String format.
0060. In particular embodiments, when a player plays an
online game on client system 10010, game networking
system 10030 may serialize all the game-related data,
including, for example and without limitation, game states,
game events, and user inputs, for this particular user and this
particular game into a BLOB and store the BLOB in a
database. The BLOB may be associated with an identifier
that indicates that the BLOB contains the serialized game
related data for a particular player and a particular online
game. In particular embodiments, while a player is not
playing the online game, the corresponding BLOB may be
stored in the database. This enables a player to stop playing
the game at any time without losing the current state of the
game the player is in. When a player resumes playing the
game next time, game networking system 10030 may
retrieve the corresponding BLOB from the database to
determine the most-recent values of the game-related data.
In particular embodiments, while a player is playing the
online game, game networking system 10030 may also load
the corresponding BLOB into a memory cache so that the
game system may have faster access to the BLOB and the
game-related data contained therein.

Systems and Methods
0061. In particular embodiments, one or more described
webpages may be associated with a networking system or
networking service. However, alternate embodiments may
have application to the retrieval and rendering of structured
documents hosted by any type of network addressable
resource or web site. Additionally, as used herein, a user may
be an individual, a group, or an entity (Such as a business or
third party application).
0062 Particular embodiments may operate in a WAN
environment, such as the Internet, including multiple net
work addressable systems. FIG. 11 illustrates an example

US 2017/0007925 A1

network environment 11000, in which various example
embodiments may operate. Network cloud 11010 generally
represents one or more interconnected networks, over which
the systems and hosts described herein, can communicate.
Network cloud 11010 may include packet-based WAN (such
as the Internet), private networks, wireless networks, satel
lite networks, cellular networks, paging networks, and the
like. As FIG. 11 illustrates, particular embodiments may
operate in a network environment comprising one or more
networking systems, such as Social networking system
11020, game networking system 11030, and one or more
client systems 11040. The components of social networking
system 11020 and game networking system 11030 operate
analogously; as such, hereinafter they may be referred to
simply as a networking system. Client systems 11040 are
operably connected to the network environment via a net
work service provider, a wireless carrier, or any other
Suitable means.

0063 Networking system 11020, 11030 is a network
addressable system that, in various example embodiments,
comprises one or more physical servers 11050 and data
stores 11060. The one or more physical servers 11050 are
operably connected to computer network 11010 via, by way
of example, a set of routers and/or networking Switches
11070. In an example embodiment, the functionality hosted
by the one or more physical servers 11050 may include web
or HTTP servers, FTP servers, as well as, without limitation,
webpages and applications implemented using Common
Gateway Interface (CGI) script, PHP Hyper-text Preproces
sor (PHP), Active Server Pages (ASP), HyperTextMarkup
Language (HTML), Extensible Markup Language (XML).
Java, JavaScript, Asynchronous Java Script and XML
(AJAX), Flash, ActionScript, and the like.
0064) Physical servers 11050 may host functionality
directed to the operations of networking system 11020,
11030. Hereinafter servers 11050 may be referred to as
server 11050, although server 11050 may include numerous
servers hosting, for example, networking system 11020,
11030, as well as other content distribution servers, data
stores, and databases. Data store 11060 may store content
and data relating to, and enabling, operation of networking
system 11020, 11030 as digital data objects. A data object,
in particular embodiments, is an item of digital information
typically stored or embodied in a data file, database, or
record. Content objects may take many forms, including:
text (e.g., ASCII, SGML, HTML), images (e.g., jpeg, tif and
gif), graphics (vector-based or bitmap), audio, video (e.g.,
mpeg), or other multimedia, and combinations thereof.
Content object data may also include executable code
objects games executable within a browser window or
frame), podcasts, and the like. Logically, data store 11060
corresponds to one or more of a variety of separate and
integrated databases, such as relational databases and object
oriented databases, that maintain information as an inte
grated collection of logically related records or tiles stored
on one or more physical systems. Structurally, data store
11060 may generally include one or more of a large class of
data storage and management systems. In particular embodi
ments, data store 11060 may be implemented by any suitable
physical system(s) including components, such as one or
more database servers, mass storage media, media library
systems, storage area networks, data storage clouds, and the
like. In one example embodiment, data store 11060 includes
one or more servers, databases (e.g., MySQL), and/or data

Jan. 12, 2017

warehouses. Data store 11060 may include data associated
with different networking system 11020, 11030 users and/or
client systems 11040.
0065 Client system 11040 is generally a computer or
computing device including functionality for communicat
ing (e.g., remotely) over a computer network. Client system
11040 may be a desktop computer, laptop computer, per
Sonal digital assistant (PDA), in- or out-of-car navigation
system, Smart phone or other cellular or mobile phone, or
mobile gaming device, among other Suitable computing
devices. Client system 11040 may execute one or more
client applications, such as a web browser (e.g., Microsoft
Internet Explorer, Mozilla Firefox, Apple Safari, Google
Chrome, and Opera), to access and view content over a
computer network. In particular embodiments, the client
applications allow a user of client system 11040 to enter
addresses of specific network resources to be retrieved, such
as resources hosted by networking system 11020, 11030.
These addresses can be Uniform Resource Locators (URLs)
and the like. In addition, once a page or other resource has
been retrieved, the client applications may provide access to
other pages or records when the user "clicks' on hyperlinks
to other resources. By way of example, such hyperlinks may
be located within the webpages and provide an automated
way for the user to enter the URL of another page and to
retrieve that page.
0066. A webpage or resource embedded within a web
page, which may itself include multiple embedded
resources, may include data records, such as plain textual
information, or more complex digitally encoded multimedia
content, such as Software programs or other code objects,
graphics, images, audio signals, videos, and so forth. One
prevalent markup language for creating webpages is the
Hypertext Markup Language (HTML). Other common web
browser-supported languages and technologies include the
Extensible Markup Language (XML), the Extensible Hyper
text Markup Language (XHTML), JavaScript, Flash,
ActionScript, Cascading Style Sheet (CSS), and, frequently,
Java. By way of example, HTML enables a page developer
to create a structured document by denoting structural
semantics for text and links, as well as images, web appli
cations, and other Objects that can be embedded within the
page. Generally, a webpage may be delivered to a client as
a static document; however, through the use of web elements
embedded in the page, an interactive experience may be
achieved with the page or a sequence of pages. During a user
session at the client, the web browser interprets and displays
the pages and associated resources received or retrieved
from the website hosting the page, as well as, potentially,
resources from other websites.

0067. When a user at a client system 11040 desires to
view a particular webpage (hereinafter also referred to as
target structured document) hosted by networking system
11020, 11030, the user's web browser, or other document
rendering engine or Suitable client application, formulates
and transmits a request to networking system 11020, 11030.
The request generally includes a URL or other document
identifier as well as metadata or other information. By way
of example, the request may include information identifying
the user, Such as a userID, as well as information identifying
or characterizing the web browser or operating system
running on the user's client computing device 11040. The
request may also include location information identifying a
geographic location of the user's client system or a logical

US 2017/0007925 A1

network location of the user's client system. The request
may also include a timestamp identifying when the request
was transmitted.

0068 Although the example network environment
described above and illustrated in FIG. 11 is described with
respect to social networking system 11020 and game net
working system 11030, this disclosure encompasses any
Suitable network environment using any Suitable systems.
As an example and not by way of limitation, the network
environment may include online media systems, online
reviewing systems, online search engines, online advertising
systems, or any combination of two or more such systems.

Modules Components and Logic

0069 Certain embodiments are described herein as
including logic or a number of components, modules, or
mechanisms. Modules or components may constitute either
Software modules (e.g., code embodied (1) on a non-tran
sitory machine-readable medium or (2) in a transmission
signal) or hardware-implemented modules. A hardware
implemented module is tangible unit capable of performing
certain operations and may be configured or arranged in a
certain manner. In example embodiments, one or more
computer systems (e.g., a standalone, client or server com
puter system) or one or more processors may be configured
by Software (e.g., an application or application portion) as a
hardware-implemented module that operates to perform
certain operations as described herein.
0070. In various embodiments, a hardware-implemented
module may be implemented mechanically or electronically.
For example, a hardware-implemented module may com
prise dedicated circuitry or logic that is permanently con
figured (e.g., as a special-purpose processor, Such as a field
programmable gate array (FPGA) or an application-specific
integrated circuit (ASIC)) to perform certain operations. A
hardware-implemented module may also comprise program
mable logic or circuitry (e.g., as encompassed within a
general-purpose processor or other programmable proces
sor) that is temporarily configured by Software to perform
certain operations. It will be appreciated that the decision to
implement a hardware-implemented module mechanically,
in dedicated and permanently configured circuitry, or in
temporarily configured circuitry (e.g., configured by Soft
ware) may be driven by cost and time considerations.
0071. Accordingly, the term “hardware-implemented
module' should be understood to encompass a tangible
entity, be that an entity that is physically constructed,
permanently configured (e.g., hardwired) or temporarily or
transitorily configured (e.g., programmed) to operate in a
certain manner and/or to perform certain operations
described herein. Considering embodiments in which hard
ware-implemented modules are temporarily configured
(e.g., programmed), each of the hardware-implemented
modules need not be configured or instantiated at any one
instance in time. For example, where the hardware-imple
mented modules comprise a general-purpose processor con
figured using software, the general-purpose processor may
he configured as respective different hardware-implemented
modules at different times. Software may accordingly con
figure a processor, for example, to constitute a particular
hardware-implemented module at one instance of time and
to constitute a different hardware-implemented module at a
different instance of time.

Jan. 12, 2017

0072 Hardware-implemented modules may provide
information to, and receive information from, other hard
ware-implemented modules. Accordingly, the described
hardware-implemented modules may be regarded as being
communicatively coupled. Where multiple of such hard
ware-implemented modules exist contemporaneously, com
munications may be achieved through signal transmission
(e.g., over appropriate circuits and buses) that connect the
hardware-implemented modules. In embodiments in which
multiple hardware-implemented modules are configured or
instantiated at different times, communications between
Such hardware-implemented modules may be achieved, for
example, through the storage and retrieval of information in
memory structures to which the multiple hardware-imple
mented modules have access. For example, one hardware
implemented module may perform an operation, and store
the output of that operation in a memory device to which it
is communicatively coupled. A further hardware-imple
mented module may then, at a later time, access the memory
device to retrieve and process the stored output. Hardware
implemented modules may also initiate communications
with input or output devices, and may operate on a resource
(e.g., a collection of information).
0073. The various operations of example methods
described herein may be performed, at least partially, by one
or more processors that are temporarily configured (e.g., by
Software) or permanently configured to perform the relevant
operations. Whether temporarily or permanently configured,
such processors may constitute processor-implemented
modules that operate to perform one or more operations or
functions. The modules referred to herein may, in some
example embodiments, comprise processor-implemented
modules.

0074 Similarly, the methods described herein may be at
least partially processor-implemented. For example, at least
some of the operations of a method may be performed by
one or processors or processor-implemented modules. The
performance of certain of the operations may be distributed
among the one or more processors, not only residing within
a single machine, but deployed across a number of
machines. In some example embodiments, the processor or
processors may be located in a single location e.g., within a
home environment, an office environment or as a server
farm), while in other embodiments the processors may be
distributed across a number of locations.

0075. The one or more processors may also operate to
Support performance of the relevant operations in a "cloud
computing environment or as a “software as a service'
(SaaS). For example, at least Some of the operations may be
performed by a group of computers (as examples of
machines including processors), these operations being
accessible via a network (e.g., the Internet) and via one or
more appropriate interfaces e.g., Application Program Inter
faces (APIs)..)

Electronic Apparatus and System

0076 Example embodiments may be implemented in
digital electronic circuitry, or in computer hardware, firm
ware, software, or in combinations of them. Example
embodiments may be implemented using a computer pro
gram product, e.g., a computer program tangibly embodied
in an information carrier, in a machine-readable medium for

US 2017/0007925 A1

execution by, or to control the operation of data processing
apparatus, e.g., a programmable processor, a computer, or
multiple computers.
0077. A computer program may be written in any form of
programming language, including compiled or interpreted
languages, and it may be deployed in any form, including as
a stand-alone program or as a module, Subroutine, or other
unit Suitable for use in a computing environment. A com
puter program may be deployed to be executed on one
computer or on multiple computers at one site or distributed
across multiple sites and interconnected by a communication
network.
0078. In example embodiments, operations may be per
formed by one or more programmable processors executing
a computer program to perform functions by operating on
input data and generating output. Method operations may
also be performed by, and apparatus of example embodi
ments may be implemented as, special purpose logic cir
cuitry, e.g., afield programmable gate array (FPGA) or an
application-specific integrated circuit (ASIC).
007.9 The computing system may include clients and
servers. A client and server are generally remote from each
other and typically interact through a communication net
work. The relationship of client and server arises by virtue
of computer programs running on the respective computers
and having a client-server relationship to each other. In
embodiments deploying a programmable computing system,
it will be appreciated that that both hardware and software
architectures require consideration. Specifically, it will be
appreciated that the choice of whether to implement certain
functionality in permanently configured hardware (e.g., an
ASIC), in temporarily configured hardware (e.g., a combi
nation of Software and a programmable processor), or a
combination of permanently and temporarily configured
hardware may be a design choice. Below are set out hard
ware (e.g., machine) and software architectures that may be
deployed, in various example embodiments.

Example Machine Implementation
0080 FIG. 12 shows a diagrammatic representation of a
machine in the example form of a computer system 12000
within which a set of instructions for causing the machine to
perform any one or more of the methods, processes, opera
tions, or methodologies discussed herein may be executed.
In alternative embodiments, the machine operates as a
standalone device or may be connected (e.g., networked) to
other machines. In a networked deployment, the machine
may operate in the capacity of a server or a client machine
in server-client network environment, or as a peer machine
in a peer-to-peer (or distributed) network environment. The
machine may be a Personal Computer (PC), a tablet PC, a
Set-Top Box (STB), a Personal Digital Assistant (PDA), a
cellular telephone, a Web appliance, a network router, switch
or bridge, or any machine capable of executing a set of
instructions (sequential or otherwise) that specify actions to
be taken by that machine. Further, while only a single
machine is illustrated, the term “machine' shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein. Example embodiments may also be practiced in
distributed system environments where local and remote
computer systems which that are linked (e.g., either by
hardwired, wireless, or a combination of hardwired and

Jan. 12, 2017

wireless connections through no both perform tasks. In a
distributed system environment, program modules may be
located in both local and remote memory-storage devices
(see below).
I0081. The example computer system 12000 includes a
processor 12002 (e.g., a Central Processing Unit (CPU), a
Graphics Processing Unit (GPU) or both), a main memory
12001 and a static memory 12006, which communicate with
each other via a bus 12008. The computer system 12000 may
further include a video display unit 12010 (e.g., a Liquid
Crystal Display (LCD) or a Cathode Ray Tube (CRT)). The
computer system 12000 also includes an alphanumeric input
device 12012 (e.g., a keyboard), a User Interface (UI)
controller 12014 (e.g., a mouse), a disk drive unit 12016, a
signal generation device 12018 (e.g., a speaker and a net
work interface device 12020 (e.g., a transmitter).
0082. The disk drive unit 12016 includes a machine
readable medium 12022 on which is stored one or more sets
of instructions 12024 and data structures (e.g., Software)
embodying or used by any one or more of the methodologies
or functions illustrated herein. The software may also reside,
completely or at least partially, within the main memory
12001 and/or within the processor 12002 during execution
thereof by the computer system 12000, the main memory
12001 and the processor 10002 also constituting machine
readable media.

I0083. The instructions 12024 may further be transmitted
or received over a network 12026 via the network interface
device 12020 using any one of a number of well-known
transfer protocols (e.g., HTTP Session Initiation Protocol
(SIP)).
0084. The term “machine-readable medium’ should be
taken to include a single medium or multiple media (e.g., a
centralized or distributed database, and/or associated caches
and servers) that store the one or more sets of instructions.
The term “machine-readable medium’ shall also be taken to
include any medium that is capable of storing, encoding, or
carrying a set of instructions for execution by the machine
and that cause the machine to performany of the one or more
of the methodologies illustrated herein. The term “machine
readable medium’ shall accordingly be taken to include, but
not be limited to, Solid-state memories, and optical and
magnetic medium.
I0085 Method embodiments illustrated herein may be
computer-implemented. Some embodiments may include
computer-readable media encoded with a computer program
(e.g., software), which includes instructions operable to
cause an electronic device to perform methods of various
embodiments. A Software implementation (or computer
implemented method) may include microcode, assembly
language code, or a higher-level language code, which
further may include computer readable instructions for per
forming various methods. The code may form portions of
computer program products. Further, the code may be tan
gibly stored on one or more volatile or non-volatile com
puter-readable media during execution or at other times.
These computer-readable media may include, but are not
limited to, hard disks, removable magnetic disks, removable
optical disks (e.g., compact disks and digital video disks),
magnetic cassettes, memory cards or sticks, Random Access
Memories (RAMs), Read Only Memories (ROMs), and the
like.

US 2017/0007925 A1

Additional Notes and Examples

I0086 Disclosed in some examples is a method of placing
game objects in a game, the method includes receiving user
input that indicates a desired placement of a new game
object at a target location in a virtual in-game environment
of the computer-implemented game; identifying the new
game object as a current game object; processing the current
game object by: using one or more computer processors,
determining for the current game object a set of proximate
game objects which are within a threshold distance from the
current game object; and adapting a property of the current
game object based upon the set of proximate game objects
within the threshold proximity distance; and for each par
ticular game object in the set of proximate game objects,
identifying that particular game object as the current game
object and recursively processing the current game object.
0087 Disclosed in some examples is a system for placing
game objects in a game, the system including an input
module configured to receive user input that indicates a
desired placement of a new game object at a target location
in a virtual in-game environment of the computer-imple
mented game; a game logic module configured to: identify
the new game object as a current game object, process the
current game object by: using one or more computer pro
cessors, determining for the current game object a set of
proximate game objects which are within a threshold dis
tance from the current game object; and adapting a property
of the current game object based upon the set of proximate
game objects within the threshold proximity distance; and
for each particular game object in the set of proximate game
objects, identifying that particular game object as the current
game object and recursively processing the current game
object.
0088 Disclosed in yet other examples is a machine
readable medium that stores instructions which when per
formed by a machine, cause the machine to perform the
operations comprising: receiving user input that indicates a
desired placement of a new game object at a target location
in a virtual in-game environment of the computer-imple
mented game; identifying the new game object as a current
game object; processing the current game object by: using
one or more computer processors, determining for the cur
rent game object a set of proximate game objects which are
within a threshold distance from the current game object;
and adapting a property of the current game object based
upon the set of proximate game objects within the threshold
proximity distance; and for each particular game object in
the set of proximate game objects, identifying that particular
game object as the current game object and recursively
processing the current game Object.
0089. The above detailed description includes references
to the accompanying drawings, which form apart of the
detailed description. The drawings show, by way of illus
tration, specific embodiments in which the invention can be
practiced. These embodiments are also referred to herein as
“examples. Such examples can include elements in addi
tion to those shown or described. However, the present
inventors also contemplate examples in which only those
elements shown or described are provided. Moreover, the
present inventors also contemplate examples using any
combination or permutation of those elements shown or
described (or one or more aspects thereof), either with
respect to a particular example (or one or more aspects

Jan. 12, 2017

thereof), or with respect to other examples (or one or more
aspects thereof) shown or described herein.
0090 All publications, patents, and patent documents
referred to in this document are incorporated by reference
herein in their entirety, as though individually incorporated
by reference. In the event of inconsistent usages between
this document and those documents so incorporated by
reference, the usage in the incorporated reference(s) should
be considered supplementary to that of this document; for
irreconcilable inconsistencies, the usage in this document
controls.

0091. In this document, the terms “a” or “an are used, as
is common in patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one' or “one or more.” In this document, the term 'or' is
used to refer to a nonexclusive or, such that “A or B'
includes “Abut not B,”“B but not A,” and “A and B, unless
otherwise indicated. In this document, the terms “including
and “in which are used as the plain-English equivalents of
the respective terms “comprising and “wherein.” Also, in
the following claims, the terms “including and "compris
ing” are open-ended, that is, a system, device, article, or
process that includes elements in addition to those listed
after such a term in a claim are still deemed to fall within the
scope of that claim. Moreover, in the following claims, the
terms “first,” “second, and “third,' etc. are used merely as
labels, and are not intended to impose numerical require
ments on their objects.
0092 Method examples described herein can be machine
or computer-implemented at least in part. Some examples
can include a computer-readable medium or machine-read
able medium encoded with instructions operable to config
ure an electronic device to perform methods as described in
the above examples. An implementation of Such methods
can include code, Such as microcode, assembly language
code, a higher-level language code, or the like. Such code
can include computer readable instructions for performing
various methods. The code may form portions of computer
program products. Further, in an example, the code can be
tangibly stored on one or more volatile, non-transitory, or
non-volatile tangible computer-readable media, Such as dur
ing execution or at other times. Examples of these tangible
computer-readable media can include, but are not limited to,
hard disks, removable magnetic disks, removable optical
disks (e.g., compact disks and digital video disks), magnetic
cassettes, memory cards or sticks, random access memories
(RAMs), read only memories (ROMs), and the like.
0093. The above description is intended to be illustrative,
and not restrictive. For example, the above-described
examples (or one or more aspects thereof) may be used in
combination with each other. Other embodiments can be
used. Such as by one of ordinary skill in the art upon
reviewing the above description. The Abstract is provided to
comply with 37 C.F.R., S1.72(b), to allow the reader to
quickly ascertain the nature of the technical disclosure. It is
submitted with the understanding that it will not be used to
interpret or limit the scope or meaning of the claims. Also,
in the above Detailed Description, various features may be
grouped together to streamline the disclosure. This should
not be interpreted as intending that an unclaimed disclosed
feature is essential to any claim. Rather, inventive subject
matter may lie in less than all features of a particular
disclosed embodiment. Thus, the following claims are
hereby incorporated into the Detailed Description, with each

US 2017/0007925 A1

claim standing on its own as a separate embodiment, and it
is contemplated that such embodiments can be combined
with each other in various combinations or permutations.
The scope of the invention should be determined with
reference to the appended claims, along with the full scope
of equivalents to which Such claims are entitled.

1-21. (canceled)
22. A method of implementing game placement effects in

a display output of a computer-implemented game, the
method comprising using one or more computer processors
to perform electronic operations including:

receiving user input that indicates a movement of a game
object in a virtual in-game environment of the com
puter-implemented game, wherein the movement of the
game object is indicated to a target location in the
virtual in-game environment with the user input, and
wherein user input is received as an interaction with a
display output of the computer-implemented game;

identifying at least one proximate game object that is
located within an effect area Surrounding the target
location in the virtual in-game environment, wherein
the effect area overlaps an area of the virtual in-game
environment that includes the at least one proximate
game object, wherein the effect area is defined by
characteristics of the game object, and wherein the at
least one proximate game object includes at least one
object that is not located directly adjacent to the target
location;

changing a display characteristic of the at least one
proximate game object within the effect area Surround
ing the target location of the game object, in response
to the user input that indicates the movement of the
game object; and

updating the display output of the computer-implemented
game, wherein the display output is updated to indicate
the movement of the game object and the changed
display characteristic of the at least one proximate
game object.

23. The method of claim 22, comprising:
determine an association of the game object with a

category or a type of game objects, and wherein the
operations of changing the display characteristic of the
at least one proximate game object are performed based
on the category or the type associated with the at least
one proximate game object.

24. The method of claim 23, wherein the display charac
teristic of the at least one proximate game object causes a
change in the display output of the at least one proximate
game object over a Subsequent time period.

25. The method of claim 22, wherein updating the display
output of the computer-implemented game includes adapt
ing an appearance of the game object as displayed in the
virtual in-game environment.

26. The method of claim 22, wherein updating the display
output of the computer-implemented game includes adapt
ing a game-play behavior of the game object to control
functionality of the game object within rules of the com
puter-implemented game.

27. The method of claim 22, wherein changing a display
characteristic of the at least one proximate game object
includes using a table and a positioning of the at least one
proximate game object relative to the target location to
determine a new value for a display property of the proxi
mate game object.

Jan. 12, 2017

28. The method of claim 22, further comprising:
changing a display characteristic of the game object, in

response to the user input that indicates the movement
of the game object, wherein respective display charac
teristics of the game object are dynamically variable
based on a proximity distance between the game object
and the at least one proximate game object.

29. A computing system adapted for game placement
effects in a display output of a computer-implemented game,
the computing system comprising:
memory circuitry;
processor circuitry; and
a storage medium including instructions that, when

executed by the processor circuitry and memory cir
cuitry of the computer system, perform operations that:
receive user input that indicates a movement of a game

object in a virtual in-game environment of the com
puter-implemented game, wherein the movement of
the game object is indicated to a target location in the
virtual in-game environment with the user input, and
wherein user input is received as an interaction with
a display output of the computer-implemented game;

identify at least one proximate game object that is
located within an effect area Surrounding the target
location in the virtual in-game environment, wherein
the effect area overlaps an area of the virtual in-game
environment that includes the at least one proximate
game object, wherein the effect area is defined by
characteristics of the game object, and wherein the at
least one proximate game object includes at least one
object that is not located directly adjacent to the
target location;

change a display characteristic of the at least one
proximate game object within the effect area Sur
rounding the target location of the game object, in
response to the user input that indicates the move
ment of the game object; and

update the display output of the computer-implemented
game, wherein the display output is updated to
indicate the movement of the game object and the
changed display characteristic of the at least one
proximate game object.

30. The computing system of claim 29, the instructions
further to perform operations that:

determine an association of the game object with a
category or a type of game objects, and wherein the
operations to change the display characteristic of the at
least one proximate game object are performed based
on the category or the type associated with the at least
one proximate game object.

31. The computing system of claim 29, wherein the
display characteristic of the at least one proximate game
object causes a change in the display output of the at least
one proximate game object over a Subsequent time period.

32. The computing system of claim 29, wherein the
operations that update the display output of the computer
implemented game include adaptation of an appearance of
the game object as displayed in the virtual in-game envi
rOnment.

33. The computing system of claim 29, wherein the
operations that update the display output of the computer
implemented game include adaptation of a game-play

US 2017/0007925 A1

behavior of the game object to control functionality of the
game object within rules of the computer-implemented
game.

34. The computing system of claim 29, wherein the
operations that change a display characteristic of the at least
one proximate game object include use of a table and a
position of the at least one proximate game object relative to
the target location to determine a new value for a display
property of the proximate game object.

35. The computing system of claim 29, the instructions
further to perform operations that:

change a display characteristic of the game object, in
response to the user input at indicates the movement of
the game object, wherein respective display character
istics of the game object are dynamically variable based
on a proximity distance between the game object and
the at least one proximate game object.

36. The computing system of claim 29, further compris
ing:

a display device to output the display output of the
computer-implemented game.

37. The computing system of claim 29, wherein the
computing system is a mobile computing device adapted to
operate the computer-implemented game based on down
loaded data from a remote service.

38. A non-transitory machine-readable medium that stores
instructions adapted for game placement effects in a display
output of a computer-implemented game, wherein the
instructions, which when performed by a machine, cause the
machine to perform electronic operations that:

receive use input that indicates a movement of a game
object in a virtual in-game environment of the com
puter-implemented game, wherein the movement of the
game object is indicated to a target location in the
virtual in-game environment with the user input, and
wherein user input is received as an interaction with a
display output of the computer-implemented game;

identify at least one proximate game object that is located
within an effect area surrounding the target location in
the virtual in-game environment, wherein the effect
area overlaps an area of the virtual in-game environ
ment that includes the at least one proximate game
object, wherein the effect area is defined by character
istics of the game object, and wherein the at least one
proximate game object includes at least one object that
is not located directly adjacent to the target location;

change a display characteristic of the at least one proxi
mate game object within the effect area Surrounding the

Jan. 12, 2017

target location of the game object, in response to the
user input that indicates the movement of the game
object; and

update the display output of the computer-implemented
game, wherein the display output is updated to indicate
the movement of the game object and the changed
display characteristic of the at least one proximate
game object.

39. The machine-readable medium of claim 38, wherein
the instructions further cause the machine to:

determine an association of the game object with a
category or a type of game objects, and wherein the
operations to change the display characteristic of the at
least one proximate game object are performed based
on the category or the type associated with the at least
one proximate game object.

40. The machine-readable medium of claim 38, wherein
the display characteristic of the at least one proximate game
object causes a change in the display output of the at least
one proximate game object over a Subsequent time period.

41. The machine-readable medium of claim 38, wherein
the operations that update the display output of the com
puter-implemented game include adaptation of an appear
ance of the game object as displayed in the virtual in-game
environment.

42. The machine-readable medium of claim 38, wherein
the operations that update the display output of the com
puter-implemented game include adaptation of a game-play
behavior of the game object to control functionality of the
game object within rules of the computer-implemented
game.

43. The machine-readable medium of claim 38, wherein
the operations that change a display characteristic of the at
least one proximate game object include use of a table and
a position of the at least one proximate game object relative
to the target location to determine a new value for a display
property of the proximate game object.

44. The machine-readable medium of claim 38, wherein
the instructions further cause the machine to:

change a display characteristic of the game object, in
response to the user input that indicates the movement
of the game object, wherein respective display charac
teristics of the game object are dynamically variable
based on a proximity distance between the game object
and the at least one proximate game object.

k k k k k

