(12) (19) (CA) **Demande-Application**

Office de la propriété INTELLECTUELLE DU CANADA

Canadian Intellectual PROPERTY OFFICE

(21) (A1) **2,247,749**

(22) 1998/09/21 1999/03/22

- (72) KLEEMANN, Heinz-Werner, DE
- (72) SCHWARK, Jan-Robert, DE
- (72) FABER, Sabine, DE
- (72) LANG, Hans Jochen, DE
- (72) WEICHERT, Andreas, DE
- (72) JANSEN, Hans-Willi, DE
- (71) HOECHST MARION ROUSSEL DEUTSCHLAND GMBH, DE
- (51) Int.Cl. 6 C07C 311/16, C07C 323/67, C07C 311/41, A61K 31/33, C07C 311/29, A61K 31/275, C07C 317/14, A01N 1/02, C07C 381/00
- (30) 1997/09/22 (19741635.7) DE
- (54) BIPHENYLSULFONYLCYANAMIDES, PROCESSUS DE PREPARATION ET UTILISATION COMME MEDICAMENT
- (54) BIPHENYLSULFONYLCYANAMIDES, PROCESS FOR THEIR PREPARATION, AND THEIR USE AS MEDICAMENT

(57) Les composés de formule I (voir formule I ci-haut), dans laquelle les symboles ont la signification indiquée dans les revendications, ont des propriétés antiarythmisantes remarquables. Ils présentent une composante cardioprotectrice. Ils peuvent inhiber ou considérablement réduire, de façon préventive, les processus pathophysiologiques dans la formation des dommages causés par l'ischémie, en particulier dans l'élicitation d'arythmie cardiaque induite par l'ischémie. De plus, ils exercent une forte action inhibitrice sur la prolifération des cellules.

(57) Compounds of the formula I ((see above formula I) in which the symbols have the meanings indicated in the claims, have outstanding antiarrhythmic properties. They exhibit a cardioprotective component. They can inhibit or greatly decrease, in a preventive manner, the pathophysiological processes in the formation of ischemically induced damage, in particular in the elicitation of ischemically induced cardiac arrhythmias. Moreover, they have a strong inhibitory action on the proliferation of cells.

Hoechst Marion Roussel Deutschland GmbH

HMR 97/ L 220

Abstract

Compounds of the formula I

in which the symbols have the meanings indicated in the claims, have outstanding antiarrhythmic properties. They exhibit a cardioprotective component. They can inhibit or greatly decrease, in a preventive manner, the pathophysiological processes in the formation of ischemically induced damage, in particular in the elicitation of ischemically induced cardiac arrhythmias. Moreover, they have a strong inhibitory action on the proliferation of cells.

Hoechst Marion Roussel Deutschland GmbH HMR 97/ L 220 Dr. MB/sch

Biphenylsulfonylcyanamides, process for their preparation, and their use as medicament

5

The invention relates to compounds of the formula (I),

10

in which the symbols have the following meaning:

R(1) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms, 1-naphthyl, 2-naphthyl, $-C_aH_{2a}$ -cycloalkyl having 3,4,5,6 or 7 carbon atoms or $-C_aH_{2a}$ -phenyl, where the phenyl moiety is unsubstituted or substituted by 1-3 substituents from the group consisting of alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms, F, Cl, Br, I, CF₃, SO_nR(11), OR(17), NR(8)R(9), -C = N, $-NO_2$ or CO-R(22);

R(11) is alkyl having 1,2,3 or 4 carbon atoms or NR(20)R(21);

25

20

R(20) and R(21) independently of one another are hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

R(17) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

30

- R(8) and R(9) independently of one another are hydrogen or alkyl having 1,2,3 or 4 carbon atoms;
- R(22) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms or

OR(30);

R(30) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms;

5 a is zero, 1 or 2;

n is zero, 1 or 2;

or

- 10 R(1) and R(3) together with the carbon atom carrying them are cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms or fluorenyl;
- R(2), R(3), R(4) and R(5) independently of one another are hydrogen, F, CF₃, O-R(10), alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms, cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms, -C_gH_{2g}-phenyl, where the phenyl moiety is unsubstituted or substituted by 1-3 substituents from the group consisting of F, Cl, Br, I, CF₃, methyl, methoxy, hydroxyl or NR(18)R(19);
- 20 R(18) and R(19) independently of one another are hydrogen or alkyl having 1,2,3 or 4 carbon atoms;
 - g is zero, 1 or 2;
- 25 R(10) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms, phenyl which is unsubstituted or substituted by 1-3 substituents from the group consisting of F, Cl, Br, I, CF₃, methyl, methoxy, hydroxyl or NR(12)R(13);
- 30 R(12) and R(13) independently of one another are hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

or

R(10)	is heteroaryl having 1,2,3,4,5,6,7,8 or 9 carbon atoms, which is
	unsubstituted or substituted by 1-3 substituents from the group
	consisting of F, Cl, Br, I, CF ₃ , CH ₃ , methoxy, hydroxyl or
	NR(14)R(15);

R(14) and R(15) independently of one another are hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

or

10 R(2) and R(4) together are a second bond between the carbon atoms carrying the radicals R(3) and R(5), where R(1), R(3), R(5) are as defined above;

R(6) and R(7) independently of one another are hydrogen, F, Cl, Br, I, CF₃,
-C≡N, -NO₂, SO_p-R(16),CO-R(23) or O-R(24);

15

R(23) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms or OR(25);

R(25) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms;

20

R(24) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms or phenyl, which is unsubstituted or substituted by 1-3 substituents from the group consisting of F, Cl, Br, I, CF₃, methyl, methoxy, hydroxyl or NR(28)R(29);

25

R(28) and R(29) are H or alkyl having 1,2,3 or 4 carbon atoms;

30

R(16) is alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms, phenyl which is unsubstituted or substituted by 1-3 substituents from the group consisting of F, Cl, Br, I, CF₃, methyl, methoxy, hydroxyl or NR(26)R(27);

R(26) and R(27) are H or alkyl having 1,2,3 or 4 carbon atoms;

p is zero, 1 or 2;

and their physiologically tolerable salts.

- 5 Preferred compounds of the formula (I) are those where
 - R(1) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms, 1-naphthyl, 2-naphthyl, -C_aH_{2a}-cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms or -C_aH_{2a}-phenyl, where the phenyl moiety is unsubstituted or substituted by 1-2 substituents from the group consisting of alkyl having 1,2,3 or 4 carbon atoms, F, Cl, CF₃, SO_nR(11), OR(17), NR(8)R(9), -C≡N, or CO-R(22);
 - R(11) is alkyl having 1,2,3 or 4 carbon atoms or NR(20)R(21);

15

10

R(20) and R(21) independently of one another are hydrogen, methyl or ethyl;

R(17) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

20

- R(8) and R(9) independently of one another are hydrogen, methyl or ethyl;
- R(22) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or OR(30);

25

R(30) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms;

- a is zero or 1;
- 30
- n is zero or 2;

or

R(1) and R(3) together with the carbon atom carrying them are cycloalkyl

having 3, 4, 5, 6 or 7 carbon atoms or fluorenyl;

- R(2) and R(4) independently of one another are hydrogen or F; or
- 5 R(2) and R(4) together are a second bond between the carbon atoms carrying the radicals R(3) and R(5);
 - R(3) and R(5) independently of one another are hydrogen, F, CF₃, O-R(10), alkyl having 1,2,3 or 4 carbon atoms, cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms, -C_gH_{2g}-phenyl, where the phenyl moiety is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(18)R(19);
- R(18) and R(19) independently of one another are hydrogen, methyl or ethyl;
 - g is zero or 1;
- R(10) is hydrogen, alkyl having 1, 2, 3 or 4 carbon atoms, phenyl which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(12)R(13);
- R(12) and R(13) independently of one another are hydrogen, methyl or ethyl;

or

30

10

- R(10) is heteroaryl having 1, 2, 3, 4, 5, 6, 7, 8 or 9 carbon atoms, which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, CH₃, methoxy, hydroxyl or NR(14)R(15);
- R(14) and R(15) independently of one another are hydrogen, methyl or ethyl;

R(6) and R(7) independently of one another are hydrogen,	F,	CI,	CF ₃ ,	-C≡N
SO _p -R(16), CO-R(23) or O-R(24);				

R(23) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or OR(25);

5

R(25) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms;

10

- R(24) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(28)R(29);
 - R(28) and R(29) independently of one another are hydrogen, methyl or ethyl;

15

R(16) is alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(26)R(27);

20

- R(26) and R(27) independently of one another are hydrogen, methyl or ethyl;
- p is zero or 2;

25

- and their physiologically tolerable salts.
- Particularly preferred compounds of the formula (I) are those where
- 30 R(1) is methyl, ethyl, 1-naphthyl, 2-naphthyl, -C_aH_{2a}-cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms or -C_aH_{2a}-phenyl, where the phenyl moiety is unsubstituted or substituted by 1-2 substituents from the group consisting of alkyl having 1,2,3 or 4 carbon atoms, F, Cl, CF₃, SO₂R(11),

OR(17), NR(8)R(9), -C = N, or CO-R(22);

R(11) is methyl or dimethylamino;

5 R(17) is hydrogen, methyl or ethyl;

R(8) and R(9) independently of one another are hydrogen, methyl or ethyl,

10 R(22) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

a is zero or 1;

or

- 15 R(1) and R(3) together with the carbon atom carrying them are cycloalkyl having 3,4,5,6 or 7 carbon atoms or fluorenyl;
 - R(2) and R(4) independently of one another are hydrogen or F; or
- 20 R(2) and R(4) together are a second bond between the carbon atoms carrying the radicals R(3) and R(5);
- R(3) and R(5) independently of one another are hydrogen, F, CF₃, O-R(10), alkyl having 1,2,3 or 4 carbon atoms or -C_gH_{2g}-phenyl which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(18)R(19);

R(18) and R(19) independently of one another are hydrogen, methyl or ethyl;

g is zero or 1;

30

R(10) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or phenyl

which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(12)R(13);

5

R(12) and R(13) are hydrogen, methyl or ethyl;

or

- R(10) is heteroaryl having 1,2,3,4,5,6,7,8 or 9 carbon atoms, which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, CH₃, methoxy, hydroxyl or dimethylamino;
- R(6) and R(7) independently of one another are hydrogen, F, CI, CF_3 , -C = N, SO_2 -R(16), CO-R(23) or O-R(24);

15

10

- R(23) is hydrogen or alkyl having 1, 2, 3 or 4 carbon atoms;
- R(24) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, CI, CF₃, methyl, methoxy, hydroxyl or NR(28)R(29);

R(28) and R(29) independently of one another are hydrogen, methyl or ethyl;

25

R(16) is alkyl having 1,2,3 or 4 carbon atoms;

and their physiologically tolerable salts.

- 30 Very particularly preferred compounds of the formula (I) are those where
 - R(1) is methyl, ethyl, 1-naphthyl, 2-naphthyl, cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms or phenyl which is unsubstituted or substituted by a

substituent from the group consisting of alkyl having 1,2,3 or 4 carbon atoms, F, Cl, CF₃, SO₂R(11), OR(17), NR(8)R(9) or CO-R(22);

R(11) is methyl or dimethylamino;

5

- R(17) is hydrogen, methyl or ethyl;
- R(8) and R(9) independently of one another are hydrogen, methyl or ethyl;

10

15

25

R(22) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

or

- R(1) and R(3) together with the carbon atom carrying them are cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms or fluorenyl;
 - R(2) and R(4) are hydrogen; or
- R(2) and R(4) together are a second bond between the carbon atoms carrying
 the radicals R(3) and R(5);
 - R(3) and R(5) independently of one another are hydrogen, CF₃, O-R(10), alkyl having 1, 2, 3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by a substituent from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(18)R(19);
 - R(18) and R(19) independently of one another are hydrogen, methyl or ethyl;
- R(10) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1 substituent from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(12)R(13);

R(12) and R(13) independently of one another are hydrogen, methyl or ethyl,

or

5

25

- R(10) is heteroaryl having 1, 2, 3, 4, 5, 6, 7, 8 or 9 carbon atoms, which is unsubstituted or substituted by a substituent from the group consisting of F, Cl, CF₃, CH₃, methoxy, hydroxyl or dimethylamino;
- R(6) and R(7) independently of one another are hydrogen, F, Cl, CF₃, SO₂
 CH₃, CO-R(23) or O-R(24);
 - R(23) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms;
- R(24) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1 substituent from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(28)R(29);
- R(28) and R(29) independently of one another are hydrogen, methyl or ethyl;

and their physiologically tolerable salts.

Preferred compounds of the formula I are also those in which the biphenyl ring is linked as in compounds of the formula

and the sulfonylcyanamide group is located in the 2 position.

Preferred compounds of the formula I are furthermore those in which R(3) and R(5) are hydrogen and R(2) and R(4) are also hydrogen or together are a bond.

Furthermore, compounds of the formula I are preferred in which R(1) and R(3) together with the carbon atom carrying them are cycloalkyl having 3,4,5,6 or 7 carbon atoms.

10

5

Preferred compounds of the formula I are also those in which R(1) is phenyl which is preferably unsubstituted or is substituted by a substituent from the group consisting of alkyl having 1,2,3 or 4 carbon atoms, F, Cl, CF₃, SO₂R(11), OR(17), NR(8)R(9) or CO-R(22);

15

- R(11) is methyl or dimethylamino;
- R(17) is hydrogen, methyl or ethyl;
- R(8) and R(9) independently of one another are hydrogen, methyl or ethyl;
- R(22) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms.

20

Preferred compounds of the formula I are those in which R(6) and R(7) are hydrogen.

Alkyl can be straight-chain or branched.

25

Cycloalkyl is also understood as meaning alkyl-substituted rings.

Examples of alkyl radicals having 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms are: methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, isopropyl, isobutyl, isopentyl, neopentyl, isohexyl, 3-methylpentyl, sec-butyl, tert-butyl, tert-pentyl.

30

Cycloalkyl radicals are, in particular, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, which, however, can also be substituted, for example,

by alkyl having 1, 2, 3 or 4 carbon atoms. As an example of substituted cycloalkyl radicals, 4-methylcyclohexyl and 2,3-dimethylcyclopentyl may be mentioned.

Heteroaryl having 1,2,3,4,5,6,7,8 or 9 carbon atoms is understood as meaning, in particular, radicals which are derived from phenyl or naphthyl, in which one or more CH groups are replaced by N and/or in which at least two adjacent CH groups are replaced by S, NH or O (with formation of a five-membered aromatic ring). In addition, one or both atoms of the condensation site of bicyclic radicals can also be nitrogen atoms (such as in indolizinyl).

Heteroaryl is, in particular, furanyl, thienyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolyl, indazolyl, quinolyl, isoquinolyl, phthalazinyl, quinoxalinyl, quinazolinyl, cinnolinyl.

15

20

25

Stereocenters which may occur can have either the (R) or (S) configuration.

Physiologically tolerable salts of compounds of the formula (I) are understood as meaning both their organic and inorganic salts, such as are described in Remington's Pharmaceutical Sciences (17th Edition, page 1418 (1985)). On account of the physical and chemical stability and the solubility, for acidic groups, inter alia, sodium, potassium, calcium and ammonium salts are preferred; for basic groups, inter alia, salts of hydrochloric acid, sulfuric acid, phosphoric acid or of carboxylic acids or sulfonic acids, such as, for example, acetic acid, citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid and p-toluenesulfonic acid are preferred.

The invention also relates to a process for the preparation of the novel compounds of the formula (I), and their physiologically tolerable salts, which comprises reacting compounds of the formula (II)

in which the radicals are as defined above, with cyanogen bromide. The reaction is expediently carried out in a dipolar aprotic solvent which is stable to cyanogen bromide, for example acetonitrile, DMA, TMU or NMP using a strong auxiliary base which is not very nucleophilic, such as, for example, K2CO3 or Cs₂CO₃. A suitable reaction temperature is a temperature between 0°C and the boiling point of the solvent used; a temperature between 60°C and 120°C is preferred.

15

10

5

Compounds of the formula II can be prepared by Wittig reaction of a compound of the formula III

25

in which R(5), R(6) and R(7) are as defined above and which can be prepared, for example, as described in Liebigs Ann. 1995 1253, with a phosphorane which contains the radicals R(1) and/or R(2) and/or R(3). Such Wittig reactions are known to the person skilled in the art and are described, for example, in Org. Synth. 1960, 40, 66; J. Org. Chem. 1963, 28, 1128 and Org. Synth. Coll. Vol. 5 1973, 751.

30

The compounds of the formula I according to the invention are suitable as inhibitors of the sodium-dependent bicarbonate/chloride exchanger (NCBE) or of the sodium/bicarbonate symporter.

In EP-A 855392, imidazole derivatives having a biphenylsulfonylcyanamide side chain have been proposed as NCBE inhibitors.

5

In addition, the invention relates to the use of a compound of the formula I for the production of a medicament for the treatment or prophylaxis of illnesses caused by ischemic conditions;

and the use of a compound of the formula I for the production of a medicament for the treatment or prophylaxis of cardiac infarct;

and the use of a compound of the formula I for the production of a medicament for the treatment or prophylaxis of angina pectoris;

15

and the use of a compound for the formula I for the production of a medicament for the treatment or prophylaxis of ischemic conditions of the heart;

20

and the use of a compound of the formula I for the production of a medicament for the treatment or prophylaxis of ischemic conditions of the peripheral and central nervous system and of stroke;

25

and the use of a compound of the formula I for the production of a medicament for the treatment or prophylaxis of ischemic conditions of peripheral organs and members;

and the use of a compound of the formula I for the production of a medicament for the treatment of states of shock;

30

and the use of a compound of the formula I for the production of a medicament for use in surgical operations and organ transplantations;

and the use of a compound of the formula I for the production of a medicament for the preservation and storage of transplants for surgical measures;

and the use of a compound of the formula I for the production of a medicament for the treatment of illnesses in which cell proliferation is a primary or secondary cause; and thus its use for the production of an antiatherosclerotic, an agent against diabetic late complications, carcinomatous disorders, fibrotic disorders such as pulmonary fibrosis, liver fibrosis or kidney fibrosis, prostate hyperplasia;

and the use of a compound of the formula I for the production of a medicament for the treatment of impaired respiratory drive;

and a pharmaceutical comprising an efficacious amount of a compound of the formula I.

20

25

30

The compounds of the formula (I) according to the invention exhibit very good antiarrhythmic properties, such as are important, for example, for the treatment of illnesses which occur in the case of oxygen deficiency symptoms. On account of their pharmacological properties, the compounds of the formula (I) are outstandingly suitable as antiarrhythmic pharmaceuticals having a cardioprotective component for infarct prophylaxis and infarct treatment and for the treatment of angina pectoris, where they also inhibit or greatly decrease, in a preventive manner, the pathophysiological processes in the formation of ischemically induced damage, in particular in the elicitation of ischemically induced cardiac arrhythmias. Because of their protective actions against pathological hypoxic and ischemic situations, the compounds of the formula (I) according to the invention can be used, on account of inhibition of the cellular Na*-dependent Cl⁻/HCO₃* exchange mechanism (= NCBE inhibitors) or of the sodium/bicarbonate symporter as pharmaceuticals for the treatment of all acute or chronic damage caused by ischemia or illnesses induced primarily or secondarily thereby. They protect organs acutely or chronically undersupplied

with oxygen by lowering or preventing ischemically induced damage and are thus suitable as pharmaceuticals, for example, in thromboses, vascular spasms, atherosclerosis or in surgical interventions (e.g. in liver and kidney organ transplantations, where the compounds can be used both for the protection of the kidneys in the donor before and during removal, for the protection of removed organs, for example during treatment with or storage thereof in physiological bath fluids, and during transfer to the recipient's body) or chronic or acute kidney failure.

The compounds of the formula (I) are also valuable pharmaceuticals having a protective action when carrying out angioplastic surgical interventions, for example on the heart and on peripheral vessels. Corresponding to their protective action against ischemically induced damage, the compounds are also suitable as pharmaceuticals for the treatment of ischemias of the nervous system, in particular of the CNS, where they are suitable, for example, for the treatment of stroke or of cerebral edema. Moreover, the compounds of the formula (I) according to the invention are also suitable for the treatment of forms of shock, such as, for example, of allergic, cardiogenic, hypovolemic and of bacterial shock.

Moreover, the compounds of the formula (I) according to the invention are distinguished by strong inhibitory action on the proliferation of cells, for example on fibroblast cell proliferation and on the proliferation of the smooth vascular muscle cells. The compounds of the formula (I) are thus suitable as valuable therapeutics for illnesses in which cell proliferation is a primary or secondary cause, and can therefore be used as antiatherosclerotics, agents against diabetic late complications, carcinomatous disorders, fibrotic disorders such as pulmonary fibrosis, liver fibrosis or kidney fibrosis, organ hypertrophies and hyperplasias, in particular in prostate hyperplasia or prostate hypertrophy.

30

5

10

15

20

25

It has been found that inhibitors of the Na⁺-dependent Cl⁻/HCO₃⁻ exchanger (NCBE inhibitors) or of the sodium/bicarbonate symporter can stimulate the respiration by means of an increase in the chemosensitivity of the respiratory

chemoreceptors. These chemoreceptors are responsible to a considerable extent for the maintenance of an orderly respiratory activity. They are activated in the body by hypoxia, pH decrease and increase in CO₂ (hypercapnia) and result in an adjustment of the respiratory minute volume. During sleep, the respiration is particularly susceptible to interference and to a great extent dependent on the activity of the chemoreceptors. An improvement in the respiratory drive as a result of stimulation of the chemoreceptors with substances which inhibit the Na⁺-dependent CI/HCO₃⁻ exchange results in an improvement of the respiration in the following clinical conditions and illnesses: impaired central respiratory drive (e.g. central sleep apnea, sudden infant death, post-operative hypoxia), muscle-related respiratory disorders, respiratory disorders after long-term ventilation, respiratory disorders during adaptation in a high mountain area, obstructive and mixed forms of sleep apneas, acute and chronic lung diseases with hypoxia and hypercapnia.

15

20

25

30

10

5

The compounds of the formula I according to the invention and their physiologically tolerable salts can be used in animals, preferably in mammals, and in particular in man, as pharmaceuticals per se, in mixtures with one another or in the form of pharmaceutical preparations. The present invention also relates to the compounds of the formula I and their physiologically tolerable salts for use as pharmaceuticals, their use in the therapy and prophylaxis of the syndromes mentioned and the production of medicaments therefor. The present invention furthermore relates to pharmaceutical preparations which as active constituent contain an efficaceous dose of at least one compound of the formula I and/or of a physiologically tolerable salt thereof in addition to customary pharmaceutically innocuous excipients and auxiliaries. The pharmaceutical preparations normally contain 0.1 to 99 percent by weight, preferably 0.5 to 95 percent by weight, of the compounds of the formula I and/or their physiologically tolerable salts. The pharmaceutical preparations can be prepared in a manner known per se. To this end, the compounds of the formula I and/or their physiologically tolerable salts are brought, together with one or more solid or liquid pharmaceutical excipients and/or auxiliaries and, if desired, in combination with other pharmaceutical

active compounds into a suitable administration form or dose form, which can then be used as a pharmaceutical in human medicine or veterinary medicine.

Pharmaceuticals which contain a compound of the formula (I) and/or its physiologically tolerable salts can be administered orally, parenterally, intravenously, rectally or by inhalation, the preferred administration being dependent on the particular symptoms of the disorder. The compounds of the formula I can be used here on their own or together with pharmaceutical auxiliaries, namely both in veterinary and in human medicine.

10

15

20

25

30

5

The person skilled in the art is familiar on the basis of his expert knowledge with the auxiliaries which are suitable for the desired pharmaceutical formulation. In addition to solvents, gel-forming agents, suppository bases, tablet auxiliaries and other active compound excipients, it is possible to use, for example, antioxidants, dispersants, emulsifiers, antifoams, flavor corrigents, preservatives, solubilizers or colorants.

For an oral administration form, the active compounds are mixed with the additives suitable therefor, such as excipients, stabilizers or inert diluents and are brought by means of the customary methods into the suitable administration forms, such as tablets, coated tablets, hard capsules, aqueous, alcoholic or oily solutions. Inert excipients which can be used are, for example, gum arabic, magnesia, magnesium carbonate, potassium phosphate, lactose, glucose or starch, in particular corn starch. Preparation can take place here both as dry and as moist granules. Possible oily excipients or solvents are, for example, vegetable or animal oils, such as sunflower oil or codliver oil.

For subcutaneous or intravenous administration, the active compounds are brought into solution, suspension or emulsion, if desired with the substances customary therefor such as solubilizers, emulsifiers or other auxiliaries. Suitable solvents, for example, are: water, physiological saline solution or alcohols, e.g. ethanol, propanol, glycerol, and additionally also sugar solutions such as glucose or mannitol solutions, or alternatively a mixture of the various

solvents mentioned.

5

10

15

20

25

30

Pharmaceutical formulations suitable for administration in the form of aerosols or sprays are, for example, solutions, suspensions or emulsions of the active compound of the formula I in a pharmaceutically acceptable solvent, such as, in particular, ethanol or water, or a mixture of such solvents.

If required, the formulation can also contain other pharmaceutical auxiliaries such as surfactants, emulsifiers and stabilizers, and also a propellant. Such a preparation customarily contains the active compound in a concentration from approximately 0.1 to 10, in particular from approximately 0.3 to 3, % by weight.

The dose of the active compound of the formula (I) to be administered and the frequency of administration depend on the potency and duration of action of the compounds used; additionally also on the nature and severity of the illness to be treated and on the sex, age, weight and individual responsiveness of the mammal to be treated.

On average, the daily dose of a compound of the formula I in a patient weighing approximately 75 kg is at least 0.001 mg/kg, preferably 0.01 mg/kg, to at most 10 mg/kg, preferably 1 mg/kg, of body weight. In acute episodes of the disease, for example immediately after suffering a cardiac infarct, even higher and, especially, more frequent doses may also be necessary, e.g. up to 4 individual doses per day. In particular on i.v. administration, for example in the case of an infarct patient in the intensive care unit, up to 200 mg per day may be necessary.

The compounds of the formula I and/or their physiologically tolerable salts can also be used to achieve an advantageous therapeutic action together with other pharmacologically active compounds for the treatment or prophylaxis of the abovementioned syndromes, in particular for the treatment of cardiovascular disorders. Combination with inhibitors of the sodium/hydrogen exchanger (NHE) and/or with active substances from other classes of cardiovascular active compound is preferred.

The invention additionally relates very generally to the combination of a) NCBE inhibitors and/or their physiologically tolerable salts with NHE inhibitors and/or their physiologically tolerable salts; b) NCBE inhibitors and/or their physiologically tolerable salts with active substances from other classes of cardiovascular active compound and/or their physiologically tolerable salts and c) of NCBE inhibitors and/or their physiologically tolerable salts with NHE inhibitors and/or their physiologically tolerable salts and with active substances from other classes of cardiovascular active compounds and/or their physiologically tolerable salts. Those combinations are preferred in which NCBE inhibitors of the formula I and/or their physiologically tolerable salts are 10 used.

5

15

20

25

30

The active compounds known and identified as NHE inhibitors are guanidine derivatives, preferably acylguanidines, inter alia as are described in Edward J. Cragoe, Jr., "DIURETICS, Chemistry, Pharmacology and Medicine", J. WILEY & Sons (1983), 303 - 341 or the NHE inhibitors mentioned in DE19737224.4. Suitable NHE inhibitors are, for example, also benzoylguanidines, such as are described in US 5292755, US 5373024, US 5364868, US 5591754, US 5516805, US 5559153, US 5571842, US 5641792, US 5631293, EP-A 577024, EP-A 602522, EP-A 602523, EP-A 603650, EP-A 604852, EP-A 612723, EP-A 627413, EP-A 628543, EP-A 640593, EP-A 640588, EP-A702001, EP-A 713864, EP-A 723956, EP-A 754680, EP-A 765868, EP-A 774459, EP-A 794171, DE 19624178.2, DE 19713427.0; ortho-substituted benzoylguanidines, such as are described in EP-A 556673, EP-A 791577, EP-A 794172, DE 19624178.2; ortho-amino-substituted benzoylguanidines, such as are described in EP-A 690048; isoquinolines, such as are described in EP-A 590455; benzo-fused 5-membered ring heterocycles, such as are described in EP-A 639573; diacyl-substituted guanidines, such as are described in EP-A 640587; acylguanidines, such as are described in US 5547953; phenylsubstituted alkyl- or alkenylcarbonylguanidines carrying perfluoroalkyl groups, such as are described in US 5567734, EP-A 688766; heteroaroylguanidines, such as are described in EP-A 676395; bicyclic heteroaroylguanidines, such as are described in EP-A 682017; indenoylguanidines, such as are described

10

15

20

25

30

in EP-A 738712; benzyloxycarbonylguanidines, such as are described in EP-A 748795; phenyl-substituted alkenylcarbonylguanidines carrying fluorophenyl groups, such as are described in EP-A 744397; substituted cinnamoylguanidines, such as are described in EP-A 755919; sulfonimidamides, such as are described in EP-A 771788; benzenedicarbonyldiguanidines, such as are described in EP-A 774458, EP-A 774457; diarylcarbonyldiguanidines, such as are described in EP-A 787717; substituted thiophenylalkenylcarbonylguanidines, such as are described in EP-A 790245; bis-ortho-substituted benzoylguanidines, such as are described in DE 19621319.3; substituted 1- or 2-naphthylguanidines, such as are described in DE 19621482.3 and DE 19621483.1; indanylidineacetylguanidines, such as are described in EP 96112275.1; phenyl-substituted alkenylcarbonylguanidines, such as are described in DE 19633966.9; aminopiperidylbenzoylguanidines, such as are described in EP 667341; heterocycloxybenzylguanidines, such as are described in EP-A 694537; orthosubstituted benzoylguanidines, such as are described in EP704431; orthosubstituted alkylbenzylguanidines, such as are described in EP-A 699660; ortho-substituted heterocyclylbenzoylguanidines, such as are described in EP-A 699666; ortho-substituted 5-methylsulfonylbenzoylguanidines, such as are described in EP-A 708088; ortho-substituted 5-alkylsulfonylbenzoylguanidines having 4-amino substituents, such as are described in EP-A 723963; orthosubstituted 5-alkylsulfonylbenzoylguanidines having 4-mercapto substituents, such as are described in EP-A 743301; 4-sulfonyl- or 4sulfinylbenzylguanidines, such as are described in EP-A 758644; alkenylbenzoylguanidines, such as are described in EP-A 760365; benzoylguanidines with fused, cyclic sulfones, such as are described in DE 19548708; benzoyl-, polycyclic aroyl- and heteroaroylguanidines, such as are described in WO 9426709; 3-aryl/heteroarylbenzoylguanidines, such as are described in WO 9604241; 3-phenylbenzoylguanidines having a basic amide

described in WO 9426709; 3-aryl/heteroarylbenzoylguanidines, such as are described in WO 9604241; 3-phenylbenzoylguanidines having a basic amide in the 5-position, such as are described in WO 9725310; 3-dihalothienyl- or 3-dihalophenylbenzoylguanidines having a basic substituent in the 5-position, such as are described in WO 9727183; 3-methylsulfonylbenzoylguanidines having specific amino substituents in the 4-position, such as are described in

WO 9512584; amiloride derivatives, such as are described in WO 9512592; 3methylsulfonylbenzoylguanidines having specific amino substituents in the 4position, such as are described in WO 9726253; indoloylguanidines, such as are described in EP-A 622356 and EP-A 708091; indoloylguanidines having a fused additional ring system, such as are described in EP 787728; 5 methylquanidine derivatives, such as are described in WO 9504052; 1,4benzoxazinoyl-guanidines, such as are described in EP-A 719766; 5-bromo-2naphthoylguanidines, such as are described in JP 8225513; quinoline-4carbonylguanidines having a phenyl radical in the 2-position, such as are described in EP-A 726254; cinnamoylguanidines, such as are described in JP 10 09059245; propenoylguanidines having a naphthalene substituent, such as are described in JP 9067332; propenoylguanidines having indole substituents, such as are described in JP 9067340; or heteroaryl-substituted acroylguanidines, such as are described in WO 9711055, and their physiologically tolerable salts. 15

Preferred NHE inhibitors are the compounds emphasized as preferred in the publications mentioned. Very particularly preferred compounds are cariporide (HOE642), HOE 694, EMD 96785, FR 168888, FR 183998, SM-20550, KBR-9032, and their physiologically tolerable salts. The most preferred is cariporide or another physiologically tolerable salt of N-(4-isopropyl-3-methanesulfonylbenzoyl)guanidine.

20

25

30

Examples of classes of active compound having cardiovascular activity which can therapeutically be advantageously combined with NCBE inhibitors or can additionally be combined with combinations of NCBE inhibitors and NHE inhibitors are beta-receptor blockers, calcium antagonists, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, loop diuretics, thiazide diuretics, potassium-sparing diuretics, aldosterone antagonists, such as are employed, for example, in lowering blood pressure, and also cardiac glycosides or other contractile force-increasing agents in the treatment of cardiac insufficiency and of congestive heart failure, as well as antiarrhythmics of the classes I - IV, nitrates, K_{ATP} openers, K_{ATP} blockers, inhibitors of the

veratridine-activatable sodium channel, etc. Thus the following, for example, are suitable: the beta-blockers propanolol, atenolol, metoprolol; the calcium antagonists diltiazem hydrochloride, verapamil hydrochloride, nifedipine; the ACE inhibitors captopril, enalapril, ramipril, trandolapril, quinapril, spirapril, preferably ramipril or trandolapril; the angiotensin II receptor antagonists losartan, valsartan, telmisartan, eprosartan, tasosartan, candesartan, irbesartan; the loop diuretics furosemide, piretanide, torasemide; the thiazide diuretics hydrochlorothiazide, metolazone, indapamide; the potassium-sparing diuretics amiloride, triamterene, spironolactone; the cardiac glycosides digoxin, digitoxin, strophanthin; the antiarrhythmics amiodarone, sotalol, bretylium, flecainide; the nitrate glyceryl trinitrate; the K*(ATP) openers cromakalim, lemakalim, nocorandil, pinacidil, minoxidil; the inhibitors of the veratridine-activatable Na* channel.

15

20

25

30

Blockers of the noninactivating sodium channel (veratridine-activatable sodium channel) are an example of such a particularly advantageous combination component with NCBE inhibitors. The combinations of an NCBE inhibitor with a blocker of the noninactivating sodium channel (veratridine-activatable sodium channel) are suitable for infarct and re-infarct prophylaxis and infarct treatment and also for the treatment of angina pectoris and the inhibition of ischemically induced cardiac arrhythmias, tachycardia and the origin and maintenance of ventricular fibrillation, the combinations of an NCBE inhibitor with a blocker of the noninactivating sodium channel also inhibiting or greatly decreasing, in a preventive manner, the pathophysiological processes in the formation of ischemically induced damage. Because of their increased protective actions against pathological hypoxic and ischemic situations, the novel combinations of an NCBE inhibitor with a blocker of the noninactivating sodium channel can be used, as a result of increased inhibition of the Na⁺ influx into the cell, as pharmaceuticals for the treatment of all acute or chronic damage caused by ischemia or illnesses primarily or secondarily induced thereby. This relates to their use as pharmaceuticals for surgical interventions, e.g. in organ transplantation, where the combinations of an NCBE inhibitor with a blocker of the noninactivating sodium channel can be used both for the

protection of the organs in the donor before and during removal, for the protection of removed organs, for example even during storage thereof in physiological bath fluids, and during transfer to the recipient's body. The combinations of an NCBE inhibitor with a blocker of the noninactivating sodium channel are also valuable pharmaceuticals having a protective action when carrying out angioplastic surgical interventions, for example on the heart and also on peripheral vessels. Corresponding to their protective action against ischemically induced damage, the combinations of an NCBE inhibitor with a blocker of the noninactivating sodium channel are also suitable as pharmaceuticals for the treatment of ischemias of the nervous system, in particular of the central nervous system, where they are suitable for the treatment of stroke or of cerebral edema. Moreover, the novel combinations of an NCBE inhibitor with a blocker of the noninactivating sodium channel are also suitable for the treatment of forms of shock, such as, for example, of allergic, cardiogenic, hypovolemic and of bacterial shock.

In addition to administration as a fixed combination, the invention also relates to the simultaneous, separate or sequential administration of NCBE inhibitors with NHE inhibitors and/or of an additional active substance from another class of cardiovascular active compounds for the treatment of the abovementioned illnesses.

The invention additionally relates to a pharmaceutical preparation comprising a) an NCBE inhibitor and an NHE inhibitor and/or their physiologically tolerable salts; or b) an NCBE inhibitor and additionally an active substance from another class of cardiovascular active compound and/or their physiologically tolerable salts; or c) an NCBE inhibitor, an NHE inhibitor and additionally an active substance from another class of cardiovascular active compound, and/or their physiologically tolerable salts.

30

5

10

15

20

25

Pharmaceutical preparations which contain a compound of the formula I and/or its physiologically tolerable salt as an NCBE inhibitor are preferred.

By means of combined administration, the effect of one combination component can be potentiated by the other respective component, i.e. the action and/or duration of action of a novel combination or preparation is stronger or longer lasting than the action and/or duration of action of the respective individual components (synergistic effect). This leads on combined administration to a reduction of the dose of the respective combination component, compared with individual administration. The novel combinations and preparations accordingly have the advantage that the amounts of active compound to be administered can be significantly reduced and undesired side effects can be eliminated or greatly reduced.

The invention furthermore relates to a commercial pack comprising as pharmaceutical active compound a) an NCBE inhibitor and an NHE inhibitor and/or their physiologically tolerable salts; or b) an NCBE inhibitor and additionally an active substance from another class of cardiovascular active compound and/or their physiologically tolerable salts; or c) an NCBE inhibitor, an NHE inhibitor and additionally an active substance from another class of cardiovascular active compound and/or their physiologically tolerable salts, in each case together with instructions for the use of these active compounds in combination for simultaneous, separate or sequential administration in the treatment or prophylaxis of the abovementioned syndromes, in particular for the treatment of cardiovascular disorders.

Commercial packs which contain compounds of the formula I as NCBE inhibitors are preferred.

25

5

10

15

20

The pharmaceutical preparations according to the invention can be prepared, for example, by either intensively mixing the individual components as a powder, or by dissolving the individual components in the suitable solvent such as, for example, a lower alcohol and then removing the solvent.

30

The weight ratio of the NCBE inhibitor to the NHE inhibitor or the substance having cardiovascular activity in the novel combinations and preparations is expediently 1:0.01 to 1:100, preferably 1:0.1 to 1:10.

The novel combinations and preparations in total contain preferably 0.5-99.5% by weight, in particular 4-99% by weight, of these active compounds.

When used according to the invention in mammals, preferably in man, the doses of the various active compound components, for example, vary in the range from 0.001 to 100 mg/kg/day.

List of abbreviations:

10 Bn Benzyl

CH₂Cl₂ Dichloromethane

DCI Desorption Chemical Ionization

DIP Diisopropyl ether

DMA Dimethylacetamide

15 DME Dimethoxyethane

DMF N,N-Dimethylformamide

EA Ethyl acetate (EtOAc)

El electron impact

eq equivalent

20 ES Electrospray ionization

ESneg Electrospray, negative ionization

Et Ethyl

EtOH Ethanol

FAB Fast Atom Bombardment

25 HEP n-Heptane

HOAc Acetic acid

KOtBu Potassium t-butoxide

Me Methyl

MeOH Methanol

30 mp melting point

MTB Methyl tertiary-butyl ether

NCBE Sodium-dependent chloride/bicarbonate exchanger

NHE Sodium/hydrogen exchanger

NMP N-Methylpyrrolidone

RT room temperature

THF Tetrahydrofuran

TMU N,N,N',N'-Tetramethylurea

5 Tol Toluene

10

15

20

25

30

CNS Central nervous system

General procedure for the preparation of sulfonylcyanamides from sulfonamides

The sulfonamide starting material is dissolved in 10 ml/mmol of anhydrous acetonitrile, 3 mol equivalents of K_2CO_3 and one mol equivalent of a 5 N solution of BrCN in acetonitrile are added dropwise and the mixture is heated under reflux until conversion is complete (typical reaction time 10 minutes to 6 hours). The reaction mixture is then chromatographed on silica gel without further working up after cooling to RT.

Example 1 4'-Cyclohexylidenemethylbiphenyl-2-sulfonylcyanamide

a) 4'-Formylbiphenyl-2-sulfonamide

5.0 g of N-dimethylaminomethylene-4'-formylbiphenyl-2-sulfonamide (Liebigs Ann. 1995, 1253) were dissolved in 50 ml of EtOH, treated with 50 ml of a saturated aqueous HCl solution and refluxed for 2 h. The mixture was then cooled to RT, 500 ml of water were added, the mixture was stirred for 2 h and the product was filtered off with suction. It was recrystallized from MTB and 2.8 g of white crystals were obtained, mp 165°C (with decomposition).

 $R_f(MTB) = 0.57$ MS (DCI): 262 (M+1)⁺

- b) 4'-Cyclohexylidenemethylbiphenyl-2-sulfonamide
- 5 5.5 g of cyclohexyltriphenylphosphonium bromide and 2.6 g of KOtBu were stirred at RT for 4 h in 200 ml of anhydrous THF. 3.0 g of 4'-formylbiphenyl-2-sulfonamide were added and the mixture was stirred at RT for 18 h. It was then diluted with 200 ml of EA, adjusted to pH = 6-7 using aqueous HCl solution and washed 2 times with 100 ml of a saturated aqueous NaCl solution each time. The organic phase was dried over Na₂SO₄ and the solvent was removed in vacuo. Chromatography on silica gel using DIP yielded 1.5 g of a colorless oil.

 $R_f(DIP) = 0.36$ MS (DCI): 328 (M+1)⁺

15 c) 4'-Cyclohexylidenemethylbiphenyl-2-sulfonylcyanamide

267 mg of 4'-cyclohexylidenemethylbiphenyl-2-sulfonamide were reacted to give the title compound. 80 mg of a pale yellow oil were obtained.

 $R_{\rm f}$ (EA/MeOH 10:1) = 0.17

20

Example 2 4'-Cyclohexylmethylbiphenyl-2-sulfonylcyanamide

25

30 a) 4'-Cyclohexylmethylbiphenyl-2-sulfonamide

1.45 g of 4'-cyclohexylidenemethylbiphenyl-2-sulfonamide were dissolved in 50 ml of MeOH and treated with 200 mg of Pd/C (10%). The mixture was

hydrogenated under normal pressure for 20 h under H_2 at RT, then the catalyst was filtered off with suction and the solvent was removed in vacuo. 1.4 g of a colorless oil were obtained.

$$R_r(DIP) = 0.45$$
 MS (DCI): 330 (M+1)⁺

5

b) 4'-Cyclohexylmethylbiphenyl-2-sulfonylcyanamide

1.4 g of 4'-cyclohexylmethylbiphenyl-2-sulfonamide were reacted for 2 hours according to the general procedure for the preparation of sulfonylcyanamides from sulfonamides and 1.2 g of a colorless foam were obtained.

$$R_f$$
 (EA/MeOH 10:1) = 0.31 IR (-C=N): 2183.1 cm⁻¹

The title compounds of Examples 3 and 4 were synthesized analogously to Examples 1 and 2:

15

10

Example 3 4'-Cyclopentylidenemethylbiphenyl-2-sulfonylcyanamide

20

Reacted 1.5 hours; colorless crystals, mp. 115-120°C with decomposition R_f (EA/MeOH 10:1) = 0.18 IR (-C=N) : 2180,3 cm⁻¹ MS (ESneg) : 337 (M-1)⁻¹

Example 4 4'-Cycloheptylidenemethylbiphenyl-2-sulfonylcyanamide

30

25

Reacted 1.5 hours; R_f (EA/MeOH 10:1) = 0.17 IR (-C=N): 2180.8 cm⁻¹ MS (ESneg): 365 (M-1)⁻¹ mp of potassium salt 168-171°C with decomposition.

5 Example 5 cis-4'-Styrylbiphenyl-2-sulfonylcyanamide

10

a) 4'-Styrylbiphenyl-2-sulfonamide

9.0 g of benzyltriphenylphosphonium chloride and 2.6 g of KOtBu were stirred
at RT for 4 h in 80 ml of anhydrous THF. 3.0 g of 4'-formylbiphenyl-2sulfonamide were then added and the mixture was stirred at RT for 20 h. 200
ml of a saturated aqueous NaHCO₃ solution were added and the mixture was
extracted 2 times using 200 ml of EA each time. The organic phase was dried
over Na₂SO₄ and the solvent was removed in vacuo. Chromatography on silica
gel using DIP/HEP 1:2 yielded 600 mg of cis-4'-styrylbiphenyl-2-sulfonamide,
R_f (DIP/HEP 1:2) = 0.25 MS (DCI) : 336 (M+1)⁺ and
1.2 g of trans-4'-styrylbiphenyl-2-sulfonamide, R_f (DIP/HEP 1:2) = 0.20 MS
(DCI) : 336 (M+1)⁺

25 b) cis-4'-Styrylbiphenyl-2-sulfonylcyanamide

300 mg of cis-4'-styrylbiphenyl-2-sulfonamide were reacted for 2 hours according to the general procedure for the preparation of sulfonylcyanamides from sulfonamides and 249 mg of a colorless foam were obtained.

30 R_f (EA/MeOH 10:1) = 0.26 IR (-C=N): 2182.3 cm⁻¹ MS (ESneg): 359 (M-1)⁻¹ mp of potassium salt 190°C with decomposition.

Example 6 trans-4'-Styrylbiphenyl-2-sulfonylcyanamide

10

300 mg of trans-4'-styrylbiphenyl-2-sulfonamide were reacted for 2 hours according to the general procedure for the preparation of sulfonylcyanamides from sulfonamides and 290 mg of a colorless foam were obtained.

 R_f (EA/MeOH 10:1) = 0.21 IR (-C=N): 2180.8 cm⁻¹ MS (ESneg): 359 (M-1)⁻¹ mp of potassium salt 170°C with decomposition.

Example 7 4'-Phenethylbiphenyl-2-sulfonylcyanamide

15

20

25

a) 4'-Phenethylbiphenyl-2-sulfonamide

400 mg of 4'-styrylbiphenyl-2-sulfonamide were dissolved in 10 ml of MeOH and 80 mg of Pd/C (10%) were added.

The mixture was hydrogenated under normal pressure for 20 h under H₂ at RT, then the catalyst was filtered off with suction and the solvent was removed in vacuo. 350 mg of a colorless oil were obtained.

 $R_f(DIP) = 0.46$ MS (DCI): 338 (M+1)⁺

30

b) 4'-Phenethylbiphenyl-2-sulfonylcyanamide

340 mg of 4'-phenethylbiphenyl-2-sulfonamide were reacted for 1 hour according to the general procedure for the preparation of sulfonylcyanamides

from sulfonamides and 360 mg of a colorless foam were obtained.

 R_f (EA/MeOH 10:1) = 0.28 IR (-C=N): 2178.3 cm⁻¹

The title compound of Example 8 was synthesized analogously to Example 5:

5

Example 8 cis-4'-(2-Cyclohexylvinyl)biphenyl-2-sulfonylcyanamide

10

- a) cis-4'-(2-Cyclohexylvinyl)biphenyl-2-sulfonamide
- 15 $R_f(DIP) = 0.45$ MS (ES): 342 (M+1)⁺
 - b) cis-4'-(2-Cyclohexylvinyl)biphenyl-2-sulfonylcyanamide Reaction time: 2 hours;

 R_f (EA/MeOH 10:1) = 0.17 IR (-C=N) : 2176.9 cm⁻¹ MS (ESneg) : 365 (M-1)⁻¹ mp of potassium salt 189-193°C with decomposition.

Example 9 trans-4'-(2-Cyclohexylvinyl)biphenyl-2-sulfonylcyanamide

25

- a) trans-4'-(2-Cyclohexylvinyl)biphenyl-2-sulfonamide
- 30 1.2 g of cis-4'-(2-cyclohexylvinyl)biphenyl-2-sulfonamide and 894 mg of iodine were dissolved in 100 ml of anhydrous CH₂Cl₂ and allowed to stand at RT for 5 days. The reaction mixture was diluted with 200 ml of CH₂Cl₂ and washed 2 times using 100 ml of a saturated aqueous Na₂SO₃ solution each time. The

organic phase was dried over Na_2SO_4 and the solvent was removed in vacuo. Chromatography on silica gel using DIP yielded 260 mg of a colorless oil. $R_f(DIP) = 0.45$ MS (ES): 342 (M+1)⁺

b) trans-4'-(2-Cyclohexylvinyl)biphenyl-2-sulfonylcyanamide
260 mg of trans-4'-(2-cyclohexylvinyl)biphenyl-2-sulfonamide were reacted for
2 hours according to the general procedure for the preparation of sulfonylcyanamides from sulfonamides and 90 mg of a colorless oil were obtained.

R_f (EA/MeOH 10:1) = 0.09 IR (-C≡N) : 2181.9 cm⁻¹ MS (ESneg) : 365 (M-1)⁻¹

Example 10 4'-(2-Cyclohexylethyl)biphenyl-2-sulfonylcyanamide

- a) 4'-(2-Cyclohexylethyl)biphenyl-2-sulfonamide

 800 mg of cis-4'-(2-cyclohexylvinyl)biphenyl-2-sulfonamide were dissolved in

 10 ml of MeOH and 80 mg of Pd/C (10%) were added. The mixture was

 hydrogenated under normal pressure for 5 h under H₂ at RT, then the catalyst

 was filtered off with suction and the solvent was removed in vacuo. 760 mg of
 a colorless oil were obtained.
- 25 $R_f(DIP) = 0.38$ MS (DCI): 344 (M+1)⁺

10

b) 4'-(2-Cyclohexylethyl)biphenyl-2-sulfonylcyanamide
 250 mg of 4'-(2-cyclohexylethyl)biphenyl-2-sulfonamide were reacted for 3 hours according to the general procedure for the preparation of
 sulfonylcyanamides from sulfonamides and 90 mg of a colorless oil were obtained.

 R_f (EA/MeOH 10:1) = 0.25 IR (-C=N): 2178.5 cm⁻¹ MS (ESneg): 367 (M-1)⁻¹ mp of potassium salt: 193°C with decomposition

Pharmacological data:

5

20

25

30

Inhibition of the Na⁺-dependent Cl⁻/HCO₃⁻ exchanger (NCBE) in human endothelial cells

Human endothelial cells (ECV-304) were detached from culture flasks with the aid of trypsin/EDTA buffer (0.05/0.02% in phosphate buffer) and, after centrifugation (100 g, 5 min), taken up in a buffered salt solution (mmol/l: 115
NaCl, 20 NH₄Cl, 5 KCl, 1 CaCl₂, 1 MgSO₄, 20 N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid (HEPES), 5 glucose and 1 g/l of bovine serumalbumin; pH 7.4). This cell suspension was incubated at 37°C for 20 min with 5 μM BCECF acetoxymethyl ester. The cells were then washed and resuspended in a sodium- and bicarbonate-free buffer solution (mmol/l: 5
HEPES, 133.8 choline chloride, 4.7 KCl, 1.25 MgCl₂, 0.97 K₂HPO₄, 0.23 KH₂PO₄, 5 glucose; pH 7.4).

The subsequent fluorescence measurement in the FLIPR (Fluorescent Imaging Plate Reader), 100 µl of this cell suspension in each case containing 20000 cells were added by pipette per well of a 96-well microtiter plate and this microtiter plate was centrifuged (100 g, 5 min).

In the FLIPR,100 µl of buffer solution in each case were then removed from a further prepared microtiter plate and added by pipette to each of the 96 wells of the measuring plate. In this case, for a 100% control, i.e. a recovery of the intracellular pH (pH_i) by means of the NCBE, a bicarbonate- and sodium-containing buffer solution (mmol/l: 5 HEPES, 93.8 NaCl, 40 NaHCO₃, 4.7 KCl, 1.25 CaCl₂, 1.25 MgCl₂, 0.97 Na₂HPO₄, 0.23 NaH₂PO₄, 5 glucose; pH 7.4) which contained 50 µM HOE 642 was used. For a 0% control, i.e. no pH_i recovery at all, a bicarbonate-free, sodium-containing buffer solution (mmol/l: 5 HEPES, 133.8 NaCl, 4.7 KCl, 1.25 CaCl₂, 1.25 MgCl₂, 0.97 Na₂HPO₄, 0.23 NaH₂PO₄, 5 glucose; pH 7.4) to which 50 µM HOE 642 were also added was employed. The compounds of the formula (I) according to the invention were added in various concentrations of the sodium- and bicarbonate-containing

solution.

After addition of the buffer solutions to the dye-loaded acidified cells situated in the measuring plate, the increase in the fluorescence intensity which corresponded to an increase in the pH_i was determined in each well of the microtiter plate. The kinetics were in this case recorded at 35°C over a period of 2 minutes.

The increase in the fluorescence intensities for different concentrations of the compounds according to the invention was related to the two controls and from this the inhibitory action of the substances was determined.

10

5

Results

Residual activity of the NCBE at an inhibitor concentration of 10 μM

15

Example	Residual activity in %
1	68.4
2	51.6
3	29.4
4	30.5
5	21.2
6	19.3
7	64.2
8	13.4
9	12.8
10	24.3

20

36

Hoechst Marion Roussel Deutschland GmbH

HMR 97/L 220

Patent claims:

5

1. A compound of the formula (I),

10

15

in which the symbols have the following meaning:

20

R(1) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms, 1-naphthyl, 2-naphthyl, $-C_aH_{2a}$ -cycloalkyl having 3,4,5,6 or 7 carbon atoms or $-C_aH_{2a}$ -phenyl, where the phenyl moiety is unsubstituted or substituted by 1-3 substituents from the group consisting of alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms, F, Cl, Br, I, CF₃, SO_nR(11), OR(17), NR(8)R(9), -C = N, $-NO_2$ or CO-R(22);

25

R(11) is alkyl having 1,2,3 or 4 carbon atoms or NR(20)R(21);

30

R(20) and R(21) independently of one another are hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

- R(17) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms;
- R(8) and R(9) independently of one another are hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

5

- R(22) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms or OR(30);
- R(30) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms;
 - a is zero, 1 or 2;
 - n is zero, 1 or 2;

15

or

- R(1) and R(3) together with the carbon atom carrying them are cycloalkyl having 3,4,5,6 or 7 carbon atoms or fluorenyl;
- 20 R(2), R(3), R(4) and R(5) independently of one another are hydrogen, F, CF₃, O-R(10), alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms, cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms, -C_gH_{2g}-phenyl, where the phenyl moiety is unsubstituted or substituted by 1-3 substituents from the group consisting of F, Cl, Br, I, CF₃, methyl, methoxy, hydroxyl or NR(18)R(19);
 - R(18) and R(19) independently of one another are hydrogen or alkyl having 1,2,3 or 4 carbon atoms;
- 30 g is zero, 1 or 2;
 - R(10) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms, phenyl which is unsubstituted or substituted by 1-3

substituents from the group consisting of F, CI, Br, I, CF₃, methyl, methoxy, hydroxyl or NR(12)R(13);

5

R(12) and R(13) independently of one another are hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

or

R(10) is heteroaryl having 1,2,3,4,5,6,7,8 or 9 carbon atoms, which is unsubstituted or substituted by 1-3 substituents from the group consisting of F, Cl, Br, I, CF₃, CH₃, methoxy, hydroxyl or NR(14)R(15);

R(14) and R(15) independently of one another are hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

15

10

or

R(2) and R(4) together are a second bond between the carbon atoms carrying the radicals R(3) and R(5), where R(1), R(3), R(5) are as defined above;

- R(6) and R(7) independently of one another are hydrogen, F, Cl, Br, I, CF₃, -C≡N, -NO₂, SO_p-R(16),CO-R(23) or O-R(24);
- R(23) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms or OR(25);
 - R(25) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms;

- 30
- R(24) is hydrogen, alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms or phenyl, which is unsubstituted or substituted by 1-3 substituents from the group consisting of F, Cl, Br, I, CF₃, methyl, methoxy, hydroxyl or NR(28)R(29);

R(28) and R(29) are H or alkyl having 1,2,3 or 4 carbon atoms;

- R(16) is alkyl having 1,2,3,4,5,6,7 or 8 carbon atoms, phenyl which is unsubstituted or substituted by 1-3 substituents from the group consisting of F, Cl, Br, I, CF₃, methyl, methoxy, hydroxyl or NR(26)R(27);
 - R(26) and R(27) are H or alkyl having 1,2,3 or 4 carbon atoms;
 - p is zero, 1 or 2;

10

15

or its physiologically tolerable salts.

- 2. A compound of the formula (I) as claimed in claim 1, in which:
- R(1) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms, 1-naphthyl, 2-naphthyl, -C_aH_{2a}-cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms or C_aH_{2a}-phenyl, where the phenyl moiety is unsubstituted or substituted by 1-2 substituents from the group consisting of alkyl having 1,2,3 or 4 carbon atoms, F, Cl, CF₃, SO_nR(11), OR(17), NR(8)R(9), -C≡N, or CO-R(22);
- 25 R(11) is alkyl having 1,2,3 or 4 carbon atoms or NR(20)R(21);
 - R(20) and R(21) independently of one another are hydrogen, methyl or ethyl;
- 30 R(17) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms;
 - R(8) and R(9) independently of one another are hydrogen, methyl or ethyl;

R(22) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or OR(30);

R(30) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms;

- 5 a is zero or 1;
 - n is zero or 2;

or

- 10 R(1) and R(3) together with the carbon atom carrying them are cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms or fluorenyl;
 - R(2) and R(4) independently of one another are hydrogen or F; or
- 15 R(2) and R(4) together are a second bond between the carbon atoms carrying the radicals R(3) and R(5);
- R(3) and R(5) independently of one another are hydrogen, F, CF₃, O-R(10), alkyl having 1,2,3 or 4 carbon atoms, cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms, -C_gH_{2g}-phenyl, where the phenyl moiety is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(18)R(19);
- R(18) and R(19) independently of one another are hydrogen, methyl or ethyl;
 - g is zero or 1;
- R(10) is hydrogen, alkyl having 1, 2, 3 or 4 carbon atoms, phenyl
 which is unsubstituted or substituted by 1-2 substituents from
 the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl
 or NR(12)R(13);

R(12) and R(13) independently of	f one another a	re hydrogen,
methyl or ethyl;		

or

5

10

20

25

- R(10) is heteroaryl having 1, 2, 3, 4, 5, 6, 7, 8 or 9 carbon atoms, which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, CI, CF₃, CH₃, methoxy, hydroxyl or NR(14)R(15);
 - R(14) and R(15) independently of one another are hydrogen, methyl or ethyl;
- R(6) and R(7) independently of one another are hydrogen, F, Cl, CF₃,
 -C≡N, SO_p-R(16), CO-R(23) or O-R(24);
- 15 R(23) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or OR(25);
 - R(25) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms;
 - R(24) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, CI, CF₃, methyl, methoxy, hydroxyl or NR(28)R(29);
 - R(28) and R(29) independently of one another are hydrogen, methyl or ethyl;
 - R(16) is alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, CI, CF₃, methyl, methoxy, hydroxyl or NR(26)R(27);
 - R(26) and R(27) independently of one another are hydrogen, methyl or ethyl;

p is zero or 2;

or its physiologically tolerable salts.

5

- 3. A compound of the formula (I) as claimed in one or more of claims 1 and 2, in which:
- R(1) is methyl, ethyl, 1-naphthyl, 2-naphthyl, -C_aH_{2a}-cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms or -C_aH_{2a}-phenyl, where the phenyl moiety is unsubstituted or substituted by 1-2 substituents from the group consisting of alkyl having 1,2,3 or 4 carbon atoms, F, Cl, CF₃, SO₂R(11), OR(17), NR(8)R(9), -C≡N, or CO-R(22);
- 15 R(11) is methyl or dimethylamino;

R(17) is hydrogen, methyl or ethyl;

R(8) and R(9) independently of one another are hydrogen, methyl or ethyl,

R(22) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

25 a is zero or 1;

or

R(1) and R(3) together with the carbon atom carrying them are cycloalkyl having 3,4,5,6 or 7 carbon atoms or fluorenyl;

- R(2) and R(4) independently of one another are hydrogen or F; or
- R(2) and R(4) together are a second bond between the carbon atoms

carrying the radicals R(3) and R(5);

- R(3) and R(5) independently of one another are hydrogen, F, CF_3 , O-R(10), alkyl having 1,2,3 or 4 carbon atoms or $-C_gH_{2g}$ -phenyl which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF_3 , methyl, methoxy, hydroxyl or NR(18)R(19);
 - R(18) and R(19) independently of one another are hydrogen, methyl or ethyl;

g is zero or 1;

R(10) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, CI, CF₃, methyl, methoxy, hydroxyl or NR(12)R(13);

R(12) and R(13) are hydrogen, methyl or ethyl;

20 or

R(10) is heteroaryl having 1,2,3,4,5,6,7,8 or 9 carbon atoms, which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, CH₃, methoxy, hydroxyl or dimethylamino;

25

30

5

10

- R(6) and R(7) independently of one another are hydrogen, F, Cl, CF₃,
 -C≡N, SO₂-R(16), CO-R(23) or O-R(24);
 - R(23) is hydrogen or alkyl having 1, 2, 3 or 4 carbon atoms;
 - R(24) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1-2 substituents from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl

or NR(28)R(29);

R(28) and R(29) independently of one another are hydrogen, methyl or ethyl;

5

R(16) is alkyl having 1,2,3 or 4 carbon atoms;

or its physiologically tolerable salts.

- 10 4. A compound of the formula (I) as claimed in one or more of claims 1-3, in which:
 - R(1) is methyl, ethyl, 1-naphthyl, 2-naphthyl, cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms or phenyl which is unsubstituted or substituted by a substituent from the group consisting of alkyl having 1,2,3 or 4 carbon atoms, F, Cl, CF₃, SO₂R(11), OR(17), NR(8)R(9) or CO-R(22);
 - R(11) is methyl or dimethylamino;

20

15

- R(17) is hydrogen, methyl or ethyl;
- R(8) and R(9) independently of one another are hydrogen, methyl or

25

ethyl;

R(22) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms;

or

- R(1) and R(3) together with the carbon atom carrying them are cycloalkyl having 3, 4, 5, 6 or 7 carbon atoms or fluorenyl;
 - R(2) and R(4) are hydrogen; or

R(2) and R(4) together are a second bond between the carbon ato	ms
carrying the radicals R(3) and R(5);	

- R(3) and R(5) independently of one another are hydrogen, CF₃, O-R(10),
 alkyl having 1, 2, 3 or 4 carbon atoms or phenyl
 which is unsubstituted or substituted by a
 substituent from the group consisting of F, CI,
 CF₃, methyl, methoxy, hydroxyl or NR(18)R(19);
- 10 R(18) and R(19) independently of one another are hydrogen, methyl or ethyl;
 - R(10) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1 substituent from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl or NR(12)R(13);
 - R(12) and R(13) independently of one another are hydrogen, methyl or ethyl,

20 or

15

25

- R(10) is heteroaryl having 1, 2, 3, 4, 5, 6, 7, 8 or 9 carbon atoms, which is unsubstituted or substituted by a substituent from the group consisting of F, Cl, CF₃, CH₃, methoxy, hydroxyl or dimethylamino;
- R(6) and R(7) independently of one another are hydrogen, F, CI, CF₃, SO₂-CH₃, CO-R(23) or O-R(24);
 - R(23) is hydrogen or alkyl having 1,2,3 or 4 carbon atoms;
- R(24) is hydrogen, alkyl having 1,2,3 or 4 carbon atoms or phenyl which is unsubstituted or substituted by 1 substituent from the group consisting of F, Cl, CF₃, methyl, methoxy, hydroxyl

or NR(28)R(29);

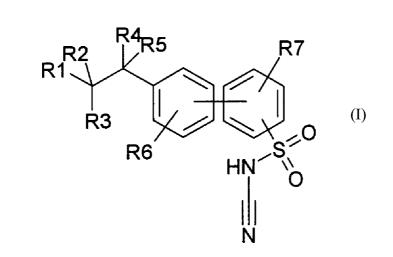
R(28) and R(29) independently of one another are hydrogen, methyl or ethyl;

5

10

or its physiologically tolerable salts.

- 5. The use of a compound of the formula I as claimed in one or more of claims 1-4 and of its physiologically tolerable salts for the production of a medicament for the treatment or prophylaxis of illnesses caused by ischemic conditions or for the production of a medicament for the treatment of impaired respiratory drive.
- 6. The use of a compound of the formula I as claimed in one or more of claims 1-4 for the production of a medicament for the treatment or prophylaxis of illnesses caused by ischemic conditions.
 - 7. The use of a compound of the formula I as claimed in one or more of claims 1-4 for the production of a medicament for the treatment or prophylaxis of cardiac infarct.
 - 8. The use of a compound of the formula I as claimed in one or more of claims 1-4 for the production of a medicament for the treatment or prophylaxis of angina pectoris.


25

- 9. The use of a compound of the formula I as claimed in one or more of claims 1-4 for the production of a medicament for the treatment or prophylaxis of ischemic conditions of the heart.
- 30 10. The use of a compound of the formula I as claimed in one or more of claims 1-4 for the production of a medicament for the treatment or prophylaxis of ischemic conditions of the peripheral and central nervous system and of stroke.

- 11. The use of a compound of the formula I as claimed in one or more of claims 1-4 for the production of a medicament for the treatment or prophylaxis of ischemic conditions of peripheral organs and members.
- 12. The use of a compound of the formula I as claimed in one or more of claims 1-4 for the production of a medicament for the treatment of states of shock.
- 13. The use of a compound of the formula I as claimed in one or more of
 10 claims 1-4 for the production of a medicament for use in surgical operations and organ transplantations.
 - 14. The use of a compound of the formula I as claimed in one or more of claims 1-4 for the production of a medicament for the preservation and storage of transplants for surgical measures.

15

- 15. The use of a compound of the formula I as claimed in one or more of claims 1-4 for the production of a medicament for the treatment of illnesses in which cell proliferation is a primary or secondary cause.
- 16. The use of a compound of the formula I as claimed in one or more of claims 1-4 for the production of a medicament for the treatment or prophylaxis of impaired respiratory drive.
- 25 17. A pharmaceutical which comprises an efficacious amount of a compound of the formula I as claimed in one or more of claims 1-4.
- 18. A pharmaceutical as claimed in claim 17, which additionally contains an efficacious amount of an NHE inhibitor and/or an active substance from another class of cardiovascular active compound, or its/their physiologically tolerable salts.

