a2 United States Patent

Shelly et al.

US009686185B2

US 9,686,185 B2
Jun. 20, 2017

(10) Patent No.:
45) Date of Patent:

(54) GENERATING FLOWS USING COMMON
MATCH TECHNIQUES

(71)
(72)

(73)

")

@

(22)

(65)

(63)

(60)

(1)

(52)

(58)

Applicant: Nicira, Inc., Palo Alto, CA (US)

Inventors: Nicholas Shelly, Palo Alto, CA (US);
Ethan J. Jackson, San Francisco, CA
(US); Teemu Koponen, San Francisco,

Assignee:

Notice:

Appl. No.:

Filed:

US 2015/0078385 Al

CA (US)

NICIRA, INC., Palo Alto, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 35 days.
14/487,057
Sep. 15, 2014

Prior Publication Data

Mar. 19, 2015

Related U.S. Application Data

Continuation-in-part of application No. 14/069,284,
filed on Oct. 31, 2013, now Pat. No. 9,602,398.

Provisional application No. 61/878,032, filed on Sep.
15, 2013, provisional application No. 61/986,070,
filed on Apr. 29, 2014, provisional application No.
61/878,032, filed on Sep. 15, 2013.

Int. CL.

HO4L 12/721 (2013.01)

HO4L 29/06 (2006.01)

HO4L 12/743 (2013.01)

U.S. CL

CPC HO04L 45/38 (2013.01); HO4L 69/22

(2013.01); HO4L 45/7453 (2013.01)

Field of Classification Search
CPC

HO4L 45/38; HO4L 69/22; HOAL 45/7453

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,118,760 A * 9/2000 Zaumen GOGF 17/30982
370/229
6,633,565 B1 10/2003 Bronstein et al.
9,036,636 B1* 5/2015 Sherwood HO4L 45/04
370/392
9,042,234 B1* 5/2015 Liljenstolpe HO4L 45/00
370/238
9,203,771 B1 12/2015 Cai et al.
9,244,843 Bl 1/2016 Michels et al.
2002/0089931 Al 7/2002 Takada et al.
(Continued)
FOREIGN PATENT DOCUMENTS
WO WO 2014126387 Al * 82014 ... HO4L 47/2491

OTHER PUBLICATIONS

Curtis, Andrew R., et al., “DevoFlow: Scaling Flow Management
for High-Performance Networks,” SIGCOMM ’11, Aug. 15-19,
2011, pp. 254-265, ACM.

(Continued)

Primary Examiner — Michael C Lai
(74) Attorney, Agent, or Firm — ADELI LLP

57 ABSTRACT

Some embodiments provide a method for a forwarding
element that forwards packets. The method receives a packet
and performs a hash lookup operation on one or more hash
tables to find a matching rule for a packet. The method
consults a common match data set to generate a wildcard
mask. The method generates a flow based on the matching
rule and the wildcard mask. The flow is used to process other
packets that match each bit which is un-wildcarded.

20 Claims, 65 Drawing Sheets

0 Classifier 2225 Classifier 2225
A Subtable 4950 Subtable 4955 Subtable 4850 Subtabia 4955
No 2250 2le 4958
Matoh_Field 1 (1111} | | Match_Field_2 (A) @Mmh Maioh_Fieid (1177 Match_Field_2 (A}
Match_Fleld_1(1010) Match_Field (1010)
4s10 ¢ aa5
o, Pt ar a7 | oox oo | o]
Header_Fiald_1 (1100) m Common Match _Value Mask (3) Generate common
Haader_Fisld_2 (A - fooion Fa 2 |
@) ‘Wildcard Mask _M?':cl;k rido.1_ai, :eu 2 mat
Packet
4925
—>
(D Packetn No cached entry No cached entry
Datapath @ Datapath
Va Generate mask using
4505 comman match data 3910
. Classfier 2225
Classifier 2225
Subtable 4950 Subtablo 4955
| Subtable 4950 Subtable 4955 ® Match_Field_1 (1111)| [Match_Field (1100}
Watch_Field_1 (1111)| [Watch_Field_z (A Nch o 1010
atch_Fiel
Matoh_Field_1(1010) -Fle1(1010)
_1x1x mm
wix o [o va
ae i Common Match _Valus Mask
Common Matoh sl Match_Fleld_1 _|Match_Field 2
Match_Field_1_{Match Fieid 2 [*%xo*x | Ao |
EE A A
| Maten_Field_{{4:%0%}: Maten_Fisld_2(4) > scton?) | | ————— .
No cached entry Un-Widoard
Datapath Packet Out
|pamoan | =

4915

i
(@ tstal Fiow 4920

US 9,686,185 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS

2003/0214948 Al 11/2003 Jin et al.

2004/0225638 Al* 11/2004 Geiselhart GOGF 17/3061

2007/0192543 Al 8/2007 Naik et al.

2009/0039884 Al* 2/2009 Schiano GOIR 33/441
324/307

2009/0161547 Al 6/2009 Riddle et al.

2013/0163427 Al* 6/2013 Beliveau HOAL 67/327
370/235

2014/0098669 Al* 4/2014 Gargcccocevveeenenn. HO4L 47/12
370/235

2014/0226661 Al 8/2014 Mekkattuparamban et al.
2014/0233421 Al 8/2014 Matthews

2014/0280822 Al 9/2014 Chennimalai Sankaran et al.
2014/0369348 Al 12/2014 Zhang et al.

2015/0078384 Al 3/2015 Jackson et al.
2015/0078386 Al 3/2015 Jackson et al.
2015/0092778 Al 4/2015 Jackson et al.
2015/0169457 Al 6/2015 Jackson et al.

OTHER PUBLICATIONS

Matsumoto, Nobutaka, et al., “LightFlow: Speeding Up GPU-based
Flow Switching and Facilitating Maintenance of Flow Table,” 2012
IEEE 13" International Conference on High Performance Switching
and Routing, Jun. 24, 2012, pp. 76-81, IEEE.

Tung, Ye, “A flow catching mechanism for fast packet forwarding,”
Computer Communications, Apr. 19, 2001, pp. 1-6, Elsevier.
Zadnik, Martin, et al., “Evolution of Cache Replacement Policies to
Track Heavy-hitter Flows,” ANCS ’10, Oct. 25-26, 2010, 2 pages,
ACM.

* cited by examiner

U.S. Patent Jun. 20,2017 Sheet 1 of 65 US 9,686,185 B2

100

¥

> Receive a packet

— 105

110

Matching flow entry — 115
stored in cache? v Select the flow entry
125 \ 4
Initialize some or all of the match fields Perform the flow entry’s associated |—— 120
as wildcard fields set of actions on the packet

A 4

Dynamically generate a new flow entry to store in 130

the cache by un-wildcarding each match field that
was consulted when generating the flow entry

v

Cache the flow entry

'

Perform the new flow entry’s associated
set of actions on the packet

— 135

,—140

145

Receive
additional packets?

FIG. 1

US 9,686,185 B2

U.S. Patent Jun. 20, 2017 Sheet 2 of 65
Switch 205 Switch 205
235 Datapath Flow Generator 210 Datapath Flow Generator 210
| Flow Table 215 Flow Table 215
in_port(1), eth_dst(A), action(2), priorty(50) in_port(1), eth_dst(A), action(2), prionty(50)
% eth_dst(A)/ ‘ 3] T
230 b Ip_dst(B) Datapath M 220
.P — / atapa anager 22U Datapath Manager 220
y acket
-_ Datapath cache 225 Datapath cache 225
[1] Packet In No cached entry 2} No cached entry

Ingress Port 1

245

A

¢

250

Switch 205

Datapath Flow Generator 210

Cache Flow Entry

235

Flow Table gﬁ_ﬁ

- eth_dst | ip_dst

4] in_port(1), eth_dst(A), action(2), priorty(50)

A *

G

Datapath Manager 220

Datapath cache 225

No cached entry

255

Switch 205

Switch 205

Datapath Flow Generator 210

Datapath Flow Generator 210

Flow Table 215

Flow Table 215

in_port(1), eth_dst(A), action(2), priorty(50)

in_port(1), eth_dst(A), action(2), priorty(50)

. 240

= Wildcard Field

FIG. 2

[Bll
Datapath Manager 220 Datapath Manager 220
Datapath cache 225 Datapath cache 225 / Packet1 /
{7] in_pori(1), eth_dst(A), ip_dst(B/), action(2) in_port(1), eth_dst(A), ip_dst(B/s), action(2) >
4 5 8] Packet Out
: Output Port 2
“) ” ;
: 240 / 240
260 265

U.S. Patent

eth_dst(a) £
305 i dst(B) /

N

Jun. 20, 2017

Sheet 3 of 65

US 9,686,185 B2

Switch 205

Datapath Flow Generator 210

Flow Table 215

in_port(1), eth_dst(A), action(2), priorty(50)

:

Datapath Manager 220

» Datapath cache 225 AN t>
Packet In . . ; [31 Packet Ou
[1] Ingress Port 1 [2] in_pori(1), eth_dst(A), I{\Ldsl(B/*), action(2) Output Port 2
240
Switch 205
Datapath Flow Generator 210
Flow Table 215
in_port(1), eth_dst(A), action(2), priorty(50)
eth_dst(A) S y
310 ":1 ip_dst (C) ‘t
Packet N : Datapath Manager 220
» Datapath cache 225 athet O t:
Packet In : : ; [31 PacketOu
1] Ingress Port 1 [2] in_port(1), eth_dst(A), t?_dst(/.), action(2) Output Port 2

240

FIG. 3

US 9,686,185 B2

Sheet 4 of 65

Jun. 20, 2017

U.S. Patent

06% DIN | | 8% OIN | cuempien |-
08F sonuQ 8oneQg _ _ §¥ Jeau(someg _ JosingadAH L
» 4
5 /
A /
X v
7ov 20V Gty 154 .
L WA I WA — o | T 1o o
ssa00ld e . 4P $S900id
uonoy syoeq yjedejeq 19y0ed
Ly 00 Jalsse —
= 097 Jelisse|D 507 ebpug
A .
Ot (+obeuepy yiedeleq) sinpop [9Uoy e
[EUESY|
.................... (5574
/| (s)eiqeL moid N 19A19S Bsegeied SAQ
lojeisuss) mol4 yredeieq
/| OFF uowseq SAQ v
N g
i . S eoedsiosn
00F 10K
/ ,\\ 4 1 4
Sy oLv
90%

(s)4ol103U0D HIOMIBN

S0P

66V

U.S. Patent Jun. 20, 2017

500A

X

Receive a packet

502

504

Sheet 5 of 65 US 9,686,185 B2

5008

Receive the packet

v

4

512

Dynamically generate a new
flow entry with zero or more
506 wildcard fields

Any flow entry that
match each non-wildcard

Send packet to
OVS daemon Send instructions to kernel

514

field stored in cache?

Select the matching flow 9508
entry from cache

A 4

510
Perform a set of actions -
based on the selected flow entry
End ¢
Kernel Module (T1)
500C
\ Start
\ 4
L 520

Receive instructions from the OVS

cache

module to store the flow entry in

—516

v

Send the packet to the kernel
module with instructions to
perform a set of actions on the
packet

— 518

OVS Daemon (T2)

\

Receive the packet from the

7| perform a set of actions on the
packet

daemon to store the new flow entry
in the cache

'

Cache the flow entry

»

,—522

End

Kernel Module (T3)

| OVS demon with instructions to

—— 524

v

Perform the set of actions
on the packet

End

Kernel Module (T4)

FIG. 5

526

US 9,686,185 B2

Sheet 6 of 65

Jun. 20, 2017

U.S. Patent

{g vod ndinp)
o 1°oed

di
«

ofm PIdld PIBOPIIM =M
P
S 14 a ¥ Z —
157 X 05
J0SS9004g |4 € * 8 v bl e Jossao0id
uonoy OOV [N PIOW | ¢ POy | T POl | Hoa o Jo50Rd
/ 0% Jouisselo,
; 80% obpug
,\,\ /,, OZF 9INpoy [puwiay

G09 cz9

\
/
.\
7 -
4
— v * a P z ¥ T (1 Hod ssasbur)
qtb (37 U] jexoed
108590014 £ ¥ d v N JOSSO001d L
uondYy UoHOY [N P Z plel | L play | pod Ul ,./ 108ed
; ____ B0V obpug s @NpRy oG9
S (@ceey
/ / OZF ©INPOp [owiey S pey
/ /
TA S) *
0c9 210} 4

U.S. Patent

Jun. 20, 2017

Sheet 7 of 65

US 9,686,185 B2

425
;
Kernel Module 420 ‘
field1(E) /
155 feld2 (") S Bridge 408 -
2\ field N (G) / Classifier 460
Packet in_port ; field 1] field 2| field_N| Action Action
» Processar 1 A B * 3 Processor
Packet In 430 435
(ingress Port 2) 2 * D * 4
5 B "
620 425 705
Kernel Module @ /
Bridge 408
Classifier 460 /
N i
Packet A in_port | field 1] field 2| field_N| Action Action
Processor 1 A 8 > 3 Processor
430 436
2 * D * 4
OVS Daemon 440 v
Datapath Flow Generator 410
Classifier 720 1
I {
’ Forwarding Decision
Modules(s)
125
. B X
710

FIG. 7

To FIG. 8

U.S. Patent

Jun. 20, 2017

Sheet 8 of 65

From FIG. 7

- 2

OVS Daemon 440

Datapath Flow Generator 410

US 9,686,185 B2

Classifier 720
{
= Forwarding
i Decision Module(s)
415 i 205
820 — Flow Entry
Kernel Module 420 v
Bridge 408 Classifier 460
Packet in_port| field1 field 2 field_N | Action Action
Processar 1 A B * 3 Processor
430 2 * D * 4 435
. ®
805
425
Kernel Module 420
Bridge 408]
Classifier 460 / 71 5
in_port | field 1| field 2] field_N| Acti
Packet Lt 2 - e 1 Adton Action
Processor ! A B * 3 L Processor >
430 2 * D * 4 435 Packet Out
- . (Cutput Port 5)
2 * F * 5
820 810

FIG. 8

US 9,686,185 B2

Sheet 9 of 65

Jun. 20, 2017

U.S. Patent

6 9Id 516
Asuz moj4 ayoe) v\
026 0 L 0 YSBWN
4 b} g A4 eRg
N PRy | 1P e | ous e T 06
s|npojy |pute)] oL [g] .
< daip = uonoe g = Jsep Yo 44 §
OF6 -~ Ajug mol4 017 {ojeieussy mo|d yiedeieQq g
ayoen _
0% uoweeq SAD dosp = uoyoe 'g = 1sep yie [g]
BiF toresuan moj4 yedeeg
{doip) uonoe {(0/0) N PIoy (g) 1sp™wie (o/v) 2Is™ Yo OFp uowseg SAQ
b
ity 4
Asuamoigayoedfgl 0
JROPJIM-UOU =
0 0 0 WSBW Lo p Pl b
pIeDpiiM =
po] 4 v ejeq
018 ~ - -~ ——
NPl | 1sp Qe | ousTye or6 506
Y ,‘. ... /
i ¥
- - 98 oo
doip = uonoe 'g = 1s9p Yo dolp = uonoe g = 1sep 1o joway woiq [l
D1 101e30U8D MO|4 Yledele(/ 01V 401818U99) MOl4 iedeie(
O uoweed SAO / OFF uoweeq SAO |/ ., G¥6
P p S (D)NTplY
/ / S (a)spuie N
sor sty S0v To(Wousyge

US 9,686,185 B2

Sheet 10 of 65

Jun. 20, 2017

U.S. Patent

Al3u3 moy4 ayde)

0 i 13 jsein

4] 4 v gleg

NTPIRY | IspTyie | 1S e

[o]

doJp = uoRoe g = 158p” We {56 = Ajuoud [g]

! g = Uopoe g = 218 Y g0} = Awoud

,,\, 017 J01218U05) MO|4 Yredeieq

Oy uowseq SN0

Aluz moj4 ayoed

0 0 1 BN

o) :] Y gjeq

NPIRY | 18P a | ousTUe

.

M|

G104

0101

gzol

doip = uopoe 'g = 159p YI® ‘66 = Aoud
Z = uonoe ' = 215 Y ‘001 = Awoud [¢]

/1Y 101B18U9D MOl4 yiedele(

0P uocwaeg SAQ

0L 'OI4

020t

¥

oinpo jeutey op [1]

dedp = vonoe ‘g = 1sap Y19 ‘66 = Aluoud
Z = UDIIoB g = 2Us Y8 001 = Auond

01¥ J01818UB9 MO|4 Yiedeleq

Afug mo|4
ayoe)

0vF uowaed SAC

{doip) uoyoe {r0) N pIsy (8) 1sp wie (y) ois uie

Anug moy ayoer {Z]

GO0t

0 0 0 3sep

2 < | v gleq

NPy | 1sp e | usTye

I Geol

I
i
.
»
i
I

doip = uoloe 'g = 1S8p Yid ‘66 = Aoud -
Z = UOIIoR g = s Y12 003 = Aoud

01T Js01e18UBE) MO|4 yiedeleq

A

%% uoweed SAO

1joed

S (OINTpIeyY

S (@sp e
; (Wyoisye

.

siNpopy |eusey wodd [1]

17

US 9,686,185 B2

Sheet 11 of 65

Jun. 20, 2017

U.S. Patent

[o] As3u3 moy4 syaen

0 i l dse mw:
¥
s} g v eleqg
NTPIoY | 1spTwe | 1Sy)
™ dosp=uonoe ‘g=15p” Y32 g=p1 20E1 [g]
(Z'hiwgnsai=uol3de fy=21s Y33 (g=pt”2jge1
01¥ Joeiaussy mo|4 yyedeieq
OFF ucwaeq SAO
oLl
AJuz moj4 ayoe) l
0 0 i XSEW
2 =] v ejeq
. N PIRY | 1P yie | I8y T STLL
¥ i

doJp=uooe (g=1sp U 'g=pl olgey
(2")Hwgnsai=uonae fy=31s"y1d ‘o=pt aiger fg]

\ 017 lojesouan) moj4 yedejeq

/ Ty uowiseq SAO

LE "OId

ozLi

v

ainpol feusey o} {2]

doup=uoide ig=1sp Y13 [g=p! 2jqel
(2 HIUGNSI=UOROR [y=215" 133 {0=pt” Jjqel

Anug

01 ¥ Joiessuss) mol4 yiede

1ed

MO| 4 BUDRD)

by vowsed SAQ

(dosp) uonoe (0/0) N PIoY () 1sp Y (v) 2s yje

B]

GoLL
Ainug moys ayoe) [Z] ’
0 0 0 JSeN
2 a v eleqg
. NTPIRY | 35PTye | sy T4 2
- I TR
doip=uojide ig=1sp”Y1a ‘g=pf ojger -+ 7
(2 }nwgnsas=uonae fy=01s Y13 [0=pt” sjgel sInpoyy [eusey wol [1]
4 <
\,\ﬂ 10jei2U85) Moj4 yiedejeq
. Ovb uowseq SAOQ e
oeLL \ o
Giy ; (OINTPRYY
b ;o (@spue
S0y S astye

Sheet 12 of 65 US 9,686,185 B2

U.S. Patent Jun. 20, 2017
405
v 415 1240 1240
\, eth_type(0x0800) ¢ , Ve i
Y ip_src (L11.1) 4 / e /
123q\‘ipwdst (1.112) /| OVS Daemon 440 // / OVS Daemon 440 /
- Datapath Flow Generator 410 y Datapath Flow Generator 410
[11 From Kernel ip_src = 1.1.1.1; action = 2 ip_src = 1.1.1.1; action/= 5
Module
/ | [3] !
1235 ——_ eth_type| ip_src ip_dst 1235 - — ! eth_type| ip_src ip_dst
Data 0x0800 | 1.1.1.1 | 1.1.1.2 Data 0x0800| 1141 | 1442
Mask 0 0 0 Mask 1 0 0
« [2] Cache Flow Entry «
1205 1210
1240
/
OVS Daemon 440 OVS Daemon 440 /
Datapath Flow Generator 410 Datapath Flow Generator 410/
ip_src = 1.1.1.1; action = 2 [4]ip_src = 1.1.1.1; action = 2
/ 6 ; [5]
eth_type} ip_src ip_dst 1235 ~— eth_type| ip_src ip_dst
1235 ——.
Data 0x0800 | 1.1.1.1 | 1.1.1.2 Data 0x0800 1.1.1.1 1 1112
Mask 1 1 0 Mask 1 1 0
,4 b
eth_type(0x0800), ip_src (1.1.1.1), ip_dst (1.1.1.2/0), action (2)

1240
Y
|
Cache Flow /
Entry 1235

OVS Daemon 440
\
Datapath Flow Generator 410

|
ip_src = 1.1.1.1; action = 2

[7] To Kernel Module

) FIG. 12

/

1225

US 9,686,185 B2

Sheet 13 of 65

Jun. 20, 2017

U.S. Patent

€1 "old

(z) uowoe (o/wIN"PIRY {(Z L L L) 1sp™di (1oL L7 L) 258 di (Jeaisp™ uia ‘(oop)ois™yie {0080x0)edAT e ‘(1)uod wr [£]

Gglel
¥
0 L L 0 0 L ASen
v TV VL Jeq 00} 0080X0 eleqg
NpIeYy | ispTdi | ousTdl | spTpe | ousTyie |adAr e T-qgel
[]
(Buissaooud £/z7 [ewloU Op) JEWION = uopoe | M
01F Jojeiauss) mol4 yiedejeq
O uowseg SAO
¥
0 0 0 0 0 L Asen
Y STLVL VL Jeq 00} 0080%0 eeq
NI | 1spTdi | ousTd) | 1spTye [ousTe |adkiTye ~GEEl

[z]

(Buissaooid £/27 [eWIOU OP) |SWION = UoloE | M

/ 01V J0jei8uaD) Mo|4 yiedeieq

/ 0¥ uoweed SAOQ

©ooeel
0 L 12 l 12 b HSew '
Y A S N I 2 2 leq 0o} 0080X0 eleqg
—Gegt
NTPRY | 1spdit| ousTdl | 1sp e |ousT e |edA e
o1 gl
(Buissaooud g/ |ewJou Op) [eUWIDN = Uonoe | 3
1§ J0jeiauas) mo|4 uiedele(
Oy uouiseq SAO
G0ogL
4
0 0 0 0 0 0 isen
Y A T A 2 Jeq 00} 0080%0 ejeq
NPIRY | 1spTdi | dusTdl | 1sp e |ousTye |edA Y8
—Geel

(Buissao01d ¢y [BUIOU OP) [BULION = UOROE | M

anpoyy [ewiay woid [1]

017 Joleiauas mo|4 yiedeleq

0vF uowsed SAO

SOy ;

» ;
A}

Serepspd

’

K .

s (INTPRY N /omm_\

(e oisTd
(reqnsp ue .
(oop)ous Y18

(0080%0)2dAT o

U.S. Patent

Jun. 20, 2017

405
]

Sheet 14 of 65

US 9,686,185 B2

eth_type(0x0800)
dp_sre (1111 2
S oip_dst(11.12) S
1330 " field_N(A)

s
0y
Y

OVS Daemon 440

Datapath Flow Generator 410

Clase Bonding MAC Other
> a7szs(x)|er Module Learning Module(s)
From Kernel Module - 1420 1425 1430
’ B
1405
OVS Daemon 440
Datapath Flow Generator 410
- Bonding MAC Other
(’_)Ia7s25(|)ﬁer <» Module Learning Module(s)
T 1420 1425 1430

™~

b

1410

~
™~

in_port=1; eth_type = 0x800; ip_src = 1.1.1.1; ip_dst = 1.1.1.2

o

S

1335

-

OVS Daemon 440

Datapath Flow Generator 410

Classifier
720

Bonding
Module
1420

P

MAC
Learning
1425

Qther
Module(s)
1430

~
N

y
1335

%

/

1415

FIG. 14

1r 1
in_port = 1; eth_type = 0x800; ip_src = 1.1.1.1; ip_dst = 1.1.1.2; eth_src = foo; eth_dst = bar

U.S. Patent

Jun. 20, 2017

Sheet 15 of 65

OVS Daemon 440

Datapath Flow Generator 410

A

Classifier
720

A

eth_src|eth_dst

field_N

Data

Bonding Module
1420

A

Mask

A 4

MAC Learning
Module
1425

A

A

BFD Module
1505

Learn Action Module
1510

FIG. 15

US 9,686,185 B2

U.S. Patent Jun. 20,2017 Sheet 16 of 65 US 9,686,185 B2

I

Receive a packet

~— 1605

Y

Initialize all match fields as — 1610
wildcard fields

v

| Select a flow from a flow table if available or
select a rule (e.g., a default rule)

——1615

1620

Any one or more
match fields compared

—— 1625
Mark the one or more match fields as

non-wildcard fields

v

/////////“\\\\lz:;jSSO

Matching flow?

A

1635

Action specifies
consulting one or more match
fields

— 1640
Mark the one or more match fields as
non-wildcard fields

1645

Action specifies a
esubmit operation?

A

(~ 1650
Generate a flow entry with each remaining
wildcard field specified as wildcards

v

Send new flow entry to the kernel

— 1655

End FIG. 16

U.S. Patent Jun. 20,2017 Sheet 17 of 65 US 9,686,185 B2

W

1705
Create an all-wildcarded a8

header space

A

Send the header space to the
initial forwarding table

— 1710

1715

Intersect the current header space|
for each rule that matches

A 4

Subtract any higher priority rules 1720
from this header space

A 4

1725

If there is an output action, add
the input header space and
actions to a combined table

— 1735

Send the intersected header

?
Any other table(s)" space to the next table

FIG. 17

U.S. Patent Jun. 20,2017 Sheet 18 of 65 US 9,686,185 B2

1805
Rule | Priority Maich Actions |
1 1000 tp_dst == 80 drop
2 1000 tp_dst == 443 drop
3 500 | dl_src == 0l:xx:xx | regl <= reg$,
regd <=1,
goto next table
1810
AN - .
Rule | Priority | Match Actions
1 1000 | regd == 1 | output:2
1815
N
Match Actions
tp_dst == 80 1 443 drop
dl_src = 01:xx:xx regl <= regd
—{ tp_dst==801443} | regd <= 1, output(2)

FIG. 18

U.S. Patent Jun. 20,2017 Sheet 19 of 65 US 9,686,185 B2

N

1905
Initialize a flow header [
space to be all-wildcards
—1910

Subtract all higher priority flows that
match the flow header space

¢ —1815
Intersect the flow header space with

the rule that matches the packet.

v

Apply the actions of the matched rule to
the packet and the flow header space

1930

Submit the packet and its flow

?
Any other table(s)? header space to the next table

— 1935
Add a rule to the cache that matches

the entire flow header space.

End

FIG. 19

US 9,686,185 B2

Sheet 20 of 65

Jun. 20, 2017

U.S. Patent

0202
a4

€ Hod indino
InQ 1&oed @
<l

080z Moid iesul (g)

A\ ,

0¢ "OId

/ G0z Wedejeq

«

0L0e

090Z—__

/ T
(e)uopoe & (ghspdi (Ohsp™we (1)pod di

| o z |
1sp difisp yie toga__

NSEN PJEOPIIM
siqelans

a|qejans

(ghspdi (whsp upe “(1Juoduy

e 21 "bay

sony Jouwsse|n

(ov)Amoud ‘(g)uonoe (ghsp di
(05)Auoud (z)uonoe (w)isp yis ‘(Lhod i

wrew (v)

€1 g1 "bey

so|ny Jayisse|D

(op)Aoud (gjuonoe (gpsp di
(05)Auoud ‘(Z)uonoe (whisp uie ‘(Lhod ul

§¢0c JauIsse;y

S¢0c¢ Jayisse|Q
paeojIM-un
/!
yiedejeq
\ G0z
Anus umzomwc\z \
\ 0902~ ___
4 x0T
1sp difisp ule [Wod ul G502
ASBA PJEDPIIAA
9|qelgns 9|qelgns
ghsp di sp ye ‘(1)uod uf——
(a) (vhisp e ‘(L1 ! SY0Z ooz

yorep oN (2)

G602 T —(ghsp di

pIBOPIMA-UN

/

\ 590z wedeieq

/U8 psyoes oN

/

/

a] o |]
1sp difisp ye Eaa__

ASEW PIEdD{IAM
S|qelans

s|qens

(whsp ye (Ljwod
€1 Z1bay

S9[NY JoYISSe[D
(ov)Amoud ‘(g)uogoe (ghsp di

(0g)Auoud ‘(ZJuonoe (yisp e ‘(1)uod ul
G20c 191isse|D

902 Yiedeleq

Anua paysed oN

Gloe

S002

¥

¢ Wod ssaibu|
uj 19x0ed @

19ed

— | *x | * [x|
18P difisp yle t8|:__

JSe pleaplim
9|qeigns

9|qelans

(ghspdi (whsp ue (Lwod w”
€1 Z17bey |-

s9|ny Jasse|n

(ov)Aoud ‘(g)uonce ‘(ghsp di-|_|

(0g)Anond “(Zyuonoe (v)isp™uie ‘(1)nod ur |

Gc0c JalIsse|n

(8)1sp di &
(D)i1sp ye

I~ 0v0e

™ §€0¢

~ 0£02
- 0002

U.S. Patent Jun. 20,2017 Sheet 21 of 65 US 9,686,185 B2

2100

Start

r - 2105
Perform a hash lookup on the next stage of
the subtable to find a match

-~ 2110

Un-wildcard bits of the wildcard mask based on
the wildcard patiern of the subtable for that stage

Must continue to next
% subtable?

End

A

FIG. 21

US 9,686,185 B2

Sheet 22 of 65

Jun. 20, 2017

U.S. Patent

ONNN/D MOl [[BISU] @ NN -Q\l pJedp[m-un @ G172
€3od Inding @ | 592z wedeleq Ggze wedeleg v\
nQ 18xded ,,
< (€)uonoe & (ghspdi Gensp s (Zhuod di __ Anue payoed oN
[owea [— - osze =
S PIEOPIM Sbce 2aAIns JSEIN PIEOPIIM 562 8198Ans
g | z | (2hspd = % z | {ghsp di 1
15p_d1 isp_ wa toalc__ (€7) 1 eBeis 15p di 1sp ye toalc__ (£7) | obeig T cBmE@
06¢c elgelans 0622 219B19NS
(whsp e ‘(ghuod Uy (Vodul (whsp ue ‘(L }pod (1)pod™u
(z1 “boy) ¢ obeis (‘Bey) | ebeis (z7 “Boy) ¢ obaS (Boy) | obeyg
s8Ny JBIISSe|D s9|ny JoYIsse|D
(op)Awoud “(g)uonoe (ghsp di (o¥)Auoud (g)uonoe ‘(ghsp di
(0g)Auoud ‘(z)uonoe (ghsp ue ‘(g)uod u (05)Auoud (Z)uonoe ‘(yhsp e ‘(1)uod ul
oLzz 522g Jelisseln czzz soussely | S0CC
“a preop-un () ¥
s
yiedejeq Sozz Uiedeleq Z Hod ssaubu| @
m\ U] 1oed
A|
A1 £
JUS PAYIED ON 0922 JJUS PaYoEDd ON .
S6eC 5602 " (@1sp7d
YSEI PIEODIM G62¢ olaelang JSeI PIESPIAL G62¢ e1qeiang () p-o
* ¥ z | (ghsp di * ¥ * (ghspdi__
150 d l1sp™ uje [1iod (€7 1 3beis 150 di 150 Ui [pod uj €V 13bas | T grzz
R T
0622 21981ans 0622 219819nS 0Lce
(whisp e *(1)uod ul (Lwod ul || [Gshsp™ue (wod™u (1ypod ul | [gpzz
(271 "Bey) Z ebrIs (Bou) | obeis ~ ssec (z71bay) z oba1s (‘bey) | sbeis)
yorew oz@ ovez
S3|NY JBUISSE[D % $SaINY JaIsseD
(ov)woud (g)ucie (ghsp di 05ge (ov)Awioud ‘(g)uogoe (asp A]| cos
(09)Auond ‘(g)uonoe (whisp™yo (1)uod (09)Anoud *(gjuonoe (whsp e ‘(Lpod Uil L jons
Ggcg JolsseD Tgeg Joussen | ¥~ 002z

US 9,686,185 B2

Sheet 23 of 65

Jun. 20, 2017

U.S. Patent

0zgee 0gee
) Mol [lejsul
> _, ®
 Hod inding @ ,, Sozz wedereq
INO 19yoed - |
< (Z)uonse « (ghsp di ‘(sp we (1)pod di
SN PIBIPIAM G6cc 2lqmang
(ghspdi

oLee

* v L

(7)1 obelg

18p di [1sp Yo [pod ul

06¢c 9lqeyqns

(whisp yie “(gjuod ul
(21 "bay) ¢ ebeis

(1)uod
(‘bay) | ebejg

$9|NY JBYSSED
(ov)Aoud ‘(g)uonoe (ghsp di
(0g)Auoud “(Z)uonoe (ghsp™wie (2)uod ul

Gzee 1o1IsseD

pIea(IM-UN @

yjedejeq

Anua psygEd oN

SSEW PJesplip S6<¢ ©lqelans

¥* ¥ L (ghsp di

1sp difisp e toa\:__ (€7) 1 obeis
062z 2lgeans
0 (L nod— =
(whsp we ‘(1)uod u (1)yod ul -

(z71 "bey) z ebais (Bou) | obers

s9[NyY Joisse|D

(op)Awoud “(g)uonoe *(ghsp di
(0g)Apoud “(gjuonoe (yhsp ye (L)Juod ut

Gzee 1auIsse|D

~.

€¢ 'Old

pJEOpIM-UN @
/

SlLee

\ Soze uredeleq

\\ Anue payoed oy

-
csms_@

MSepy PIRdPIA §6c¢ @lqelans
¥ v | (ansp d
1spdi 1sp” e :on_uc__ (IEES
0622 81981ans
(vhisp uie *(Luod i (1uod

(21 "bay) 7 obeyg (Bay) | abeig

sajny Jayisseld

(op)Amoud (g)uonoe (ghsp di
(05)Auoud ‘(Z)uonoe ‘(¥)isp uie ‘(1)uod u|

Zec Jauisse|n s0ee
G9¢c Uiedeleg L Hod sseibu @
uj }ayoed
—
Anua payoes o
0922 Jus peYIEd ON —
[... IQ ...
NSEN PJEIP(IA S6¢¢ 9|qeigng %Mvuumﬂnlcgw
X ¥ X _ (@nsp di]
1sp difispyie t8|c__ (€7 | ebeis ~ ¢szz
062¢ 2i9=1ans 0zez
| {(whsp e *(1)uod i a1 sizz
~. sece (z1"Bay) Z obe1g (‘Boy) | ebeis]
worew on (@) < ovee
S9Ny JoYISSe[D
osce (op)Awoud ‘(g)uonoe ‘(ghsp di-| | oons
(0g)Aoud ‘(g)uonoe (whsp™ye (Luod Uil | oo
Gocc lassen | Y 0022

US 9,686,185 B2

Sheet 24 of 65

Jun. 20, 2017

U.S. Patent

ve Old
0Zyz inod obeis Glyz eaiy] obeis 0lvZ om] obers GOy duQ ebers
L N K [B N o000 L N N
anje yseH anjeA yseH anjeA yseH anjeA useH
anjeA yseH anjeAa yseH anjeA useH anjeA ysey
anjeA yseH anjeA yseH anjeA yseH anjeA yseH
¥1°€7 21 “bey €721 “bey Z1 "bey ‘Boy
00%Z @ige3ang

US 9,686,185 B2

Sheet 25 of 65

Jun. 20, 2017

U.S. Patent

GgZ '9Ild

(suadisp Yo ‘(suguod Ul - p oiny

/

(01)Aoud (g)uonoe (sygnsp™ doy (sia)isp” Uie - G 8Ny

21 "boy :sebeig ~ (0z :Ajold Xep) a|geiqng

(0z)Aoud ‘(dosp)uonoe (syahisp uie ‘(spg)pod Ul - ¢ oiny

(0g)Aoud ‘(dospjuonoe ‘(sughisp™do (sualisp di (suahsp™ uie (spguod Ul - ¢ ainy

(sughsp do) ‘(sHahisp™ Uis - G 8INY «¢—

(o¥Yuoud (Z)uonoe (syghsp doy ‘(syayisp yie - g einy

(snahsp doy (sHa)isp Wie - g a|ny *—

{0g)Awond ‘(1)uonoe “(snasp doy ‘(suansp di ‘(suahisp yie ‘(sug)uod ul - | oiny

71271 :sebeg - (or :Aoud xep) s|geians

so|ny

§Sise

(sna)isp do} ‘(syansp di ‘(suahsp ye ‘(suqiod ui - £ 9Ny 'd

(snq)isp doy ‘(sHanspdi “(suahsp e ‘(snalod Ul - | any 47

#71°¢1 ‘271 “bey :sebeig — (05 Anoud xew) s|geiang
oLse

US 9,686,185 B2

Sheet 26 of 65

Jun. 20, 2017

U.S. Patent

9¢ "OId

Japesy (N) J9Ae ey} Jo} ysew pieopim
e ojesouab 0} 2iNjONUIS 8ad} B 1NsSu0n)

éolqeigns
1Xau 0}

pauiwexs

> pu3

ﬁ

Jepeay (N) Joke ey} 0}
puodsalion jey) sl ey} pIeopm-un

0292 —

N {BIAEIGNS BU} L

A

SAUUOD 1SOJ Jepeay (N) 1ehe

geoz

019¢

punoj yoep

5197 —

iapesy (N) JekeT ay} 0} puodsaiiod ey suq
aU)) 1o} 1da0X8 YSBW PILOPIM 8Y] JO SHG PIEIP|IM-UN
) ‘B|geIaNS SU] JO LIByed pJedp|IM BUj UG paseyg

A

yojew e

Y

puit 0] B|gRIGNS B UO dMoO| ysey B Liogsd

g09c -~

HELS

0092

US 9,686,185 B2

Sheet 27 of 65

Jun. 20, 2017

U.S. Patent

02z 092z wol4 iessut (D) L2 Old peoppwun @) Ghiz
A}
. §9ze Wedeleq / Soze wedeeg \
0 19%0ed (g) A - ,
< (Z)uonoe & (X011)isp doy ‘(ghsp~di ‘(vhsp ue Anus\psyoed oN
\
\
m ooed [/ /
JSEN PIBOPIM SISEIN|PAROPIM
i g v %01 q v
1Sp do}| 3sp di [1sp e 18p doy | ysp di 18P e
G§/¢ 9lqeigng GG/¢ 9|qeiqns
(@spdi {(@spdi
(g71) | 8belg (€77 | ebeig [~
TSIz 21991ans . /ﬁas_@
(LLL1)1spdoy(@lisp™ o (a)1sp o (Lrbb) 18P doy(@lisp e {@)18p e
(¥7121) Z °bEIS (21) 1 ebejs 1 21 ¢ obeis (ANEES
GCcc 19lIsse|) Gzzc Jomsse|D
G0.2
piespm-un
0LL2 oLl / ® ¥
A Lpedeieq 5922 wedeieq
,\ O)
U[}530e
Aljus payoed oN \ Anus payoed oN [1o%0ed
{
T / 1eoed M
— svic NSE PIESDIM xao:N uv%ds AN
: i ansp di GT/T
. *q1, ol v T RXXRX [% * (v)1sp Yo
ysew ejesoush e I1sp dol| ysp di |1sp ye 15p do}| jsp di [1sp wie
0} 833)NSUOY @/ §G/Z slgeang §G/¢ lqelans
(a)isp di (a@)isp di
(€7 1 obmis 08Le——— Eniobeis || |
OWNN‘\, - O.VNN
0577 91981aNS 0G/¢ 21981ang
(LLLL) 18P doy(a)sp we (v)1sp ye GELZ—| |[Grri)ispTdor(ansp ue (v)1sp e
71 21 2 °peIs ANEES /co«m_z [~ (#1721) ¢ ebels @Viebels | | +— (/7
Gogg lomssey | ON Tzzz loyssely | *— (ozz

US 9,686,185 B2

Sheet 28 of 65

Jun. 20, 2017

U.S. Patent

0z82 98¢
N

Mol |ieisu
el (&)

\

\

/ 592z uedeeq

INQ 1830ed

< (Z)uonoe « (x00Lhsp doy ‘(ghsp di

7

MSEN PIEOPIIM

pieos
-

X001

T

d —

1Sp_ Aoy

1sp di

|lqelgng

s|qeIgng
(@sp di
(€7) 1 sberg

S[qeng

(LLOL) 1sp d9}

(LL11)isp doy

(1) 1 ebelg

ki

(¥1) | oberg

ccc IaIIsseD

oLe8e

Gozz yiedeleg

Anua payoed oN

JSEN PJEIPIM

*%0)

~

X

1sp di

\ 15p Aoy

ysew sjessush @
0} 884} JINSU)

SlqENgNg

s|qeIang
(@)sp di
[CRIPEEER

S[qeng

(LLoL)1sp doy

(LLL)isp doy

4

(¥1) | obelg

¥

cce 1alsse|n

I

8¢ 94

Gozz wedejeg

Anua psyoed oN

pi-un (g)

ssew ajelsusb
0} 894} JjNSU0)

Y (2)

ASEIN PJedpjIp

x00L *
1sp doy| 1sp di
jqeigng
(@sp d
(€7) 1 obmig |
f
/ s|qeiang s/qeIgNg

4

(1101) 1sp doy

(LLLL)Isp doy

4

(1) | oBeig

(r1) L oberg

/
/

Scce JRIsse|D

§l8c

/
wrenw on (7)

§9zz Yedejeg

Anus payoed oN

058¢ -

ASEN pIedp|im

T T I,
1sp doy| 1sp di
§¥8¢ l9BIans
(@)sp d
(¢7) | oberg
0¥8Z slaelang 0282 slaeians

(L1o1)1sp dy

(LLLL)isp dy

(r1) | ebeig

(¥7) | ebeyg

yojew
oN

\

ccc Jalisse|D

0982

§68¢

{o001) 1sp~doy ™

(ghsp di G282

0ozce

U.S. Patent Jun. 20,2017 Sheet 29 of 65 US 9,686,185 B2

2925 Classifier Rules

\ Rule 1 - top_dst(1111)
Rule 2 - tcp_dst(1010)
Rule 3 - tcp_dst(0010)
Rule 4 - top_dst(1001)
2900
v
Q1 Q1

2
0
O
290? 2910/ ..‘,.

U.S. Patent

3015

Jun. 20, 2017

Classifier Rules

Sheet 30 of 65

US 9,686,185 B2

Rule 1 - tep_src(1111), tep_dst(0111)

Rule 2 ~ tep_scr(1100), tcp_dst{0001)

v
Q1 Q1
Q Q
1 1
&,
S o R
1 Q 1
Ao ‘ 0 ke
: L
b\1 0 b\1
> Q >
1 1
O O
b Y
3005 3005

FIG. 30

U.S. Patent

3115

\

Jun. 20, 2017

Classifier Rules

Rule 1 - tcp_dst(11%0)

Sheet 31 of 65 US 9,686,185 B2

Rule 1 -tcp_dst(11%1)

v
Q K
R Q
1 1
Oé> ‘ 0§1
O G O
310? A

3105

FIG. 31

U.S. Patent Jun. 20,2017 Sheet 32 of 65 US 9,686,185 B2

3225 Classifier Rules

Rule 1 - tcp_dst(1111)
Ry = 10)

Rule 3 - tcp_dst(0010)

Rule 4- tcp_dst(1001)

P b
g 7R
{ 4% |@m| 4 &%
e s I b
f oin

U.S. Patent Jun. 20,2017 Sheet 33 of 65 US 9,686,185 B2

Classifier Rules

3325
~a Rule 1 -tcp_dst(1111) \
Rule 2 - tcp_dst(0010) "».‘. tcp_dst (0111)
7 . 3330
Rute 3- tcp_dst(1001)
3300

bd %y pd &
Ay d b

tcp_dst
*kekk

Wildcard Mask
Wildcard Mask Q \
Ve 3310
3305 Q

pq. ©
R

tcp_dst
3330 01%% \
Wildcard Mask 3315

FIG. 33

U.S. Patent

3325

Jun. 20, 2017

Classifier Rules

Sheet 34 of 65

Rule 1 - tcp_dst(1111)
Rule 2 - tcp_dst(0010)

Rule 3- top_dst(1001)

US 9,686,185 B2

. top_dst (1100)

; . 3425

?Cé
e

P4
d b

3405

tcp_dst
*kkk

Wildcard Mask

3410

.
5

P
J b

tcp_dst
Tk %*%
Wildcard Mask

s

3420

tcp_dst
110 %
Wildcard Mask

- 3430

0Q1
PR
9

R

1

s

1

O

0

q
P
d b

/ﬂ

3415

FIG. 34

tcp_dst
11%%*
Wildcard Mask

U.S. Patent

Jun. 20, 2017

Classifier Rules

Sheet 35 of 65

3326

3300

Rule 1 -tcp_dst(1111)
Rule 2 - tcp_dst(0010)

Rule 3- tcp_dst(1001)

v

R
R
P

P
d b

R

1

US

“. top_dst (1110)

9,686,185 B2

3425

8

1

O

2

o 1

R

1

£ R
o

P
d b

1

S

1

0

tcp_dst
11%%
Wildcard Mask

. 2

R
PR
P

¢ 9y
PQ
4 ©

1

S

1

O

tcp_dst
/ Bhalel 3510/‘
3505 Wildcard Mask
0%?%
’ S|
1¢ Cé0 1@
0 1 1b
/4 tep_dst /
3520 110 3515

Wildcard Mask

FIG. 35

tcp_dst
111%
Wildcard Mask

U.S. Patent Jun. 20,2017 Sheet 36 of 65 US 9,686,185 B2

v ~ 3605
Select the next most significant bit from
packet header value

A

y

Un-wildcard the bit from
the wildcard mask

-~ 3620
Traverse the tree structure to the
node

Node available
for the bit?

FIG. 36

US 9,686,185 B2

Sheet 37 of 65

Jun. 20, 2017

U.S. Patent

g Wod indino
1NO 19%ed @
dl

0C.E

mol fressuy (9)
4 /

\ §9¢g wedejeq

/

<«

(z)uonoe & (0'0°0°SSTHASEIN - 0°0°0' Ehsp di

NSEN PIEOPIM

0'0'0°S5¢
18p di

(s/0001)18p di

0v.€ siqelgns e

6 (V)

(oL/00'1gzL) I8P di

STIT aiqeians @
GZee Jaysse|D
oLLE
4 59ze wedejeq
Anus payoes oN
ASBN PJEOPIA
0000
1sp d|
(gr000'1) 1P di
OVIE e|geiang Q
(91001821} I8P di ~
sigerans dnis (g) SoIE 21981anS O, ~—
Ggee layisselD

L —jinsuo)

—

L€ "OId

S

'4
50ZZ uedeleq

Asua payoeo oN

wren ()|

(s/0°0°0°1L) 18P di

ASeN PIespIiM

\

0'0'0°65¢ |-
1sp di

0r.¢ siqelans

(91/0°0'1'82)1) 18P di

Gele 9|geigng

@@ (D)

Seee ssseD

§gz¢ wedejeq

Anus payoes oN

LLE

ysewun @

G0.€
e

| Mod ssalbuy|
ur19oed

/ 190Ed M

GG.l¢e

201

0S¢
T 0ele

(s/000°1)18p i

JSBN PIESPIM

Or.g eiqelans

91/0°0°L'82Z1) ¥sp d|

Se.e s|geigns

. et
1sp di /

0000 Szie
1sp di |
T GvlE
“&
@ O
@]
[0g.¢

Gzeg seusselD | g7z

US 9,686,185 B2

Sheet 38 of 65

Jun. 20, 2017

U.S. Patent

yoless jou EQ@

(8/0°0°0°L1sp di ‘(pAdI)edAT Yo

(pAdI)edAY yie

(€121 z obeig

(z7) 1 ebeig

NSE PIBIDIIA

8¢ "OI4

(0g — Ayoud xe) siqeyans

0'00'ss¢

1sp di

cige

yore @

(1)uod uy

cose

(‘6ay) | ebeig

(0F — Aoud xep) 8jgeigns

oige aimmuv

UyoleW @

Y

(9L/0°0°L'8ZL0sp di ‘(PAdi)edA) e

(yrdi)edhi yie

(€127 ¢ ebeys

(z1) | ebeis

(0§ ~ Auoud xew) eiqeigng

| Lod sseibuy

()
1sp di 19oed

0e8e

U.S. Patent Jun. 20, 2017 Sheet 39 of 65

Look up IP

US 9,686,185 B2

address?

Consult a tree structure to
identify the prefix length

A 4

L~ 3915
Use identified prefix length in deciding
whether to skip [P address lookup of one
or more subtables

h 4

End 1«

FIG. 39

U.S. Patent Jun. 20,2017 Sheet 40 of 65 US 9,686,185 B2

Classifier Rule #1: 1.0.0.0/8 (00000001.00000000.00000000.00000000)
Classifier Rule #2: 128.1.0.0/16 (10000000.00000001.00000000.00000000)

4005

00000001 1000000000000001

FIG. 40

U.S. Patent Jun. 20,2017 Sheet 41 of 65 US 9,686,185 B2

Rule 1 - ip_dst(20.0.0.0/8)

Rule 2 - ip_dst(10.1.0.0/16)
Rule 3 - ip_dst(10.2.0.0/16)
Rule 4 - ip_ds{(10.1.2.0/24)
Rule 5 - ip_dst(10.1.1.5/32)

4100

@ Count = 1 @ @ Count = 1
Count = 1 0

Rule 2 - ip_dst(10.1.0.0/16)

Rule 1 - ip_dst(20.0.0.0/8)
bl

X
4105 4110 ‘

Count =1 h @ @ Count = 1
=1
Count Count = 1 0 o Count =1

X .
Rule 3 - ip_dst(10.2.0.0/16)
A Rule 4 -ip_dst(10.1.2.0/24) 4115
4120

/

4125

FIG. 41

U.S. Patent Jun. 20,2017 Sheet 42 of 65 US 9,686,185 B2

4210
N Rule 1 - ip_dst(20.0.0.0/8)
Rule 2 - ip_dst(10.1.0.0/16)
ip_dst (20.1.2.3) Rule 3 - ip_dst(10.2.0.0/16)
Rule 4 - ip_dst(10.1.2.0/24)
Packet Rule 5 - ip_dst(10.1.1.5/32)

ip_dst
4205 io_dst
255.0.0.0
0.0.00
Wildcard Mask
Wildcard Mask

FIG. 42

U.S. Patent Jun. 20,2017 Sheet 43 of 65 US 9,686,185 B2

4320
P/ Rule 1 -ip_dst{20.0.0.0/8)
Rule 2 - ip_dst(10.1.0.0/16}
ip_dst (10.2.0.3) Rule 3 - ?p_dst(10.2.0.0/16)
Rule 4 -ip_dst(10.1.2.0/24)
Packet Rule 5 - ip_dst(10.1.1.5/32)

K
f ip_dst ip_dst
4305 4310
255.255.0.0 255.255.0.0
Wildcard Mask \ Wildcard Mask
4315

FIG. 43

U.S. Patent Jun. 20,2017 Sheet 44 of 65 US 9,686,185 B2

4430
¥ Rule 1 - ip_dst(20.0.0.0/8)
Rule 2 - ip_dst(10.1.0.0/16)
ip_dst (10.1.1.5) Rule 3 - ip_dst(10.2.0.0/16)
Rule 4 - ip_dst(10.1.2.0/24)
Packel Rule 5 - ip_dst(10.1.1.5/32)

ip_dst

255.255.255.255

Wildcard Mask

FIG. 44

US 9,686,185 B2

Sheet 45 of 65

Jun. 20, 2017

U.S. Patent

Sy "Old

JSEN PIEDODIIM

00000000°00000000 LLELLLLLL LLLLLELL- 0'0°952°S52

A 1sp di
0Ly
| =juno) 10000000
| =juno) 10000000
\

00S¥
1908

\ (10000000° L0000000°'00000000°0000000} — (1'1°0°}) ¥sp™di \

momﬂ 00000000°00000000°1 0000000 10000000 - 9L/0°0°L'L -C# SINY J8lisse)

00000000°00000000°00000000° 10000000 - 8/0°0°0°} - L# BINY JSHISSE|D

US 9,686,185 B2

Sheet 46 of 65

Jun. 20, 2017

U.S. Patent

9 "OI4

0E9Y - | Buipnioul sisew preap|im ays LMoy

S9N YlM Spou Jse|
18 xyaid syj jo yibus]
a2y} pue ‘pasedwod
QG xyaid ssaippe ise|
oy} Buipnput ysew
DIBOD[IM BY) UINe Y

v

qe9y

0zoy

» >
Lat a

puz

sant

yum apou ise| 1e xyaid ayj jo yibuay
8y} pue UG BuyoleuIsi 1S3y syl

Buipnioug ySeW preopim syl uinay

so|n

ypim apoul 1se| 1e xijeid sy Jo
yiBusj ey pue ‘syq ssaippe

8y} ||e Bupn|oul ysew
piedplim ay) winiey

so|ni
yum spou s je xyaid sy jo yibus)
aUy} pue ‘uq xya.d ssaippe 1xau ay)

LUBIPIIYD BneY I
S90p pue isIxs apou
snoinaid ay) seeQ

&S1q ssaippe
IXau 8y 0} |2nba sug
apou sy} (|2 ey

£linu apou o34

¢pasn syq
ssalppe ay}
e asy

9pouU a4NPNAS
N 224} JUBUND Ly S

SepouU UBIP|IYD OM} 8y} §0
19U J09|8S 0} §q Xyaud
SS2IPPE IX8u 8y} 1. 399d

g9y

A

Walng 8y §|

dn payoo|
Buieq ssaippe sy} jo Buuuibaqg

| 841 woy j001 Binjongs se4 je Helg

009¥

U.S. Patent Jun. 20, 2017

Classifier Rule #1

Classifier Rule #2

Sheet 47 of 65 US 9,686,185 B2

Shared Bits

¥4

1111
1010

Packet Header

1100

Diff Bit

Wildcard Mask

0010

0=Wildcarded
1=Un-wildcarded

FIG. 47

US 9,686,185 B2

Sheet 48 of 65

Jun. 20, 2017

U.S. Patent

8Y "9Old

spley lepeay Jo j8s Jenoted ayy

¢319ejgns xau 0
SNUILOT ISHN

ce8y — YA

10} YSew pieopiim ey} sjeisush
0} E1ep YOJBLW UOWILICD JRSUo) ozay

A

N paujwexa

b 4

pug

spiay Jepesy Jo 18s Jenonsed sy} 0] puodselios
jed] Mseuw pledplim sy} O siiq atf} pJedpiim-un

N &oIqeqns ayy ul

dpesy (N) 8ie

gzey

oley -

puno yoiep
sigy —

Sp|ay Jopesy J0 19s senojued e o} puodsaiiod Jeyl
S} 8Y} 10§ 1000XS YSBW DIBIP|IM SU) O SHIQ PIOPIM-Un
‘e|geIqns 8yl Jo wayed pieop|Im sy Uo paseg

%

yolew E pui 0] 9|qelgns e

uo dmjoo| ysey e wiopad

A

S08r

ues

US 9,686,185 B2

Sheet 49 of 65

Jun. 20, 2017

U.S. Patent

0c6v

~A

s ©® 6¥9l4d

N0 Jeoed (8)

[yedeeqg

/

+—

7

(Z)uonae « (v) Z PIIL YR (%0 ¥)L 7 PRI4 Yaren

v EXEX
< P4 yoe| L pield yolely

NSEW anjes, UOIBIN UOWWIOD

7 ool _ oLol _ XIXE

(01011 PRI YoIEN

SlLey

Yedereq
PIEOPIM-UN Anus payoed oN
v FIEX,
z g wien| + pRid wien
ASEW onep UIBIN UOWWOD

So; o::_ XLXL

(oLoL)L PIeId Yole

yorel

(00L1) pieId yoeiN

(LELL) L PIRId Yyotey

@,\

(v) 2 pleld_yolen

(LLLL) LpId yore

S CEEIS 0567 8lgelans
GG6Y 919=Iang 0G6¥ 9Ige1ang
__ Zec Jasse|D
Gzeg 1elsseld
oLeY BJEDP YO)BW UOLULLOD 506¥
N Buisn ysew sjesousD) \
Yredeleq @ Yredejeg
Aqus payoeo oN v Alue payoes oN AFPH_@
Sz6Y
/ 1oped /-
X | *¥ox* NSBA PIBIPIIA
e1Ep YOIEW Z Pyl L PRl olE 5 *.:ﬁ % (v) 2 plo14 1opesH
UOLuLIoD sjelauss) se ane Uoje\ uowwo) _ l = e “piel4 Jepes
~— AT A Z PRI wiew| L preid yoew (00L1) | Prws 1apeaH
_ ook | ook | xxe T~
— ..
sver = —— T over
(0101) PRI YoIEN (01011 PlRIA YoIEN
(v) 2 pleid yoren (LLLL) piold yojew ™ /ﬁw_z (v) z peid yorew | | (FEEL) L PIRId Uote
GS6Y 2iqeigng 0S6¥ 8lqeIgns N G667 8igqeigns DG6¥ aiqeigns \ 8
GZee 1aussen Ggec 18lisse|) ovs

U.S. Patent Jun. 20,2017 Sheet 50 of 65 US 9,686,185 B2

ff'l‘) Initialize common match data based on the first rule

Match Field (1111) - | N
1111 1111 1114
Match_Field (1010)
Common Match CM value CMMask ™

Subtable’s mask

P - =

5005 {2 For each additional rule, calculate shared bit data to determine which bits are shared between
" the rule and the common maich value
Bitwise Operation
1M € CM Value
!
Match_Field (1111) _XOR{1010)
. - 1010 «———— Shared Bits
Match_Field (1010)
1111 1111 1111
y CommonMatch CMvalue CM Mask

5010 5 B

’3 Calculate a new common match mask that takes into account the second rule

Bitwise Operation

1111 +4 CM Mask
AND 1010 <} Shared Bits

Match_Field (1111)

Match_Field (1010) 1010
Creating a mask for the
_ bits the two rules have
% _f incommon
X1X 1111 1010

Common Match CM Value CM Mask

/V
5015 "'

(4 Calculate a new common match value to set all of the bits that are not part of the
~- common match mask to zero

Bitwise Operation

1114 €1~ CM Value

4,,, P
Match_Field (1111) | | e AND 1010 <~ New Mask
1010+,
Match_Field (1010) T
v
1X1X 1010 1010
A Common Match cM value CM Mask

5020 FIG. 50

U.S. Patent Jun. 20, 2017 Sheet 51

/ Header_Field(1100) - /

o ‘

5105

of 65

Match_Field (1111)

Match_Field (1010)

US 9,686,185 B2

/ Header_Field(1100)

Bit different from all the N

rules

5110

1X1X 1010 1010
" Common Match CM Value CM Mask
\
N
1100
XOR 1010 <4 CM Value Bit(s) that differ from
e the packet and the
o110 7 common match value
AND 1010 « CM Mask .
N . " Restricts it to only those
0010 « Diff MaSk\ bits that are common
. . between all the rules
Bitwise Operation N
N
-7 * Mask with the position of
the diff bit
“
Y
0010 *%k 0% 0010
Diff Mask Wildeard WG Mask

U.S. Patent Jun. 20,2017 Sheet 52 of 65 US 9,686,185 B2

0001000100010001 0001000000000000
Diff Mask Wildcard Mask

0001000100010001 0000000000000001
Diff Mask Wildcard Mask

FIG. 52

U.S. Patent Jun. 20, 2017

Match_Field (1111)

Match_Field (1010)

Match_Field (0101)

f

5305

Match_Field (1111)

Match_Field (1010)

Match_Field (0101) |

5310

Match_Field (1111)

Match_Field (1010)

Match_Field (0101)

5315

Sheet 53 of 65

US 9,686,185 B2

Match_Field (1111)

Match_Field (1010)

Match_Field (0101)

/

5320

FIG. 53

1X1X 1010 1010
Common Match oM Value CM Mask
Bitwise Operation
1010 4 CM Value
XOR (10101)
) 0000 € Shared Bits
1X1X 1010 1010
Common Match cM value CM Mask
Bitwise Operation
1010 +-— CM Mask
AND 0000 < Shared Bits
0000
\\
\\
4
KXXX 1010 0000
Common Match ¢cM value CM Mask
Bitwise Operation
1010 ¥~ CM Value
AND 0000 <} New Mask
0000 .
Y
XXXX 0000 0000
Common Match cM Value CM Mask

U.S. Patent Jun. 20,2017 Sheet 54 of 65 US 9,686,185 B2

Match_Field (1111)

Match_Field {(1010)

Match_Field (0101)

/ Header_Field(1100)_ / XXXX 0000 0000

Common Match CMValue CM Mask
\\
N
\\\
4
1100 No bit differs from the
XOR 0000 < CM Value ___ packet and the
5660 - =77 common match value
AND 0000 <++—— CM Mask
0000 %
Bitwise Operation 5405

= _=

/ Header_Field(1100) /

0000 1100 1111

Diff Mask No Wildcard WG Mask

5410

FIG. 54

US 9,686,185 B2

Sheet 55 of 65

Jun. 20, 2017

U.S. Patent

1100 ©

69 'OId

paplespiim-un=1
P3PIBIPIM=0

OLOL (peup ng-ninw) sisen pieopiim

(z# 108 aIny) sua Ha_

0011

(14198 oiny) ug W

lepeal 19y0ed

010
010}
L

N 4
/

sig peseys

C# 9Ny J19Uisse|D

CH dINY J9yYISse|

L# 9|y Jayisse|D

— C#19S 9Ny

— L# 19S 8|y

U.S. Patent Jun. 20,2017 Sheet 56 of 65 US 9,686,185 B2

(1) Initialize common match data based on the first rule

Match_Field (1111) | K
1111 1111 1111
Match_Field (1010) o
Common Match CM Value CM Mask
A | Mateh_Field (0101) = Subtable’s mask

5605
For each additional rule, try to fold rule into an existing common match mask. If unsuccessiul,

“Z/ create a new common match mask. Rule folded in as bitwise operation returned non-zero.

Bitwise Operation

1111 < CM Value
Match_Field (1111) XOR (11010)
T 010 Shared Bits
Match_Field (1010) —
Match_Field (0101) 1111 1111 1111

Common Match CM Value CM Mask

5610 7=~ As the bitwise AND operation returned non-zero, calculate a new common match mask that

2/ takes into account the second rule
Bitwise Operation

1111 <« CM Mask
Match_Field (1111) AND 1010 < Shared Bits
"""""""""" 1011
Match_Field (1010) Creating a mask for the
o - . bits the two rules have
. .
Match_Field (0101) 1X1X 1114 1010 in common

Common Match cM value CM Mask

/ k=

5615
(';i\) Calculate a new common match value to set all of the bits that are not part of the
= common match mask to zero
Bitwise Operation
_ 1111 *1— CM Value
Match_Field (1111) AND 1010 <} New Mask
_ 1010
Match_Field (1010)
¥
Match_Field (0101)
1X1X 1010 1010
Pal Common Match CM Value CM Mask
5620

FIG. 56

U.S. Patent Jun. 20, 2017

Sheet 57 of

From Fig. 56

-

65

US 9,686,185 B2

\5 For each additional rule, try to fold the rule into an existing common match mask.

Match_Field (1111)

Match_Field (1010)

Bitwise Operation

Match_Field (0101)

1010 4 CM Value
XOR (11010)
ad 0000 € Shared Bits
1X1X 1010 1010

Common Match ~ CM Value

/

5705

= =

CM Mask

§\ If fold unsuccessful, create new common match data based on the rule

{7 Initialize common match data based on the rule

Bitwise Operation

1010 <}~ CM Mask
AND 0000 « Shared Bits
0000
Match_Field (1111) 1X1X% 1010 1010 | Rule Set#1
Rule Set #1
Match_Field (1010) Common Match #1 CMValue CM Mask
Rule Set#2 -] | Match_Field (0101) T
0101 0101 1111 Rule Set#2
Ve Common Match #2 CM Value CM Mask N
5710 Subtable's mask

FIG. 57

U.S. Patent Jun. 20,2017 Sheet 58 of 65 US 9,686,185 B2

Match_Field (1111) 1X1X 1010 1010 | Rule Set#1
Rule Set #1 —
Match_Field (1010) Common Match #1 CM Value — CM Mask
Rule Set#2—| | Match_Field (0101)
Match_Field (0000) 1111 0101 1141 | Rule Set#2

Common Match #2 CM Value CM Mask

5805
. .

71 For each additional rule, try to fold rule into an existing common match mask. If
) unsuccessful, create a new common match mask.

Match_Field (1111)
. 1010 - CM Value (Rule Set #1)

Match_Field (1010) XOR (10000)

¥ 0101 « e Shared Bits
Match_Field (0101)

o Bitwise Operation

Match_Field (0000}

1X1X 1010 1010 Rule Set #1

Common Match #1 CM Value CM Mask

1111 0101 1111 Rule Set#2

/' Common Match #2 CM Value CM Mask

5810
B

{ 2 Fold unsuccessful, move onto next common match

\\ 1010 < CM Mask (Rule Set #1)
17~ AND 0101 @ Shared Bits
7 0000
Match_Field (1111) Bitwise Operation
Match_Field (1010)
1X1X 1010 1010 Rule Set #1

Match_Field (0101}

Common Match #1 CM Value CM Mask
Match_Field {0000)

1111 0101 1111 Rule Set #2
/ Common Match #2 CM Value CM Mask
5815
FIG. 58 8

To Fig. 59

U.S. Patent Jun. 20,2017 Sheet 59 of 65 US 9,686,185 B2

From Fig. 58

¢3y Trytofold rule into the common match mask of rule set #2
NS

Match_Field (1111) Bitwise Operation
. 0101 «——— CM Value (Rule Set #2)
Match_Field (1010} XOR (10000)
v 1010 Shared Bits
Match_Field (0101) e
Match_Field (0000) {~
IX1X 1010 1010 Rule Set #1

Common Match #1 CM Value CM Mask

5805 1111 0101 1111 Rule Set #2

Common Match #2 CM Value CM Mask

§ B

(21 Fald successful, update common match mask

Bitwise Operation

1111 +f—— CM Mask (Rule Set #2)
. AND 1010 <-4 Shared Bits
1010 |
Match_Field (1111) \
Rule Set #1 AN
Match_Field (1010)
1X1X 1010 ‘1010 | Rule Set#1
Match_Field (0101)
Rule Set #2 Commmion Match #1 CM Value CM Mask
Match_Field {(0000) ¥
1X1X 0101 1010 Rule Set #2
Common Match #2 CM Value CM Mask
5910 . B
To Fig. 60

FIG. 59

U.S. Patent

Jun. 20, 2017 Sheet 60 of 65

US 9,686,185 B2

From Fig. 59

. =

/H\
{8) Calculate a new common match value

Bitwise Operation

0101 € CM Value (Rule Set #2)
__AND 1010 #-p-mmmr New Mask (Rule Set #2)
0000 |
- N
Match_Field (1111) 5
Rule Set #1 — \
Match_Field (1010) T
— 1X1X 1010 | 1010 Rule Set #1
Match_Field (0101) :
Rule Set#2 — Common Match #1 CM Valug CM Mask
Match_Field (0000) ¥
_ 1X1X 0000 1010 | Rule Set#2

Common Match #2 CM Value CM Mask

FIG. 60

U.S. Patent Jun. 20,2017 Sheet 61 of 65 US 9,686,185 B2

1\ Calculate diff mask for each piece of common match data

Match_Field (1111) 1XAX 1040 1010 | Rule Set#1

Rule Set #1 —

Match_Field {(1010) Common Match #1 CM Value CM Mask

Match_Field (0101)
Rule Set#2 — TX1X 0000 1010 Rule Set #2
Match_Field (0000)

— Common Match #2 €M Value CM Mask

/ _ Header_Field(1100) _ /
e .

7 .
» \\‘A
1100 1100
XOR 1010« CM Value (Rule Set #1) XOR 0000 «— CM Value (Rule Set #2)
0110 1100
AND 1010 « | CM Mask (Rule Set #1) AND 1010 <} CM Mask (Rule Set #2)
0010 «y— Diff Mask (Rule Set #1) 1000 < Diff Mask (Rule Set #2}
Bitwise Operation Bitwise Operation
/ —
6105 ~2 | Select one bit from each diff mask (e.g., the most significant bit)
Diff Mask (Rule Set #1) 0010

Diff Mask (Rule Set#2)| OR 1000

/ Header_Field(1100) /

S Bit different from rule set #1

1" Wildcard Mask

Bitwise Operation

Bit different from rule set#2 ™. . T

T qk0% 1010
/‘ Wildcard WC Mask
6110

FIG. 61

U.S. Patent Jun. 20, 2017 Sheet 62 of 65

Packet Header 1 100

(! Packet Header) 001 1
Classifier Rule #1 11 1 1

Classifier Rue #2 1010

US 9,686,185 B2

Wildcard Mask 0010

O=Wildcarded
1=Un-wildcarded

FIG. 62

U.S. Patent Jun. 20,2017 Sheet 63 of 65 US 9,686,185 B2

e

6305
Initialize a flow header [
space to be all-wildcards
— 6310

Subtract all higher priority flows that
match the flow header space

l — 6315
Intersect the flow header space with

the rule that matches the packet.

X — 6320
Apply the actions of the matched rule to

the packet and the flow header space

— 6330

Submit the packet and its flow

?
Any other table(s)? header space to the next table

— 6335
Add a rule to the cache that matches

the entire flow header space.

End

FIG. 63

US 9,686,185 B2

Sheet 64 of 65

Jun. 20, 2017

U.S. Patent

79

old

s | i

TN TEE L

Db bt g N

00v9

US 9,686,185 B2

Sheet 65 of 65

Jun. 20, 2017

U.S. Patent

N

aveo

GZs9

0259

G9 OId
G959 | 0159 0£59
AN _ N AN
Jomia seoie(J0SS820.
HIOMJSN ndu d NOY
N
5069
wpg || s || 2
Indino wa)sAs . d abeloig
sojydelo
< < >

Ges9

0059

US 9,686,185 B2

1
GENERATING FLOWS USING COMMON
MATCH TECHNIQUES

CLAIM OF BENEFIT TO PRIOR
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application 61/878,032, filed on Sep. 15, 2013, and
U.S. Provisional Patent Application 61/986,070, filed on
Apr. 29, 2014. This application is also a continuation in part
application of U.S. patent application Ser. No. 14/069,284,
filed on Oct. 31, 2013, now published as U.S. Pat. No.
9,602,398. U.S. patent application Ser. No. 14/069,284
claims benefit to U.S. Provisional Patent Application
61/878,032, filed on Sep. 15, 2013. U.S. Patent Applications
61/986,070, 61/878,032, and Ser. No. 14/069,284, now
published as U.S. Pat. No. 9,602,398, are incorporated
herein by reference.

BACKGROUND

Many current enterprises have large and sophisticated
networks comprising switches, hubs, routers, servers, work-
stations and other network devices, which support a variety
of connections, applications and systems. The increased
sophistication of computer networking, including virtual
machine migration, dynamic workloads, multi-tenancy, and
customer specific quality of service and security configura-
tions require a better paradigm for network control. Net-
works have traditionally been managed through low-level
configuration of individual components.

In response, there is a growing movement, driven by both
industry and academia, towards a new network control
paradigm called Software-Defined Networking (SDN). In
the SDN paradigm, a network controller, running on one or
more servers in a network, controls, maintains, and imple-
ments control logic that governs the forwarding behavior of
shared network switching elements on a per user basis.
Typically, the shared network switching elements are soft-
ware switching elements. A software switching element
brings many features that are standard in a hardware switch
to virtualized environments. The software switching element
can also be more flexible than the hardware switch. For
instance, the software switching element can be pro-
grammed to emulate a traditional switch pipeline or can be
programmed to extend for new models.

One of the main challenges in developing such a software
switching element is performance. A hardware switch has
application-specific integrated circuits (ASICs) that are spe-
cifically designed to support in-hardware forwarding. The
problem with a software switch is that it operates on a host
(e.g., x86 box), such as a hypervisor. Thus, methods for
increasing the performance of the software switching ele-
ment are needed.

BRIEF SUMMARY

Embodiments described herein provide a forwarding ele-
ment that uses at least one of several different algorithms to
generate a flow in order to process packets. In some embodi-
ments, the flow is associated with a wildcard mask that
informs the forwarding element which bits of a set of match
fields in the flow are significant when matching. This means
that the forwarding element can ignore the remaining wild-
carded bits. As an example, when a packet is received, the

20

25

40

45

2

forwarding element can process the packet using the flow as
long as the bits of the header match each non-wildcarded bit
of that flow.

In some embodiments, the different algorithm includes (1)
a tuple space search algorithm, (2) a staged lookup algo-
rithm, (3) a number of different prefix tracking algorithms,
and (4) a number of different common match algorithms.
The forwarding element of some embodiments can process
packets using one or more of these different algorithms. As
an example, the forwarding element of some embodiments
uses a staged lookup algorithm in combination with Layer 3
and/or Layer 4 prefix tracking algorithms. As another
example, the forwarding element can use a staged lookup
algorithm in combination with a common match algorithm.

In some embodiments, the forwarding element uses a
staged lookup algorithm to generate a flow that is associated
with a wildcard mask. The staged lookup of some embodi-
ments takes into account the fact that some header fields may
change more frequently than others. Based on this fact, it
performs a multi-staged search starting with infrequently
changing fields, and progressing to frequently changing
ones. The ordering of the different stages is important
because the staged algorithm of some embodiments is
essentially holding off on searching the frequently changing
fields (e.g., L3 and L4 fields) until it is necessary to do so.
One of the motivations for the staged lookup algorithm, and
other algorithms described herein, such as the common
match algorithms and prefix tracking algorithms, is to avoid
unnecessarily un-wildcarding more bits than necessary; and
thereby, optimizing the datapath lookup or cache lookup by
matching on fewer bits.

In utilizing the staged lookup algorithm, the forwarding
element of some embodiments does not look at all the fields
(e.g., in a hash table) at once but first looks at those fields
that do not change frequently. If none of those fields
matches, the switching element terminates the lookup opera-
tion without having to lookup fields that change frequently.
For instance, when a packet is received, the forwarding
element of some embodiments performs a first stage lookup
of a hash table (e.g., a subtable) for a first hash of a first set
of header fields and un-wildcards bits of a wildcard mask
that corresponds to the first set of header fields. If a matching
hash is found in the first stage lookup, the forwarding
element performs a second stage lookup of the hash table for
a second hash of a second set of header fields and un-
wildcards bits of the wildcard mask that corresponds to the
second set of header fields. However, if the first stage lookup
resulted in no matching hash value, the forwarding element
terminates search of that hash table and moves onto the next
hash table.

In some embodiments, the forwarding element consults a
set of one or more trees when dynamically generating a
wildcard mask for a flow. The forwarding element of some
embodiments builds a tree structure that includes a set of
rules as child nodes (e.g., by segmenting children based on
‘1’ or ‘0”). When the classifying a new packet, the forward-
ing element then traverse the tree structure, un-wildcarding
bits along the way, starting with the root until it reaches a
branch with no leaves. In some embodiments, the set of
match fields relates to a set of Layer N header fields. For
instance, the tree structure can be built using Layer 3 source
or destination IP addresses associated with different rules.
As another example, the tree structure can be built using
Layer 4 destination and/or source TCP port numbers.

The forwarding element of some embodiments uses a
common match algorithm to generate a wildcard mask for a
flow. The common match algorithm of some embodiments

US 9,686,185 B2

3

examines a set of one or more rules to find a “common
match”. That is, the algorithm attempts to find one or more
bits at different positions in which each rule in the set of
rules shares with one another. The algorithm then attempts
to find the position of one bit from the packet header, which
has a different value than the shared bit at the same bit
position. The algorithm then unmasks the corresponding bit
from the wildcard mask.

In some embodiments, when the forwarding element
receives a packet, it examines several rules to find a common
match, which includes a set of one or more bits that the rules
have in common with one another. The forwarding element
then identifies the position of a diff bit from the packet
header. The diff bit is a bit from the packet header that is
different from a bit in the common match. Once identified,
the forwarding element of some embodiments generates a
wildcard mask by unmasking a bit from the wildcard mask
that is at the same bit position as the position of the diff bit.
The forwarding element then processes the packet and
generates a flow that is associated with the wildcard mask.
Different from an exact match microflow, the flow is used to
process each packet that match each bit that is unmasked in
accordance with the wildcard mask.

In examining different rules, the forwarding element of
some embodiments generates a common match data set that
includes a common match value and a common match mask.
The common match value identifies the value of each
common bit, and the common match mask identifies the
position of the common bit. In some embodiments, the
common match value is initialized using the value of one of
the rules, and the common match mask is initialized using a
mask associated with a hash table.

In examining different rules, the forwarding element of
some embodiments folds each other rule into the common
match data set. The fold operation can entail calculating
shared bit data to determine which zero or more bits are
shared between the other rule and the common match value.
The fold operation can further entail calculating a new
common match mask that takes into account that other rule.
The fold operation of some can further entail calculating a
new common match value to set all of the bits that are not
part of the common match mask to zero.

In some embodiments, the forwarding element identifies
the position of the diff bit by calculating a value that
indicates which zero or more bits is different from the packet
header and the common match value. The forwarding ele-
ment then generates a diff mask by restricting the calculated
value to only each bit that is common between all of the
rules. The forwarding element of some embodiments then
generates the wildcard mask by choosing one bit from the
diff mask and unmasking the corresponding bit from the
wildcard mask.

Some embodiments extend the common bit test to include
a test of multiple bits if necessary. That is, the multi-bit
common match algorithm of some embodiments can be used
to disqualify one set of one or more rules using a first bit and
each other set of rules using a second different bit. By
different, the first bit and each other bit can be at the same
bit position if the bits are the same, but the two bits cannot
be at the same bit position if the bits are not the same. This
is because the packet, depending on the header value, will
match one of the two sets of contradictory rules, which
means that the one set of rules is not disqualified. Thus, one
of the keys to the multi-bit common match algorithm is
identifying, from the sets of rules, the different shared bits at

10

15

20

25

30

35

40

45

50

55

60

65

4

different bit positions, where each bit disqualifies at least one
set of rule in the sets of rule, and all sets of rules are
disqualified.

In some embodiments, when the forwarding element
receives a packet, it identifies different diff bits for different
sets of rules. Each diff bit is a bit in the packet header that
is different from a shared bit of one of the sets of rules. The
forwarding element then generates a wildcard mask by
unmasking multiple bits from the wildcard mask in accord
with the positions of the different diff bits. The forwarding
element then processes the packet and generates a flow that
is associated with the wildcard mask.

The forwarding element of some embodiments examines
the different sets of rules to find common matches, where
each common match includes a set of one or more bits,
which each rule in one of the sets of rules, have in common
with one another. The forwarding element may examine the
different sets of rules by generating, for each set of rule, a
common match data set that includes a common match value
and a common match mask. The forwarding element of
some embodiments then attempts to fold each rule in a set
of rules into one of the common match data sets. In some
embodiments, the forwarding element creates a new com-
mon match data set if the fold operation results in the
common match data set indicating that the set of rules
collectively have no bits in common. The forwarding ele-
ment then chooses one bit from each common match mask
and unmasks the corresponding bit from the wildcard mask.

The preceding Summary is intended to serve as a brief
introduction to some embodiments as described herein. It is
not meant to be an introduction or overview of all subject
matter disclosed in this document. The Detailed Description
that follows and the Drawings that are referred to in the
Detailed Description will further describe the embodiments
described in the Summary as well as other embodiments.
Accordingly, to understand all the embodiments described
by this document, a full review of the Summary, Detailed
Description and the Drawings is needed. Moreover, the
claimed subject matters are not to be limited by the illus-
trative details in the Summary, Detailed Description and the
Drawings, but rather are to be defined by the appended
claims, because the claimed subject matters can be embod-
ied in other specific forms without departing from the spirit
of the subject matters.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purposes of explanation,
several embodiments of the invention are set forth in the
following figures.

FIG. 1 conceptually illustrates a process that some
embodiments use to generate a flow with zero or more
wildcard fields.

FIG. 2 illustrates an example of a switching element that
dynamically generates a flow with a wildcard field.

FIG. 3 shows an example how the switching element uses
the flow with the wildcard field to process subsequent
packets.

FIG. 4 conceptually illustrates an architectural diagram of
a software-switching element of some embodiments.

FIG. 5 conceptually illustrates several processes, which
show the interactions between several switch components
when generate and cache flow with zero or more wildcard
fields.

FIG. 6 illustrates an example of a switching element that
finds a matching flow that is stored in a cache.

US 9,686,185 B2

5

FIG. 7 illustrates an example of transferring control to a
switch daemon when there is no matching flow stored in the
cache.

FIG. 8 illustrates an example of the switch daemon
generating a flow to store in the cache.

FIG. 9 shows an example of un-wildcarding a match field
because it was compared against a header value.

FIG. 10 illustrates an example of iterating through mul-
tiple flows and un-wildcarding multiple match fields.

FIG. 11 provides an illustrative example of a resubmit
operation.

FIG. 12 illustrates an example of the switching element
un-wildcarding a match field that is not explicitly specified
in a flow from a flow table.

FIG. 13 illustrates an example of the switching element
un-wildcards the corresponding MAC address fields based
on an action associated with a flow.

FIG. 14 provides an illustrative example of how the
switching element utilizes a number of different components
to generate the flow entry.

FIG. 15 illustrates an example of how the datapath flow
generator generates a flow by interfacing with different
components.

FIG. 16 conceptually illustrates a process that some
embodiments perform to dynamically generate a new flow
with zero or more wildcard fields

FIG. 17 conceptually illustrates a process that some
embodiments implement to proactively cross-product tables
in the slow path packet processing pipeline.

FIG. 18 provides an illustrative example how some
embodiments cross product several tables in the slow path
packet processing pipeline.

FIG. 19 illustrates a process that some embodiments
implement to incrementally computing the cross-producted
table.

FIG. 20 provides an illustrative example of performing a
tuple space search to find a matching rule for a packet and
generate a wildcard mask.

FIG. 21 conceptually illustrates a process that some
embodiments implement to perform a staged lookup up and
un-wildcard bits associated with a wildcard mask.

FIG. 22 provides an illustrative example of a forwarding
element that performs a staged version of the tuple space
search.

FIG. 23 illustrates the forwarding element performing
another staged lookup operation.

FIG. 24 illustrates an example subtable that shows the
organization of different fields in different stages.

FIG. 25 illustrates an example of how several rules are
populated in different subtables.

FIG. 26 conceptually illustrates a process that some
embodiments implement to generate a wildcard mask for a
set of match fields.

FIG. 27 illustrates an example of a forwarding element
that consults a tree when generating a wildcard mask relat-
ing to a Layer N header.

FIG. 28 provides an illustrative example of a forwarding
element that examines multiple tree structures to generate a
wildcard mask for the same Layer N header.

FIG. 29 illustrates several examples of inserting classifier
rules into a tree structure.

FIG. 30 illustrates a concatenated tree structure that
encompasses two fields.

FIG. 31 provides an illustrative example of populating a
tree structure with portions of different match fields.

FIG. 32 illustrates an example of removing one of the
classifier rules from a tree structure.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 33 shows an example of generating a wildcard
masking by tracing a packet header field down a tree
structure.

FIG. 34 shows another example of generating a wildcard
masking by tracing a packet header field down the tree
structure.

FIG. 35 shows yet another example of generating a
wildcard masking by tracing a packet header field down the
tree structure.

FIG. 36 conceptually illustrates a process that some
embodiments implement to generate a wildcard mask by
tracing a rule down a tree structure.

FIG. 37 illustrates an example of a forwarding element
that consults a tree structure to generate a wildcard mask and
determine whether to skip lookup of a subtable.

FIG. 38 illustrates another example of consulting a tree
structure to generate a wildcard mask and to decide whether
to skip lookup of a subtable.

FIG. 39 conceptually illustrates a process that some
embodiments implement to forego searching a particular
subtable for an IP address.

FIG. 40 illustrates several examples of different binary
trees to track network prefixes.

FIG. 41 illustrates an example of how the forwarding
element of some embodiments maintains a count of the
number of IP address prefixes associated with each node.

FIG. 42 shows an example of generating a wildcard
masking by tracing an IP address header of a packet down
a tree structure.

FIG. 43 illustrates another example of generating a wild-
card masking by tracing a prefix of an IP address header
down the tree structure.

FIG. 44 illustrates another example of generating a wild-
card mask by tracing the routing prefix of an IP address
header down a tree structure.

FIG. 45 illustrates an example of un-wildcarding addi-
tional bits of a wildcard mask.

FIG. 46 conceptually illustrates a process that some
embodiments implement to generate a wildcard mask and
decide whether to skip lookup of one or more subtables.

FIG. 47 conceptually illustrates the common match algo-
rithm of some embodiments.

FIG. 48 conceptually illustrates a process that some
embodiments implement to generate a wildcard mask by
consulting common match data.

FIG. 49 illustrates an example of a forwarding element
that consults common match data when generating a wild-
card mask relating to a Layer N header.

FIG. 50 illustrates an example of generating common
match data from two classifier rules.

FIG. 51 illustrates an example of using the common
match data and packet header data to generate a wildcard
mask.

FIG. 52 conceptually illustrates several examples of gen-
erating a wildcard mask from a diff mask.

FIG. 53 illustrates an example of performing the common
match algorithm of some embodiments and finding no
common match.

FIG. 54 illustrates another example of using the common
match data and packet header data to generate a wildcard
mask.

FIG. 55 conceptually illustrates an example of the multi-
bit common match algorithm of some embodiments.

FIG. 56 illustrates an example of generating common
match data from two classifier rules.

US 9,686,185 B2

7

FIG. 57 illustrates an example of creating a new common
match data set for a rule if the rule cannot be folded into a
previously generated common match data set.

FIG. 58 illustrates another example of how the multi-bit
common match algorithm attempts to fold a rule into an
existing common match data set.

FIG. 59 illustrates an example of how the multi-bit
common match algorithm attempts to fold a rule into the
second common match data set because it failed to fold that
same rule into the first common match data set

FIG. 60 illustrates an example of updating the common
match data associated with a common match data set.

FIG. 61 illustrates an example of using the first and
second common match data sets to generate a wildcard
mask.

FIG. 62 illustrates an example of how different common
match algorithms can start with a packet rather than a rule.

FIG. 63 illustrates an example of how different common
match algorithms can start with a packet rather than a rule.

FIG. 64 illustrates several examples of flows that are
stored in a datapath cache.

FIG. 65 conceptually illustrates an electronic system with
which some embodiments of the invention are implemented.

DETAILED DESCRIPTION

In the following detailed description of the invention,
numerous details, examples, and embodiments of the inven-
tion are set forth and described. However, it will be clear and
apparent to one skilled in the art that the invention is not
limited to the embodiments set forth and that the invention
may be practiced without some of the specific details and
examples discussed.

Some embodiments of the invention provide a switching
element that receives a packet and processes the packet by
dynamically generating a flow entry with a set of wildcard
fields. The switching element then caches the flow entry and
processes any subsequent packets that have header values
that match the flow entry’s non-wildcard match fields. In
other words, each subsequent packet does not have to have
header values that match all of the flow entry’s match fields
but only its non-wildcard fields. By generating a flow entry
with such wildcard fields, the switching element does not
have to generate a new flow entry when it receives a similar
packet with one or more different header values. The switch-
ing element can continue to process such a similar packet as
long as its header values match the non-wildcard fields.

FIG. 1 conceptually illustrates a process 100 that some
embodiments use to process packets. Specifically, the pro-
cess 100 illustrates an example of dynamically generating a
flow with zero or more wildcard fields. In some embodi-
ments, the process 100 is performed by a switching element.
The process 100 begins when it receives (at 105) a packet.
The process 100 then determines (at 110) whether there is a
flow entry stored in the cache that can process the packet. In
particular, it determines whether there is a flow entry in
which all of its non-wildcard fields match the corresponding
header values. If a matching flow entry is found, the process
100 selects (at 115) the flow entry. The process 100 then
performs (at 120) a set of actions on the packet according to
the selected flow entry.

When there is a miss in the cache, the process 100
dynamically generates a new flow entry. In generating the
flow entry, the process 100 initializes (at 125) some or all
match as wildcard fields. The process 100 then generates (at
130) a new flow entry by un-wildcarding each match field
that was consulted or examined when generating the flow

10

15

20

25

30

35

40

45

50

55

60

65

8

entry. That is, it un-wildcards each match field that it cared
about (e.g., looked at) during the generation of the flow
entry.

The process 100 of some embodiments generates a flow
entry with wildcard fields based on one or more flows in a
set of one or more flow tables. As an example, when a packet
is received, the process 100 may select a flow from a flow
table and un-wildcards each match field that is compared
against a packet header value. In some embodiments, the
match field is un-wildcarded regardless of whether there was
a match between the match field and the header value. The
process 100 may iteratively select the next flow in the flow
table until a matching flow is found. If a matching flow is
found, it then generates a flow entry with zero or more
wildcard fields, depending on the number of remaining
wildcard match fields. In some cases, the process 100 may
recirculate to find one or more other matching flows to
generate one consolidated flow entry for multiple flows from
one or more flow tables.

In some embodiments, the process 100 uses one of several
different classification algorithms to find a matching flow.
Examples of such algorithms include a tuple space search
algorithm and a staged lookup algorithm. These algorithms
will be described below in Section V below.

Alternatively, or conjunctively with such matching, the
process 100 of some embodiments un-wildcards match
fields based on an action associated with a matching flow. As
an example, the process 100 of some embodiments can be
configured to do normal 1.2 processing. In such cases, the
process 100 may use a media access control address (MAC)
learning algorithm to derive an output port for a given packet
based on a set of one or more packet header values. The
process 100 can use the algorithm to identify a MAC address
of'a machine (e.g., a virtual machine) that is connected to its
port or attached to its virtual interface. The process 100 can
then compare the MAC address to the header’s destination
Ethernet address and specify an output port if the addresses
matches one another. Since the destination MAC address has
been looked at, the process 100 can then un-wildcards the
corresponding match field when generating the wildcard
flow.

As shown in FIG. 1, upon generating the flow entry, the
process 100 then stores (at 135) the flow entry in the cache.
The process 100 caches the flow entry so that it can process
100 any subsequent packets with header values that match
all of the flow’s non-wildcard fields. The process 100
performs (at 140) the new flow entry’s associated set of
actions of the received packet. The process 100 then waits
(at 145) for additional packets. If there is another packet, the
process 100 returns to 105, which is described above.
Otherwise, the process 100 then ends.

Some embodiments perform variations on the process
100. The specific operations of the process 100 may not be
performed in the exact order shown and described. The
specific operations may not be performed in one continuous
series of operations, and different specific operations may be
performed in different embodiments.

Having described one example process, several additional
examples of generating and using wildcard flows will now
be described by reference to FIGS. 2 and 3. FIG. 2 illustrates
an example of dynamically generating a wildcard flow.
Specifically, this figure shows a switching element 205 that
examines a flow entry in a flow table and generates a cache
flow entry with at least one wildcard field. This example is
shown in terms of five stages of operations 245-265 of the
switching element. The switching element 205 includes a
datapath flow generator 210 and a datapath manager 220.

US 9,686,185 B2

9

In many of the examples described below, the term
“wildcarded” is used interchangeably with the word
“masked”, and the term ‘“‘un-wildcarded” is used inter-
changeably with the term “unmasked”. In some embodi-
ments, the term “wildcarded” means that a set of one or more
bits associated with a wildcard mask is set to 0, and the term
“un-wildcarded” means that the set of bits is set to 1.
Accordingly, the term “masked” is used in a general sense,
which means it has hidden or concealed one or more bits
(e.g., by setting the bits of the wildcard mask to 0). Likewise,
the term “unmasked” is used in a general sense, which
means it has un-hidden or revealed one or more bits (e.g., by
setting the bits of the wildcard mask to 1). In other words,
the term “masked” as used herein does not mean a set of bits
is “un-wildcarded”, and term “un-masked” as used herein
does not mean the set of bits is “wildcarded”.

The switching element 205 forwards data (e.g., data
frames, packets, etc.) from one network node (e.g., machine)
to one or more other network nodes. The switching element
205 can receive packets and can process those packets
according to a set of flow entries in one or more flow tables
(e.g., the flow table 215). The switching element 205 of
some embodiments is a software or virtual switch. In some
embodiments, a software is formed by storing its flow
table(s) and logic in the memory of a standalone device (e.g.,
a standalone computer), while in other embodiments, it is
formed by storing its flow table(s) and logic in the memory
of'a device (e.g., a computer) that also executes a hypervisor
and one or more virtual machines on top of that hypervisor.

The datapath flow generator 210 is a component of the
switching element 205 that makes switching decisions. The
datapath manager 220 receives the switching decisions,
caches them, and uses them to process packets. For instance,
when a packet comes in, the datapath manager 220 first
checks the datapath cache 225 to find a matching flow entry.
If no matching entry is found, the control is shifted to the
datapath flow generator 210. The datapath flow generator
210 then examines a flow table (e.g., the flow table 215) to
generate a flow to push down to the datapath cache 225. In
this manner, when any subsequent packet is received, the
datapath manager 220 can quickly process the packet using
the cached flow entry. The datapath manager 220 provides a
fast path to process each packet. However, the switching
decisions are ultimately made through the datapath flow
generator 210, in some embodiments.

The process of determining what to do when there is a
missed in the cache can be an expensive operation. The
process must be performed each time there is a miss in the
cache. The switching element 205 must perform a number of
different tasks to generate a flow entry to store in the
datapath cache 225. As an example, the datapath flow
generator 210 must iterate through one or more flow tables
to find a matching flow entry. This can entail dynamically
generating a flow based on a default rule if no matching table
entry is found. For instance, the switching element can be
configured to do normal L2 and/or L3 processing for any
packet without a matching flow entry. The generation of a
flow entry to store in the cache can also entail performing a
number of resubmits, and deriving or learning output ports,
etc.

To speed up processing, the switching element 205 of
some embodiments supports flows with wildcards instead of
only exact match flows. In particular, it generates a flow with
one or more wildcards and caches that flow. This flow is also
referred to as a megaflow because it allows packets that have
different wildcard values to be quickly processes. In other
words, this caching now collapses similar flows into one

10

15

20

25

30

35

40

45

50

55

60

65

10

userspace “megaflow” that makes many flow misses a cache
lookup instead of a full translation (e.g., through the dat-
apath flow generator 210).

Having described several component of the switching
element 205, an example of dynamically generating a wild-
card flow will now be described by reference to the five
operational stages 245-265 that are illustrated in FIG. 2. The
first stage 245 illustrates the switching element 205 receiv-
ing a packet 230. The switching element 205 is associated
with the flow table 215. To simplify the description, the flow
table 215 includes only one flow 235. However, one of
ordinary skill in the art would understand that the table could
include many more flows.

The flow 235 in some embodiments is a table entry that
is used to match and process packets. It includes a set of
match fields to match packets and one or more actions to
perform on matching packets. In the example of FIG. 2, the
match fields are ingress port and Ethernet destination
address (e.g., destination MAC addresses). The action is
shown as a number two. This number represents an output
port. Accordingly, the flow 235 provides a rule that states
that all packets received through ingress port one and that
have the matching Ethernet destination address should be
output to port two.

Aside from the match fields and the action, the flow entry
235 can include other variables, such priority and timeout
values. The priority value identifies the matching prece-
dence of a flow. For example, the flow table 215 can include
multiple entries that can handle a same packet. In some
embodiments, the switching element iterates through flow
entries base on the priority value. The switching element
might examine a flow entry with a higher priority value
before a lower one. In this way, a flow entry with a higher
value will match before a lower one. The first match can then
be used to generate a cache flow entry. So, typically, the
matching flow with the highest priority is used process a
packet, but this may not be true in all cases. As mentioned
above, the switch element might re-search the same flow
table to find one or more other flows. In such cases, the
switching element might consolidate the flows into one
cache flow entry. The switching element might perform
multiple sets of action or just one set of action (e.g., the
matching flow with the highest priority value). Different
from the priority value, the timeout value represents how
long the flow stays in the flow table 215 before it expires.
This can be an idle timeout (e.g., if it is inactive) or even a
hard timeout (e.g., regardless of its activity).

The first stage 245 also illustrates the packet 230 that is
sent to the switching element. The term “packet” is used here
as well as throughout this application to refer to a collection
of bits in a particular format sent across a network. One of
ordinary skill in the art will recognize that the term “packet”
may be used herein to refer to various formatted collections
of bits that may be sent across a network, such as Ethernet
frames, TCP segments, UDP datagrams, IP packets, etc.

In some embodiments, the packet is a unit of data that
comprises header and user data. The header of a packet
includes control information that is necessary for the deliv-
ery network to deliver the packets from the node that
transmits the data packets to the node to which the packets
are to be delivered. The user data of the packet is data that
is to be delivered from one node to another. The user data is
also called a payload. A data packet may include headers of
one or more communication protocols. When a data packet
includes more than one header, the outer-most header is
followed by other headers. The innermost header is usually
the last header of the headers before the payload of the

US 9,686,185 B2

11

packet. For the network that implements the protocol of the
outer-most header of a packet, the network considers only
the outer-most header of the packet as the header and the
other headers and the user data of the packet are together
considered as the payload of the packet. To simply the
discussion, the packet 230 is shown with only two header
values, namely Ethernet and IP destination addresses. How-
ever, a typical packet contains more header values.

In the first stage 245, the switching element 205 receives
the packet 230. The second stage 250 shows that datapath
manager 220 looks for a matching flow that is stored in the
datapath cache 225. The datapath cache 225 provides a fast
path to process incoming packet because it does not involve
any translation by the datapath flow generator 210. In the
second stage 250, there are no flow entries stored in the
datapath cache 225. Accordingly, the packet processing is
transferred to the datapath flow generator 210. In some
embodiments, the transferring entails sending the packet 230
to the datapath flow generator 210.

The third stage 255 illustrates the datapath flow generator
210 dynamically generating a flow entry 240 with at least
one wildcard field. In wildcarding, the datapath flow gen-
erator of some embodiments initially wildcards some or all
match fields. When a packet is received, the datapath flow
generator 210 selects a flow from the flow table and un-
wildcards each match field that it consults or examines. This
can include comparing match field and header values, and
deriving or learning output ports.

In the example of the third stage 255, the datapath flow
generator 210 has specified some or all of the match fields
to be wildcard fields. That is, some or all of the match fields
has been initialized to be wildcard fields, including destina-
tion Ethernet address field and IP destination address field.
The datapath flow generator 210 has also selected the flow
entry 235 from the flow table 215 to determine if it is a
match for the packet 230. In making this determination, the
datapath flow generator 210 has compared the ingress port
of the flow entry 235 with the ingress port at which the
packet 230 was received. The datapath flow generator 210
has also compared the destination Ethernet addresses match
field against the corresponding header field. As the destina-
tion Ethernet address match field was consulted, the dat-
apath flow generator has also specified the destination
Ethernet address as a non-wildcard field. However, the
destination IP match field remains a wildcard field. This is
conceptually shown by the asterisk symbol in the cache flow
entry 240.

In the third stage 255, the datapath flow generator 210 has
generated the cache entry 240 based on the matching flow
235. The fourth stage 260 illustrates that the flow entry 240
has been pushed down and stored in the datapath cache 225.
The cached entry 240 includes an ingress port value, Eth-
ernet destination address value, IP destination address value,
and an action value. Although the IP address is shown, that
field has been specified as a wildcard field. Here, the slash
mark followed by the asterisk symbol indicates that the
entire field has completely been wildcarded. This field has
been wildcarded because it was not consulted when gener-
ating the flow entry 240.

As shown in the fourth stage 260, the cached flow entry
240 is also different from the flow 235 from the flow table
215. Aside from the wildcard, in some embodiments, the
cache flow entry does not have a priority value. This is
because the datapath cache 240 does not store multiple flows
that can match a same packet. In other words, the datapath
cache stores only one flow that can match a given packet,
instead of multiple entries. Therefore, there are no resubmit

10

15

20

25

30

35

40

45

50

55

60

65

12

operations with the datapath cache, in some such embodi-
ments. Alternatively, the flow entry 240 of some embodi-
ments is associated with a priority value. In addition, the
datapath manager 220 may perform one or more resubmit
operations operation to find any other matching flows from
the datapath cache.

The fifth stage 260 illustrates the switching element 205
processing the packet 230. The cache entry 240 specifies that
any packet that is received at ingress port one and has an
Ethernet destination address “A” should be output to port
two. The IP destination address match field has been wild-
carded so that field can have any different value. Following
this rule, the datapath manager 220 outputs the packet 230
through port two.

In the preceding example, the switching element 205
dynamically generates a flow 240 with at least one wild card
field. As mentioned above, this flow is also referred to as a
“megaflow” because it allows packets that have different
wildcard values to be quickly processed. This caching
technique collapses similar into flows into one userspace
megaflow that makes many flow misses a cache lookup
instead of a full translation.

FIG. 3 shows an example how the switching element 205
uses the flow entry 240 to process subsequent packets 305
and 310. Specifically, this figure illustrates the switching
element 205 at time one when it receives one subsequent
packet 305 and at time two when it receives another sub-
sequent packet 310. At time one, the switching element 205
receives the packet 305. The datapath manager 220 receives
the packet and parses it to extract or strip its header values.
The datapath manager 220 also identifies the ingress port
through which the packet 305 was received. The datapath
manger 220 selects the flow entry 240 from the datapath
cache 225 and compares the identified ingress port value
with the value from the flow entry. As the port values match,
the datapath manager compares the non-wildcard match
field value (i.e., destination Ethernet address field) to the
corresponding header field value. As those two values
match, the datapath manager performs the associated action,
which is to output the packet to port two. The datapath
manager 220 ignores the IP destination match field from the
flow entry 240 because it has been wildcarded. In this case,
even if the IP destination address match field has not been
wildcarded, the packet would have been output to port two.
This is because the IP destination address values from the
flow entry and the packet header match one another.

At time two, the switching element 205 receives another
subsequent packet 310. Similar to time one, the datapath
manager 220 receives the packet and parses it to extract or
strip its header values. The datapath manager also identifies
the ingress port through which the packet was received. The
datapath manger selects the cache entry 240 and compares
the ingress port and the non-wildcard match field (i.e.,
destination Ethernet address field) to the header fields. As
those two values match, the datapath manager performs the
associated action, which is to output the packet to port two.

At time two, the destination IP address fields of the flow
entry 240 and the packet’s header do not match. Therefore,
there would have been a miss in the datapath cache 225, and
the packet processing would have to be shifted to the
datapath flow generator 210. As stated above, the process of
determining what to do with a flow when it is missed in the
cache can be an expensive operation. The datapath flow
generator 205 must perform a number of different tasks to
generate a cache flow entry, such as iterating through flows
in the flow table 215 to find a matching flow and/or deriving
match field values. At time two, those tasks do not have to

US 9,686,185 B2

13

be performed. This is because the destination IP address
match field has been wildcarded and the packet 310 is
processed regardless of the mismatch in the field values.
Accordingly, by caching the flow with the wildcard field, the
switching element avoids having to do another translation to
cache another flow. Such generation of wildcard flows can
provide significant flow setup performance, especially when
the switching element is able to wildcard many flows.

Several more detailed examples of dynamically generat-
ing and using wildcard flows. Specifically, Section I
describes several an example software-switching element
that implements some embodiments of the invention. Sec-
tion II then describes a more detailed example of how the
switching element processes packets. This is followed by
Section III that describes various examples of generating
flows with zero or more wildcard fields. Section IV then
describes an ideal flow cache. Section V describes several
example classification algorithms. Section VI describes sev-
eral prefix tracking algorithm of some embodiments. Section
VII then describes several different common match algo-
rithms. Section VIII then describes several example datapath
flows. Lastly, Section IX describes an electronic system for
implementing some embodiments of the invention.

1. Example Switching Element

As method above, the switching element of some embodi-
ments receives a packet and processes the packet by dynami-
cally generating a flow entry with a set of wildcard fields.
The switching element then stores that flow entry in a cache
and processes any subsequent packets that have header
values that match the flow entry’s non-wildcard match
fields. In some embodiments, the switching element is a
software or virtual switch. An example of such a software
switch will not be described by reference to FIG. 4.

FIG. 4 conceptually illustrates an architectural diagram of
a software-switching element 405 of some embodiments that
is implemented in a host 400. In this example, the software-
switching element 405 operates on a virtual machine (VM)
495 and includes several components. These components
includes an Open vSwitch (OVS) kernel module 420, which
runs in the kernel of the VM 455, and an OVS daemon 440
and an OVS database server 445, which run in the userspace
450 of the VM 495.

As shown in FIG. 4, the host 400 includes hardware 470,
hypervisor 465, and VMs 402 and 404. The hardware 470
may include typical computer hardware, such as processing
units, volatile memory (e.g., random access memory
(RAM)), nonvolatile memory (e.g., hard disc drives, optical
discs, etc.), network adapters, video adapters, or any other
type of computer hardware. As shown, the hardware 470
includes NICs 485 and 490, which are typical network
interface controllers for connecting a computing device to a
network.

The hypervisor 465 is a software abstraction layer that
runs on top of the hardware 470 and runs below any
operation system. The hypervisor 465 handles various man-
agement tasks, such as memory management, processor
scheduling, or any other operations for controlling the
execution of the VMs 402 and 404. Moreover, the hypervi-
sor 465 communicates with the VM 495 to achieve various
operations (e.g., setting priorities). In some embodiments,
the hypervisor 465 is one type of hypervisor (Xen, ESX, or
KVM hypervisor) while, in other embodiments, the hyper-
visor 465 may be any other type of hypervisor for providing
hardware virtualization of the hardware 470 on the host 400.

As shown, the hypervisor 465 includes device drivers 475
and 480 for the NICs 485 and 490, respectively. The device
drivers 475 and 480 allow an operating system to interact

25

30

40

45

55

14

with the hardware of the host 400. VMs 402 and 404 are
virtual machines running on the hypervisor 465. As such, the
VMs 402 and 404 run any number of different operating
systems. Examples of such operations systems include
Linux, Solaris, FreeBSD, or any other type of UNIX based
operating system. Other examples include Windows based
operating systems as well.

In some embodiments, the VM 495 is a unique virtual
machine, which includes a modified Linux kernel, running
on the hypervisor 465. In such cases, the VM 495 may be
referred to as domain 0 or dom0 in some embodiments. The
VM 495 of such embodiments is responsible for managing
and controlling other VMs running on the hypervisor 465
(e.g., VMs 490 and 495). For instance, the VM 495 may
have special rights to access the hardware 470 of the host
400. In such embodiments, other VMs running on the
hypervisor 465 interact with the VM 495 in order to access
the hardware 470. In addition, the VM 495 may be respon-
sible for starting and stopping VMs on the hypervisor 465.
The VM 495 may perform other functions for managing and
controlling the VMs running on the hypervisor 465. Some
embodiments of the VM 495 may include several daemons
(e.g., Linux daemons) for supporting the management and
control of other VMs running on the hypervisor 465. Since
the VM 495 of some embodiments is manages and controls
other VMs running on the hypervisor 465, the VM 495 may
be required to run on the hypervisor 465 before any other
VM is run on the hypervisor 465.

As shown in FIG. 4, the VM 495 includes a kernel 455
and a userspace 450. In some embodiments, the kernel is the
most basic component of an operating system that runs on a
separate memory space and is responsible for managing
system resources (e.g., communication between hardware
and software resources). In contrast, the userspace is a
memory space where all user mode applications may run.

As shown, the userspace 450 of the VM 495 includes the
OVS daemon 440 and the OVS database server 445. Other
applications (not shown) may be included in the userspace
of the VM 495 as well. The OVS daemon 440 is an
application that runs in the background of the userspace of
the VM 495. The OVS daemon 440 of some embodiments
receives switch configuration from the network controller
406 (in a network controller cluster) and the OVS database
server 445. The management information includes bridge
information, and the switch configuration includes various
flows. These flows are stored in the flow table 415. Accord-
ingly, the software-switching element 405 may be referred to
as a managed forwarding element.

In some embodiments, the OVS daemon 440 communi-
cates with the network controller using OpenFlow Protocol.
In some embodiments, the OVS database server 445 com-
municates with the network controller 406 and the OVS
daemon 440 through a database communication protocol
(e.g., OVS database protocol). The database protocol of
some embodiments is a JavaScript Object Notation (JSON)
remote procedure call (RPC) based protocol.

The OVS database server 445 is also an application that
runs in the background of the userspace of the VM 495. The
OVS database server 445 of some embodiments communi-
cates with the network controller 406 in order to configure
the OVS switching element (e.g., the OVS daemon 440
and/or the OVS kernel module 420). For instance, the OVS
database server 445 receives management information from
the network controller 406 for configuring bridges, ingress
ports, egress ports, QoS configurations for ports, etc., and
stores the information in a set of databases.

US 9,686,185 B2

15

As illustrated in FIG. 4, the kernel 455 includes the OVS
kernel module 420. This module processes and routes net-
work data (e.g., packets) between VMs running on the host
400 and network hosts external to the host (i.e., network data
received through the NICs 485 and 490). For example, the
OVS kernel module 420 of some embodiments routes pack-
ets between VMs running on the host 400 and network hosts
external to the host 400 couple the OVS kernel module 420
through a bridge 408.

In some embodiments, the bridge 408 manages a set of
rules (e.g., flow entries) that specify operations for process-
ing and forwarding packets. The bridge 408 communicates
with the OVS daemon 440 in order to process and forward
packets that the bridge 408 receives. For instance, the bridge
408 receives commands, from the network controller 406
via the OVS daemon 445, related to processing and for-
warding of packets.

In the example of FIG. 4, the bridge 408 includes a packet
processor 430, a classifier 460, and an action processor 435.
The packet processor 430 receives a packet and parses the
packet to strip header values. The packet processor 430 can
perform a number of different operations. For instance, in
some embodiments, the packet processor 430 is a network
stack that is associated with various network layers to
differently process different types of data that it receives.
Irrespective of all the different operations that it can per-
form, the packet processor 430 passes the header values to
the classifier 460.

The classifier 460 or kernel module accesses the datapath
cache 425 to find matching flows for different packets. The
datapath cache 425 contains any recently used flows. The
flows may be fully specified, or may contain one or more
match fields that are wildcarded. When the classifier 460
receives the header values, it tries to find a flow or rule
installed in the datapath cache 425. If it does not find one,
then the control is shifted to the OVS Daemon 440. One
main distinction between the fast path cache 425 and the set
of flow tables 415 is that there is at most only one matching
flow entry in the fast path cache 425.

If the classifier 460 finds a matching flow, the action
processor 435 receives the packet and performs a set of
action that is associated with the matching flow. The action
processor 435 of some embodiment also receives, from the
OVS daemon 440, a packet and a set of instructions to
perform on the packet. For instance, when there is no
matching flow in the datapath cache 425, the packet is sent
to the OVS daemon 440. The OVS daemon 440 may
generate a flow and install that flow in the datapath cache
425. The OVS daemon 440 might also send the packet to the
action processor 435 with the set of actions to perform on
that packet.

The OVS daemon 440 of some embodiments includes a
datapath flow generator. The datapath flow generator 440 is
a component of the software switching element 405 that
makes switching decisions. Each time there is a miss in the
datapath cache 425, the datapath flow generator 440 gener-
ates a new flow to install in the cache. In some embodiments,
the datapath flow generator works in conjunction with its
own separate classifier (not shown) to find one or more
matching flows from a set of one or more flow table 415.
However, different from the classifier 460, the OVS dae-
mon’s classifier can perform one or more resubmits. That is,
a packet can go through the daemon’s classifier multiple
times to find several matching flows from one or more flow
table 415. When multiple matching flows are found, the
datapath flow generator 410 of some embodiments generates
one consolidated flow entry to store in the datapath cache

40

45

55

16

425. In some embodiments, the switching element allows
flows with wildcards to be specified in the flow table 415.
However, different from the datapath flows, these flows are
not dynamically generated on the fly (e.g., in response to a
miss in the datapath).

When a flow is generated, the userspace or OVS daemon
of some embodiments sends the generated flow to the kernel
module (e.g., the classifier 460) along with the wildcard
mask. The wildcard mask informs the kernel module which
bits of a set of match field values in the flow are significant
when matching. This means that the remaining bits (i.e., the
wildcarded bits) should be ignored. When hashing, the
kernel module of some embodiments hashes bits that are
significant. For instance, the kernel module might take the
match field values of a flow entry or rule, and zero out all the
insignificant bits using the wildcard mask and store it in a
hash table. In some embodiments, when the packet comes in,
the kernel module uses the wildcard mask to zero out all the
insignificant bits of the packet. Then, it computes the hash
from the packet. Thereafter, the kernel module compares
that hash to hashes that were computed from different flows.
The kernel module might hash the same packet multiple
times based on different match patterns of different hash
tables. Hence, the kernel module uses the wildcard mask
(e.g., which was generated in the userspace) to specify
which bits need to be zeroed before it computes the hash.

In the example described above, the forwarding element
generates and pushes flows from the userspace to the dat-
apath cache. In some embodiments, the forwarding element
processes packets using a cache hierarchy. In some embodi-
ments, the cache hierarchy includes an exact match cache
and a non-exact match cache. The exact match cache stores
flows or rules with match fields that are fully specified, while
the non-exact match cache stores other flows that includes
one or more match fields that are wildcarded and/or a portion
of one or more match fields that is wildcarded.

In some embodiments, when a forwarding element
receives a packet, the forwarding element first consults the
exact-match cache to find a matching microflow. If a match
is found, the forwarding processes the packet using a match-
ing flow. If there is a miss in the exact match cache, the
forwarding element may consult the megaflow cache. If
there is a miss in the megaflow cache, the forwarding
element may examine one or more flow tables to generate a
new flow to store in the cache and process the packets.

In some embodiments, the megaflow cache is populated
on demand from consulting one or more of the flow tables.
In some embodiments, the exact match cache is populated
on demand from the consulting megaflow cache. For
instance, assuming most packets are part of an existing flow,
the forwarding element benefits from the performance
advantage of a single flow table lookup. If it misses, as the
packet is still covered by the megaflow cache, the forward-
ing element still benefits from megaflow’s performance
advantage by not requiring full translation

One of ordinary skill in the art would understand that the
architecture is an example architecture and that different
embodiments can include different sets of components. The
naming of the various components is arbitrary and can
change from one implementation to another. Also, the archi-
tecture shows two different layers (e.g., the kernel layer and
the userspace layer) performing various operations. In some
embodiments, these operations occur at just one layer (e.g.,
at the userspace layer) or are further split into other layers.
II. Packet Processing Operations

The previous section described an example architecture of
a switching element that generates flows with zero or more

US 9,686,185 B2

17

wildcard fields. The architecture showed various compo-
nents, including a kernel module and an OVS daemon. FIG.
5 conceptually illustrates several processes S00A-D, which
show the interactions between such components to generate
and cache a flow with zero or more wildcard fields. The
processes 500A-D will be described by reference to FIGS.
6-9.

The process 500A shows example operations performed
by a kernel module when it receives a packet. The process
500A begins when it receives (at 502) a packet. The process
500A then performs a lookup operation on the cache to
identify a matching flow entry for the packet. Specifically,
the process 500A iteratively selects (at 504) a flow entry that
is cached to find one flow entry that matches each of the
entry’s non-wildcard fields. If a matching entry is found, the
process S00A selects (at 508) the flow entry. The process
500A then performs (at 510) a set of actions that is specified
by that flow entry. If no matching entry is found, the process
500A proceeds to 506, which is described below. In some
embodiments, the packet may be sent the OVS daemon (e.g.,
the userspace) even if there is a match in the kernel. This is
because some packets are too complicated for the kernel to
handle. Thus, in some embodiments, a “userspace” action is
installed in the datapath cache (e.g., the kernel flow table),
which specifies pushing all packets to the OVS daemon.

FIG. 6 illustrates an example of a switching element 405
that finds a match in a datapath cache 425. Two operational
stages 605 and 610 of the switching element’s kernel
module 420 are shown in this figure. The bridge 408 has
been configured, and two flow entries 620 and 625 are stored
in the datapath cache 425. In this example, each of the flow
entries 620 and 625 has at least one wildcard match field.
These entries might have been pushed down earlier by the
OVS daemon (not shown) based on two previously received
packets.

The first stage 605 illustrates the kernel module 420
receiving a packet 615. In particular, the packet 615 is
received by the packet processor 430 through the bridge 408.
The packet includes a number of header fields. To simply the
discussion, the header fields are specified as field 1 through
field N. The header field 1 has a value of “A”, field 2 has a
value of “B”, and field N has a value of “C”.

The second stage 610 illustrates an example of processing
the packet after finding a matching flow in the datapath
cache 425. In processing the packet, the packet processor
430 first strips the headers off the packet 615. The classifier
460 then selects the first flow entry 620 and compares its
non-wildcard match field values against the corresponding
header values. Here, the first flow entry 620 is a match for
the packet 615. Accordingly, the action processor 435 per-
forms the flow entry’s associated set of actions on the packet
615, which is to output the packet to output port three.

Referring to FIG. 5, when there is no matching flow, the
process 500A sends (at 506) the packet (e.g., the header
values) to the OVS daemon for processing. FIG. 7 illustrates
an example of transferring control to the OVS daemon 440
when there is a miss in the datapath cache 425. Two
operational stages 705 and 710 are illustrated in this figure.
The first stage 705 illustrates the kernel module 420 receiv-
ing a packet 715. In particular, the packet 715 is received by
the packet processor 430 through the bridge 408. The packet
includes a number of header fields. The header field 1 has a
value of “E”, field 2 has a value of “F”, and field N has a
value of “G”.

The second stage 710 illustrates an example of how
control is shifted to the OVS daemon when there is a miss
in the datapath cache 425. In particular, the packet processor

10

15

20

25

30

35

40

45

50

55

60

65

18

430 first parses the packet to strip the headers from the
packet 715. The classifier 460 then selects the first flow entry
620 and compares its non-wildcard match field values
against the corresponding header values. The non-wildcard
fields of the first flow entry 620 do not match the corre-
sponding header values. Accordingly, the classifier 460
selects the second flow entry 625 and compares its non-
wildcard match field values against the corresponding
header values. The second flow entry 625 is also not a match
for the packet 715. As there is no matching entry, the
classifier 460 sends the packet to the OVS daemon 440.

Referring to FIG. 5, Process 500B shows several example
operations that can occur at the OVS daemon when it
receives a packet from the kernel module. As shown, the
process 500B begins when it receives (at 512) the packet
from the kernel module. The process then dynamically
generates (at 514) a new flow entry with zero or more
wildcard fields.

FIG. 8 illustrates an example of the OVS daemon 440
generating a flow and sending it to the kernel module 420.
Two operational stages 805 and 810 are illustrated in this
figure. These stages 0805 and 810 are a continuation of the
stages 705 and 710 shown in FIG. 7. As shown, the OVS
daemon 440 includes a datapath flow generator 410 to
dynamically generate a new flow to store in the datapath
cache 425. Similar to the kernel module 420, the datapath
flow generator 410 is associated with a classifier 720. This
classifier 720 is used to find a matching flow from one or
more flow tables 415. Different from the classifier 460, the
OVS daemon’s classifier 415 can perform one or more
resubmits. That is, a packet can go through the daemon’s
classifier multiple times to find several matching flows from
one or more flow tables (e.g., the flow table 415). For
instance, even if a matching flow is found, the flow’s
associated action may specify a resubmit operation. The
resubmit operation re-searches the same flow table (or
another specified flow table) and creates a flow entry that
specifies additional actions found, if any, in addition to any
other actions in the original matching flow. In some embodi-
ments, the datapath flow generator specifies performing only
a set of actions associated with the flow from the flow table
with the highest priority value.

The first stage 805 illustrates the OVS daemon 440 after
it has received the packet 715 from the kernel module 420.
This stage also shows the OVS daemon 440 sending a new
flow 820 to the kernel module 420. The datapath flow
generator 410 has generated the new flow 820. In generating
the flow, the datapath flow generator 410 of some embodi-
ments initially wildcards some or all match fields. Upon the
datapath flow generator 410 receiving the packet, it calls the
classifier 410 to iterate through flows in the flow table 415.
The classifier 410 selects a flow entry from the flow table
and un-wildcards each match field that was compared
against the packet’s header field.

Alternatively, or conjunctively with such matching, the
data flow generator 440 of some embodiments generates a
flow entry by deriving or learning output ports. In deriving,
the data flow generator 440 may consult one or more match
field values, un-wildcard the match fields, and specify those
match field values as non-wildcard field values in the flow
entry. The data flow generator 440 of some embodiments
generates a flow entry by communicating with one or more
different forwarding decision modules 725, such as a MAC
learning module. This MAC learning module may learn
MAC addresses in a typical manner that layer 2 switches
learn MAC addresses. For instance, when a MAC address
(i.e., a destination MAC address of a packet is not included

US 9,686,185 B2

19
in a set of tables of learned MAC addresses), the MAC
learning module may flood all of the ports of the bridge 408
and record the MAC address of the packet that responds to
the flood.

Referring to FIG. 5, after generating the flow entry, the
process 500B sends (at 516) instructions to the kernel
module to cache the flow entry. The process then sends (at
518) the packet to the kernel module with instructions to
perform a set of actions on the packet. The process 5008
then ends.

The process 500C shows operations performed by the
kernel module after the OVS daemon has generated a new
flow entry and sent instructions to install the new flow entry
in the cache. As shown, the process 500C begins when it
receives (at 520) the instructions from the OVS daemon to
cache the new flow entry. The process 500C then caches (at
522) the flow entry. The process 500C then ends.

The process 500D shows operations performed by the
kernel module after the OVS daemon has generated a new
flow entry and sent the packet to the kernel module with
instructions to perform a set of actions on the packet. As
shown, the process 500D begins when it receives (at 524)
the packet with instructions to perform a set of actions on the
packet. The process 500D then performs (at 526) the set of
action on the packet. The process 500D then ends.

The second stage 810 of FIG. 8 illustrates the kernel
module 420 after receiving the flow entry 820. The classifier
460 has received the flow entry 820 through the bridge 408.
The classifier 460 has installed the flow entry 820 in the
datapath cache 425. To quickly process similar packets
without causing a miss in the datapath cache 425, the third
stages 815 illustrates that the flow entry 820 includes a
number of wildcard match fields. The packet is then received
at the action processor from the OVS daemon. The packet is
received with instructions to perform a set of actions. The set
of actions may be the same as the one associated with the
cached flow entry 820. In the example of the second stage
805, the action processor 435 performs the flow entry’s
associated action on the packet 715, which is to output the
packet to output port five.

III. Dynamically Generating Flows with Wildcards

As mentioned above, the switching element of some
embodiments dynamically generates flows with wildcards.
In generating, the switching element initially wildcards
some of all of match fields and generates a new flow entry
by un-wildcarding each match field that was consulted to
generate the flow entry. The switching element of some
embodiments generates a flow by un-wildcarding each
match field that was compared against a header value.
Several such examples will now be described below by
reference to FIGS. 9-16.

A. Examples of Generating Flows

FIG. 9 shows an example of un-wildcarding a match field
because it was compared against a header value. Four
operational stages 905-920 of the switching element 405 are
shown in the figure. The switching element 405 includes the
datapath flow generator 410, which was described above by
reference to FIG. 4.

Stage 905 begins when there is a miss in the datapath
cache. The packet processing is shifted from the kernel
module to the OVS daemon 440. In particular, the kernel
module sends the packet 945 to the OVS daemon 440. The
daemon’s datapath flow generator 410 receives the packet
410 and generates a new flow entry to store in the datapath
cache.

The first stage 905 illustrates the datapath flow generator
410 receiving the packet 945. The packet 945 has the

10

25

35

40

45

55

65

20

following header field values: Ethernet source value of “A”,
Ethernet destination value of “B”, and field N value of “C”.
To find a matching flow, the datapath flow generator 410
selects a first flow or rule 930 from the flow table 415. If
there are multiple flows, the flow may be sorted by priority
values (e.g., from highest to lowest).

The second stage 910 illustrates that the datapath flow
generator 410 initializing a group of match field values as
wildcards. The datapath flow generator 410 of some embodi-
ments generates a flow entry 940 by keeping track of the
data value of each match field, and a mask associated with
that field. If a field is masked, that match field value was not
consulted (e.g., compared against a corresponding header
filed value) to generate the flow entry.

As such, a masked field represents a wildcard field. In
some embodiments, the entire match field may be masked or
wildcarded. Alternatively or conjunctively, the switching
element 405 of some embodiments allows masking or
wildcarding at the sub-value level. In other words, the
switching element supports masking portion of the match
field (e.g., a portion of the IP address field) rather than the
entire match field value. In the example of FIG. 9, a mask
value of zero indicates that the match field has been com-
pletely wildcarded, and a mask value of one indicates that
the match field was consulted.

The third stage 915 illustrates the datapath flow generator
410 generating the cache flow entry 940 based on the
selected flow 930 and the packet header values. Specifically,
the datapath flow generator 410 has selected the flow 930
and compared the flow’s Ethernet destination value with the
corresponding header value. As the Ethernet destination
match field was compared against a header field value, the
datapath flow generator 410 has unmasked the match field.
This is shown in the third stage 915 with the zero value being
replaced by the one value in the cache flow entry 940,
namely from the mask of the Ethernet destination address
match field.

The third stage 915 also illustrates that the datapath flow
generator 410 has found a matching flow for the packet. This
is because the flow’s only match field matches the corre-
sponding header value. The fourth stage 920 shows the OVS
daemon 440 sending the cache flow entry 940 to the kernel
module. Specifically, the datapath flow generator 410 has
associated the action from the flow 930 with the cache flow
entry 940. The cache flow entry 940 reads that Ethernet
source address has a value of “A”, Ethernet destination
address has a value of “B”, and field N has a value of “C”.
Although the Ethernet source address and Field N are
associated with values, the zero value after the slash mark
indicates that each of these match fields is completely
masked or wildcarded. In addition, the cache flow entry 940
is associated with an action, which is to drop any packet that
has an Ethernet destination address value of “B”.

The previous example illustrated the OVS daemon 440
finding a match with a first flow 930 from the flow table 415.
FIG. 10 illustrates an example of iterating through multiple
flows to find a match. Specifically, this figure illustrates that
a wildcard match field is specified to be a non-wildcard field
when it is compared against a corresponding header value,
regardless of whether there was a match or a mismatch. This
figure is similar to the previous figure, except that the flow
930 is the second flow in the flow table 415.

Four operational stages 1005-1020 of the switching ele-
ment 405 are shown in FIG. 10. The first stage 1005
illustrates the datapath flow generator 410 receiving the
packet 945. The packet has the following header field values,
Ethernet source value of “A”, Ethernet destination value of

US 9,686,185 B2

21
“B”, and field N value of “C”. To find a matching flow, the
datapath flow generator 410 selects a first flow or rule 1030
from the flow table 415. The flow 1030 has instructions to
output every packet with an Ethernet source value of “D” to
output port two.

The second stage 1010 illustrates the datapath flow gen-
erator 410 building the cache flow entry 1025 based on the
selected flow 1030 and the packet header values. The field
values are extracted from the packet header and each value
is associated with a mask that identifies whether the value is
associated with a wildcard match field.

In the example of the second stage 1010, the datapath flow
generator has selected the flow 1030 with the highest
priority value and compared the flow’s Ethernet source
value with the corresponding header value. As the Ethernet
source match field was compared against a header field
value, the datapath flow generator 410 has unmasked the
match field. This is shown in the second stage 1010 with the
zero value being replaced with the one value in the cache
flow entry 1025, namely from the mask of the Ethernet
source address match field.

In the second stage 1010, the flow 1030 was not match for
the packet 945 because their Ethernet sources address values
did not match. Accordingly, in the third stage 1015, the
datapath flow generator has selected the flow 930 with the
next highest priority value. Specifically, the datapath flow
generator 410 has selected the flow 930 and compared the
flow’s Ethernet destination value with the corresponding
header value. As the Ethernet destination match field was
compared against a header field value, the datapath flow
generator 410 has unmasked the match field. This is shown
in the third stage 1015 with the zero value being replaced
with the one value in the cache flow entry 1025, namely
from the mask of the Ethernet destination address match
field.

The third stage 1015 also illustrates that the datapath flow
generator 410 has found a matching flow for the packet. This
is because the second flow’s only match field matches the
corresponding header value. The fourth stage 1020 shows
the OVS daemon 440 sending the cache flow entry 1025 to
the kernel module. Specifically, the datapath flow generator
410 has associated the action from the flow 930 with the
cache flow entry 1025. The cache flow entry 1025 reads that
Ethernet source address has a value of “A”, Ethernet desti-
nation address has a value of “B”, field N has a value of “C”.
Although Field N is associated with a value, the zero value
after the slash mark indicates that the match field is com-
pletely masked or wildcarded. In addition, the cache flow
entry 1025 is associated with an action, which is to drop any
packet that has an Ethernet destination address value of “B”.

As mentioned above, even if a matching flow is found in
a flow table, one of the flow’s associated actions may specify
a resubmit operation to find another flow from the flow table.
FIG. 11 provides an illustrative example of generating a flow
entry based on multiple matching flows from a flow table.
Four operational stages 1105-1120 are illustrated in this
figure. These stages 1105-1120 are similar to the previous
figure, except that the first flow from the flow table is a
match for packet. The first flow is associated with a resubmit
action.

The first stage 1105 illustrates the datapath flow generator
410 receiving the packet 945. The second stage 1110 illus-
trates the datapath flow generator 410 building the cache
flow entry 1125 based on the selected flow 1030 and the
packet header values. Specifically, the datapath flow gen-

10

15

20

25

30

35

40

45

50

55

60

65

22

erator has selected the flow 1130 (e.g., with the highest
priority value) from table zero and compared the flow’s
Ethernet source value with the corresponding header value.
As the Ethernet source match field was compared against a
header field value, the datapath flow generator 410 has
unmasked the match field. This is shown in the second stage
1110 with the zero value being replaced with the one value
in the cache flow entry 1125, namely from the mask of the
Ethernet source address match field.

In the second stage 1110, the flow 1030 was a match for
the packet 945 because their Ethernet sources address values
matches one another. However, the flow 1130 is associated
with a resubmit operation (e.g., to concatenate multiple
flows into one datapath flow). The resubmit operation speci-
fies resubmitting into another flow table (i.e., flow table
two). Accordingly, in the third stage 1115, the datapath flow
generator 410 has selected the flow 1135 (e.g., with the
highest priority value) from flow table two. Specifically, the
datapath flow generator 410 has selected the flow 1135 and
compared the flow’s Ethernet destination value with the
corresponding header value. As the Ethernet destination
match field was compared against a header field value, the
datapath flow generator 410 has unmasked the match field.
This is shown in the third stage 1115 with the zero value
being replaced with the one value in the cache flow entry
1125, namely from the mask of the Ethernet destination
address match field.

The third stage 1115 also illustrates that the datapath flow
generator 410 has found a matching flow for the packet. This
is because the only match field of the flow 1135 matches the
corresponding header value. In this example, all match fields
that were specified as wildcards or non-wildcards carries
over when there is a resubmit operation. That is, the OVS
daemon does not reinitialize all the match fields as wildcards
when there is a resubmit. However, the OVS daemon might
reinitialize them as wildcards, in some other embodiments.

The fourth stage 1120 shows the OVS daemon 440
sending the cache flow entry 1125 to the kernel module.
Specifically, the datapath flow generator 410 has associated
the action from the flow 1135 with the cache flow entry
1125. The cache flow entry 1125 reads that Ethernet source
address has a value of “A”, Ethernet destination address has
a value of “B”, and field N has a value of “C”. Although
Field N is associated with a value, the zero value after the
slash mark indicates that the match field is completely
masked or wildcarded. In addition, the cache flow entry
1125 is associated with an action, which is to drop any
packet that has an Ethernet destination address value of “B”.

In the example described above, the OVS daemon finds a
matching flow that has a resubmit action. The resubmit
action specifies performing a resubmit to another flow table.
In some embodiments, the resubmit action can specify a
resubmit operation on the same flow table. One example
way of resubmitting the packet to the same flow table is to
modify the packet in some way before the resubmission. For
instance, the action of the initial matching flow could specify
changing a matching header value (e.g., the Ethernet source
value). This is because if the matching header value remains
the same, the same initial flow will once again match the
packet.

In some cases, a flow in a flow table may have a value for
a match field value that requires the datapath flow generator
410 to examine one or more other match fields. For example,
when a match field relates to an IP address or an Ethernet
address, the datapath flow generator 410 might first consult
the Ethertype match field and determine if the corresponding
header value matches the match field value. The datapath
flow generator may then un-wildcard the Ethertype match
field.

US 9,686,185 B2

23

FIG. 12 illustrates an example of the switching element
405 un-wildcarding a match field that is not explicitly
specified in a flow 1240. Five operational stages 1205-1225
of the switching element 405 are shown in this figure. The
first stage 1205 illustrates the datapath flow generator 410
receiving a packet 1235. The packet has the following
header field values, Ethertype of “Ox0800”, IP sources
address value of “1.1.1.17, and IP destination address value
of “1.1.1.2”. To find a matching flow, the datapath flow
generator 410 selects a first flow or rule 1240 from the flow
table 415. The flow 1230 has a rule that states that any
packet with an IP sources address of “1.1.1.1” should be
output to port two.

The second stage 1210 illustrates the first comparison was
made for a match field that is not explicitly specified in the
flow 1240. The first comparison was made to a related field
that indicates which protocol is encapsulated in the payload
of'the packet or frame. The header value “0x0800” indicates
that the Ethertype is for Internet Protocol version 4 (IPv4).
The comparison of the Ethertype match field provides the
datapath flow generator 410 with a quick feedback on
whether to compare the match field of the flow 1240 to the
corresponding header value. In this case, as the Ethertype
value relates to the IP source or destination address, the
datapath flow generator 410 unmasks the Ethertype match
field and proceeds to stage three 1215. In cases where the
Ethertype values does not relate to IP source or destination
address, the datapath flow generator 410 may unmask the
Ethertype match field and select another flow to perform the
matching.

The third stage 1215 illustrates comparing a match field
associated with the flow 1240 to the corresponding header
value. Specifically, the datapath flow generator 410 has
selected the flow 1240 and compared the flow’s IP source
address value with the corresponding header value. As the I[P
source address match field was compared against a header
field value, the datapath flow generator 410 has unmasked
the match field. This is shown in the third stage 1215 with
the zero being replaced by a one in the cache flow entry
1235, namely from the mask of the IP source address match
field.

The third stage 1215 also illustrates that the datapath flow
generator 410 has found a matching flow for the packet
1230. This is because the flow’s only match field matches
the corresponding header value. The fifth stage 1225 shows
the OVS daemon 440 sending the cache flow entry 1235 to
the kernel module. Specifically, the datapath flow generator
410 has associated the action from the flow 1240 with the
cache flow entry 1235. The cache flow entry 1235 reads that
any packet having the EtherType value of ““0x0800” and IP
source address value of “1.1.1.1” should be output to port
two. The cache flow entry 1235 includes a value for the IP
destination address match field. However, the zero value
after the slash mark indicates that the IP destination address
match field is completely masked or wildcarded.

In several of the examples described above, the switching
element un-wildcards each match field that was compared
against a header value to find a matching flow. Alternatively,
or conjunctively with such comparison, the switching ele-
ment of some embodiments un-wildcards match fields after
it finds the matching flow. For example, an action associated
with the flow may specify consulting one or more header
field values. When those field values are consulted, the
switching element of some embodiments un-wildcards the
corresponding match fields.

FIG. 13 illustrates an example of the switching element
405 that examines one or more match fields based on an

10

15

20

25

30

35

40

45

50

55

60

65

24

action of a match rule. In this example, the flow table
includes a rule 1325 that specifies doing normal [.2/[.3
processing for all packets. Four operational stages 1305-
1320 of the switching element 405 are shown in this figure.
This example assumes that the switching element 405 is
performing a bonding operation that allows more than one
interfaces for a port.

The first stage 1305 illustrates the datapath flow generator
410 receiving a packet 1330. The packet has the following
header field values, Ethernet type of “Ox0800”, Ethernet
source of “Foo”, Ethernet destination of “Bar”, IP sources
address value of “1.1.1.17, IP destination address value of
“1.1.1.2”, and a field N value of “A”. To find a matching
flow, the datapath flow generator 410 selects a first flow or
rule 1325 from the flow table 415.

The second stage 1315 illustrates EtherType value being
consulted for the cache flow entry 1335. Here, the datapath
flow generator 410 has examined the EtherType value and
unmasked the same field. The third stage 1315 illustrates IP
source address and destination address values being con-
sulted for the cache flow entry 1335. Here, the IP address
values are derived from the corresponding packet header
values. The third stage 1315 also shows that that two IP
source and destination match fields are specified to be
non-wildcard fields. This is because the switching element
has been configured to do normal [.2/[.3 processing by
matching at least these two field values against incoming
packets.

The fourth stage 1320 illustrates Ethernet source address
and destination address being consulted to the cache flow
entry 1335. Here, the Ethernet address values are derived
from the corresponding packet header values. The fourth
stage 1320 also shows that that the two match fields are
specified to be non-wildcard fields as the corresponding
masks are removed from the cache flow entry 1335. This is
because the switching element has been configured to do
normal [.2/I.3 processing by matching at least these two
additional field values against incoming packets.

In the fourth stage 1320, the switching element 405 has
associated an action to the cache flow entry 1335. In some
embodiments, the switching element 405 assigns the action
based on results of a learning algorithm. As an example, the
datapath flow generator might have chosen an output port
based on the results of the MAC learning algorithm. In some
embodiments, the OVS daemon includes a MAC learning
module. The MAC learning module of some embodiments
identifies, for a given packet, one or more ports to output the
packet based on the packet’s header field values.

FIG. 14 provides an illustrative example of how the
switching element 405 utilizes a number of different com-
ponents to generate the flow entry 1335. Three operational
stages 1405-1415 of the switching element 405 are shown in
this figure. As shown, the datapath flow generator 410
operates in conjunction with a number of modules to
dynamically generate a flow entry to cache in a datapath
cache. These modules include the classifier 720, a bonding
module 1420, and a MAC learning module 1425. The cache
flow generator may operate in conjunction with a set of other
modules 1430 to match and/or derive field values.

The first stage 1305 illustrates the OVS daemon 440
receiving the packet 1330. The packet is passed to the
classifier 720 through the datapath flow generator 410. As
shown in the second stage 1310, the classifier 720 derives
various field values relating to the packet. This includes (1)
the ingress port through which the packet was receives, (2)
the EtherlType value, (3) the source IP address, and (4) the

US 9,686,185 B2

25

destination IP address. The second stage 1410 also shows
that the packet processing operation is then shifted to the
bonding module 1420.

The third stage 1415 illustrates the bonding module 1420
calling the MAC learning module to associate the cache flow
entry with MAC address values. In some embodiments, the
MAC learning module 1430 of some embodiments identi-
fies, for a given packet, one or more ports to output the
packet based on the packet’s header field values. As shown
in the third stage 1415, the bonding module 1420 adds the
Ethernet source and destination addresses returned by the
MAC learning module 1430 to the cache flow entry.

FIG. 15 illustrates an example of how the datapath flow
generator 410 generates a flow by interfacing with different
components. Here, the components include the classifier
720, the bonding module 1420, the MAC learning module
1425, Bidirectional Forwarding Detection (BFD) module
1505, and learning action module 1510. As mentioned
above, the MAC learning module 1425 identifies, for a given
packet, one or more ports to output the packet based on the
packet’s header field values (e.g., the destination Ethernet
field value).

The classifier 720 of some embodiments is called to
match certain match fields. The bonding module 1420 is
called to perform bonding operation that allows more than
one interfaces for a port. The BFD module 1505 is used to
detect whether a packet is a BFD packet. For example, if a
packet comes in, the BFD module 1505 may be called to
determine whether the packet is a BFD packet or not. This
may cause a change in the masking or wildcarding of match
fields relating to BFD. If the packet is a BFD, the BFD
module 1505 may consume the packet and generation of the
cache flow will terminate at that point. Different from the
BFD module 1505, the learn action module 1510 installs a
rule in the classifier, which can affect traffic. The learn action
module 1510 can be used to more abstractly learn MAC
addresses. For example, if a packet with a particular Ether-
net source address comes in through port 1, the learn action
module 1510 can be used to install a rule that specifies that
any packet whose destination MAC address field has the
same address should be output to port 1.

The datapath flow generator 410 may call any one or more
of these modules. One or more of these modules may call
another module. Each one of the different modules may be
called an arbitrary number of times when generating the
flow to store in the cache. As an example, the data flow
generator may call the classifier and receive a result; how-
ever, depending on the flow, it can call other modules such
as the MAC learning module. One of ordinary skilled in the
art would understand that the modules shown in FIG. 15 are
example modules. For example, different embodiments can
include even more modules, fewer modules, or different
combination of modules.

B. Example Flow

Having described various examples of generating cache
flow entries, an example process will now be described. FIG.
16 conceptually illustrates a process 1600 that some embodi-
ments perform to dynamically generate a new flow with zero
or more wildcard fields. In some embodiments, the process
is performed by the switching element’s OVS daemon.

The process 1600 begins when it receives (at 1605) a
packet (e.g., from the kernel module). The process 1600 then
initializes or sets (at 1610) all match fields as wildcard match
fields. Alternatively, the process 1600 might initialize some
but not all match fields as wildcard fields. In addition, the
process 1600 might initialize an ingress port field as a
wildcard field. The ingress port is the port through which the

10

15

20

25

30

35

40

45

50

55

60

65

26

switching element has received the packet. The ingress port
may be a logical port. In some embodiments, the process
never wildcards the ingress port field.

At 1615, the process 1600 determines if there any avail-
able flows (e.g., in a flow table). At 1610, the process selects
a flow from a flow table. If there are no flows, the process
might select a rule (e.g., a default rule). The switching
element can have such one or more rules that specify
performing normal 1.2 processing, dropping packet, and/or
sending the packet to the network controller. In some
embodiments, the process 1600 selects a flow according to
its associated priority value. For example, the process 1600
might iteratively select flows, starting from the one with the
highest priority value to the lowest priority value. This is
because there might be two flows in a flow table that match
a packet but only one matching flow is cached in a datapath
cache.

After selecting a flow, the process 1600 determines (at
1620) whether any one or more match fields have been
compared with header values. If so, the process 1600 marks
(at 1625) each of the one or more match fields as non-
wildcard fields. Otherwise, the process determines (at 1630)
whether the flow is a match for the packet. If the flow is not
a match, the process returns to 1615, which is described
above. Otherwise, the process 1600 determines (at 1635)
whether the action of the matching flow specifies consulting
one or more match fields. For example, based on the action,
a switching element might consult a destination Ethernet
address value of a packet to compare against a MAC address
of a virtual machine that is connected to its port. As another
example, the process 1600 might check if the packet is a
BFD packet. If the process performs such consultation, the
process 1600 marks (at 1640) the one or more match fields
as non-wildcard fields.

If the action does not specify examining other match
fields, the process 1600 then determines (at 1645) whether
the matching flow is associated with a resubmit operation. In
some embodiments, the resubmit operation is used to con-
catenate multiple flows into one datapath flow. For example,
the process might be set up as multiple pipelines the packet
goes through (e.g., to do a look-up in the [.2 pipeline, then
do a resubmit, and do a look-up in the L3 pipeline, etc.).
Also, each wildcard and non-wildcard fields caries over
from one hop to the next.

If the action specifies a resubmit operation, the process
1600 returns to 1615, which is described above. If the flow
is not associated with such resubmit action, the process 1600
generates (at 1650) a new flow entry. The process 1600 of
some embodiments generates the new flow entry by taking
into account each remaining wildcard match fields. That is,
the generated flow may include zero or more wildcard fields
based on whether any of the wildcarded fields were marked
as non-wildcard files (e.g., at operation 1625 and 1640).
Upon generating the flow entry, the process 1600 sends (at
1655) the flow entry to the kernel. The process 1600 then
ends.

Some embodiments perform variations on the process
1600. The specific operations of the process 1600 may not
be performed in the exact order shown and described. For
example, some embodiments optimize the process through a
series of hash table look-ups when matching flows. Accord-
ingly, the specific operations may not be performed in one
continuous series of operations, and different specific opera-
tions may be performed in different embodiments.

IV. Ideal Flow Cache

The following sections describe several different

approaches to compute flow cache entries. First, the first part

US 9,686,185 B2

27

of this section describes the ideal flow cache of some
embodiments. In the ideal case, the forwarding element of
some embodiments computes the cache contents proactively
by taking the cross product of flow tables that packets
traverse within the slow path. For small forwarding tables,
computing the cross-producted flow table is manageable.
However, for a large number of flows, the cross product can
grow non-polynomially.

The second part of this section then describes an on-
demand, reactive algorithms. In this case, the forwarding
element of some embodiments dynamically computes an
entry in the cache based on the packet received. To compute
a flow cache entry, for each flow table traversed in the slow
path, the forwarding element of some embodiments sub-
tracts the header space matching higher priority flows from
lower priority flows. Using header space analysis, the
complement of the group of higher priority flows can be
resolved to a union. This union may be intersected with the
packet to determine a packet header field bits that can be
wildcarded in the cached entry. However, the full minimi-
zation of the union reduces to a non-polynomial set cover
problem.

Additionally, this application presents several other heu-
ristic algorithms for computing the flow cache entries. The
algorithms include (1) several methods that use a longest
prefix match and (2) and several other method that use
common match techniques. These algorithms will be
described in Sections VI and VII, respectively. However,
before describing these algorithms, several classification
algorithms of some embodiments will be described in Sec-
tion V.

A. Cache Population

The computing the ideal fast path, a pre-populated cache
table that never results in a miss, can be complex. Here, it
is assumed that the slow path is a pipeline of flow tables
(supporting wildcards and priorities) whereas the fast path
implements the flow cache with a single flow table (sup-
porting wildcards but not priorities, as in OVS). To com-
pletely avoid cache misses, the slow path of some embodi-
ments must translate the slow path table pipeline into a
single flow table with equal forwarding semantics and push
that into cache. Note that some embodiments do not distin-
guish between packet field types but consider the general
problem.

To arrive at this single classification table, the forwarding
element of some embodiments proactively cross product the
tables in the slow path packet processing pipeline. FIG. 17
conceptually illustrates a process 1700 that some embodi-
ments implement to proactively cross product the tables in
the slow path packet-processing pipeline. In some embodi-
ments, this expanded table can be derived through the
following algorithm shown in the figure.

As shown, the process 1700 creates (at 1705) an all-
wildcards header space. The process then and sends (at
1710) the header space to the initial forwarding table. The
process 1700 intersects (at 1715) the current header space
for each rule that matches. In some embodiments, the
process 1700 performs the intersection by creating a new
header space and applying the rule’s action. The process
1700 then subtracts (at 1720) any higher priority rules from
this header space. If there is an output action, the process
1700 adds (at 1725) the input header space and actions to the
combined table. Otherwise, the process determines (at 1730)
if there is another table. If so, the process 1700 sends (at
1735) the intersected header space to the next table.

FIG. 18 provides an illustrative example how some
embodiments cross product several tables in the slow path

25

40

45

50

28

packet processing pipeline. FIG. 18 shows two tables, a
simple access control list (ACL) table 1805 with priorities
and a flow table 1810 to send packets out after ACL
processing. The first table 1805 has a few ACLs while the
second table holds nothing but a single output rule after the
ACL processing. Thus, the header space input to Rule 3 is
all-wildcards intersected by its rule, minus the header space
of transport destination ports 80 and 443:

{all-wildcards}N{dl_src==
01 :xxexx }—{1p_dst==80U1p_dst==443}

Here, the actions for Flow 3 are applied to this header
space. At each step, there is both (1) an input header space,
which is the set of all packets that can arrive at a given rule,
and (2) an output header space, which is the header space
after the rule’s actions are applied to the input header space.
In some embodiments, the output header space must take
into account wildcards that could be shifted through regis-
ters, such as REGS5 into REG1 in Table 1805. Essentially, the
header space of lower priority rules becomes the union of
higher priority flows subtracted from the initial all-wildcards
header space.

FIG. 18 also illustrates an example of the resulting
cross-producted flow table. As shown, after cross producting
these forwarding tables, there is one full forwarding table
1815, which are strictly defined by header spaces and
actions. To use the resulting forwarding table 1815 with a
fast path classifier, the resulting header spaces have to be
further translated to unions of header spaces (each corre-
sponding a single rule) through header space arithmetic.

While the proactive, cross-producting algorithm is useful
in understanding the ideal cache table, it may be impractical
due to flow table expansion. The table size can grow in
polynomial time with the number of rules.

B. Incremental Population

Given the cost of the proactive approach, an example of
incrementally computing the cross producted table based on
packets received will be described. FIG. 19 illustrates a
process that some embodiments implement to incrementally
computing the cross-producted table. In some embodiments,
the intuition is similar to the general algorithm described
above, but on a per-flow basis in how a packet traverses the
pipeline of tables:

1. When the packet arrives in the first table, the process
1900 initializes (at 1905) a flow header space to be all-
wildcards.

2. The process subtracts (at 1910) all higher priority flows
that match the flow header space (at first all higher priority
rules). The process 1900 intersects (at 1915) the flow header
space with the rule that matches the packet. The process
1900 applies (at 1920) the actions of the matched rule to the
packet and the flow header space.

3. If forwarding, the process 1900 submits (at 1930) the
packet and its flow header space to the next table. In some
embodiments, the process repeat step 2 described above, by
further subtracting higher priority flows and applying
matched rules, until the process either drops the packet or
has a final output action.

4. The process adds a rule to the cache that matches the
entire flow header space. Logically, the processed packet is
an element of this flow header space.

For example, suppose there is a forwarding table with
ACLs, A=0101 and B=0110 (without specifying which
fields bits correspond), that drop all packets, and a lower
priority general rule C=xxxx that matches all packets and
forwards on Port 2.

US 9,686,185 B2

29

Assuming the incoming packet matches C, the system
may want to compute the general rule to install. As discussed
above, this corresponds to the header space hc=C-A-B. If
the system wished to determine a general rule for a given
packet that is the most general subset of hc, the general rule
can be derived by using header space algebra by evaluating
the intersection of the complement of higher priority flows,
B and C, and distributing the union over the intersection:

he=C—-A-B
=CNANF

A’ N B = 0101y N (0110

= (Lxxx U x0xx | xxlx | xxx0)
() (Lxer U x0xx U xx0x U xxxl) = Lver [x0xx
[Gexlx U xex0) () (ex0x U xcxd)] = Lo | x0xx
U [xlx () (ex0x U xxxl)]

U Lexx0 () (ex0x U xxx1)] = Lvex [x0xx U xx1 1) 2200

For a packet of p=1011 to match h_ above, the system
intersects the packet, P,, with the above sets for A'-B', which
results in 1xxx, x0Oxx, or xx11:

P(p)—-A-B=P(p)NANF
= Ps(1011) (N (Lxxx | x0xx J xx11 U xx00)

= Laxx |J xOxx U xx11

While it is easy to express this header space with logic,
minimizing the set of a non-polynomial number unions is a
NP-hard problem. Furthermore, the system of some embodi-
ments only wishes to install one rule per packet for sim-
plicity, and the one with the fewest number of un-wildcarded
bits. In the general case, for each packet of size L, there are
25-1 possible wildcard expressions that match the packet,
based on which k bits are un-wildcarded. For packet p=1011,
the system can have (4/1)+(4/2)+(4/3)+(4/1) possible cache
entries it could install, depending on the subtracted higher
priority flows:

P,(1011)={ Laxxx, x0xx,xxx 1, xxx0,10xx, x0 1., %
Olxxx1l ...}
The total number of possible flows that include the packet
are:

o L
— —oL _
IPy(p)l = g (k]—z 1

k=1

Accordingly, the system of some embodiments turns to
one or more heuristics in the following sections to find the
most general rule to install. In some embodiments, the
heuristic includes methods that find common matches
amongst a union of rules and that differ from the packet and
methods that use a longest prefix match.

V. Example Classification Algorithms

In several of the examples described above, the datapath
flow generator utilizes a “linear search™ algorithm to find a
matching flow. The “linear search” algorithm does not
require much memory, but it may not be very fast. The

10

15

20

25

45

50

55

60

30

switching element of some embodiments can utilize at least
one of a number of different algorithms when un-wildcard-
ing match fields. Several examples such classification algo-
rithms will now be described in this section by reference to
FIGS. 20-25.

A. Example Tuple Space Search Algorithm

In some embodiments, the switching element uses a tuple
search algorithm to find a matching flow. The tuple space
search algorithm is a hashed-based search algorithm. It is
similar to the “linear search” algorithm. However, instead of
linearly traversing through every rule, the tuple space algo-
rithm linearly traverses through different groups of rules that
are organized by match fields. In some cases, the tuple space
search can be much faster than a “linear search” because it
can perform a lookup within a group of rules that have the
same wildcard pattern using a hash table.

An example of a tuple space search will now be described.
Suppose that a switching element maintains a flow table
with the following three rules:

priority 5, in_port=1, eth_src=2—Action 1;

priority 4, in_port=2, eth_src=3—Action 2; and

priority 3, in_port=5—Action 3.

In some embodiments, at flow table creation time, the
switching element organizes these rules into different groups
based on what fields (or partial fields) the rules match on. In
this case, there are two groups:

group 1 (in_port, eth_src); and

group 2 (in_port).

Here, each rule is placed in a hash table that belongs to a
particular group (e.g., group 1 or group 2). The hash table
can have very fast (e.g., nearly instant) lookup. Thus, instead
of'a linearly traversing through all of the rules, the switching
element can traverse through each hash table, doing a hash
table lookup on each one, and un-wildcarding the fields that
the switching element looks at or consults. In some embodi-
ments, each hash table carries with it the priority of the
highest priority rule it contains. Hence, if there is a match in
the first hash table, the switching element is programmed to
know that the rule has a higher priority value than every
other rule in a subsequent table. The switching element can
therefore skip the lookup and un-wildcarding in the subse-
quent hash table.

FIG. 20 provides an illustrative example of performing a
tuple space search to find a matching rule for a packet and
generate a wildcard mask. Four operational stages 2005-
2020 of a forwarding element 2000 are shown in the figure.
The forwarding element 2000 is similar to one described
above by reference to FIG. 4.

As shown, the forwarding element 2000 includes a clas-
sifier 2025 to perform packet classification. The figure also
conceptually shows several classifier rules 2030 and 2035,
which are also referred to herein as flows or flow entries. The
forwarding element stores such rules in one or more hash
tables. In the example of FIG. 20, the forwarding element
has generated a hash from the rule 2030 and stored the hash
in a subtable 2040. The forwarding element has also hashed
the rule 2035 and stored its hash in a subtable 2050.

In some embodiments, each subtable 2040 or 2050 rep-
resents a set of rules that is organized by match fields. More
specifically, the tuple or subtable of some embodiments has
one kind of match pattern relating to a set of one or more
match fields. Note that a match field can have different
match patterns. For instance, an IP address match field (e.g.,
source or destination) may match on the first eight bits and
another IP address match field may match on the first sixteen
bits. In such cases, the two IP addresses would be in different
tuples or subtables even though they match on the same

US 9,686,185 B2

31

match field. The reason being that when the forwarding
element hashes it needs to hash specific number of bits. As
will be described below, in the staged implementation, each
tuple or subtable may be associated with multiple different
match patterns, one for each lookup stage.

In the example of the FIG. 20, the subtable 2040 can store
one or more hash values relating to the register (e.g.,
metadata such as ingress port, egress port, etc.) and Layer 2
(L2) match fields. The subtable 2050 stores one or more hash
values relating to the same set of Layer 3 (L3) match fields.

The rule 2030 has a higher priority value than the rule
2040. Accordingly, the classifier 2025 might first search the
subtable 2040 to find a match for a packet. If the search fails,
the classifier 2025 might then search the subtable 2050. In
some embodiments, when the forwarding element receives
a classifier rule (e.g., from a network controller), it hashes
one or more of its match field values and stores the hash in
a subtable along with the rule’s action. The subtable may
also track the priority value of the rule.

The first stage 2005 shows the forwarding element 2000
receiving a packet 2070. In particular, a kernel module 2075
receives the packet and performs packet classification to find
a matching flow in the datapath 2065. As the datapath does
not have a matching flow, the control is shifted from the
kernel space to the userspace, as illustrated in the second
stage 2010.

In the second stage 2010, the classifier 2000 has received
the packet. The classifier 2025 performs packet classifica-
tion to find a matching rule for the packet in one of the two
subtables 2040 and 2050. Specifically, the classifier 2025
uses a hash function to generate a hash value of the ingress
port value and the Ethernet destination address header value.
To find the matching hash value, the classifier 2025 then
performs a lookup of the subtable 2040. The classifier 2025
also un-wildcards (i.e., unmasks) bits of the wildcard mask
2060 in accordance with the wildcard pattern of the subtable
2040. For instance, as the subtable 2040 is associated with
bits relating to ingress port and Ethernet destination fields,
the classifier un-wildcards the bits from the wildcard mask
that relate to those fields. The second stage 2010 shows that
there was no matching rule for the packet in the subtable
2040.

The third stage 2015 shows the classifier 2015 performing
a hash lookup on the other subtable 2050. Similar to the
previous stage, the classifier 2025 uses a hash function to
generate a hash from the destination IP address header value.
The classifier 2025 then searches the subtable 2050 to find
the matching hash value. The classifier 2025 also un-
wildcards bits of the wildcard mask 2060 in accordance with
the wildcard pattern of the subtable 2050, which in this case
relates to the destination IP address field. In the third stage
2015, the classifier 2025 has found the matching hash in the
subtable 2050.

The fourth stage 2020 shows several example operations
performed by the forwarding element 200 after finding a
matching rule 2040 and generating the wildcard mask.
Specifically, the kernel module 2075 receives the packet
from a userspace daemon with a set of instructions on how
to process the packet. Following the set of instructions, the
kernel module outputs the packet through one of the ports.
The kernel module also receives a flow entry 2080 that was
generated based on the matching rule. The kernel module
2075 then installs the flow entry in the datapath 2065.

In the example described above, the tuple space search
resulted in the wildcard mask being completed unmasked.
This in turn resulted in the flow entry 2080 having no
wildcard match fields. Therefore, the flow entry 2080 is

10

15

20

25

30

40

45

50

55

60

65

32

essentially a microflow that processes only each packet that
matches all of the flow’s match field values. Different from
a microflow, a megaflow can potentially process a diverse
collection of packets as long as each of those packets match
on only each match field value or a portion thereof that is
un-wildcarded.

B. Example Staged Lookup Algorithm

As described above, tuple space search searches each
tuple with a hash table lookup. In the example algorithm to
construct the megaflow matching condition, this hash table
lookup means that the megaflow must match all the fields
included in the tuple, even if the tuple search fails, because
every one of those fields may have been significant for the
lookup result so far. This is shown in FIG. 20 with the
classifier un-wildcarding the match fields associated with the
subtable, even though the search failed.

When the tuple matches on a field that varies often from
flow to flow, e.g. the TCP source port, the generated mega-
flow is not much more useful than installing a microflow
would be because it will only match a single TCP stream.
This points to an opportunity for improvement. If one could
search a tuple on a subset of its fields, and determine with
this search that the tuple could not possibly match, then the
generated megaflow would only need to match on the subset
of fields, rather than all the fields in the tuple. The tuple
implementation as a hash table over all its fields made such
an optimization difficult. One cannot search a hash table on
a subset of its key.

In some embodiments, the switching element uses a
staged lookup algorithm to search for one or more matching
flows. The staged lookup algorithm is similar to the tuple
space algorithm; however, it takes into account the fact that
some header fields may change more frequently than others.
Based on this fact, it performs a multi-staged search starting
with infrequently changing fields, and progressing to fre-
quently changing ones. The ordering of the different stages
is important because the staged algorithm of some embodi-
ments is essentially holding off on searching the frequently
changing fields (e.g., L.3 and 1.4 fields) until it is necessary
to do so. One of the motivations for the staged lookup
algorithm, and other algorithms described herein, such as the
common match algorithms and prefix tracking algorithms, is
to avoid unnecessarily un-wildcarding more bits than nec-
essary; and thereby, optimizing the datapath lookup or cache
lookup by matching on fewer bits.

In utilizing the staged lookup algorithm, the switching
element of some embodiments does not look at all the fields
(e.g., in a hash table) at once but first looks at those fields
that do not change frequently. If none of those fields
matches, the switching element terminates the lookup opera-
tion without having to lookup fields that change frequently.
For instance, suppose that there is a particular hash table,
which looks at the fields, in_port, eth_src, ip_src, and
tcp_src.

With standard tuple space search, the software switching
element looks at all those fields irrespective of whether the
fields changes frequently or infrequently. With the staged
lookup algorithm, the lookup is broken into different stages.
For instance, in the first stage, the algorithm can look up the
in_port in a hash table and get a simple “yes” or “no” as to
whether there is a match on the in_port. If the answers “no”,
the algorithm can terminate knowing that no further stages
match. If the answer is “yes”, the algorithm can proceed to
the next stage, which looks up the in_port and eth_src in a
separate hash table. If successful, the algorithm may move
onto in_port, eth_src, and ip_src. Thereafter, if successful
again, the algorithm may look up the full in_port, eth_src,

US 9,686,185 B2

33

ip_src, and tp_src. One of the main ideas here is that, at each
stage, if there is a miss, the algorithm can terminate without
looking at the higher layer headers. This is important
because the higher layer headers are the ones that are most
likely to change from packet to packet and therefore the
most problematic when trying to improve performance (e.g.,
megaflow performance). In other words, the higher layer
headers tend to take longer to search than the metadata and
the lower layer header because they vary from packet to
packet.

FIG. 21 conceptually illustrates a process 2100 that some
embodiments implement to perform a staged lookup up and
un-wildcard bits associated with a wildcard mask. In some
embodiments, the process 2100 is performed by a forward-
ing element. The process 2100 begins when it performs (at
2105) a hash lookup on the next stage of a subtable to find
a match. The process 2100 then un-wildcards (at 2110) bits
of the wildcard mask based on the wildcard pattern of the
subtable for that stage. The wildcard pattern can be any
number of different bits associated with a set of one or more
match fields.

In some embodiments, each bit of the wildcard mask
indicates whether the corresponding bit of a match field
value is wildcarded or un-wildcarded. For instance, when set
to zero, the bit of the wildcard mask can indicate that the bit
of the match field value is wildcarded. Conversely, when set
to one, the bit of the wildcard mask can indicate that the bit
of the match field value is un-wildcarded.

At 2115, the process 210 determines whether a matching
hash value is found in the current stage of the subtable. If no
matching hash is found, the process 2100 terminates the
lookup operation at the current stage and proceeds to 2125,
which is described below. By terminating the lookup opera-
tion at a particular stage, the process 2100 can avoid
un-wildcarding additional bits of the wildcard mask that is
associated with each next stage processing.

As shown in FIG. 21, if the matching hash is found, the
process 2100 determines (at 2120) whether there are any
other stages. If there is another stage, the process returns to
2105, which is described above. Otherwise, the process
2100 proceeds to 2125, which is described below.

At 2125, the process 2100 determines whether it must
continue to the next subtable. Here, instead of simply
proceeding to the next subtable, the process 2100 of some
embodiments initially decides whether to proceed to the next
subtable. In some embodiments, the process 2100 makes this
decision based on a priority value (e.g., a maximum priority
value) associated with a subtable. For instance, it is possible
that there are additional subtables. However, depending on
the priority value of each subtable, the process 2100 may not
search another subtable. If the process 2100 decides to
perform a lookup on the next subtable, the process 2100
returns to 2105, which is described above. Otherwise, the
process 2100 ends.

Some embodiments perform variations on the process
2100. The specific operations of the process 2100 may not
be performed in the exact order shown and described. The
specific operations may not be performed in one continuous
series of operations, and different specific operations may be
performed in different embodiments.

FIG. 22 provides an illustrative example of a forwarding
element 2200 that performs a staged version of the tuple
space search. Four operational stages 2205-2220 of the
forwarding element are shown in the figure. These stages
2205-2220 are similar to ones described above by reference
to FIG. 20. The rules 2030 and 2035 are the same, and the
packet 2070 is the same. However, the staged lookup

10

15

20

25

30

35

40

45

50

55

60

65

34

algorithm results in a different wildcard mask 2260. In the
example of FIG. 20, the tuple space search led to all of the
bits of the wildcard mask being un-wildcarded. Different
from FIG. 20, FIG. 22 shows that, if any search in a stage
turns up no match, then the overall search of the subtable has
also fails, and only one or more fields included in each
search stage must be added to the megatlow match.

In this example of FIG. 22, the subtable 2290 stores the
first rule 2030 in two stages 2240 and 2250. Stage one 2040
includes a hash 2245 relating to an ingress port field. Stage
two 2250 includes a hash 2255 relating to the ingress port
and Ethernet destination fields. Different from the first
subtable 2290, the second subtable 2295 has only one stage
2270. This one stage includes a hash 2275 relating to the IP
destination address field that is associated with the second
rule 2035.

The first stage 2205 shows the forwarding element 2200
receiving a packet 2070. The second stage 2210 shows the
classifier 2225 performing a lookup of the first stage 2240 of
the first subtable 2290. Specifically, the classifier 2225 has
unmasked (e.g., set to one) the bits of the wildcard mask
associated with the ingress port field. The classifier 2225 has
also failed to find a matching hash in the first stage 2240 of
the first subtable 2290. Accordingly, the third stage 2215
shows that the classifier 2225 did not search the remaining
stage 2250 of the first subtable 2290 but moved onto the next
subtable 2295. The classifier also did not un-mask the bits
associated with the Ethernet destination address match field
because it did not get past stage one 2240 of the first subtable
2290.

In the third stage 2215, the classifier 2225 searches the
subtable 2290 and finds a matching hash for the destination
IP address header field. The classifier also un-masks the bits
of the wildcard mask associated with the destination IP
address field. The fourth stage 2220 shows that the forward-
ing element 2200 has installed a new flow entry 2280 in the
datapath 2265 based on the rule of the matching hash and the
wildcard mask. Here, the flow entry includes a wildcard
match field for the Ethernet destination address value.

FIG. 23 illustrates the forwarding element 2200 perform-
ing another staged lookup operation. Different from the
previous figure, this figure shows the classifier 2225 finding
a match rule for a packet in the first subtable 2290. As a
match has been found, the classifier 2225 skips the second
subtable 2295, which results in the bits of the wildcard mask
relating to the IP destination address field remaining
masked.

The first stage 2305 shows the forwarding element 2200
receiving a packet 2325. The second stage 2310 shows that
the classifier 2225 has searched the first stage 2240 of the
first subtable 2290 and found a matching hash 2245. The
classifier 2225 has also unmasked (e.g., set to one) the bits
of the wildcard mask 2260 associated with the ingress port
field.

As stage one resulted in a match, the third stage 2315
shows that the classifier 2225 has searched the second stage
2250 of the first subtable 2290. Here, the classifier 0325 has
also found another matching hash 2255. The classifier 2225
has also unmasked (e.g., set to one) the bits of the wildcard
mask 2260 associated with the destination Ethernet address
match field. The fourth stage 2320 shows that the forwarding
element 2200 has installed a new flow entry 2330 in the
datapath 2265 based on the rule of the matching hash and the
wildcard mask. Here, the flow entry includes a wildcard
match field for the Ethernet destination address value.

As mentioned above, the stage lookup algorithm of some
embodiments takes into account the fact that some header

US 9,686,185 B2

35

fields may change more frequently than others. Based on this
fact, the algorithm performs a multi-staged search starting
with infrequently changing fields, and progressing to fre-
quently changing ones. FIG. 24 illustrates an example
subtable that shows the organization of different fields in
different stages.

As shown in FIG. 24, the subtable 2400 statically divides
fields into a number of different groups. In some embodi-
ments, there are four groups. In some embodiments, the
ordering of the four groups are as follows: (1) register or
metadata fields (e.g. the switch ingress port); (2) metadata
and L2 fields; (3) metadata, 1.2, and L3 fields; and (4) all
fields. Not all fields need to be included in a group. For
instance, the second group of the subtable 2400 might not
encompass all the different [.2 header fields, such as source
MAC address, destination MAC address, Ethernet type, etc.
It might include only one of the [.2 fields or a few of the .2
fields. In addition, not all groups need to be included in one
subtable. For instance, the subtable 2400 may only include
one section (e.g., hash table section) for one group or an
array of multiple sections for multiple groups.

In some embodiments, the forwarding searches each of
the stage of the subtable (e.g., tuple) in order. If any search
turns up no match, then the overall search of the subtable
also fails, and only the fields included in the stage last
searched must be added to the megatflow match. For
instance, the classifier might find a matching hash value in
the first stage relating to a set of one or more register fields,
and move to the second stage to find another matching hash
value relating to the set of register fields and a set of 1.2
fields.

In some embodiments, this optimization technique applies
to any subsets of the supported fields, not just the layer-
based subsets shown in FIG. 24. In some embodiments, the
fields are divided by protocol layer because, as a rule of
thumb, inner layer headers tend to be more diverse than
outer layer headers. At L4, for example, the TCP source and
destination ports change on a per-connection basis, but in the
metadata layer only a relatively small and static number of
ingress ports exist. With the four stages, one might expect
the time to search a tuple to quadruple. However, as com-
pared to the tuple space search, the classification speed may
actually improve. This is because when a search terminates
at any early stage, the classifier does not have to compute the
full hash of all the fields covered by the subtable.

In some embodiments, the optimization of the subtable
also improves performance when dealing with Access Con-
trol Lists (ACLs). For instance, suppose that some logical
networks are configured with Access Control Lists (ACLs)
that allow or deny traffic based on L4 (e.g. TCP or UDP) port
numbers. Each logical network may be defined by a logical
forwarding elements, which is turn defined by a number of
physical forwarding elements (e.g., software forwarding
elements, hardware forwarding elements). In such logical
networks, megatlows for traffic on these logical networks
must match on the L4 port to enforce the ACLs. Megatlows
for traffic on other logical networks need not and, for
performance, should not match on L4 port. Before this
optimization, however, all generated megaflows matched on
L4 port because a classifier search had to pass through a
tuple or subtable that matched on L4 port. The optimization
allowed megaflows for traffic on logical networks without
L4 ACLs to avoid matching on [.4 port, because the first
three (or fewer) stages were enough to determine that there
was no match.

Lookup in a tuple space search classifier ordinarily
requires searching every tuple. Even if a search of an early

20

30

35

40

45

65

36

tuple finds a match, the search must still look in the other
tuples because one of them might contain a matching flow
with a higher priority. Some embodiments improve on this
by tracking, in each subtable or tuple T, the maximum
priority of any flow in T. FIG. 25 illustrates an example of
how several rules are populated in different subtables. In
particular, the figure shows five classifier rules that are
grouped into different subtables in accordance with the bits
of the fields that they match on. Each subtable is associated
with a variable called a max priority value. The max priority
value is set using the highest priority value of one of the
rules in the subtable.

In the example of FIG. 25, the first and third classifier
rules have bits relating to reg., .2, [.3, and L4 fields. As
such, the rules are hashed and stored in the subtable 2510.
The subtable is associated with a max priority value 50,
which is the priority value of the first rule. The max priority
value is set using the priority value of the first rule because
the value is greater than that of the third rule in the same
subtable. Further, the second and fourth rules have bits
relating to the 1.2 and L4 fields. So, the rules are hashed and
stored in the subtable 2515. The subtable is also associated
with a max priority value 40, which is the priority value of
the second rule. Lastly, the subtable 2520 includes the fifth
classifier rule, and the max priority value is set using the
priority value of that rule.

In some embodiments, the lookup code is implemented
such that it first searches the subtable with the greatest
maximum priority and proceeds in order to the subtable with
the smallest maximum priority. Then, a search that finds a
matching flow with priority P can terminate as soon as it
arrives at a subtable whose maximum priority is P or less. At
this point, it can be assumed that none of the remaining flows
is a better match than the one already found. This does not
necessarily mean that the search terminates immediately
when the first matching flow is found because that flow’s
priority P in the subtable might be less than the maximum
priority in another subtable. For instance, in the example of
FIG. 20, the lookup operation might entail comparing one or
more hashes of the second rule in the second subtable 2515
(i.e., with the priority value 40) if the packet matched on all
of'the hashes of the third rule (i.e., with the priority value 30)
in the first subtable 2510.

One of the motivations for such grouping is that most of
the subtables may contain flows with just one priority. This
makes intuitive sense because flows matching a single
subtable format tend to share a purpose and therefore a
priority. This is ideal, because a search can always terminate
immediately following a successful match in such a sub-
table.

V1. Prefix Tracking Algorithms

In some embodiments, the forwarding element uses one
or more different prefix tracking algorithms to generate a
wildcard mask. In some embodiments, the prefix tracking
algorithm is looking for a subset of the union. This narrows
the search space by only looking at prefixes. The algorithm
can also run in constant time, O(k), where k is the number
of bits. However, the algorithm does not always identify the
broadest header space, as it does not un-wildcard non-
contiguous bits, such as x1x1.

A. Prefix Tracking for [.4 and Other Fields

In some embodiments, the forwarding element consults a
set of one or more trees when generating a mask for a set of
one or more match fields. As an example, the forwarding
element might build a tree that includes all of the higher
priority rules as leaves, segmenting children based on ‘1’ or
‘0’. When the classifying a new packet, the forwarding

US 9,686,185 B2

37

element traverse the tree, un-wildcarding bits along the way,
starting with the root until it reaches a branch with no leaves.
In some embodiments, the set of match fields relates to a set
of Layer N header fields. For instance, the tree structure can
be built using Layer 3 source or destination IP addresses
associated with different classifier rules. As another
example, the tree structure can be built using Layer 4
destination and/or source TCP port numbers.

FIG. 26 conceptually illustrates a process that some
embodiments implement to generate a wildcard mask for a
set of match fields. In this example, the set of match fields
relates to any one or more Layer N header fields (e.g., Layer
4 header fields). In some embodiments, the process 2600 is
performed by a forwarding element. In some embodiments,
the process 2600 is performed in conjunction with the staged
lookup algorithm that is described above by reference to
FIG. 21.

As shown in FIG. 26, the process 2600 begins by per-
forming (at 2605) a hash-based lookup operation on a
subtable to find a matching rule for packet. For staged
lookup implementations, the lookup operation might entail
searching multiple stages. Based on the wildcard pattern of
the subtable, the process 2600 then un-wildcards (at 2610)
some bits of the wildcard mask except for the bits that
corresponds to the Layer N header.

At 2615, the process 2600 determines if a matching rule
has been found in the subtable. If a match is found, the
process un-wildcards (at 2620) those bits of the mask that
corresponds to the Layer N header. If a match is not found,
the process 2600 determines (at 2625) whether the Layer N
header was examined in the hash-based lookup operation.

The process of some embodiments makes this determi-
nation because a multi-stage lookup operation might have
terminated the search without reaching the stage with the
Layer N header. In some embodiments that use non-staged
algorithms, the process might not make such determination
but simply proceed to operation 2630, which is described
below.

If a set of match fields relating to the Layer N header was
examined, the process 2600 consults (at 2630) a tree struc-
ture to generate the wildcard mask for the Layer N header.
If a set of match fields relating to the Layer N header was not
examined, the process 2600 determines (at 2635) whether it
must continue to the next subtable. In some embodiments,
the process 2600 makes this decision based on a priority
value (e.g., a maximum priority value) associated with each
other subtable. If it must continue, the process 2600 returns
to 2605, which is described above. Otherwise, the process
2600 ends.

Some embodiments perform variations on the process
2600. The specific operations of the process 2600 may not
be performed in the exact order shown and described. The
specific operations may not be performed in one continuous
series of operations, and different specific operations may be
performed in different embodiments.

Having described a process, an example operation of the
process will now be described by reference to FIGS. 27 and
28. FIG. 27 illustrates an example of a forwarding element
2200 that consults a tree 2750 when generating a wildcard
mask relating to a Layer N header. In this example, the Layer
N header is the Layer 4 destination TCP port number. To
perform packet classification, the forwarding element 2200
includes the classifier 2225 that finds a matching classifier
rule for a packet and generates a wildcard mask. Four
operational stages 2705-2720 of the forwarding element
2200 are shown in the figure.

20

30

40

45

50

55

38

The first stage 2705 shows the forwarding element 2200
receiving a packet. The second stage 2710 shows the clas-
sifier 2225 performing a lookup operation on a first subtable
2750. In particular, the classifier has found a matching hash
for the destination Ethernet address field in the first stage
lookup of the subtable. The classifier un-masks the corre-
sponding bits from the wildcard mask.

Different from the first stage lookup, the second stage
lookup of the same subtable resulted in no match. Without
the prefix tracking algorithm of some embodiments, the bits
of the wildcard mask, which corresponds to the destination
Ethernet address field, are all un-wildcarded. However, in
the example of the second stage 2710, instead of un-
wildcarding all those bits, the classifier 2225 consults a tree
structure 2750. The classifier of some embodiments traces
the packet header by traversing the tree while un-wildcard-
ing bits along the way. For instance, the classifier might start
with the root node and un-wildcard one bit (e.g., the most
significant bit) and attempt to trace the header to a child node
until it reaches a leaf node.

In the third stage 2715, the classifier 2225 performs a
lookup on the second subtable 2755 and finds a matching
hash for the destination IP address header field. The classi-
fier also unmasks bits of the wildcard mask associated with
the destination IP address match field. The fourth stage 2720
shows that the forwarding element 2200 has installed a new
flow entry 2760 in the datapath. With the prefix tracking
algorithm of some embodiments, the new flow entry
includes the destination Ethernet address match field in
which the first bit (i.e., from the right) remains wildcarded.

In generating a mask, the forwarding element of some
embodiments consults multiple trees. The different trees can
be for different sets of header fields. For instance, the
forwarding element might consult a first tree for a source IP
address header and might consult a second different tree for
a destination IP address header. Also, the different trees can
be for the same set of header fields. FIG. 28 provides an
illustrative example of a forwarding element that examines
multiple tree structures to generate a wildcard mask for the
same Layer N header. In particular, the forwarding element
consults different trees for different subtables. For instance,
if there is no match for the Layer N header at any one of the
subtables, the forwarding element consults a tree associated
with that subtable. If there is a match for the Layer N header,
the forwarding element of some embodiments simply un-
wildcards those bits that corresponds to the Layer N header.

Four operational stages 2805-2820 of the forwarding
element 2200 are shown in FIG. 28. The first stage 2805
shows the forwarding element 2200 receiving a packet 2825.
The second stage 2810 shows the classifier 2225 performing
a lookup operation on the first subtable 2830. The lookup
operation failed to find a match for the packet. The classifier
2225 then consults a first tree 2855 to generate the wildcard
mask. The third stage 2815 shows the classifier 2225 per-
forming another lookup operation on a second subtable
2840. The lookup operation also failed to find a match for
the packet. Thus, the classifier consults a second tree 2860
to generate the wildcard mask.

In some embodiments, the second tree 2860 is consulted
to generate a new mask, and this new mask is combined with
the previous generated mask. The new mask and the previ-
ously generated mask can be combined using a bitwise
operation. For instance, a bitwise OR operation of 1100 and
1110 will result 1110, which is a combination of the two
numbers.

Referring to the fourth stage 2820 of FIG. 28, the clas-
sifier 2225 performs a lookup on the third subtable 2845 and

US 9,686,185 B2

39

finds a matching hash for the destination IP address header
field. The classifier 2225 also un-masks bits of the wildcard
mask 2850 associated with the destination IP address match
field. The fourth stage 2820 shows the forwarding element
540 installing a new flow entry 2865 in the datapath 2265
and forwarding the packet.

Having described an overview of prefix tracking, several
examples operations will now be described by reference to
FIGS. 29-35. FIG. 29 illustrates several examples of insert-
ing classifier rules 2925 into a tree structure. The classifier
rules relate to 1.4 header field, namely TCP destination port
number. The TCP destination port number field is a 16-bit
field. However, to simplify the description, the port number
field is expressed as a 4-bit field in this example as well as
many other examples described herein. In some embodi-
ments, the tree structure is a decision tree in which any node
with children represents a test (e.g., Boolean test) and each
child node represents the outcome or result of the test. In
some embodiments, the tree structure is a binary tree in
which any node can have at most two child nodes (e.g.,
representing 0 and 1).

Four stages 2905-2920 of the tree structure 2910 are
shown in FIG. 29. In the first stage 2905, the forwarding
element (not shown) has created the tree structure 2900 and
initialized the tree structure with the first rule. In some
embodiments, the forwarding element instantiates the tree
structure, receives the first rule, and follow the bits of the
rule down the tree, starting from the root node. If a leat node
is reached and there is at least one additional bit in the rule,
then the forwarding element creates a new node for each
additional bit. For instance, in the first stage 2905, the
forwarding elements has started from the root node and
added four nodes for the binary number 1111.

In the second stage 2910, the forwarding element attempts
to traverse the tree structure 2905 following the bit pattern
of the binary number in the second rule. When it reaches a
leaf node without reaching the end of the number, the
forwarding element adds a new node for each bit that is not
represented in the tree structure. For instance, in the second
stage 2910, the forwarding elements has received the binary
number 1010 of the second rule and traversed the tree
structure 2900 to the first child node in accord with the
number’s most significant bit (i.e., the fourth bit). The
forwarding element then takes third bit and attempts to
traverse the tree structure. As there is no child node for the
0 bit, the forwarding element creates a new node that
represents that bit. The forwarding element then performs
similar operations for the remaining bits of the second rule.

The third stage 2915 shows the forwarding element taking
the third rule and populating the tree structure using the
same technique described above. The fourth stage 2920
shows the forwarding element taking the fourth rule and
further populating the tree structure.

In some embodiments, the tree structure represents mul-
tiple header fields. FIG. 30 illustrates a concatenated tree
structure 3000 that encompasses two fields. In this example,
the two header fields are the TCP source and destination
fields. The TCP source port number is also placed as higher
order bits than the bits of the TCP destination port number.
However, the ordering of different fields can change from
implementation to implementation.

Two stages 3005 and 3010 of the tree structure 3000 are
shown in FIG. 30. In the first stage 3005, the forwarding
element has created the tree structure 3000. The forwarding
element has also populated the tree structure with the first of
the two classifier rules 3015. The second stage 3005 shows
the tree structure 3000 after adding the second classifier rule.

20

25

35

40

45

50

55

60

40

In populating a tree structure, the forwarding element of
some embodiments may not use all of the bits of a match
field. FIG. 31 provides an illustrative example of populating
a tree structure with portions of different match fields. In this
example, each of the two classifier rules has one bit that is
wildcarded or masked. In some embodiments, the forward-
ing element can maintain a wildcard mask for each subtable.
The wildcard mask of the subtable informs the forwarding
element which bits of the classifier rule are significant to the
lookup. In some embodiments, the forwarding element
traces a tree structure based on the mask associated with the
subtable.

Two stages 3105 and 3110 of the tree structure 3100 are
shown in FIG. 31. In the first stage 3105, the forwarding
element has created the tree structure 2900. The forwarding
element has also populated the tree structure by tracing the
bits of the first rule. Here, when the masked bit of the rule
is reached, the forwarding element skips the masked bit and
moves onto the next bit. In the second stage 3110, the
forwarding element traces the rule until it reaches the
masked bit, skips the mask bit, and creates a new node for
the last bit, which is the first bit.

FIG. 32 illustrates an example of removing one of the
classifier rules 3225 from a tree structure 3200. In some
embodiments, the forwarding element removes the rule by
finding a leaf node associated with the rule. This can entail
traversing down the tree structure following the bit pattern
of the rule. Thereafter, the forwarding element attempts to
traverses up the tree structure to a parent node. For instance,
if it is at the root node, it may not be able to traverse up the
tree structure. If it can traverse up the tree structure, the
forwarding element removes the current node and traverses
up to the parent node. If the parent node has no other child
node, the forwarding element removes the parent node. If
the current node does not have a child node, the forwarding
element does nothing (i.e., retains the parent node).

Four stages 3205-3220 of a tree structure 3200 are illus-
trated in the FIG. 3200. In the first stage 3205, the forward-
ing element has found the leaf node for the second rule by
tracing the rule down tree structure 3200. The second stage
3205 shows the tree structure 3200 after removing the leaf
node and traversing up to a parent. The forwarding element
then attempts to remove the current node. As shown in the
third stage 3215, as the current node has no other child node,
the forwarding element has removed that node and traversed
up the tree structure to the parent node. The fourth stage
3220 shows that the forwarding element retains the parent
node because the node has another child node.

As discussed above, when classifying a new packet, the
forwarding element of some embodiments generates a wild-
card mask by consulting a tree structure. Several such
examples will now be described by reference to FIGS.
33-35. FIG. 33 shows an example of generating a wildcard
masking by tracing a packet header field down a tree
structure. The figure shows a tree structure 3300, which is
generated using match field values of three classifier rules
3325. The forwarding element has received a packet 3330,
which includes a header value for the match field.

In some embodiments, the prefix tracking algorithm oper-
ates by tracing the header value of the packet 3330 down the
tree structure, un-wildcarding bits along the way, starting
with the root until it reaches a leaf node. The result of the
algorithm is a wildcard mask for the header value. The
wildcard mask indicates that, to prove that the packet does
not match any one of the three classifier rules 3325, the
forwarding element has to look at or examine the bit or bits
that are unmasked (i.e., un-wildcarded).

US 9,686,185 B2

41

Three stages 3305-3315 of the tree structure 3300 are
shown in FIG. 33. In the first stage 3305, the wildcard mask
is completely wildcarded. In the second stage 3310, the
forwarding element initially un-wildcards one bit from the
mask. In this example, the one bit is the most significant bit
because the root node represents that most significant bit. If
the tree was populated starting with the least significant bit,
the one bit would be the least significant bit of the mask. The
one bit is initially un-wildcarded because it takes at least one
bit to prove that the packet matches none of the three rules.

In the second stage 3310, the forwarding element attempts
to traverse the tree from the root node to a child node by
following the next bit of the header value. The child node is
available for the next bit of the header value. As such, the
forwarding traverses the tree structure to the child node and
un-wildcards that next bit. The third stage 3315 shows that
the forwarding element has traced the packet header as far
as it can go. As shown, the result of the traversal is the
wildcard mask 3330. The wildcard mask indicates that the
forwarding element can look at the two most significant bits
in order to prove that the packet is none of the three classifier
rules 3325.

FIG. 34 shows another example of generating a wildcard
masking by tracing a packet header field down the tree
structure 3300. Four stages 3405-3420 of the tree structure
3300 are shown in the figure. In the first stage 3405, the
forwarding element initially un-wildcards one bit from the
mask. In the second stage 3410, the forwarding element
attempts to traverse the tree from the root node to a child
node by tracing the next bit of the header value. The child
node is available for the next bit of the header value. As
such, the forwarding element un-wildcards the next most
significant bit from the wildcard mask and traverses the tree
structure to the child node.

In the third stage 3415, the forwarding element attempts
to traverse the tree from the current node to a child node by
tracing the next bit of the header value. The child node is
available for the next bit of the header value. As such, the
forwarding element un-wildcards the next most significant
bit from the wildcard mask and traverses the tree structure
to the child node. The fourth stage 3420 shows the resulting
the wildcard mask 3430. The wildcard mask indicates that
the forwarding element can look at the three most significant
bits in order to prove that the packet is none of the three
classifier rules 3325.

FIG. 35 shows yet another example of generating a
wildcard masking by tracing a packet header field down the
tree structure 3300. Four stages 3505-3520 of the tree
structure 3300 are shown in the figure. The first three stages
3505-3515 are identical to previous figure. However, in the
fourth stage 2010, the last bit of the wildcard mask is
un-wildcarded because the algorithm hopped three nodes.
The fourth stage 3320 shows the resulting the wildcard mask
3430, which is completely un-wildcarded.

FIG. 36 conceptually illustrates a process 3600 that some
embodiments implement to generate a wildcard mask by
tracing a rule down a tree structure. In some embodiments,
the process 3600 is performed by a forwarding element. The
process 3600 begins when it selects (at 3605) the next most
significant bit from the packet header value. The process
3600 then un-wildcards (at 3615) the bit from the wildcard
mask. The process 3600 then determines (at 3615) if a node
is available for the bit. If a node is available for the bit, the
process 2300 traverses (at 3620) the tree structure to the
node. The process then returns to 3605, which is described
above. If the node is not available, the process 2300 then
ends.

5

10

15

20

25

30

35

40

45

50

55

60

65

42

Some embodiments perform variations on the process
3600. The specific operations of the process 3600 may not
be performed in the exact order shown and described. The
specific operations may not be performed in one continuous
series of operations, and different specific operations may be
performed in different embodiments. For instance, depend-
ing on how the tree is structured, the process might start with
the least significant bit instead of the most significant bit.
The process might also be implemented for a compressed
tree structure (e.g., a compressed binary tree). In such cases,
the process 3600 might traverse the tree structure based on
a set of one or more bits and un-wildcard the set of bit.

B. Prefix Tracking for L3

Flows (e.g., in OpenFlow) often match IPv4 and IPv6
subnets, e.g. to implement routing. When all the flows use
the same subnet size, e.g. all match /16 subnets, the classi-
fication algorithm of some embodiments, such as the tuple
space lookup algorithm or the staged lookup algorithm, does
not un-wildcard any additional bits of the wildcard mask
than necessary. If, on the other hand, different flows match
different subnet sizes, the constructed megaflows match the
longest subnet prefix, e.g. any host match (/32) forces
megaflows to match full addresses. Suppose, for example,
the forwarding element (e.g., Open vSwitch) is constructing
a megaflow for a packet addressed to 10.5.6.7. If flows
match subnet 10/8 and host 10.1.2.3/32, one could safely
install a megaflow for 10.5/16. This is because 10.5/16 is
completely inside 10/8 and does not include 10.1.2.3. How-
ever, without additional optimization, the forwarding ele-
ment installs 10.5.6.7/32. Also, without additional optimi-
zation, it is possible that more than the necessary bits of
wildcard mask will be un-wildcarded when only some of the
rules match on a prefix having a particular length while
others match on a longer prefix.

In some embodiments, when the forwarding element
constructs a megaflow as it processes a packet, it traverses
a tree structure (e.g., a prefix tree) from the root down
through nodes with labels matching the corresponding bits
in the packet’s IP address. If traversal reaches a leaf node,
then the megaflow need not match the remainder of the
address bits. If, on the other hand, traversal stops due to the
bits in the address not matching any of the corresponding
labels in the tree, the megaflow should be constructed to
match up to and including the bits that could not be found.
In some embodiments, the tree structure search returns the
length of the prefix, which can be used by the forwarding
element in deciding whether to search a particular hash table
or forego searching of the particular hash table.

For some embodiments of the invention, FIG. 37 illus-
trates an example of a forwarding element 2200 that consults
a tree structure 3730 to (1) generate a wildcard mask and (2)
determine whether to skip lookup of a subtable. In particular,
when a packet received, the forwarding element of some
embodiments traverses the tree structure to define a wildcard
mask for the IP address field (e.g., IPv4, IPv6) and identify
the length of the prefix that is associated with the IP address.
In some embodiments, the forwarding element defines the
wildcard mask with the tree traversal by identifying the
number of bits that should to be un-wildcarded. In some
embodiments, the length of the prefix is used in deciding
whether to search one or more different subtables with IP
addresses. That is, the returned prefix length informs the
forwarding element which zero or more subtables can be
skipped.

In the illustrated example, the forwarding element 2200
maintains two subtables 3735 and 3740 with different clas-
sifier rules 3750 and 3755. The rule 3750 has an IP address

US 9,686,185 B2

43
with 16 bits in the network or routing prefix. This means that
the first 16 bits of the IP address identify the network and the
remaining bits identify the host (e.g., which can also include
the subnet identifier). The rule 3755 has an IP address having
a prefix length of 8 bits.

As shown in FIG. 37, the forwarding element 2200 has
created (e.g., instantiated) the tree structure 3730 and ini-
tialized it with the IP addresses of the two classifier rules
3750 and 3755. To simplify the description, the tree structure
is in octet format. Following the root node, each level of the
tree structure represents the next 8 bits of the IP address. For
instance, the first level nodes, which are labeled “1” and
“128”, represents the first eight bits of the IP addresses of the
two rules 3750 and 3755. The second level node represents
the next eight bit of the IP address of the rule 3750. As will
be described below by reference to FIG. 40, the forwarding
element of some embodiments does not use an octet tree but
uses a binary tree (e.g., a compressed binary tree). Instead of
8 bits per level, the binary tree can have one level for every
bit in the prefix.

In the example of FIG. 37 and in several following
examples, the wildcard mask is also represented using a
different bitmask notion. As there are 32 bits in an IPv4
address, the mask is represented by four numbers ranging
from 0-255, where 0 means all the eight bits of the portion
of'the IP address is masked, and 255 means all the eight bits
of that portion is unmasked.

Four operational stages 3705-3720 of the forwarding
element 2200 are shown in FIG. 37. The first stage 3705
shows the forwarding element 2200 receiving a packet 3725.
The second stage 3710 shows the classifier 2225 consulting
the tree structure 3730 to identify the length of the prefix
associated with a packet and to define a wildcard mask 3745.
In particular, the classifier 2225 traverses the tree structure,
following the bits of the IP address of the packet, and
identifies the number of bits that should be un-wildcarded in
the wildcard mask. For instance, the algorithm can start with
the root node and traverse the tree structure until it reaches
a branch with no leaves. The traversal can also stop due to
a bit in the address not matching any of the corresponding
nodes in the tree structure.

In the second stage 3710, the classifier 2225 has selected
the first eight bits of the IP address representing the number
1 (i.e., 00000001 in binary format) and traversed the tree
structure to the “1” node. The classifier 2225 has also
defined a wildcard mask that has the first eight bits of the IP
address field un-wildcarded.

In conjunction with the wildcard mask generation or
instead of it, the forwarding element of some embodiments
consults a tree structure to make a decision on whether to
skip searching a subtable, or a portion thereof. In the
example of second stage 3710, the tree structure 3730
essentially informs the classifier 2225 that the longest prefix
that the packet 3725 can match on is 8 bits. This is based on
the prefix lengths at the tree nodes traversed by the tree
lookup. Since the last tree node with rules visited by the tree
traversal had eight prefix bits, it is known that the packet
cannot match any rule in the classifier that has more than
eight prefix bits for the IPv4 destination address. The
classifier 2225 uses this information to skip looking at the
subtable 3735 with the 16-bit prefix of the IP address of the
rule 3750. Thus, the forwarding element 2200 avoids look-
ing at each subtable with IP addresses that has more or less
bits than it needs to look at.

The third stage 3715 of FIG. 37 shows the forwarding
element 2200 after generating the wildcard mask and decid-
ing not to search the first subtable 3735. Here, the classifier

10

15

20

25

30

35

40

45

50

55

60

65

44

2225 reuses the prefix length returned from tree lookup and
decides to search the second subtable 3740. The reason
being that longest prefix that the packet can match on
matches the bit pattern of the IP address in that second
subtable.

In the third stage 3715, the classifier searches the second
subtable and finds a matching rule. As the second subtable
was consulted, the classifier un-wildcards the first 8-bits of
the wildcard mask. Here, the classifier 2225 does not un-
wildcard additional bits based on the number returned from
the tree lookup. This is because the required bits have
already been un-wildcarded with the subtable matching
process. In some embodiments, the tree lookup does not
directly un-wildcard any bits that would not be un-wild-
carded by the subtable matching process. This avoids un-
wildcarding bits in situations where the tree would indicate
un-wildcarding of some bits, but a staged lookup would not.
In some embodiments, at each subtable, the forwarding
element only un-wildcards at most as many bits as the
subtable has. In some embodiments, the prefix bits returned
from the tree lookup are un-wildcarded afterwards because
the tree lookup could result in un-wildcarding more bits than
the subtable.

Referring to FIG. 37, the fourth stage 3720 shows that the
forwarding element 2200 has processed the packet 3725 and
incrementally populated the datapath with a new flow entry
that is associated with a wildcard mask.

FIG. 38 illustrates another example of consulting a tree
structure to generate a wildcard mask and to decide whether
to skip lookup of a subtable. Different from the previous
example, the figure shows the L3 prefix tracking algorithm
operating in unison with the staged lookup algorithm of
some embodiments. This figure shows three subtables 3805-
3815. Two of the subtables 3805 and 3815 have L3 related
stages, which can be searched or skipped altogether depend-
ing on the prefix length returned from the tree lookup. Each
of the two subtables 3805 and 3815 include two stages: an
L2 stage, and 1.2 and L3 stage. The subtable 3810 includes
one stage that represents register or metadata.

FIG. 38 conceptually shows several operations being
performed by a forwarding element upon receiving a packet.
As shown, the forwarding element first searches the first
stage of the subtable 3805. This is because the subtable 3805
is associated the highest priority value amongst the tree
subtables 3805-3815. The first stage of the subtable 3805 is
associated with an 1.2 match field, which in this example is
Ethernet type. The packet header 3830 matches the IPv4
Ethernet type of the rule in the subtable 3805.

After finding a match in the first stage of the subtable
3805, the forwarding element consults the tree structure
3820 prior to searching its second stage. In some embodi-
ments, the forwarding element performs the tree search the
first time it reaches a stage with an IP address field (e.g.,
source or destination). This is primarily done avoid any
unnecessary tree lookup. For instance, depending on the
lookup at an earlier stage, the forwarding element may not
even reach the L3 stage. In addition, some subtable might
not even include L3 fields. Accordingly, similar to the [.4
examples described above, the forwarding element of some
embodiments postpones the tree lookup operation as late as
possible. Different from the [.4 examples, the forwarding
element of some embodiments maintains one tree for a
group of subtables, not just one subtable. In some embodi-
ment, the forwarding element also maintains the result of the
tree search (e.g., the prefix length) and reuses the result in
order to decide whether to forego searching one or more
stages.

US 9,686,185 B2

45

In FIG. 38, the forwarding element traverses the tree
structure 3820 following the bits of the IP address of the
packet in order to define a wildcard mask for the IP address
field. The forwarding element of some embodiments start
from the root node and traverses the tree until it reaches a
branch with no leaves or until it can traverse no further. As
mentioned above, the forwarding element of some embodi-
ments consults the tree structure to make a decision on
whether to skip searching a subtable, or a portion thereof.
Here, the forwarding element decides to skip searching the
second stage of the subtable 3805. This is because the
longest prefix that the packet 3830 can match on is 8 bits,
which is different from the 16-bit prefix of the IP address in
the subtable 3805.

As indicated above, one problem with the staged lookup
classification algorithms of some embodiments is that when-
ever a layer 3 stage has been reached and there was any rule
that matched on a 32-bit prefix, the forwarding element
would un-wildcard all 32 bits of the wildcard mask corre-
sponding to the prefix. This results in a number of datapath
flows that have the IP address bits unnecessarily all un-
wildcarded. With the L3 prefix tracking methodology and
algorithm, the forwarding element can prove that the par-
ticular packet cannot possibly match a set of rules in a stage
of a subtable because the set has additional prefix bits or
fewer bits.

The L3 prefix tracking methodology can potentially first
look for a match in a subtable and then consult the tree
structure. However, it can be more complex that way. In
other words, it can be more efficient to figure out how many
bits the packet can match on and, based on that result, look
at the subtable (e.g., a stage of the subtable) only if it could
possibly match the packet.

Referring to FIG. 38, after consulting the tree, the for-
warding element skips the second stage of the subtable 3805.
The forwarding element then searches the subtable 3810 and
finds a matching rule. As shown, the forwarding element
does not search the last subtable 3815. This is because the
priority value associated with the matching rule of the
subtable 3810 is higher than the maximum priority value
associated with the subtable 3815.

FIG. 39 conceptually illustrates a process 3900 that some
embodiments implement to forego searching a particular
subtable for an IP address. In particular, the figure shows an
example process or methodology, which makes the tree
lookup algorithm operate as efficiently as it can. An example
tree lookup algorithm will be described below by reference
to FIG. 46.

Referring to FIG. 39, the process 3900 of some embodi-
ments is performed by a forwarding element. The process
3900 begins by determining (at 3805) whether a packet
classification operation requires a lookup of an IP address.
The IP address can be an IPv4 address or an IPv6 address.
The IP address can be a source IP address or a destination IP
address.

At 3910, the process 3900 consults the tree structure to
identity the prefix length of the packet. In some embodi-
ments, the process 3900 also identifies, for a wildcard mask,
the number of bits that should be un-wildcarded. As will be
described below by reference to FIG. 40, the process of
some embodiments also ensures that enough bits are
unmasked such that a packet, which matches the generated
flow, cannot match a child node if the traversal ends in a
parent node. This can entail identifying an offset value that
indicates the position of the first mismatching bit after one
or more bits associated with the parent node. Finally, at
3915, the process 3900 then uses the identified prefix length

25

30

40

45

55

46

in deciding whether to skip IP lookup of one or more
subtable. The process 3900 then ends.

Some embodiments perform variations on the process
3900. The specific operations of the process 3900 may not
be performed in the exact order shown and described. The
specific operations may not be performed in one continuous
series of operations, and different specific operations may be
performed in different embodiments. For instance, the pro-
cess 3900 is a simplified process in that it shows only a few
operations relating to identifying the packet’s prefix length
and using the prefix length in order to decide whether to
forego searching one or more subtables. In other words, the
process may be a part of a larger macro process, such as the
tuple space search algorithm of some embodiments or the
staged tuple space search of some embodiments described
above.

As mentioned above, the forwarding element of some
embodiments uses a binary tree to track prefixes. In some
embodiments, the binary tree is a compressed binary tree. In
some embodiments, the binary tree is a trie (i.e., a prefix
tree). FIG. 40 illustrates several examples of different binary
trees 4005 and 4010, which can be used to track network
prefixes. Specifically, the figure shows an uncompressed
version 4005 and a compressed version 4010.

In FIG. 40, the uncompressed version 3805 has a root
node and a number of child nodes. Each node of the binary
tree can include up to two child nodes: one representing the
zero bit and the other representing the one bit. For IPV4
addresses, the uncompressed version 4005 can include up to
32 levels, which is one bit for each bit of the 32-bit IP
address (e.g., the network prefix). For IPv6, the uncom-
pressed version can include up to 128 levels, which is one
bit for each bit of the 128-bit IP address. In some embodi-
ments, the forwarding element populates the same tree
structure with IPv4 and IPv6 addresses. In some embodi-
ments, the forwarding element uses different tree structures
for different types of IP addresses (e.g., [Pv4 and IPv6). In
some embodiments, the forwarding element uses different
tree structures for different 1.3 fields, such as the source and
destination IP address fields.

As shown in FIG. 40, the tree structure 4005 is initialized
with two IP addresses of two different classifier rules. The
first classifier rule has an IP address of 1.0.0.0/8, which
translates in binary form to
00000001.00000000.00000000.00000000. The second clas-
sifier rule has an IP address of 128.1.0.0/16, which translates
in binary form to 10000000.00000001.00000000.00000000.
The forwarding element of some embodiments populates the
tree structure by tracing the IP address of each classifier rule
and creating a node for each bit of the network prefix. This
means the trailing zeroes of [P addresses are not stored in the
tree structure.

Different from the uncompressed version 4005, the com-
pressed version 4010 stores all the common prefix bits in the
parent node and stores all the prefix bits of an un-branching
series of nodes in one node. For instance, the compressed
tree structure is defined by a left branch with one node that
represents the first classifier rule. All of the eight prefix bits
of the IP address of the first classifier rule are all encom-
passed by a leaf node labeled “00000001”. The compressed
tree structure 4010 also includes a right branch with a node
labeled “1000000000000001”.

Different embodiments compress a tree structure differ-
ently. In some embodiments, the compression technique
requires that the first bit(s) of each node’s children to be
different, and if there are no further branches, all the nodes
in an un-branching chain can be combined into one node. In

US 9,686,185 B2

47

some embodiments, the compression algorithm sets a limit
on the number bits a node can have. For instance, the
algorithm might set a limit of 32 bits per node. This would
be the maximum of bits that a node can be associated with.
However, this value could easily be different (e.g., 128 bits
per node) with some additional memory use.

FIG. 41 illustrates an example of how the forwarding
element of some embodiments maintains a count of the
number of IP address prefixes associated with each node.
That is, the forwarding element maintains, for each node, a
count of how many rules have the specific prefix. One of the
reasons for maintaining such a count is because, without the
count or some other indication, the forwarding element
would not know if a branching node (i.e., a node with one
or more children) represents zero, one or more rules.

Five stages 4105-4125 of the tree structure 4100 are
shown in FIG. 41. To simply the description, the tree
structure 4100 is an octet tree. Accordingly, the binary
implementation may have nodes that branch differently at
different bit level and not at the octet level, as illustrated in
FIG. 41. In the first stage 4105, the forwarding element (not
shown) has created the tree structure 4100 and initialized it
with the first rule. In some embodiments, the forwarding
element creates the tree structure, receives the first rule, and
follows the bits of the rule down the tree, starting from the
root node. If a leaf node has been reached and there is at least
one additional bit in the rule, then the forwarding element
creates a new node for each additional bit. If the tree is a
compressed binary tree, the forwarding element might create
one new node for the additional bits and a new branching
node that encompasses multiple common bits.

In the first stage 4105, the forwarding elements has started
from the root node of the tree structure 4100 and added one
node for the network prefix of the IP address of the first rule.
The forwarding element has also incremented the count of
the associated node from a zero count or null value to a
non-zero count (e.g., the number 1).

In the second stage 4110, the forwarding element attempts
to traverse the tree structure 4100 following the bit pattern
of the prefix of the second rule. Here, the forwarding
element has added two nodes representing the prefix of the
1P address of the second rule. Similar to the first stage, the
forwarding element has associated a non-zero count to the
new leaf node. In the third stage 4115, the forwarding
element has traced the third rule and created a new node that
represents that rule. The forwarding element has also asso-
ciated the node with a non-zero count.

The fourth stage 4120 is similar to the previous stages.
Here, the forwarding element has created a new leaf node
that represents the prefix of the IP address of the fourth rule.
By doing so, the leaf node of the second rule has become a
branching node. The fifth stage 4125 is similar to the
previous stages. As shown, the forwarding element has
created two additional nodes that represent the prefix of the
IP address of the fifth rule.

In the example described above, the forwarding element
populates a tree structure using several different classifier
rules. In some embodiments, the forwarding element
removes a rule from the tree structure by finding a leaf node
or a branching node associated with the rule. This can entail
traversing down the tree structure following the bit pattern
of the rule. Thereafter, the forwarding element attempts to
traverse up the tree structure to a parent node. For instance,
if it is at the root node, it may not be able to traverse up the
tree structure. If it can traverse up the tree structure, the
forwarding element may remove the current node and tra-
verses up to the parent node. In some embodiments, the

10

15

20

25

30

35

40

45

50

55

60

65

48

forwarding element removes a node if that node is not
associated with any other rule. If the parent node has no
other child node, the forwarding element may remove the
parent node. If the current node does not have a child node,
the forwarding element does nothing (i.e., retains the parent
node). A similar example of removing an [.4 match field
value from a tree structure is described above by reference
to FIG. 32.

Having described populating a tree structure, several
examples of searching the tree structure will now be
described by reference to FIGS. 41-45. FIG. 41 shows an
example of specifying a wildcard masking by tracing an IP
address header of a packet down a tree structure. This figure
shows the same octet tree structure 4100 that is described
above by reference to FIG. 41.

Two stages 4205 and 4210 of the tree structure 4100 are
shown in FIG. 42. In the first stage 4205, the wildcard mask
4215 is completely wildcarded. In the second stage 4210, the
forwarding element traverses the tree structure from the root
node to one of its leaf nodes by tracing the first eight bits of
the packet’s IP address. Based on the traversal of the first
eight bits, the forwarding element specifies a wildcard mask
for the IP address having the first eight bits un-wildcarded.
This is shown in the second stage 4210 with the wildcard
mask being changed from 0.0.0.0 to 255.0.0.0. The classifier
may use the wildcard mask produced by the tree lookup as
is, or limited to the number of bits of each subtable being
searched.

The previous example shows traversing one 8-bit level of
the octet tree structure 4100. FIG. 43 illustrates another
example of generating a wildcard masking by tracing a
prefix of an IP address header down the tree structure 4100.
Specifically, this figure shows in two stages 4305-4310 how
the forwarding element of some embodiments traverses two
8-bit levels to reach a leaf node. In the first stage 4305, the
forwarding element traverses the tree structure 4100 from
the root node to one of its leaf nodes by tracing the first eight
bits of the packet’s IP address. The forwarding element then
specifies un-wildcarding the first eight bits of the wildcard
mark. This is shown in the first stage 4305 with the wildcard
mask 4315 being changed from 0.0.0.0 to 255.0.0.0. In the
second stage 4310, the forwarding element continues the
traversal of the tree structure by tracing the next eight bits of
the same IP address of address. The forwarding element then
specifies un-wildcarding the next eight bits of the wildcard
mask.

FIG. 44 illustrates another example of defining a wildcard
mask by tracing the routing prefix of an IP address header
down a tree structure. Specifically, this figure shows in four
stages 4425 how the forwarding element of some embodi-
ments traverses four 8-bit levels of the tree structure to reach
a leaf node. The resulting wildcard mask is
255.255.255.255, which means the entire 32 bits of the IP
address field will be unmasked.

The previous three figures illustrate examples of finding a
leaf node that represents at least one rule. As mentioned
above, in performing the prefix tracking algorithm, the
forwarding element might not reach a leaf node of a tree
structure but reach a branching node. FIG. 45 illustrates an
example of un-wildcarding additional bits of a wildcard
mask. In some embodiments, the forwarding element uses a
count or some other variable associated with a node to detect
that the node contains a set of one or more rules. The main
idea here is that, when the traversal ends at a branching node
or a parent node, it is not sufficient to simply un-wildcard the
bit associated with that node. This is because that would
encompass the whole sub tree beneath that node. The

US 9,686,185 B2

49

forwarding element should un-wildcard additional bits if it
is matching a parent node. The additional bits are to prove
that the packet does not match one or more other rules,
which are represented in the sub tree underneath the parent
node.

FIG. 45 shows a compressed binary tree 4500 with two
prefixes of IP addresses of two classifier rules. The first rule
has an 8-bit prefix, and the second rule has a 16-bit prefix.
The first eight bits are shared between the two rules. As such,
the compressed tree structure includes the first node under
the root node, which has the common 8 bits between the two
rules (i.e., 00000001), and the second node has the next eight
remaining bits of the second rule with 16-bit prefix (i.e.,
00000001). As an additional detail, in this situation, the
forwarding element of some embodiments stores the first set
of common bits in the root node, rather than the next node
from the root.

The forwarding element has also received a packet 4505.
Following the header value, the forwarding element then
traverses the tree structure 4500 to the node associated with
the first rule. The forwarding element of some embodiment
uses the non-zero count to determine that the node is
associated with a rule. As the node is associated with at least
one other node, the forwarding element traces the header
value to find if the next bits match the bits in one of the
children nodes. Here, the forwarding element finds that there
is no match, and that the wildcard mask with 16 bits is
sufficient to show that the packet does not match with any of
the rules beneath the matching rule.

As shown, the next bit that is different from the packet and
the tree structure 4500 is the sixteenth bit of the packet
header. The sixteenth bit of the packet header is set to “0”.
On the other hand, the leaf node of the tree structure, which
represents the 16™ bit of the second rule, is set to “1”. Thus,
the forwarding element un-wildcards the 16 bits of the
wildcard mask. This is shown in FIG. 45 with the wildcard
mask being 255.255.0.0, which means that the first 16 bits
of the wildcard mask has been unmasked. Note that if the
ninth bit was the mismatching bit, then the wildcard mask
may read 255.128.0.0. If the tenth bit was the mismatching
bit, then the wildcard mask may read 255.192.0.0, and so
forth.

Different embodiments use different tree lookup algo-
rithms. An example tree lookup algorithm will now be
described by reference to FIG. 46. FIG. 46 conceptually
illustrates a process 4600 that some embodiments implement
to generate a wildcard mask and decide whether to skip
lookup of one or more subtables. The figure shows an
example implementation for traversing a compressed binary
tree. In some embodiments, the process 4600 is performed
by a forwarding element.

The process 4600 of some embodiments outputs at least
two values. First, the process 4600 returns the length of the
prefix (i.e., the prefix length) at last node with one or more
rules. All subtables or stages that have longer or shorter
prefix than the returned prefix length can be skipped, in
some embodiments. Second, the process 4600 returns the
number of bits from beginning of the wildcard mask that
need to be set to ones. In some embodiments, the two
returned values are independent of each other. The wildcard
mask gives the number of bits that need to be un-wildcarded
in the wildcard mask. The prefix length informs the for-
warding element, which subtables can be skipped.

In some embodiments, the two returned values serve
distinct purposes. For example, consider a classifier where
all the rules have a /32 prefix on a destination IP address. If
a packet with a destination IP address, which is not in the

10

15

20

25

30

35

40

45

50

55

60

65

50

classifier is received, then the returned wildcard mask value
will contain enough bits to “prove” that the packet did not
match any of the rules. This value can be anything between
1 and 32, depending on the actual addresses in the classifier
and the packet. For example, if the classifier has a rule with
a destination IP address of 1.1.1.3/32 and the packet has an
IP address of 1.1.1.2, then the wildcard mask returned from
the process is the value 32 as it is the last bit that differs (e.g.,
must un-wildcard all 32 bits), and the returned prefix length
value is 0 (e.g., no match was found at any prefix length),
meaning that all subtables with destination IP prefix length
greater than 0 can be skipped.

As shown in FIG. 46, the process 4600 begins (at 4605)
by starting at the tree structure root node. Specifically, the
process attempts to trace the IP address being looked up
from its beginning At 4610, the process 4600 determines if
the pointer to the current tree node is null. If the pointer to
the current tree node is null, the process 4600 determines
(4625) whether a previous node exists and if that previous
node has at least one child. In some embodiments, there are
several cases when a tree node pointer can be a null pointer.
First, an empty tree is represented by a null pointer. All trees
are initially empty, so the tree node pointer is a null pointer
in that case. Second, when a child node is selected as the
next tree node, the tree node can become a null pointer, if
there was no child node (e.g., when there is no child node,
the node pointer will be a null pointer). If both of those
conditions are true (i.e., a previous node exists and if that
previous node has at least one child), the process 4600
returns (at 4630) the wildcard mask including the next
address prefix bit. In some embodiments, this means that the
total number of bits from the beginning up to and including
the address prefix bit is returned by the process. The process
also returns (at 4630) and the length of the prefix at the last
node that is associated with one or more rules. The process
(4600) then ends.

If both of those conditions are false, the process 4600
returns (at 4635) the wildcard mask including the last
address prefix bit compared. In some embodiments, this
means the total number of bits from the beginning up to and
including the last compared address prefix bit is returned by
the process. The process also returns (at 4635) the length of
the prefix at the last node with one or more rules. The
process 4600 then ends.

If the current tree node is not null, the process 4600
determines (at 4615) whether all node bits are equal to the
next address bits. If all node bits are not equal to the next
address bits, the process 4600 returns (at 4620) the wildcard
mask including the first mismatching bit. In some embodi-
ments, this means the total number of bits from the begin-
ning up to and including the first mismatching bit is returned
by the process. The process also returns (at 4620) the length
of the prefix at the last node that is associated with one or
more rules. The process 4600 then ends.

If all node bits are equal to the next address bits, the
process 4600 determines (at 4640) if all the address bits
(e.g., the significant bits) of the packet have been used or
traced. If all the address bits have been used, the process
4600 returns (at 4645) the wildcard mask including all the
address bits. In some embodiments, this means the total
number of bits from the beginning up to and including all the
address bits is returned by the process. As shown, the
process also returns (at 4645) length of the prefix at the last
node with one or more rules. If not all of the address bits
have been traced, the process 4600 peeks (at 4650) at the
next address prefix bit to select either one of the two children
nodes as the current tree structure node. Here, the process is

US 9,686,185 B2

51

traversing the binary tree to one of the two nodes. The
process 4600 then returns to 4610, which is described above.

Some embodiments perform variations on the process
4600. The specific operations of the process 4600 may not
be performed in the exact order shown and described. The
specific operations may not be performed in one continuous
series of operations, and different specific operations may be
performed in different embodiments. As mentioned above,
the process 4600 of some embodiments can be implemented
to traverse a compressed binary tree. One of ordinary skill
in the art would realize that the process could be imple-
mented differently for different types of tree structures. As
an example, for an octet tree implementation, the process
might traverse the tree and check if the current node is
associated with one or more rules. If yes, the process can
un-wildcard the octet. Otherwise, the process might select
the next octet of the IP address.
VII. Common Match Algorithms

In some embodiments, the forwarding element uses a
common match algorithm to generate a wildcard mask.
Alternatively, or conjunctively, the forwarding element of
some embodiments uses a multi-bit common match algo-
rithm to generate a wildcard mask. Several examples of
different common match algorithms will now be described
by reference to FIG. 47-62.

A. Example Common Match Algorithms

In some embodiments, the forwarding element uses a
common match algorithm to generate a wildcard mask. The
common match algorithm of some embodiments examines a
set of one or more rules to find a “common match”. That is,
the algorithm attempts to find one or more bits at different
positions in which each rule in the set of rules shares with
one another. The algorithm then attempts to find the position
of one bit from the packet header, which has a different value
than the shared bit at the same bit position. The algorithm
then unmasks the corresponding bit from the wildcard mask.

FIG. 47 conceptually illustrates the common match algo-
rithm of some embodiments. The figure shows two classifier
rules having two different values that relate to the same set
of match fields (e.g., for Layer N header or metadata). The
first rule has the bits 1111, while the second rule has the bits
1010. The first and second rules have two bits in common.
The shared bits are the second and fourth bits, which are set
to “1”. In some embodiments, the common match algorithm
iterates through each classifier rules attempting to find such
a set of shared bits at different bit positions.
The algorithm of some embodiments takes the packet header
value relating to the same set of match fields and determines
if the corresponding set of header bits is different from the
set of shared bits. To simply the description, the header bit,
which is different from the corresponding shared bit, may be
referred to herein as a differing bit or simply a diff bit. If the
header bit is different from the shared bit, the algorithm
unmasks the corresponding bit from the wildcard mask.

As shown in FIG. 47, the two classifier rules share the
fourth bit (i.e., the most significant bit). However, the fourth
bit cannot be a diff bit because it is also shared with the
packet header. Different from the fourth bit, the second bit
of the packet header is a diff bit. The common match
algorithm of some embodiments unmasks the corresponding
bit from the wildcard mask. For instance, in the figure, the
second bit of the wildcard mask is set to 1, where 1 means
un-wildcarded and 0 means wildcarded. The wildcard mask
indicates that, to prove that the packet cannot match the two
rules, a forwarding element can compare the second bit of
the header value with the corresponding bit of the match
field value. In some cases, the algorithm may find multiple

20

25

40

45

50

55

52

bit positions of multiple diff bits. In such cases, the algo-
rithm chooses one of those bit positions and un-wildcards
the corresponding bit from of the wildcard mask. This is
because it only takes one bit to disqualify the classifier rules.

FIG. 48 conceptually illustrates a process 4800 that some
embodiments implement to generate a wildcard mask by
consulting common match data. This figure is similar to FIG.
26. However, instead of consulting a tree structure, the
process 4800 consults the common match data.

As shown in FIG. 48, the process 4800 begins by per-
forming (at 4805) a hash-based lookup operation on a
subtable to find a matching rule for packet. For staged
lookup implementations, the lookup operation might entail
searching multiple stages. Based on the wildcard pattern of
the subtable, the process 4800 then un-wildcards (at 4810)
some bits of the wildcard mask except for the bits that
corresponds to the Layer N header.

At 4815, the process 4800 determines if a matching rule
has been found in the subtable. If a match is found, the
process un-wildcards (at 4820) those bits of the wildcard
mask that corresponds to the Layer N header. If a match is
not found, the process 4800 determines (at 4825) whether
the Layer N header was examined in the hash-based lookup
operation. The process of some embodiments makes this
determination because a multi-stage lookup operation might
have terminated the search without reaching the stage with
the Layer N header. In some embodiments that use non-
staged algorithms, the process might not make such deter-
mination and simply proceed to operation 4830, which is
described below.

If a set of match fields relating to the Layer N header was
examined, the process 4800 consults (at 4830) common
match data to generate the wildcard mask for the Layer N
header. If a set of match fields relating to the Layer N header
was not examined, the process 4800 determines (at 4835)
whether it must continue to the next subtable. In some
embodiments, the process 4800 makes this decision based
on a priority value (e.g., a maximum priority value) asso-
ciated with each other subtable. If it must continue, the
process 4800 returns to 4805, which is described above.
Otherwise, the process 4800 ends.

Some embodiments perform variations on the process
4800. The specific operations of the process 4800 may not
be performed in the exact order shown and described. The
specific operations may not be performed in one continuous
series of operations, and different specific operations may be
performed in different embodiments.

FIG. 49 illustrates an example of a forwarding element
2200 that consults common match data 4945 when gener-
ating a wildcard mask 4940 relating to a Layer N header. To
perform packet classification, the forwarding element 2200
includes the classifier 2225 that finds a matching classifier
rule for a packet and generates a wildcard mask. Four
operational stages 4905-4920 of the forwarding element
2200 are shown in the figure.

The first stage 4905 shows the forwarding element 2200
receiving a packet. The second stage 4910 shows the clas-
sifier 2225 performing a lookup operation on a first subtable
4950. The classifier has failed to find a matching rule for the
packet. Here, instead of un-masking all of the bits relating to
the match field, the classifier generates common match data
based on the rules in the subtable 4950. In some embodi-
ments, the common match data includes a value and a mask.
The common match mask identifies which one or more bits
a set of one or more rules have in common with one another,
and the position of each shared bit. The common match
value identifies the value of each shared bit.

US 9,686,185 B2

53

In the example of the second stage 4910, the classifier
2225 has generated the common match data 4945 by exam-
ining the rules in the subtable 1650. The common match
mask reads 1010, with 0 being not shared and 1 being
shared. Thus, the common match mask indicates that the
second and fourth bits are shared by two rules. The value of
each of the bits is 1. So, the common match value is 1010,
which means that the second and fourth bits are set to 1 in
the two rules. To make it easier to understand, the common
match data is also expressed using the following notations 1,
0, and X (e.g., 1X1X), where 1 is the value of the shared bit,
0 is the value of the shared bit, and X is not shared.

In the second stage 4910, after generating the common
match data 4945, the classifier 2225 then uses the data to
generate a wildcard mask. The classifier of some embodi-
ments uses the common match data 4945 and the header data
of the packet 4925 to identify the positions of one or more
diff bits. For instance, in the second stage 4910, the classifier
has determined that the second bit is different from the two
rules. As such, the classifier has unmasked that correspond-
ing bit from the wildcard mask.

In the third stage 4915, the classifier 2225 performs a
lookup on the second subtable 4955 and finds a matching
rule for the packet. The classifier also unmasks bits of the
wildcard mask associated with the second match field. The
fourth stage 4920 shows that the forwarding element 2200
has processed the packet and installed a new flow entry 4960
in the datapath.

In generating a mask, the forwarding element of some
embodiments consults more than one set of common match
data. The sets of common match data can be for different sets
of header fields or the same set of header fields. The
forwarding element of some embodiments can consult dif-
ferent sets of common match data associated with different
subtables (e.g., hash tables). In some embodiments, one set
of common match data is consulted to generate a wildcard
mask, and another set of common match data is consulted to
generate another wildcard mask. The wildcard masks are
then combined (e.g., using a bitwise OR operation) to
generate a new wildcard mask. Some similar examples that
use different tree structures, instead of different common
match data sets, are described above by reference to FIG. 28.
For brevity sake, the same examples will not be shown for
the common match data sets. However, one of ordinary skill
in the art would understand that the examples of FIG. 28 are
equally applicable to the common match data.

In some embodiments, the common match algorithms
(e.g., the single bit common match algorithms, the multi-bit
common match algorithms) perform their respective opera-
tions on non-wildcarded bits. For example, in FIG. 31, the
forwarding element uses unmasked bits to populate a tree
structure and ignores each masked bit. Similarly, with the
common match algorithm, the forwarding element might use
only unmasked bits to generate the common match data set.
In some embodiments, if a particular field has wildcarded
bits, the forwarding element initializes the common match
mask of the common match data set with the wildcard
pattern (e.g., in accordance with the subtable’s wildcard
mask) instead of all ones as described below by reference to
FIGS. 50 and 56.

Different embodiments implement the common match
algorithm differently. An example implementation of the
common match algorithm will now be described by refer-
ence to FIGS. 50-54. FIG. 50 illustrates an example of
generating common match data from two classifier rules.
Four stages 5005-5020 of operations of the common match
algorithm are shown in the figure. The first stage 5005 shows

5

10

15

20

25

30

35

40

45

50

55

60

65

54

creating the common match data and initializing the data
using the first classifier rule. The common match data
includes a value and a mask. As mentioned above, the
common match mask identifies which one or more bits a set
of one or more rules have in common with one another, and
the position of each shared bit. The common match value
identifies the value of each shared bit.

In the first stage 5005, the common match value is set to
1111 using the first classifier rule. The common match mask
is also set to 1111, which means that the first rule shares all
bits with itself. The common match value shows the value of
those shared bits. The common match data is also repre-
sented as 1111, where X means the bit is not shared, 1 means
the bit is shared and the value is 1, and 0 also means the bit
is shared and the value is 0. If a subtable or a group of rules
is associated with a wildcard mask, the forwarding element
of some embodiments initializes the common match mask
using the wildcard pattern of the wildcard mask. That is,
instead of all ones, the common match mask may include
one or more zeroes.

In the second stage 5010, the algorithm takes the second
rule and begins the process of folding the second rule into
the common match data. The common match algorithm of
some embodiments folds a rule into the common match data
by first determining which set of one or more bits the second
rule share with the current common match mask. In the
example of the second stage 5010, the common match
algorithm generates the shared bit by taking the common
match value (1111) from the common match data and taking
the bitwise NOT of the second rule (!1010), and performing
the logical exclusive OR (XOR) operation on each pair of
corresponding bits. The result of the XOR operation is a
value (1010), which identifies the bits that the second rule
shares with the common match mask.

The third stage 5015 shows the continuation of the fold
operation. Specifically, the second portion of the fold opera-
tion entails calculating a new common match data that takes
into account the second rule. In the example of third stage
5020, the algorithm of some embodiments performs a bit-
wise AND operation between the current common match
mask (1111) and the calculated shared bits (1010). The
bitwise AND operation sets each bit that is not shared
between the shared bits with the current common match
mask to 0. The result of the bitwise AND operation is a new
common match mask that encompasses both the first and
second rules. As shown, since the second rule contains the
bits 1010, the first and third bits are no longer shared with
the first rule. Hence, the common match mask is set to 1010,
which means that the first and third bits are not shared, and
the second and fourth bits are shared.

In the fourth stage 5020, the common match algorithm of
some embodiments updates the common match value. Spe-
cifically, the algorithm performs a bitwise operation to set all
of'the bits that are not part of the common match to zero. The
algorithm of some embodiments performs this for cleanli-
ness. As shown, the algorithm of some embodiments per-
forms a bitwise AND operation between the current com-
mon match value (1111) and the new common match mask
(1010). The bitwise operation sets each bit that is not
common between the two rules to 0. The result of the bitwise
operation is the new common match value, in some embodi-
ments.

FIG. 51 illustrates an example of using the common
match data and packet header data to generate a wildcard
mask. Two stages 5105 and 5110 of operations of the
common match algorithm of some embodiments are illus-
trated in the figure. In the first stage 5105, the common

US 9,686,185 B2

55

match algorithm takes the header value (1100) and the
common match value (1010), and performs a bitwise XOR
operation on those two values. The result of the bitwise XOR
operation is a value (0110) that identifies zero or more bits
that are different from the packet and the common match
value. For instance, the value 0110 indicates that the second
and third bits of the packet header are different from the
common match value.

As shown in the first stage 5105, the common match
algorithm then takes the result of the first bitwise operation
and the current common match mask, and performs a bitwise
AND operation of those binary numbers. The bitwise AND
restricts the one or more differing bits to zero or more bits
that are common between each of the rules. The result of the
bitwise operations is a differing mask or diff mask that
identifies the position of each diff bit. The diff mask is then
used to generate the wildcard mask.

FIG. 52 conceptually illustrates several examples of gen-
erating a wildcard mask from a diff mask. In some embodi-
ments, the wildcard mask is generated by choosing one bit
from diff mask and unmasking the corresponding bit from
the wildcard mask. Different embodiments can choose dif-
ferent bits. For instance, the top portion of the figure shows
that the algorithm of some embodiments starts from the most
significant bit and chooses the first binary number that is set
to 1. The algorithm then un-masks the corresponding bit
from the wildcard mask. The bottom portion of the figure
shows that some embodiments starts from the least signifi-
cant bit and chooses the first binary number that is set to 1.

A problem with the single bit common match algorithm is
that often times a group of rules have no bits in common
with one another. FIG. 53 illustrates an example of perform-
ing the common match algorithm of some embodiments and
finding no common match. Four stages 5305-5320 of opera-
tions of the common match algorithm of some embodiments
are shown in the figure. These stages 5305-5320 are a
continuation of the ones shown in FIG. 51.

The first stage shows that, in addition to the two existing
classifier rules, there is a new rule with the value 0101. The
first stage 5305 also shows that common match algorithm of
some embodiments can re-use the previously generated
common match data. In some embodiments, when a for-
warding element receives a first packet, it iterates through a
group of rules to generate the common match data. When a
new rule is added to the forwarding element, the classifier
might run the algorithm again to fold the new rule into the
previously generated common match data.

In the second stage 5310, the common match algorithm
takes the bitwise NOT of the match field value (10101) of the
new rule and the current common value (1010), and once
again performs a bitwise XOR operation on those two
values. The result of the bitwise XOR operation is a value,
which identifies each shared bit between the match field
value and the current common match value. Here, the result
of the operation is 0000, which means that there are no
shared bits.

In the third stage 5315, the common match algorithm once
again performs the bitwise AND operation using the current
common match mask (1010) and the shared bit value (0000).
The result of the bitwise AND operation is the new common
match mask. The new common mask is 0000 because the
three rules collectively do not have any common bits. Each
rule may share one or more bits with one other rule;
however, that rule does not share one or more bits with each
other rule.

As shown in fourth stage 5320, the common match
algorithm updates the common match value. Specifically,

10

15

20

25

30

35

40

45

50

55

60

65

56

the common match algorithm of some embodiments takes
the current common match value 1010 and the new common
match mask 0000, and performs a bitwise AND operation.
The bitwise AND operation results in a new common match
value with all the bits that are not shared set to 0. Here, as
no bits are shared, the new common match value is 0000.

FIG. 54 illustrates another example of using the common
match data and packet header data to generate a wildcard
mask. Two stages 5405 and 5410 of operations of the
common match algorithm are illustrated in the figure. This
figure is similar to FIG. 51. However, as the common match
mask indicates that the rules share no bits, the end result is
a wildcard mask that is completely un-wildcarded (i.e.,
unmasked). In other words, it does not matter what the
packet header value is because the resulting wildcard mask
will be the same, which is 1111, where 0 means the corre-
sponding bit is wildcarded, and 1 means it is not wildcarded.

As shown in the first stage 5405 of FIG. 54, the common
match algorithm takes the header value (1100) and the
common match value (0000), and performs a bitwise XOR
operation on those two values. The result of the bitwise XOR
operation is a value (0000) that identifies zero or more bits
that are different from the packet and the common match
value. For instance, the value 0000 indicates that there are no
bits that differ from the packet header and the common
match value.

In the second stage 5410, the common match algorithm
then takes the result of the first bitwise operation and the
current common match mask, and performs a bitwise AND
operation of those binary numbers. The bitwise AND
restricts the one or more differing bits to zero or more bits
that are common between each of the rules. The result of the
bitwise operations is a differing mask or diff mask that
identifies the position of each diff bit. The diff mask is then
used to generate the wildcard mask. Here, the diff mask is
determined to be 0000. Based on the diff mask, the wildcard
mask is then set to 1111, where 1 means un-wildcarded and
0 means wildcarded. Also, the value of the match field 1100
is also shown in the second stage 5410 without any wildcard
symbol.

B. Example Multi-Bit Common Match Algorithms

Some embodiments extend the common bit test to include
a test of multiple bits if necessary. That is, the multi-bit
common match algorithm of some embodiments can be used
to disqualify one set of one or more rules using a first bit and
each other set of rules using a second different bit. By
different, the first bit and each other bit can be at the same
bit position if the bits are the same, but the two bits cannot
be at the same bit position if the bits are not the same. This
is because the packet, depending on the header value, will
match one of the two sets of contradictory rules, which
means that the one set of rules is not disqualified. Thus, one
of the keys to this multi-bit common match algorithm is
identifying, from the sets of rules, the different shared bits at
different bit positions, where each bit disqualifies at least one
set of rule in the sets of rule.

FIG. 55 conceptually illustrates an example of the multi-
bit common match algorithm of some embodiments. As
shown, the figure shows three classifier rules having three
rules. To highlight the difference between the one bit
approach and the multi-bit approach, this figure shows the
same three rules that the one bit approach has determined to
collectively have no bits in common, as described above by
reference to FIGS. 53 and 30.

As shown in FIG. 55, the first rule has the bits 1111, the
second rule has the bits 1010, and the third rule has the bits
0101. The first and second rules share two bits, namely the

US 9,686,185 B2

57

second and fourth bits. In some embodiments, the multi-bit
common match algorithm takes one of the rules (e.g., the
first rule) as a baseline and iterates through each next rule in
an attempt to find a set of one or more of shared bits. If at
least one shared bit is found for that next rule, the algorithm
has successively folded the rule into the first common match
and proceeds to the next rule. However, if there are no
shared bits, the algorithm uses that next rule as a new
baseline to compare against each next rule that cannot be
folded into the previous common match. For instance, in
FIG. 55, the multi-bit algorithm has found the position of the
one diff bit based on the two shared bits of the two rules in
the first set of rules. The multi-bit algorithm has also found
the positions of the two diff bits of the third rule in the
second set of rules. Accordingly, the figure shows two
possible wildcard masks. There are two possible masks
because the second set of rules has two diff bits, and
depending on the implementation, the algorithm can choose
either one of the two bits.

Different embodiments implement the multi-bit common
match algorithm differently. An example implementation of
the multi-bit common match algorithm will now be
described by reference to FIGS. 56-61. FIG. 56 illustrates an
example of generating common match data from two clas-
sifier rules. Four stages 5605-5620 of operations of the
multi-bit common match algorithm are shown in the figure.
The bitwise operations shown in these stages 5605-5620 are
the same as the ones described above by reference to FIG.
50. As such, the multi-bit common match algorithm of some
embodiments begins in a similar manner as some single bit
algorithms.

The first stage 5605 shows creating common match data
set and initializing data set using the first classifier rule. The
common match data includes a value and a mask. As
mentioned above, the common match mask identifies which
one or more bits a set of one or more rules have in common
with one another, and the position of each shared bit. The
common match value identifies the value of each shared bit.

In the second stage 5610, the common match value is set
to 1111 using the first classifier rule. The common match
mask is also set to 1111, which means that the first rule
shares all bits with itself. The common match value shows
the value of those shared bits. The common match data is
also represented as 1111, where X means the bit is not
shared, 1 means the bit is shared and the value is 1, and 0
also means the bit is shared and the value is 0.

In the second stage 5410, the algorithm takes the second
rule and begins the process of folding the second rule into
the common match data. The common match algorithm of
some embodiments folds a rule into the common match data
by first determining which set of one or more bits the second
rule share with the current common match mask. In the
example of the second stage 5010, the common match
algorithm generates the shared bit by taking the common
match value (1111) from the common match data and taking
the bitwise NOT of the second rule (!1010), and performing
the logical exclusive OR (XOR) operation on each pair of
corresponding bits. The result of the XOR operation is a
value (1010), which identifies the bits that the second rule
shares with the common match mask.

The third stage 5415 shows the continuation of the fold
operation. Specifically, the second portion of the fold opera-
tion entails calculating a new common match data that takes
into account the second rule. In the example of third stage
5020, the algorithm of some embodiments performs a bit-
wise AND operation between the current common match
mask (1111) and the calculated shared bits (1010). The

10

15

20

25

30

35

40

45

50

55

60

65

58

bitwise AND operation sets each bit that is not shared
between the shared bits with the current common match
mask to 0. The result of the bitwise AND operation is a new
common match mask that encompasses both the first and
second rules. As shown, since the second rule contains the
bits 1010, the first and third bits are no longer shared with
the first rule. Hence, the common match mask is set to 1010,
which means that the first and third bits are not shared, and
the second and fourth bits are shared.

In some embodiments, the fold operation is successful if
the result of the bitwise operations results in a common
match mask having at least one bit that is set to 1. This
means that the common match mask cannot be all zeroes.
The reason for this is that, once all the bits are set to zero,
the rules collectively have nothing in common. For instance,
each time a new rule is evaluated, the algorithm might set
one or more bits to zeroes if the common match is different
from the new rule. If the new rule sets each remaining 1s to
0Os, then the common match data set cannot be used to at least
disqualify the first set of rules. This idea will be further
clarified in the next figure.

In the fourth stage 5420, the common match algorithm of
some embodiments updates the common match value. Spe-
cifically, the algorithm performs a bitwise operation to set all
of'the bits that are not part of the common match to zero. The
algorithm of some embodiments performs this for cleanli-
ness. As shown, the algorithm of some embodiments per-
forms a bitwise AND operation between the current com-
mon match value (1111) and the new common match mask
(1010). The bitwise operation sets each bit that is not
common between the two rules to 0. The result of the bitwise
operation is the new common match value, in some embodi-
ments.

In the example described above, the second rule has been
successfully folded into the common match data. This is
because the bitwise operations resulted in a common match
mask having at least one bit set to 1, which means that the
first two rules shares at least one bit. FIG. 57 illustrates an
example of creating a new common match data set for a rule
if the rule cannot be folded into a previously generated
common match data set. Two operational stages 5705 and
5710 of the multi-bit common match algorithm of some
embodiments are shown in this figure. These stages 5705
and 5710 are a continuation of the ones shown in the
previous figure. Also, when compared with FIG. 53, these
stages 5705 and 5710 show one of the key differences
between the single bit common match and the multi-bit
common match algorithms. The key difference being that the
multi-bit algorithm of some embodiments creates an array of
common match data sets for the multi-bit test.

In the second stage 5705, the multi-bit common match
algorithm starts the process of folding the third rule into the
common match data set. The multi-bit common match
algorithm of some embodiments takes the bitwise NOT of
the match field value (10101) of the third rule and the current
common value (1010), and once again performs a bitwise
XOR operation on those two values. The result of the bitwise
XOR operation is a value, which identifies each shared bit
between the match field value and the current common
match value. Here, the result of the operation is 0000, which
means that there are no shared bits.

In the second stage 5710, the multi-bit common match
algorithm determines that the fold operation of the third rule
into the existing common match data set has failed and
creates a new common match data set that encompasses the
third rule. Specifically, the multi-bit common match algo-
rithm once again performs the bitwise AND operation using

US 9,686,185 B2

59

the current common match mask (1010) and the shared bit
value (0000). The result of the bitwise AND operation is the
new common match mask.

As mentioned above, the fold operation is successful if the
result of the bitwise operations results in a common match
mask data set having at least one bit that is set to 1. This
means that the common match mask cannot be all zeroes.
The reason for this is that, once all the bits are set to zero,
the rules collectively have nothing in common. For instance,
in the example of the second stage 5710, the new common
mask is 0000 because the three rules collectively do not have
any common bits.

Accordingly, in the third stage 5715, the multi-bit com-
mon match algorithm does not update the existing common
match data set (e.g., the common match mask) but creates a
second new common match data set that encompasses the
third rule. The second common match data set is initialized
in a similar manner as the first common match data set.
Specifically, the common match value is set to 0101 using
the value of third classifier rule. The common match mask
is also set to 1111, which means that the third rule shares all
bits with itself. The common match value shows the value of
those shared bits. The second common match data set is also
represented as 0101, where X means the bit is not shared, 1
means the bit is shared and the value is 1, and 0 also means
the bit is shared and the value is O.

In the example described above, the multi-bit common
match algorithm of some embodiments create a second new
common match dataset to account for the third rule that
cannot be folded into the first common match data set. In
some embodiments, the multi-bit common match algorithm
attempts to fold each rule into each existing common match
data set. In other words, the multi-bit common match
algorithm iterates through each common match data set
attempting to fold the rule into the common match data set.
If the fold is successful, the multi-bit common match algo-
rithm updates the corresponding common match data set and
moves onto the next rule. However, if the fold is unsuccess-
ful, the multi-bit common match algorithm creates another
common match data set.

FIG. 58 illustrates another example of how the multi-bit
common match algorithm attempts to fold a rule into an
existing common match data set. Three operational stages
5805-5815 of the multi-bit common match algorithm of
some embodiments are shown in the figure. These stages are
a continuation of the ones shown in FIG. 57. The first stage
5805 shows that, in addition to the three existing classifier
rules, there is a new rule with the value 0000. The first stage
5805 also shows that multi-bit common match algorithm of
some embodiments can re-use the previously generated
common match data sets.

In the second stage 5705, the multi-bit common match
algorithm starts the process of folding the fourth rule into the
common match data set. The multi-bit common match
algorithm of some embodiments takes the bitwise NOT of
the match field value (10000) of the fourth rule and the
current common value (1010) of the first common match
data set, and once again performs a bitwise XOR operation
on those two values. The result of the bitwise XOR operation
is a value, which identifies each shared bit between the
match field value and the current common match value.
Here, the result of the operation is 0101, which means that
the first and third bits are shared between the common match
mask and the value of the fourth rule.

In the third stage 5715, the multi-bit common match
algorithm determines that the fold operation of the fourth
rule into the first common match data set has failed. Spe-

20

40

45

55

60

cifically, the multi-bit common match algorithm once again
performs the bitwise AND operation using the current
common match mask (1010) and the shared bit value (0101).
The result of the bitwise AND operation is 0000. This means
that the first, second, and fourth rules collectively have no
bits in common.

FIG. 59 illustrates an example of how the multi-bit
common match algorithm attempts to fold a rule into the
second common match data set because it failed to fold that
same rule into the first common match data set. Two
operational stages 5905-5910 of the multi-bit common
match algorithm of some embodiments are shown in the
figure. These stages are a continuation of the ones shown in
FIG. 58. In the first stage 5905, the multi-bit common match
algorithm starts the process of folding the fourth rule into the
second common match data set. The multi-bit common
match algorithm of some embodiments takes the bitwise
NOT of the match field value (10000) of the fourth rule and
the current common value (0101) of the second common
match data set, and once again performs a bitwise XOR
operation on those two values. The result of the bitwise XOR
operation is a value, which identifies each shared bit
between the match field value and the current common
match value. Here, the result of the operation is 1010, which
means that the second and fourth bits are shared between the
common match mask and the value of the fourth rule.

In the second stage 5710, the multi-bit common match
algorithm successfully folds the fourth rule into the second
common match data set. Specifically, the multi-bit common
match algorithm once again performs the bitwise AND
operation using the current common match mask (1111) of
the second common match data set and the calculated shared
bit value (1010). The result of the bitwise AND operation is
1010. This value indicates that the second and fourth rules
have the second and fourth bits in common with one another.

FIG. 60 illustrates an example of updating the common
match data associated with a common match data set. This
figure is a continuation of the previous figure. The figure
shows the common match algorithm updating the common
match value of the second common match data set by taking
the current common match value and the new common
match mask, and performing a bitwise AND operation. The
bitwise operation sets each bit that is not common between
the two rules to 0. The result of the bitwise operation is the
new common match value for the second common match
data set, in some embodiments.

FIG. 61 illustrates an example of using the first and
second common match data sets to generate a wildcard
mask. Two stages 6105 and 6110 of operations of the
multi-bit common match algorithm of some embodiments
are illustrated in the figure. This figure is similar to the single
bit common match algorithm shown in FIG. 51. However,
the wildcard mask is generated by taking one bit from each
common match data set and un-wildcarding the correspond-
ing bit from the wildcard mask.

In the first stage 6105, the multi-bit common match
algorithm takes the header value and the common match
value of the first common match data set, and performs a
bitwise XOR operation on those two values. The result of the
bitwise XOR operation is a value that identifies zero or more
bits that are different from the packet and the common match
value. The multi-bit common bit algorithm then takes that
calculated value and the current common mask value of the
first common match data set to generate a first diff mask. The
multi-bit common match algorithm does the same for the
second common match data set to generate a second diff
mask.

US 9,686,185 B2

61

As shown in the second stage, the two diff masks are
associated with two different sets of rules. Also, as shown,
the common match algorithm of some embodiments takes
one bit from each diff bit and un-wildcarding the corre-
sponding bit of the wildcard mask. In some embodiments,
the common match algorithm performs a bitwise OR opera-
tion and the result is the wildcard mask.

One of ordinary skill in the art would that the implemen-
tations of the different single bit or multi-bit common match
algorithms are example implementations and that different
embodiments might implement the algorithms differently.
One of ordinary skill in the art would also understand that
different embodiments could use different operations (e.g.,
replace several bitwise operations with different ones). Fur-
ther, one of ordinary skill in the art would understand each
algorithm (e.g., the single bit versions, the multi-bit ver-
sions) could be performed following a different order of
operations. For instance, in several of the examples
described above, the common match algorithms start with
the first rule to generate the common match data, and
compare that common match data to each other rule.

Instead of a rule, the common match algorithms or the
multi-bit common match algorithms can start with the
packet header value. FIG. 63 illustrates an example of how
different common match algorithms can start with a packet
rather than a rule. For the single bit common match, the
algorithm of some embodiments can begin with the comple-
ment of the packet, try to find a common match amongst
(e.g., higher priority) rules, and un-wildcard one bit from the
common match if it finds one. For the multi-bit approach, the
algorithm can begin with the complement of the packet and
try to find a common match amongst (e.g., higher priority)
rules. The algorithm can stop, when there no longer exist any
common bits to the rules, and create a new common match
bit array for the remaining rules. By the end of examining
(e.g., the higher priority rules), there is a list of bitarrays that
each match a section of the rules and differ from the packet.
The algorithm can then un-wildcard one bit from each of
these common match bitarrays to produce a flow that is
unique to the packet but differs from all (e.g., higher
priority) flows. The problem with these approaches is that
the common match data set or data sets are computed each
time a classification engine receives a new packet. Whereas,
in several of the implementations described above, the
common match data or data sets can be reused in some
manner once they are generated.

VIII. Example Datapath Flows

FIG. 64 illustrates several examples of flows 6400 that are
stored in a datapath cache. In some embodiments, the flows
are stored in the datapath cache based on the number of
flows that are currently stored in the cache. For example, if
the switching element is not heavily loaded, a flow will stay
in the cache if it was not used within a particular time period
(e.g., five seconds). If the flow was not used within the
particular time period, the flow may be dropped from the
cache. Once the datapath reaches a certain threshold number,
the switching element may change how long a flow stays in
the cache. For example, if the cache is heavily loaded, a flow
might only last a hundred milliseconds if it was not used. In
some embodiments, the userspace makes the decisions about
how long a flow stays in the cache based on how recently it
was used and/or the amount of flows in the datapath cache.

In the example of FIG. 64, the datapath 6400 includes two
flows. Each of these flows has the Ethernet sources and
destination match fields un-wildcarded. The remaining fields
are all wildcarded. Specifically, the IP source, IP destination,
protocol, time to live, time of service, fragment, (Internet

10

15

20

25

30

35

40

45

50

55

60

65

62
Control Message Protocol) ICMP type, and IMCP code
match fields have all been wildcarded. Each flow is also
associated with several other values such as byte size, last
used, packets, and action.
IX. Electronic System

Many of the above-described features and applications are
implemented as software processes that are specified as a set
of instructions recorded on a computer readable storage
medium (also referred to as computer readable medium).
When these instructions are executed by one or more
computational or processing unit(s) (e.g., one or more pro-
cessors, cores of processors, or other processing units), they
cause the processing unit(s) to perform the actions indicated
in the instructions. Examples of computer readable media
include, but are not limited to, CD-ROMs, flash drives,
random access memory (RAM) chips, hard drives, erasable
programmable read-only memories (EPROMs), electrically
erasable programmable read-only memories (EEPROMs),
etc. The computer readable media does not include carrier
waves and electronic signals passing wirelessly or over
wired connections.

In this specification, the term “software” is meant to
include firmware residing in read-only memory or applica-
tions stored in magnetic storage, which can be read into
memory for processing by a processor. Also, in some
embodiments, multiple software inventions can be imple-
mented as sub-parts of a larger program while remaining
distinct software inventions. In some embodiments, multiple
software inventions can also be implemented as separate
programs. Finally, any combination of separate programs
that together implement a software invention described here
is within the scope of the invention. In some embodiments,
the software programs, when installed to operate on one or
more electronic systems, define one or more specific
machine implementations that execute and perform the
operations of the software programs.

FIG. 65 conceptually illustrates an electronic system 6500
with which some embodiments of the invention are imple-
mented. The electronic system 6500 may be a computer
(e.g., a desktop computer, personal computer, tablet com-
puter, etc.), server, dedicated switch, phone, PDA, or any
other sort of electronic or computing device. Such an
electronic system includes various types of computer read-
able media and interfaces for various other types of com-
puter readable media. Electronic system 6500 includes a bus
6505, processing unit(s) 6510, a system memory 6525, a
read-only memory 6530, a permanent storage device 6535,
input devices 6540, and output devices 6545.

The bus 6505 collectively represents all system, periph-
eral, and chipset buses that communicatively connect the
numerous internal devices of the electronic system 6500.
For instance, the bus 6505 communicatively connects the
processing unit(s) 6510 with the read-only memory 6530,
the system memory 6525, and the permanent storage device
6535.

From these various memory units, the processing unit(s)
6510 retrieves instructions to execute and data to process in
order to execute the processes of the invention. The pro-
cessing unit(s) may be a single processor or a multi-core
processor in different embodiments.

The read-only-memory (ROM) 6530 stores static data and
instructions that are needed by the processing unit(s) 6510
and other modules of the electronic system. The permanent
storage device 6535, on the other hand, is a read-and-write
memory device. This device is a non-volatile memory unit
that stores instructions and data even when the electronic
system 6500 is off. Some embodiments of the invention use

US 9,686,185 B2

63

a mass-storage device (such as a magnetic or optical disk
and its corresponding disk drive) as the permanent storage
device 6535.

Other embodiments use a removable storage device (such
as a floppy disk, flash memory device, etc., and its corre-
sponding drive) as the permanent storage device. Like the
permanent storage device 6535, the system memory 6525 is
a read-and-write memory device. However, unlike storage
device 6535, the system memory 6525 is a volatile read-
and-write memory, such a random access memory. The
system memory 6525 stores some of the instructions and
data that the processor needs at runtime. In some embodi-
ments, the invention’s processes are stored in the system
memory 6525, the permanent storage device 6535, and/or
the read-only memory 6530. From these various memory
units, the processing unit(s) 6510 retrieves instructions to
execute and data to process in order to execute the processes
of some embodiments.

The bus 6505 also connects to the input and output
devices 6540 and 6545. The input devices 6540 enable the
user to communicate information and select commands to
the electronic system. The input devices 6540 include alpha-
numeric keyboards and pointing devices (also called “cursor
control devices”), cameras (e.g., webcams), microphones or
similar devices for receiving voice commands, etc. The
output devices 6545 display images generated by the elec-
tronic system or otherwise output data. The output devices
6545 include printers and display devices, such as cathode
ray tubes (CRT) or liquid crystal displays (LCD), as well as
speakers or similar audio output devices. Some embodi-
ments include devices such as a touchscreen that function as
both input and output devices.

Finally, as shown in FIG. 65, bus 6505 also couples
electronic system 6500 to a network 6565 through a network
adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network
(“LAN”), a wide area network (“WAN”), or an Intranet, or
a network of networks, such as the Internet. Any or all
components of electronic system 6500 may be used in
conjunction with the invention.

Some embodiments include electronic components, such
as microprocessors, storage and memory that store computer
program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-
readable storage media, machine-readable media, or
machine-readable storage media). Some examples of such
computer-readable media include RAM, ROM, read-only
compact discs (CD-ROM), recordable compact discs (CD-
R), rewritable compact discs (CD-RW), read-only digital
versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a
variety of recordable/rewritable DVDs (e.g., DVD-RAM,
DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards,
mini-SD cards, micro-SD cards, etc.), magnetic and/or solid
state hard drives, read-only and recordable Blu-Ray® discs,
ultra density optical discs, any other optical or magnetic
media, and floppy disks. The computer-readable media may
store a computer program that is executable by at least one
processing unit and includes sets of instructions for per-
forming various operations. Examples of computer pro-
grams or computer code include machine code, such as is
produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic com-
ponent, or a microprocessor using an interpreter.

While the above discussion primarily refers to micropro-
cessor or multi-core processors that execute software, some
embodiments are performed by one or more integrated
circuits, such as application specific integrated circuits

10

15

20

25

30

35

40

45

50

55

60

65

64
(ASICs) or field programmable gate arrays (FPGAs). In
some embodiments, such integrated circuits execute instruc-
tions that are stored on the circuit itself. In addition, some
embodiments execute software stored in programmable
logic devices (PLDs), ROM, or RAM devices.

As used in this specification and any claims of this
application, the terms “computer”, “server”, “processor”,
and “memory” all refer to electronic or other technological
devices. These terms exclude people or groups of people.
For the purposes of the specification, the terms display or
displaying means displaying on an electronic device. As
used in this specification and any claims of this application,
the terms “computer readable medium,” “computer readable
media,” and “machine readable medium” are entirely
restricted to tangible, physical objects that store information
in a form that is readable by a computer. These terms
exclude any wireless signals, wired download signals, and
any other ephemeral signals.

While the invention has been described with reference to
numerous specific details, one of ordinary skill in the art will
recognize that the invention can be embodied in other
specific forms without departing from the spirit of the
invention. In addition, a number of the figures (including
FIGS. 1, 5, 16, 17, 19, 21, 26, 36, 39, 46, 48, and 63)
conceptually illustrate processes. The specific operations of
these processes may not be performed in the exact order
shown and described. The specific operations may not be
performed in one continuous series of operations, and dif-
ferent specific operations may be performed in different
embodiments. Furthermore, the process could be imple-
mented using several sub-processes, or as part of a larger
macro process. Thus, one of ordinary skill in the art would
understand that the invention is not to be limited by the
foregoing illustrative details, but rather is to be defined by
the appended claims.

What is claimed is:

1. A non-transitory machine readable medium storing a
program that when executed by at least one processing unit
forwards packets, the program comprising sets of instruc-
tions for:

receiving a packet;

examining a first set of rules to find a common match

which includes a set of one or more bits that the rules
have in common with one another, each bit of the
common match corresponding to a bit in a header of the
packet;

defining a wildcard mask comprising a plurality of bits,

each bit in the wildcard mask (i) corresponding to a bit
in the header of the packet and (ii) initially set as a
wildcard bit;

identifying a position of a differing bit from a first set of

bits of the packet header that is different from a
corresponding bit in the common match;
from the wildcard mask, unmasking a bit that is at a same
bit position as the position of the differing bit;

comparing a second set of bits in the packet header with
a second set of rules to find a matching rule; and

generating a flow entry comprising a set of un-wildcarded
bits based on the matching rule and said unmasked bit
of the wildcard mask, wherein the flow entry is used to
process other packets that match each un-wildcarded
bit of the flow entry.

2. The non-transitory machine readable medium of claim
1, wherein the set of instructions for examining the first set
of rules comprises a set of instructions for generating a
common match data set that includes a common match value
and a common match mask, the common match value

US 9,686,185 B2

65

identifying the value of each common bit, and the common
match mask identifying the position of each common bit.
3. The non-transitory machine readable medium of claim
2, wherein the set of instructions for finding the common
match comprises a set of instructions for initializing a value
of'the common match value using the value of one of the first
set of rules.
4. The non-transitory machine readable medium of claim
2, wherein the set of instructions for finding the common
match comprises a set of instructions for initializing a mask
for the common match based on a mask associated with a
hash table.
5. The non-transitory machine readable medium of claim
2, wherein the set of instructions for examining the first set
of rules comprises sets of instructions for:
initializing the value of the common mask based on a first
rule in the first set of rules; and
folding each other rule in the first set of rules into the
common match data set.
6. The non-transitory machine of claim 5, wherein the set
of instructions for folding each other rule comprises a set of
instructions for calculating shared bit data to determine
which bits are shared between the other rule and the com-
mon match value.
7. The non-transitory machine readable medium of claim
6, wherein the set of instructions for folding the other rule
further comprises a set of instructions for calculating a new
common match mask that takes into account the other rule.
8. The non-transitory machine readable medium of claim
6, wherein the set of instructions for folding the other rule
further comprises a set of instructions for calculating a new
common match value to set all of the bits that are not part
of the common match mask to zero.
9. The non-transitory machine readable medium of claim
2, wherein the set of instructions for identifying the position
of the differing bit comprises a set of instructions for
calculating a value that indicates which bits are different
from the packet header and a value of the common match.
10. The non-transitory machine readable medium of claim
9, wherein the set of instructions for identifying the position
of the differing bit comprises a set of instructions for
generating a differing mask by restricting a calculated value
of the common match to only each bit which is common
between all of the rules.
11. The non-transitory machine readable medium of claim
10, wherein the set of instructions for defining the wildcard
mask comprises a set of instructions for selecting one bit
from the differing mask and unmasking a corresponding bit
from the wildcard mask.
12. A computing device comprising:
at least one processing unit;
a storage, which stores a program that when executed by
the at least one processing unit implements a forward-
ing element, the forwarding element for:
receiving a packet;
examining a first set of rules to find a common match
which includes a set of one or more bits that the rules
have in common with one another, each bit of the
common match corresponding to a bit in a header of
the packet;

defining a wildcard mask comprising a plurality of bits,
each bit in the wildcard mask (i) corresponding to a
bit in the header of the packet and (ii) initially set as
a wildcard bit;

identifying a position of a differing bit from a first set
of bits of the packet header that is different from a
corresponding bit in the common match;

10

15

20

25

30

35

40

45

50

55

60

66

from the wildcard mask, unmasking a bit that is at a
same bit position as the position of the differing bit;

comparing a second set of bits in the packet header with
a second set of rules to find a matching rule; and

generating a flow entry comprising a set of un-wild-
carded bits based on the matching rule and said
unmasked bit of the wildcard mask, wherein the flow
entry is used to process other packets that match each
un-wildcarded bit of the flow entry.

13. The computing device of claim 12, wherein the
forwarding element further identifies a plurality of differing
bits comprising said differing bit by examining a plurality of
sets of rules comprising said first set of rules to find common
matches, wherein each common match includes a set of one
or more bits that each rule in one of the sets of rules has in
common with one another.

14. The computing device of claim 13, wherein the
forwarding element examines the plurality of sets of rules by
generating, for each set of rule, a common match data set
that includes a common match value and a common match
mask, the common match value identifying the value of each
common bit, and the common match mask identifying the
position of each common bit.

15. The computing device of claim 14, wherein the
forwarding element examines the plurality of sets of rules
further by attempting to fold each rule in a set of rules into
one of the common match data sets.

16. The computing device of claim 15, wherein the
forwarding element examines the plurality of sets of rules
further by creating a new common match data set if the fold
operation results in the common match data set indicating
that the set of rules collectively have no bits in common.

17. The computing device of claim 14, wherein the
forwarding element generates the wildcard mask by gener-
ating a plurality of differing masks using the common match
masks by selecting one bit from each common match mask
and unmasking a corresponding bit from the wildcard mask.

18. For a forwarding element that forwards packets, a
method comprising:

receiving a packet;

examining a first set of rules to find a common match

which includes a set of one or more bits that the rules
have in common with one another, each bit of the
common match corresponding to a bit in a header of the
packet;

defining a wildcard mask comprising a plurality of bits,

each bit in the wildcard mask (i) corresponding to a bit
in the header of the packet and (ii) initially set as a
wildcard bit;

identifying a position of a differing bit from a first set of

bits of the packet header that is different from a
corresponding bit in the common match;
from the wildcard mask, unmasking a bit that is at a same
bit position as the position of the differing bit;

comparing a second set of bits in the packet header with
a second set of rules to find a matching rule for the
packet; and

generating a flow entry comprising a set of un-wildcarded

bits based on the matching rule and said unmasked bit
of the wildcard mask, wherein the flow entry is used to
process other packets that match each un-wildcarded
bit of the flow entry.

19. The method of claim 18, wherein comparing the
second set of bits in the packet header with the second set of
rules comprises:

performing a hash lookup operation on one or more hash

tables to find the matching rule for the packet, wherein

US 9,686,185 B2
67

each hash table comprises one of said second set of
rules, wherein the differing bit is used to unmask the bit
in the wildcard mask after the hash lookup operation on
one of the hash tables fails to find a matching rule for
the packet. 5
20. The method of claim 18, wherein examining the first
set of rules comprises generating a common match data set
that includes a common match value and a common match
mask, the common match value identifying the value of each
common bit, and the common match mask identifying the 10
position of each common bit.

#* #* #* #* #*

68

