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MACHINE-LEARNING MODEL FOR RECALIBRATING NUCLEOTIDE-BASE CALLS

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of, and priority to, U.S. Application No. 17/384,423,
entitled “MACHINE-LEARNING MODEL FOR RECALIBRATING NUCLEOTIDE-BASE
CALLS,” filed July 23, 2021, the contents of which are hereby incorporated by reference in their
entirety.
BACKGROUND

[0002] Despite these recent advances in sequencing and variant calling, existing sequencing-
data-analysis software often include variant callers that identify excessive numbers of false
positives and false negatives. For example, in some circumstances, existing software applies a
variant caller that falsely identifies excessive numbers of variants at sites or coordinates without
such variants within a reference sequence. As another example, existing variant callers often
mistakenly identify excessive numbers of non-variant subsequences in a sample sequence at sites
or coordinates where the sample sequence includes actual variants that differ from references bases
of a reference sequence. Indeed, existing variant callers achieve a certain level of accuracy but,
due to their limitations, still leave room for improvement in reducing false positives and recovering
false negatives. For example, a variant call identifying a particular single nucleotide polymorphism
(SNP) in the hemoglobin beta (HBB) gene can have significant implications. When a variant caller
identifies an SNP at rs344 on chromosome 11, for instance, the variant caller can either correctly
identify the genetic cause of sickle cell anemia or miss the cause of the disease. As a further
example, a variant call that correctly or incorrectly identifies the deletion of one or more copies of
hemoglobin subunit alpha 1 (HbA1) or hemoglobin subunit alpha 2 (HbA2) genes can result in
either correctly identifying a genetic cause of an inherited blood disorder or miss the gene deletion
entirely.

[0003]  As a contributing factor to the aforementioned inaccuracies, many existing nucleotide-
base-sequencing platforms and sequencing-data-analysis software (together and hereinafter,
existing sequencing systems) leverage only limited sets of data in determining nucleotide-base
calls. For instance, existing sequencing systems frequently rely exclusively on information
extracted directly from nucleotide reads of a sample sequence, such as read depth, mismatch counts,
and mapping quality, to determine nucleotide-base calls. While sequence information from
nucleotide reads can provide valuable insight for determining nucleotide-base calls, existing
systems that solely rely on these data can underperform when it comes to accurately determining
nucleotide-base calls. Indeed, some existing sequencing systems that rely on raw sequence data

incorrectly determine SNPs, indels, or other variants in a sample sequence in comparison to more
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complex models. Indeed, existing sequencing systems frequently identify false negative variants
or false positive variants in the Truth Challenges of the U.S. Food and Drug Administration (FDA).
[0004] In addition to inaccurately determining variant calls, some existing sequencing systems
also inefficiently expend computing resources with overly complex models. Specifically, the
variant callers of some existing sequencing systems are computationally expensive and slow.
Indeed, some existing systems utilize variant callers with a deep learning architecture or some other
neural network architecture that require extensive computational resources (e.g., computing time,
processing power, and memory) to train and apply. For example, some existing systems utilize
deep learning architectures that, even after training, take many hours across multiple computing
devices to generate nucleotide-base calls for a single sample sequence.

[0005] As an added drawback of existing sequencing systems with complex networks, many
such systems utilize model architectures that render sequence data uninterpretable. More
specifically, some existing deep neural networks transform and manipulate the sequence data many
times over, changing from one vector to another across the various layers and neurons, as the basis
for generating a variant call. In many cases, the internal data of these deep neural networks is
uninterpretable and impossible to utilize in any way outside of the neural network architecture
itself.

SUMMARY

[0006] This disclosure describes embodiments of methods, non-transitory computer
readable media, and systems that can utilize a machine learning model to recalibrate
nucleotide-base calls (e.g., variant calls) of a call-generation model. For example, the disclosed
systems can train and utilize a call-recalibration-machine-learning model to generate a set of
classification predictions (e.g., variant-call classifications) from sequencing metrics associated
with a sample nucleotide sequence. Leveraging the set of classification predictions, the
disclosed systems can further update or modify nucleotide-base calls for the sample sequence.
Indeed, the disclosed systems can (i) generate an initial nucleotide-base call (e.g.., an initial
variant call) with respect to a genomic coordinate of a reference genome based on sequencing
metrics for nucleotide reads of a sample sequence utilizing a call-generation model and (i1)
utilize a call-recalibration-machine-learning model to generate classification predictions for
updating or recalibrating the initial nucleotide-base call from a subset of the same sequencing
metrics. After recalibrating, the disclosed systems can output the updated or recalibrated
nucleotide-base call as a final nucleotide-base call (e.g., a final variant call) in a variant call

file or other base-call-output file.
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[0007] By utilizing a call-recalibration-machine-learning model to update sequencing metrics
for generating nucleotide-base calls, the disclosed systems can improve accuracy, efficiency, and
speed over existing sequencing systems. As described further below, for instance, the disclosed
call-recalibration-machine-learning model determines variant calls with better accuracy and faster
computing times than more complex neural networks for variant calling. Additionally, the
disclosed systems can improve interpretability of factors impacting accurate variant calls by
utilizing a call-recalibration-machine-learning model that processes data in an accessible,
interpretable format. Indeed, because of the improved interpretability of the disclosed systems, in
some embodiments, the disclosed systems can generate and provide a visualization of various
contribution measures associated with individual sequencing metrics to visually depict respective
measures of impact that the sequencing metrics have on a resultant nucleotide-base call.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008]  The detailed description refers to the drawings briefly described below.
[0009] FIG. 1 illustrates a block diagram of a sequencing system including a base-caller-
recalibration system in accordance with one or more embodiments.
[0010] FIG. 2 illustrates an overview of generating a nucleotide-base call utilizing the base-
caller-recalibration system in accordance with one or more embodiments.
[0011] FIGS. 3A-3C illustrate generating or determining sequencing metrics in accordance
with one or more embodiments.
[0012] FIG. 4 illustrates generating variant-call classifications and recalibrating a nucleotide-
base call utilizing a call-recalibration-machine-learning model in accordance with one or more
embodiments.
[0013] FIG. 5 illustrates an example process for training a call-recalibration-machine-learning
model in accordance with one or more embodiments.
[0014] FIG. 6 illustrates an example contribution-measure interface displayed on a client device
in accordance with one or more embodiments.
[0015] FIGS. 7A-7B illustrate graphs depicting accuracy improvements associated with the
base-caller-recalibration system utilizing a call-recalibration-machine-learning model in
accordance with one or more embodiments.
[0016] FIG. 8 illustrates a graph comparing the base-caller-recalibration system with non-
recalibrated systems in accordance with one or more embodiments.
[0017] FIG. 9 illustrates a flowchart of a series of acts for generating a nucleotide-base call
based on variant-call classifications from a call-recalibration-machine-learning model in

accordance with one or more embodiments 1n accordance with one or more embodiments.
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[0018] FIG. 10 illustrates a block diagram of an example computing device for implementing
one or more embodiments of the present disclosure.

DETAILED DESCRIPTION
[0019] This disclosure describes embodiments of a base-caller-recalibration system that
generates and recalibrates nucleotide-base calls for a sample nucleotide sequence utilizing a call-
generation model and a call-recalibration-machine-learning model. In particular, the base-caller-
recalibration system can utilize a call-generation model to generate an initial nucleotide-base call
(e.g., a base call identifying a variant call or a non-variant call with respect to a reference genome)
from sequencing metrics identified or obtained from nucleotide reads of a sample nucleotide
sequence. In addition, the base-caller-recalibration system can recalibrate the initial nucleotide-
base call to improve its accuracy by utilizing a call-recalibration-machine-learning model to update
various call metrics such as a call quality, a genotype associated with the call, and/or a genotype
quality associated with the genotype. By utilizing the call-recalibration-machine-learning model
to update metrics, the base-caller-recalibration system can remove false positives from nucleotide-
base calls of the sample nucleotide sequence and/or can recover false negatives from nucleotide-
base calls of the sample nucleotide sequence.
[0020]  As just mentioned, in certain implementations, the base-caller-recalibration system
extracts or determines sequencing metrics from a sample nucleotide sequence. For example, the
base-caller-recalibration system determines sequencing metrics from nucleotide-base calls of
nucleotide reads from a sample nucleotide sequence. Indeed, in some cases, the base-caller-
recalibration system generates or determines a set of nucleotide-base calls from nucleotide reads
captured or determined via fluorescent imaging of a sample nucleotide sequence (e.g., at a
particular genomic coordinate). From the read-based nucleotide-base calls, in some embodiments,
the base-caller-recalibration system determines or extracts various sequencing metrics (e.g,
sequencing metrics of various types obtained from reads and/or from different components of a
call-generation model).
[0021] To elaborate, in certain implementations, the base-caller-recalibration system
determines different types of sequencing metrics associated with different sources. For example,
the base-caller-recalibration system determines read-based sequencing metrics including metrics
derived from nucleotide reads of the sample nucleotide sequence. In addition, the base-caller-
recalibration system determines externally sourced sequencing metrics identified from one or more
external databases that indicate various nucleotide attributes, mapping challenges, and genomic
sequences associated with sequencing biases. Further, the base-caller-recalibration system
determines call-model-generated sequencing metrics generated via a variant caller or other call-

generation model, such as variables internal to the base-caller-recalibration system that are not
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accessible to other systems or parties (e.g., proprietary quality scores, base contexts, read filtering,
proprietary hypothesis scores, and other metrics). Indeed, in some cases, the base-caller-
recalibration system determines call-model-generated sequencing metrics in the form of variant-
calling sequencing metrics and mapping-and-alignment sequencing metrics, where each type is
extracted by different components of the call-generation model.

[0022]  As further mentioned, in certain implementations, the base-caller-recalibration system
generates a set of predicted classifications from the sequencing metrics for modifying or improving
a nucleotide-base call or variant-call data or fields associated with a nucleotide-base call. More
specifically, the base-caller-recalibration system utilizes a call-recalibration-machine-learning
model to generate, from the sequencing metrics, a set of three variant-call classifications that impact
or reflect the accuracy of identifying a variant at a particular genomic coordinate (e.g., a genomic
coordinate corresponding to nucleotide-base calls of nucleotide reads from a sample nucleotide
sequence). For instance, the base-caller-recalibration system utilizes the call-recalibration-
machine-learning model to generate variant-call classifications including: 1) a false-positive
classification (e.g., a probability that a nucleotide-base call is a false positive variant), i1) a
genotype-error classification (e.g., a probability of incorrectly identifying a genotype of a
nucleotide-base call), and a ii1) true-positive classification (e.g., a probability that a nucleotide-base
call is a true positive variant). In some cases, the variant-call classifications accordingly represent
variant-caller-intermediate-scoring metrics.

[0023] From the variant-call classifications, the base-caller-recalibration system can further
modify or update (metrics for) a final nucleotide-base call for a genomic coordinate (e.g., a final
nucleotide-base call that indicates a variant call or a non-variant call). For example, the base-caller-
recalibration system utilizes the variant-call classifications to update data fields corresponding to
call quality, genotype, and genotype quality within a digital call file (e.g., a variant call format file
or other base-call-output file) that indicates or represents a nucleotide-base call. Indeed, as
mentioned above, in some embodiments, the base-caller-recalibration system utilizes a call-
generation model to generate or determine a final nucleotide-base call from the sequencing metrics
for the genomic coordinate.

[0024] Additionally, the base-caller-recalibration system can utilize the variant-call
classifications to update the nucleotide-base call for improved accuracy. In certain
implementations, the base-caller-recalibration system generates the variant-call classifications
utilizing the call-recalibration-machine-learning model while also utilizing the call-generation
model to generate the nucleotide-base call based on the variant-call classifications. Indeed, in some
embodiments, the base-caller-recalibration system utilizes (i) the call-generation model to generate

an initial nucleotide-base call and (i1) the call-recalibration-machine-learning model to modify data
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fields corresponding to a variant call file for the nucleotide-base call. In some cases, the base-
caller-recalibration system further edits the nucleotide-base call based on one or more of the data
fields and generates a variant call file with the edited nucleotide-base call. By contrast, in some
cases, the base-caller-recalibration system determines a final nucleotide-base call for a genomic
coordinate based on both sequencing metrics for a call-generation model and variant-call
classifications from the call-recalibration-machine-learning model—without an initial nucleotide-
base call from the call-generation model. For example, in some embodiments, the call-generation
model may output a final variant call that accounts for the variant-call classifications (without
generating an initial variant call that is updated. By contrast, in certain cases, the call-generation
model may initially determine a confidence or quality corresponding to a potential variant call fails
to satisfy a threshold for including in a variant call file but (after accounting for variant-call
classifications that updates a base-call-quality metric) determine to include a variant call in the
variant call file. As a result of implementing the call-recalibration-machine-learning model and
the call-generation model in this way, the base-caller-recalibration system recovers false negative
calls and/or removes false positive calls initially made by the call-generation model.

[0025] In one or more embodiments, the base-caller-recalibration system further determines
contribution measures associated with one or more of the sequencing metrics. In particular, the
base-caller-recalibration system determines measures of impact or influence that each sequencing
metric or a subset of sequencing metrics has on a final nucleotide-base call. For example, some
metrics may be more heavily weighted than others in determining a call at one genomic coordinate
versus another. Indeed, due to the accessibility and interpretability of the call-generation model
and the call-recalibration-machine-learning model, the base-caller-recalibration system can access
internal sequencing metrics used to generate a nucleotide-base call and can determine their
respective contribution measures in ultimately determining which metrics are causing or driving
the recalibration of the nucleotide-base calls (e.g., variant calls). In some cases, the base-caller-
recalibration system further generates and provides a visualization of the contribution measures for
display on a client device.

[0026]  As suggested above, the base-caller-recalibration system provides several advantages,
benefits, and/or improvements over existing sequencing systems, including variant callers and
other sequencing-data-analysis software. For instance, the base-caller-recalibration system
introduces a first-of-its-kind machine-learning model—the call-recalibration-machine-learning
model—that is uniquely trained to perform a new application. Unlike conventional variant callers
that generate nucleotide-base calls exclusively from raw extracted metrics, the base-caller-
recalibration system utilizes a unique call-recalibration-machine-learning model that generates

specific variant-call classifications from external and internal sequencing metrics. Indeed, in some
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cases, the base-caller-recalibration system utilizes the call-recalibration-machine-learning model
to update a nucleotide-base call generated by a call-generation model from the same (or a subset of
the same) metrics used by the call-recalibration-machine-learning model to generate the variant-
call classifications.

[0027] In addition to introducing a first-of-its-kind machine-learning model, compared to
existing sequencing systems, the genomic-classification system improves the accuracy of
nucleotide-base calls. Indeed, while some existing sequencing systems generate nucleotide-base
calls with some degree of accuracy, these systems nevertheless identify excessive numbers of false
positive variant calls (e.g., by identifying a variant where none exists in a reference sequence)
and/or filter out excessive numbers of false negative variant calls (e.g., by identifying a genomic
position as non-variant when, in fact, the position has a variant). The base-caller-recalibration
system improves upon the accuracies of existing systems by removing large numbers of false
positives and recovering large numbers of false negatives utilizing the call-recalibration-machine-
learning model. By editing an initial nucleotide-base call or generating a final nucleotide-base call
based on variant-call classifications from the call-recalibration-machine-learning model, the base-
caller-recalibration system can use unique machine-learning outputs to recalibrate base calls with
better accuracy than existing variant callers or machine-learning models for variant calling. For
instance, the base-caller-recalibration system utilizes the call-recalibration-machine-learning
model to generate variant-call classifications from both internal (e.g., proprietary and model-
specific) and external sequencing metrics, which results in recovering variant-nucleotide-base calls
that were previously filtered out and/or removing non-variant-nucleotide-base calls that were
previously not filtered out.

[0028] Contributing at least in part to the improved accuracy, the base-caller-recalibration
system exhibits improved flexibility over existing sequencing systems. For example, as mentioned
above, existing sequencing systems sometimes utilize variant callers that rely exclusively on
internal sequencing metrics for particular base calls to generate a nucleotide-base call—without re-
engineering or modifying such internal sequencing metrics or analyzing externally sourced
sequencing metrics relevant to the genomic coordinates of corresponding nucleotide-base calls. By
contrast, in some embodiments, the base-caller-recalibration system generates and manipulates
both external and internal sequencing metrics. Indeed, in some cases, the base-caller-recalibration
system determines call-model-generated sequencing metrics from variant-caller components and
mapping-and-alignment components of a call-generation model by combining Bayesian
probabilistic models with machine learning techniques in an efficient manner. In addition, the

base-caller-recalibration system utilizes a call-recalibration-machine-learning model to generate an
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updated nucleotide-base call (e.g., from variant-call classifications) from one or more sequencing
metrics.

[0029] In addition to improved accuracy and flexibility, in certain embodiments, the base-
caller-recalibration system improves efficiency and speed. As noted above, some existing
sequencing systems utilize computationally expensive, slow neural network architectures (e.g.,
deep learning architectures such as convolutional neural networks) that require many hours (e.g.,
5-8 hours with multiple processors executing on a server) and large amounts of computational
resources to even implement and generate a file with variant calls from a sequencing run. Such
deep learning architectures can further require several days (or weeks) to train. Conversely, the
base-caller-recalibration system utilizes comparatively lightweight, fast architectures for both the
call-generation model and the call-recalibration-machine-learning model. Indeed, contrasting with
the many hours across multiple processors required by prior systems, the base-caller-recalibration
system, in many cases, requires under 30 minutes (for both the call-generation model and the call-
recalibration-machine-learning model together) of runtime on a single field-programmable-gate
array or a single processor to generate nucleotide-base calls for a sample nucleotide sequence.
Thus, the base-caller-recalibration system is far faster and less computationally expensive than
many deep learning approaches to variant calling. Not only are the models of the base-caller-
recalibration system faster and less computationally expensive to implement, but the models of the
base-caller-recalibration system are also much faster and less computationally expensive to train
than many existing deep-learning-based systems.

[0030]  As part of the improved speed and efficiency, in some embodiments, the base-caller-
recalibration system recalibrates nucleotide-base calls on a call-by-call basis as each call is
processed by the call-generation model. Indeed, the base-caller-recalibration system can generate
variant-call classifications for recalibrating a nucleotide-base call (e.g, utilize the call-
recalibration-machine-learning model) while also generating the nucleotide-base call from the
variant-call classifications along with one or more sequencing metrics. In some embodiments, the
base-caller-recalibration system utilizes the call-generation model in parallel with the call-
recalibration-machine-learning model to contemporaneously generate an initial nucleotide-base
call and variant-call classifications for modifying or recalibrating the initial nucleotide-base call.
[0031] As a further advantage over existing sequencing systems, in certain implementations,
the base-caller-recalibration system can identify or facilitate changes to individual metrics that
affect the accuracy of nucleotide-base calls. While the neural network architectures of many
conventional systems render any interpretation of internal model data impossible with latent
features, the base-caller-recalibration system utilizes model architectures that facilitate

interpretation of the effect of individual sequencing metrics. More specifically, in some cases, the
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base-caller-recalibration system utilizes a call-generation model and a call-recalibration-machine-
learning model that enable extraction and analysis of individual sequencing metrics used
throughout the process of generating a nucleotide-base call. Indeed, the base-caller-recalibration
system can determine respective contribution measures for sequencing metrics involved in
determining a nucleotide-base call at a particular genomic coordinate.

[0032]  As suggested by the foregoing discussion, this disclosure utilizes a variety of terms to
describe features and benefits of the base-caller-recalibration system. Additional detail is hereafter
provided regarding the meaning of these terms as used in this disclosure. As used in this disclosure,
for instance, the term “sample nucleotide sequence” or “sample sequence” refers to a sequence of
nucleotides isolated or extracted from a sample organism (or a copy of such an isolated or extracted
sequence). In particular, a sample nucleotide sequence includes a segment of a nucleic-acid
polymer that is isolated or extracted from a sample organism and composed of nitrogenous
heterocyclic bases. For example, a sample nucleotide sequence can include a segment of
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or other polymeric forms of nucleic acids
or chimeric or hybrid forms of nucleic acids noted below. More specifically, in some cases, the
sample nucleotide sequence is found in a sample prepared or isolated by a kit and received by a
sequencing device.

[0033]  As further used herein, the term “nucleotide-base call” (or sometimes simply “call”)
refers to a determination or prediction of a particular nucleotide base (or nucleotide-base pair) for
a genomic coordinate of a sample genome or for an oligonucleotide during a sequencing cycle. In
particular, a nucleotide-base call can indicate (i) a determination or prediction of the type of
nucleotide base that has been incorporated within an oligonucleotide on a nucleotide-sample slide
(e.g., read-based nucleotide-base calls) or (i1) a determination or prediction of the type of nucleotide
base that is present at a genomic coordinate or region within a sample genome, including a variant
call or a non-variant call in a digital output file. In some cases, for a nucleotide read, a nucleotide-
base call includes a determination or a prediction of a nucleotide base based on intensity values
resulting from fluorescent-tagged nucleotides added to an oligonucleotide of a nucleotide-sample
slide (e.g., in a well of a flow cell). Alternatively, a nucleotide-base call includes a determination
or a prediction of a nucleotide base to chromatogram peaks or electrical current changes resulting
from nucleotides passing through a nanopore of a nucleotide-sample slide. By contrast, a
nucleotide-base call can also include an initial or final prediction of a nucleotide base at a genomic
coordinate of a sample genome for a variant call file or other base-call-output file—based on
nucleotide reads corresponding to the genomic coordinate. Accordingly, a nucleotide-base call can
include a base call corresponding to a genomic coordinate and a reference genome, such as an

indication of a variant or a non-variant at a particular location corresponding to the reference
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genome. Indeed, a nucleotide-base call can refer to a variant call, including but not limited to, a
single nucleotide polymorphism (SNP), an insertion or a deletion (indel), or base call that is part of
a structural variant. By using nucleotide-base call, a sequencing system determines a sequence of
anucleic-acid polymer. For example, a single nucleotide-base call can comprise an adenine call, a
cytosine call, a guanine call, or a thymine call for DNA (abbreviated as A, C, G, T) or a uracil call
(instead of a thymine call) for RNA (abbreviated as U).

[0034] Relatedly, as used herein, the term “nucleotide read” refers to an inferred sequence of
one or more nucleotide bases (or nucleotide-base pairs) from all or part of a sample nucleotide
sequence. In particular, a nucleotide read includes a determined or predicted sequence of
nucleotide-base calls for a nucleotide fragment (or group of monoclonal nucleotide fragments) from
a sequencing library corresponding to a genome sample. For example, the base-caller-recalibration
system determines a nucleotide read by generating nucleotide-base calls for nucleotide bases passed
through a nanopore of a nucleotide-sample slide, determined via fluorescent tagging, or determined
from a well in a flow cell.

[0035]  Asnoted above, in some embodiments, the base-caller-recalibration system determines
sequencing metrics for nucleotide-base calls of nucleotide reads. As used herein, the term
“sequencing metric” refers to a quantitative measurement or score indicating a degree to which an
individual nucleotide-base call (or a sequence of nucleotide-base calls) aligns, compares, or
quantifies with respect to a genomic coordinate or genomic region of a reference genome, with
respect to nucleotide-base calls from nucleotide reads, or with respect to external genomic
sequencing or genomic structure. For instance, a sequencing metric includes a quantitative
measurement or score indicating a degree to which (i) individual nucleotide-base calls align, map,
or cover a genomic coordinate or reference base of a reference genome; (ii) nucleotide-base calls
compare to reference or alternative nucleotide reads in terms of mapping, mismatch, base-call
quality, or other raw sequencing metrics; or (iii) genomic coordinates or regions corresponding to
nucleotide-base calls demonstrate mappability, repetitive base-call content, DNA structure, or other
generalized metrics.

[0036] In some embodiments, the base-caller-recalibration system determines various types of
sequencing metrics from different sources, such as read-based sequencing metrics, externally
sourced sequencing metrics, and call-model-generated sequencing metrics. As used herein, the
term “read-based sequencing metrics” refers to sequencing metrics derived from nucleotide reads
of a sample nucleotide sequence. For example, read-based sequencing metrics include sequencing
metrics determined by applying statistical tests to detect differences between a reference sequence

and nucleotide reads. For example, read-based sequencing metrics can include a comparative-
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mapping-quality-distribution metric that indicates a comparison between mapping qualities or a
comparative-mismatch-count metric that indicates a comparison between mismatch counts.
[0037] By contrast, “externally sourced sequencing metrics” refer to sequencing metrics
identified or obtained from one or more external databases. For example, externally sourced
sequencing metrics include metrics relating to mappability of nucleotides, replication timing, or
DNA structure that are available outside of the base-caller-recalibration system.

[0038] Further, “call-model-generated sequencing metrics” refer to internal, model-specific
sequencing metrics generated or extracted by a call-generation model. For example, call-model-
generated sequencing metrics include variant-calling sequencing metrics extracted or determined
via variant-caller components of a call-generation model and mapping-and-alignment sequencing
metrics extracted or determined via mapping-and-alignment components of a call-generation
model. As indicated above, call-model-generated sequencing metrics can include alignment
metrics that quantify a degree to which sample nucleic-acid sequences align with genomic
coordinates of an example nucleic-acid sequence, such as deletion-size metrics or mapping-quality
metrics. Further, call-model-generated sequencing metrics can include depth metrics that quantify
the depth of nucleotide base calls for sample nucleic-acid sequences at genomic coordinates of an
example nucleic-acid sequence, such as forward-reverse-depth metrics or normalized-depth
metrics. Call-model-generated sequencing metrics can also include call-quality metrics that
quantify a quality or accuracy of nucleotide base calls, such as nucleotide base-call-quality metrics,
callability metrics, or somatic-quality metrics.

[0039] As used herein, the term “base-call-quality metric” refers to a specific score or other
measurement indicating an accuracy of a nucleotide-base call. In particular, a base-call-quality
metric comprises a value indicating a likelihood that one or more predicted nucleotide-base calls
for a genomic coordinate contain errors. For example, in certain implementations, a base-call-
quality metric can comprise a Q score (e.g., a Phred quality score) predicting the error probability
of any given nucleotide-base call. To illustrate, a quality score (or Q score) may indicate that a
probability of an incorrect nucleobase call at a genomic coordinate is equal to 1 in 100 for a Q20
score, 1 1n 1,000 for a Q30 score, 1 in 10,000 for a Q40 score, etc.

[0040] Relatedly, as used herein, the term “re-engineered sequencing metrics” refers to
sequencing metrics that have been updated, modified, augmented, refined, or re-engineered to
measure or compare nucleotide-base calls (e.g., nucleotide-base calls for reads or variant calls) with
respect to other nucleotide-base calls, a standard or reference, or for targeted for a particular
objective or task. For example, re-engineered sequencing metrics can include modifications to, or
combinations of, raw sequencing metrics. In some embodiments, for instance, the base-caller-

recalibration system generates one or more of the read-based sequencing metrics, the externally
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sourced sequencing metrics, and/or the call-model-generated sequencing metrics as re-engineered
sequencing metrics. In some cases, re-engineered sequencing metrics refer to sequencing metrics
that are generated by the base-caller-recalibration system and are therefore proprietary or internal
to the base-caller-recalibration system and not available to third-party systems. Example re-
engineered sequencing metrics include a comparative-mapping-quality-distribution metric
indicating a comparison between mapping quality distributions associated with a reference
sequence and alternatives supporting nucleotide reads or a comparative-base-quality metric
indicating comparisons between base qualities of a reference sequence and alternative supporting
nucleotide reads.

[0041]  As further used herein, the term “genomic coordinate” refers to a particular location or
position of a nucleotide base within a genome (e.g., an organism’s genome or a reference genome).
In some cases, a genomic coordinate includes an identifier for a particular chromosome of a genome
and an identifier for a position of a nucleotide base within the particular chromosome. For instance,
a genomic coordinate or coordinates may include a number, name, or other identifier for a
chromosome (e.g., chrl or chrX) and a particular position or positions, such as numbered positions
following the 1dentifier for a chromosome (e.g., chr1:1234570 or chr1:1234570-1234870). Further,
in certain implementations, a genomic coordinate refers to a source of a reference genome (e.g., mt
for a mitochondrial DNA reference genome or SARS-CoV-2 for a reference genome for the SARS-
CoV-2 virus) and a position of a nucleotide base within the source for the reference genome (e.g.,
mt: 16568 or SARS-CoV-2:29001). By contrast, in certain cases, a genomic coordinate refers to a
position of a nucleotide base within a reference genome without reference to a chromosome or
source (e.g., 29727).

[0042]  As noted above, a genomic coordinate includes a position within a reference genome.
Such a position may be within a particular reference genome. As used herein, the term “reference
genome” refers to a digital nucleic-acid sequence assembled as a representative example (or
representative examples) of genes and other genetic sequences of an organism. Regardless of the
sequence length, in some cases, a reference genome represents an example set of genes or a set of
nucleic-acid sequences in a digital nucleic-acid sequenced determined by scientists as
representative of an organism of a particular species. For example, a linear human reference
genome may be GRCh38 or other versions of reference genomes from the Genome Reference
Consortium. As a further example, a reference genome may include a reference graph genome that
includes both a linear reference genome and paths representing nucleic-acid sequences from
ancestral haplotypes, such as Illumina DRAGEN Graph Reference Genome hg19.

[0043]  As suggested above, the base-caller-recalibration system can utilize a machine learning

model to modify sequencing metrics and update a nucleotide-base call. As used herein, the term
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“machine learning model” refers to a computer algorithm or a collection of computer algorithms
that automatically improve for a particular task through experience based on use of data. For
example, a machine learning model can utilize one or more learning techniques to improve in
accuracy and/or effectiveness. Example machine learning models include various types of decision
trees, support vector machines, Bayesian networks, or neural networks. In some cases, the call-
recalibration-machine-learning model is a series of gradient boosted decision trees (e.g., XGBoost
algorithm), while in other cases the call-recalibration-machine-learning model is a random forest
model, a multilayer perceptron, a linear regression, a support vector machine, a deep tabular
learning architecture, a deep learning transformer (e.g., self-attention-based-tabular transformer),
or a logistic regression.

[0044] In some cases, the base-caller-recalibration system utilizes a call-recalibration-machine-
learning model to modify or update a nucleotide-base call based on sequencing metrics. As used
herein, the term “call-recalibration-machine-learning model” refers to a machine learning model
that generates variant-call classifications. For example, in some cases, the call-recalibration-
machine-learning model is trained to generate variant-call classifications indicating various
probabilities or predictions for variant calls based on the sequencing metrics. Accordingly, in some
cases, a call-recalibration-machine-learning model a variant-call-recalibration-machine-learning
model. In certain embodiments, a call-recalibration-machine-learning model includes multiple
sub-models or operates in tandem with another call-recalibration-machine-learning model. For
instance, a first call-recalibration-machine-learning model (e.g., an ensemble of gradient boosted
trees) generates a first set of variant-call classifications and a second call-recalibration-machine-
learning model (e.g., a random forest) generates a second set of variant-call classifications.

[0045] Relatedly, the term “variant-call classification” refers to a predicted classification from
a call-recalibration-machine-learning model that indicates a probability, score, or other quantitative
measurement associated with some aspect of a nucleotide-base call based on one or more
sequencing metrics. In some cases, a variant-call classification includes a predicted probability
that a genotype for a nucleotide-base call is accurate. For example, in some embodiments, the call-
recalibration-machine-learning model generates one or more of the following variant-call
classifications: 1) a false-positive classification indicating a probability that a nucleotide-base call
is a false positive, i1) a genotype-error classification indicating a probability that a genotype (e.g.,
an indication of a heterozygous or homozygous genotype for a variant call at a particular location)
is incorrect, and/or iii) a true-positive classification indicating a probability that a nucleotide-base
call is a true positive. In some cases, the variant-call classifications accordingly represent variant-

caller-intermediate-scoring metrics.
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[0046] As mentioned, in some embodiments, the call-recalibration-machine-learning model can
be a neural network. The term the term “neural network” refers to a machine learning model that
can be trained and/or tuned based on inputs to determine classifications or approximate unknown
functions. For example, a neural network includes a model of interconnected artificial neurons
(e.g., organized in layers) that communicate and learn to approximate complex functions and
generate outputs (e.g., generated digital images) based on a plurality of inputs provided to the neural
network. In some cases, a neural network refers to an algorithm (or set of algorithms) that
implements deep learning techniques to model high-level abstractions in data. For example, a
neural network can include a convolutional neural network, a recurrent neural network (e.g., an
LSTM), a graph neural network, a self-attention transformer neural network, or a generative
adversarial neural network.

[0047] As noted above, the base-caller-recalibration system can generate variant-call
classifications that indicate or reflect a likelihood of identifying a variant at a genomic coordinate.
As used herein, the term “variant” refers to a nucleotide base or multiple nucleotide bases that do
not align with, differs from, or varies from a corresponding nucleotide base (or nucleotide bases)
in a reference sequence or a reference genome. For example, a variant includes a SNP, an indel,
or a structural variant that indicates nucleotide bases in a sample nucleotide sequence that differ
from nucleotide bases in corresponding genomic coordinates of a reference sequence. Along these
lines, a “variant-nucleotide-base call” refers to a nucleotide-base call comprising a variant at a
particular genomic coordinate. Conversely, a “non-variant-nucleotide-base call” refers to a
nucleotide-base call comprising a non-variant at a genomic coordinate.

[0048]  As mentioned, in some embodiments, the base-caller-recalibration system modifies data
fields corresponding to a variant call file. As used herein, the term “variant call file” refers to a
digital file that indicates or represents one or more nucleotide-base calls (e.g., variant calls)
compared to a reference genome along with other information pertaining to the nucleotide-base
calls (e.g., variant calls). For example, a variant call format (VCF) file refers to a text file format
that contains information about variants at specific genomic coordinates, including meta-
information lines, a header line, and data lines where each data line contains information about a
single nucleotide-base call (e.g., a single variant). As described further below, the base-caller-
recalibration system can generate different versions of variant call files, including a pre-filter
variant call file comprising variant-nucleotide-base calls that either pass or fail a quality filter for
base-call-quality metrics or a post-filter variant call file comprising variant-nucleotide-base calls
that pass the quality filter but excludes variant-nucleotide-base calls that fail the quality filter. In
some embodiments, the base-caller-recalibration system modifies data fields corresponding to

metrics of a nucleotide-base call associated with a variant call file, such as fields for call quality,
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genotype, and genotype quality. As used herein, the term “call quality” when used with respect to
a data field in a variant call file refers to a measure or an indication of a likelihood or a probability
that a variant exists at a given location. Accordingly, a call quality field (or QUAL field)
corresponding to a VCF file may include a base-call-quality metric, such as a Phred-scaled quality
or Q score, representing a probability that a genomic coordinate of a sample genome includes a
variant. Similarly, a “genotype quality” when used with respect to a field refers to a likelithood or
a probability that a particular predicted genotype for a nucleotide-base call is correct.

[0049]  As noted, in some embodiments, the base-caller-recalibration system utilizes a call-
generation model to generate a nucleotide-base call for a genomic coordinate. As used herein, the
term “call-generation model” refers to a probabilistic model that generates sequencing data from
nucleotide reads of a sample nucleotide sequence, including nucleotide-base calls and associated
metrics. Accordingly, in some cases, a call-generation model may be a variant-call-generation
model. For example, in some cases, a call-generation model refers to a Bayesian probability model
that generates variant calls based on nucleotide reads of a sample nucleotide sequence. Such a
model can process or analyze sequencing metrics corresponding to read pileups (e.g., multiple
nucleotide reads corresponding to a single genomic coordinate), including mapping quality, base
quality, and various hypotheses including foreign reads, missing reads, joint detection, and more.
A call-generation model may likewise include multiple components, including, but not limited to,
different software applications or components for mapping and aligning, sorting, duplicate
marking, computing read pileup depths, and variant calling. In some cases, the call-generation
model refers to the ILLUMINA DRAGEN model for variant calling functions and mapping and
alignment functions.

[0050] As mentioned above, in certain described embodiments, the base-caller-recalibration
system generates or determines contribution measures associated with individual sequencing
metrics. As used herein, the term “contribution measure” refers to a measure of effect, influence,
or impact that a sequencing metric has on a given recalibration of fields for a base-call-output file
(e.g., a variant call file), a given nucleotide-base call in a base-call-output file, or (in particular) a
given variant call. For example, a contribution measure indicates how much of a role one
sequencing metric plays in determining a nucleotide-base call over a different nucleotide-base call
(and compared to other sequencing metrics).

[0051]  The following paragraphs describe the base-caller-recalibration system with respect to
illustrative figures that portray example embodiments and implementations. For example, FIG. 1
illustrates a schematic diagram of a system environment (or “environment”) 100 in which a base-
caller-recalibration system 106 operates in accordance with one or more embodiments. As

illustrated, the environment 100 includes one or more server device(s) 102 connected to a client
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device 108 and a sequencing device 114 via a network 112. While FIG. 1 shows an embodiment
of the base-caller-recalibration system 106, this disclosure describes alternative embodiments and
configurations below.

[0052]  Asshown in FIG. 1, the server device(s) 102, the client device 108, and the sequencing
device 114 can communicate with each other via the network 112. The network 112 comprises
any suitable network over which computing devices can communicate. Example networks are
discussed in additional detail below with respect to FIG. 10.

[0053] Asindicated by FIG. 1, the sequencing device 114 comprises a device for sequencing a
nucleic-acid polymer. In some embodiments, the sequencing device 114 analyzes nucleic-acid
segments or oligonucleotides extracted from samples to generate nucleotide reads or other data
utilizing computer implemented methods and systems (described herein) either directly or
indirectly on the sequencing device 114. More particularly, the sequencing device 114 receives
and analyzes, within nucleotide-sample slides (e.g., flow cells), nucleic-acid sequences extracted
from samples. In one or more embodiments, the sequencing device 114 utilizes SBS to sequence
nucleic-acid polymers into nucleotide reads. In addition or in the alternative to communicating
across the network 112, in some embodiments, the sequencing device 114 bypasses the network
112 and communicates directly with the client device 108.

[0054]  As further indicated by FIG. 1, the server device(s) 102 may generate, receive, analyze,
store, and transmit digital data, such as data for determining nucleotide-base calls or sequencing
nucleic-acid polymers. As shown in FIG. 1, the sequencing device 114 may send (and the server
device(s) 102 may receive) call data from the sequencing device 114. The server device(s) 102
may also communicate with the client device 108. In particular, the server device(s) 102 can send
data to the client device 108, including a variant call file or other information indicating nucleotide-
base calls, sequencing metrics, error data, or other metrics associated with a nucleotide-base call,
such as a call quality, a genotype, and a genotype quality.

[0055] In some embodiments, the server device(s) 102 comprise a distributed collection of
servers where the server device(s) 102 include a number of server devices distributed across the
network 112 and located in the same or different physical locations. Further, the server device(s)
102 can comprise a content server, an application server, a communication server, a web-hosting
server, or another type of server.

[0056]  As further shown in FIG. 1, the server device(s) 102 can include a sequencing system
104. Generally, the sequencing system 104 analyzes call data, such as sequencing metrics received
from the sequencing device 114, to determine nucleotide base sequences for nucleic-acid polymers.
For example, the sequencing system 104 can receive raw data from the sequencing device 114 and

determine a nucleotide base sequence for a nucleic-acid segment. In some embodiments, the
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sequencing system 104 determines the sequences of nucleotide bases in DNA and/or RNA
segments or oligonucleotides. In addition to processing and determining sequences for nucleic-
acid polymers, the sequencing system 104 also generates a variant call file indicating one or more
nucleotide-base calls for one or more genomic coordinates.

[0057]  Asjust mentioned, and as illustrated in FIG. 1, the base-caller-recalibration system 106
analyzes call data, such as sequencing metrics from the sequencing device 114, to determine
nucleotide base calls for sample nucleic-acid sequences. The base-caller-recalibration system 106
includes a call-generation model and a call-recalibration-machine-learning model. In some
embodiments, the base-caller-recalibration system 106 determines sequencing metrics for sample
nucleotide sequences. Based on data derived or prepared from the sequencing metrics, the base-
caller-recalibration system 106 trains and applies a call-generation model to determine nucleotide-
base calls for the sample sequence corresponding to genomic coordinates. The base-caller-
recalibration system 106 further utilizes a call-recalibration-machine-learning model to generate
sets of variant-call classifications to update or modify the nucleotide-base calls based on various
probabilities, such as a false-positive probability, a genotype-error probability, and/or a true-
positive probability. Based on such data, for example, the base-caller-recalibration system 106 can
update data fields corresponding to a variant call file to update a nucleotide-base call for improved
accuracy.

[0058]  As further illustrated and indicated in FIG. 1, the client device 108 can generate, store,
receive, and send digital data. In particular, the client device 108 can receive sequencing metrics
from the sequencing device 114. Furthermore, the client device 108 may communicate with the
server device(s) 102 to receive a variant call file comprising nucleotide base calls and/or other
metrics, such as a call-quality, a genotype indication, and a genotype quality. The client device
108 can accordingly present or display information pertaining to the nucleotide-base call within a
graphical user interface to a user associated with the client device 108. For example, the client
device 108 can present a contribution-measure interface that includes a visualization or a depiction
of various contribution measures associated with, or attributed to, individual sequencing metrics
with respect to a particular nucleotide-base call.

[0059]  The client device 108 illustrated in FIG. 1 may comprise various types of client devices.
For example, in some embodiments, the client device 108 includes non-mobile devices, such as
desktop computers or servers, or other types of client devices. In yet other embodiments, the client
device 108 includes mobile devices, such as laptops, tablets, mobile telephones, or smartphones.
Additional details regarding the client device 108 are discussed below with respect to FIG. 10.
[0060]  As further illustrated in FIG. 1, the client device 108 includes a sequencing application

110. The sequencing application 110 may be a web application or a native application stored and

17



WO 2023/004323 PCT/US2022/073899

executed on the client device 108 (e.g., a mobile application, desktop application). The sequencing
application 110 can include instructions that (when executed) cause the client device 108 to receive
data from the base-caller-recalibration system 106 and present, for display at the client device 108,
data from a variant call file. Furthermore, the sequencing application 110 can instruct the client
device 108 to display a visualization of contribution measures for sequencing metrics of a
nucleotide-base call.

[0061]  As further illustrated in FIG. 1, the base-caller-recalibration system 106 may be located
on the client device 108 as part of the sequencing application 110 or on the sequencing device 114.
Accordingly, in some embodiments, the base-caller-recalibration system 106 is implemented by
(e.g., located entirely or in part) on the client device 108. In yet other embodiments, the base-
caller-recalibration system 106 is implemented by one or more other components of the
environment 100, such as the sequencing device 114. In particular, the base-caller-recalibration
system 106 can be implemented in a variety of different ways across the server device(s) 102, the
network 112, the client device 108, and the sequencing device 114. For example, the base-caller-
recalibration system 106 can be downloaded from the server device(s) 102 to the client device 108
and/or to the sequencing device 114 where all or part of the functionality of the base-caller-
recalibration system 106 is performed at each respective device within the environment 100.
[0062]  As further illustrated in FIG. 1, the environment 100 includes a database 116. The
database 116 can store information such as variant call files, sample nucleotide sequences,
nucleotide reads, nucleotide-base calls, and sequencing metrics. In some embodiments, the server
device(s) 102, the client device 108, and/or the sequencing device 114 communicate with the
database 116 (e.g., via the network 112) to store and/or access information, such as variant call
files, sample nucleotide sequences, nucleotide reads, nucleotide-base calls, and sequencing metrics.
In some cases, the database 116 also stores one or more models, such as a call-recalibration-
machine-learning model and/or a call-generation model.

[0063] Though FIG. 1 illustrates the components of environment 100 communicating via the
network 112, in certain implementations, the components of environment 100 can also
communicate directly with each other, bypassing the network. For instance, and as previously
mentioned, in some implementations, the client device 108 communicates directly with the
sequencing device 114. Additionally, in some embodiments, the client device 108 communicates
directly with the base-caller-recalibration system 106. Moreover, the base-caller-recalibration
system 106 can access one or more databases housed on or accessed by the server device(s) 102 or
elsewhere in the environment 100.

[0064] Asindicated above, the base-caller-recalibration system 106 can determine a nucleotide-

base call based on one or more variant-call classifications. In particular, the base-caller-
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recalibration system 106 can determine variant-call classifications from sequencing metrics
utilizing a call-recalibration-machine-learning model and can determine or update various metrics
associated with a nucleotide-base call from the generated variant-call classifications. FIG. 2
illustrates an example sequence of acts the base-caller-recalibration system 106 performs to
determine a nucleotide-base call based on variant-call classifications in accordance with one or
more embodiments.

[0065]  Asillustrated in FIG. 2, the base-caller-recalibration system 106 performs an act 202 to
determine sequencing metrics. In particular, the base-caller-recalibration system 106 determines
sequencing metrics such as read-based sequencing metrics, externally sourced sequencing metrics,
and call-model-generated sequencing metrics. For example, the base-caller-recalibration system
106 determines sequencing metrics that indicate various attributes or data in relation to various
nucleotide-base calls of nucleotide reads from a sample nucleotide sequence. Additional detail
regarding determining the various types of sequencing metrics is provided below with reference to
FIGS. 3A-3C.

[0066]  As further illustrated in FIG. 2, the base-caller-recalibration system 106 performs an act
204 to generate variant-call classifications. More specifically, the base-caller-recalibration system
106 generates (or updates or refines) variant-call classifications from sequencing metrics utilizing
a call-recalibration-machine-learning model. To elaborate, the base-caller-recalibration system
106 utilizes the call-recalibration-machine-learning model to process or analyze one or more
sequencing metrics and to generate a set of classifications (e.g., predicted probabilities associated
with genotype). For instance, the base-caller-recalibration system 106 generates, utilizing the call-
recalibration-machine-learning model, a set of variant-call classifications that indicate certain
probabilities associated with a genotype of a corresponding nucleotide-base call based on the
sequencing metrics.

[0067] In some embodiments, the base-caller-recalibration system 106 generates a false-
positive classification utilizing the call-recalibration-machine-learning model (represented in FIG.
2 as “FP”). For example, the base-caller-recalibration system 106 generates a false-positive
classification that indicates a probability that a nucleotide-base call (e.g., genotype call) is a false
positive variant, or that the nucleotide-base call indicates a variant where no variant actually exists
within a sample nucleotide sequence in relation to a reference nucleotide sequence. The base-
caller-recalibration system 106 generates the false-positive classification from one or more
sequencing metrics considered together by the call-recalibration-machine-learning model.

[0068] In certain implementations, the base-caller-recalibration system 106 also (or
alternatively) generates a genotype-error classification (represented in FIG. 2 as “Genotype Error”).

More specifically, the base-caller-recalibration system 106 determines, utilizing the call-
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recalibration-machine-learning model, a probability that a genotype associated with a nucleotide-
base call is incorrect. For instance, the base-caller-recalibration system 106 determines a
probability that a het/hom error exists for a nucleotide-base call, where the nucleotide-base call
may indicate a heterozygous genotype for nucleotide bases at a genomic coordinate or region within
a sample genome where the sample genome’s nucleotide base(s) are actually homozygous at the
corresponding genomic coordinate or region. Conversely, the base-caller-recalibration system 106
determines a probability of determining that a genotype for a nucleotide-base call is homozygous
when the corresponding nucleotide base(s) are heterozygous.

[0069] In one or more embodiments, the base-caller-recalibration system 106 also (or
alternatively) generates a true-positive classification (represented in FIG. 2 as “TP”). In particular,
the base-caller-recalibration system 106 determines, utilizing the call-recalibration-machine-
learning model, a probability that a nucleotide-base call (e.g., genotype call) is a true positive
variant, or that a nucleotide-base call indicates a true variant within a sample nucleotide sequence
where a variant does indeed exist within a reference nucleotide sequence at the corresponding
genomic coordinate. Additional detail regarding generating variant-call classifications is provided
below with reference to subsequent figures.

[0070]  As further illustrated in FIG. 2, the base-caller-recalibration system 106 also performs
an act 206 to determine a nucleotide-base call based on the variant-call classifications. More
particularly, the base-caller-recalibration system 106 determines a nucleotide-base call for a sample
nucleotide sequence at a genomic coordinate within a reference genome. To determine or generate
the nucleotide-base call, in some embodiments the base-caller-recalibration system 106 determines
initial nucleotide-base calls utilizing a call-generation model and edits or updates certain initial
nucleotide-base calls based on the variant-call classifications generated by the call-recalibration-
machine-learning model.

[0071] To elaborate, the base-caller-recalibration system 106 utilizes a call-generation model
to process or analyze sequencing metrics (e.g., one or more of the same sequencing metrics used
to generate the variant-call classifications in act 204) to determine a nucleotide-base call from the
sequencing metrics. For example, the base-caller-recalibration system 106 applies a number of
Bayesian probabilistic models or algorithms to derive various probabilities for different nucleotide
bases, quality metrics, mapping metrics, joint metrics, and other data occurring within the sample
nucleotide sequence to include within a variant call file. From the probabilistic models, the base-
caller-recalibration system 106 determines a final nucleotide-base call (e.g., a call indicating a
difference or sameness to a reference base from a reference genome) that indicates a predicted

nucleotide base for the sample genome at a corresponding genomic coordinate.
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[0072]  As further illustrated in FIG. 2, in certain implementations, the base-caller-recalibration
system 106 utilizes the initial variant-call classifications (e.g., as determined via the act 204) to
generate, recalibrate, determine, modify, or augment the nucleotide-base call. To elaborate, the
base-caller-recalibration system 106 utilizes probabilities associated with the three variant-call
classifications to determine or update certain metrics associated with a nucleotide-base call. For
example, the base-caller-recalibration system 106 modifies data fields corresponding to a variant
call file for metrics, such as call quality, genotype, and genotype quality.

[0073] In some cases, the base-caller-recalibration system 106 extrapolates from the variant-
call classifications to determine metrics corresponding to a variant call file, such as call quality,
genotype, and genotype quality associated with the nucleotide-base call. Indeed, by utilizing the
genotype-error classification, the base-caller-recalibration system 106 can remedy certain errors in
or associated with an initial nucleotide-base call. For instance, if the base-caller-recalibration
system 106 determines a high false-positive probability for a nucleotide-base call, then the base-
caller-recalibration system 106 applies the call-recalibration-machine-learning model to function
as a variant filter to modify (e.g., reduce) a call quality associated with the nucleotide-base call. As
another example, the base-caller-recalibration system 106 utilizes the genotype-error probability to
modify a genotype and/or a genotype quality of a nucleotide-base call in cases where systems
would previously filter out or doubly penalize het/hom errors (e.g., where the system generates a
nucleotide-base call that is incorrect which further results in missing a nucleotide-base call that is
correct).

[0074] In certain embodiments, the base-caller-recalibration system 106 considers a single
variant-call classification to modify a data field for a nucleotide-base call (e.g., a call quality, a
genotype, or a genotype quality). In other embodiments, the base-caller-recalibration system 106
considers multiple variant-call classifications at once (e.g., in a weighted combination) to modify
or update one or more data fields for call quality, genotype, and/or genotype quality. Additional
detail regarding generating and modifying nucleotide-base calls is provided below with reference
to subsequent figures.

[0075]  In one or more implementations, the base-caller-recalibration system 106 generates the
variant-call classifications (e.g., via the act 204) while or during the process of determining a
nucleotide-base call. For example, the base-caller-recalibration system 106 simultaneously
implements the call-recalibration-machine-learning model and the call-generation model to
generate a nucleotide-base call and variant-call classifications for modifying the nucleotide-base
call. The base-caller-recalibration system 106 further modifies data fields corresponding to a
variant call file of the nucleotide-base call to generate a finalized nucleotide-base call (e.g., within

a pre-filter or post-filter variant call file). Indeed, the base-caller-recalibration system 106
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generates the finalized (e.g., recalibrated) nucleotide-base call from the variant-call classifications
as well as sequencing metrics processed by the call-generation model (e.g., one or more of the same
sequencing metrics used to generate the variant-call classifications). As described above, this
simultaneous or parallel operation affords the base-caller-recalibration system 106 improved
computational efficiency and increased speed by recalibrating nucleotide-base calls as they are
initially generated (rather than performing one operation before the other).

[0076] In one or more implementations, the base-caller-recalibration system 106 determines a
nucleotide-base call as part of a SNP, a deletion, an insertion, or a structural variation. For example,
the base-caller-recalibration system 106 determines a nucleotide-base call represent an SNP at a
genomic coordinate (e.g., chrl:151863125) by identifying a G in the sample nucleotide sequence
where an A exists in the reference sequence. As another example, the base-caller-recalibration
system 106 determines nucleotide-base calls surrounding one or more genomic coordinates (e.g.,
chr1:49263256) indicate a deletion by identifying a single G in the sample nucleotide sequence
where GTAAC exists in the reference sequence.

[0077]  As afurther example, the base-caller-recalibration system 106 determines a sequence of
nucleotide-base calls represent an insertion at a genomic coordinate (e.g., chrl:7602080) by
identifying a sequence of TTTCC in the sample nucleotide sequence where a T exists in the
reference sequence. Indeed, in some cases, an insertion includes a sequence of nucleotide-base
calls that replace a single reference base at a genomic coordinate of a reference sequence.

[0078] As mentioned above, in certain described embodiments, the base-caller-recalibration
system 106 determines or extracts sequencing metrics for nucleotide-base calls. In particular, the
base-caller-recalibration system 106 determines sequencing metrics such as read-based sequencing
metrics, externally sourced sequencing metrics, and call-model-generated sequencing metrics from
calls corresponding to nucleotide reads from a sample nucleotide sequence. FIGS. 3A-3C illustrate
determining sequencing metrics in accordance with one or more embodiments. Specifically, FIG.
3A illustrates determining read-based sequencing metrics while FIG. 3B illustrates determining
call-model-generated sequencing metrics, and FIG. 3C illustrates determining externally sourced
sequencing metrics.

[0079]  As illustrated in FIG. 3A, the base-caller-recalibration system 106 accesses, retrieves,
obtains, determines, or generates nucleotide reads 302. In particular, the base-caller-recalibration
system 106 determines the nucleotide reads 302 utilizing the sequencing device 114 comprising
nucleotide-base calls for regions from a sample nucleotide sequence (e.g., sample genome). For
example, the base-caller-recalibration system 106 generates the nucleotide reads 302 utilizing
sequencing-by-synthesis (SBS) techniques and/or Sanger sequencing techniques to determine

nucleotide-base calls for oligonucleotide clusters from wells in a flow cell and/or via fluorescent
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tagging. More specifically, the base-caller-recalibration system 106 utilizes cluster generation and
SBS chemistry to sequence millions or billions of clusters in a flow cell. During SBS chemistry,
for each cluster, the base-caller-recalibration system 106 stores nucleotide-base calls from the
nucleotide reads 302 for every cycle of sequencing via real-time analysis (RTA) software.

[0080]  As further illustrated in FIG. 3A, in some embodiments, the base-caller-recalibration
system 106 performs read processing and mapping 304. For example, the base-caller-recalibration
system 106 utilizes RTA software to store base-call data in the form of individual base-call data
files (or BCLs). In some cases, the base-caller-recalibration system 106 further converts the BCL
files into sequence data 308 (e.g., via BCL to FASTQ conversion), as illustrated in FIG. 3B. As
shown in FIG. 3 A, the base-caller-recalibration system 106 generates multiple-read coverage (e.g.,
read pileups) that include multiple nucleotide reads 302 or nucleotide-base calls corresponding to
a single genomic coordinate.

[0081] In particular, in certain embodiments, the base-caller-recalibration system 106 aligns
nucleotide reads with a reference genome or receives information pertaining to the read alignment.
Specifically, the base-caller-recalibration system 106 determines which nucleotide base(s) of a
given read align with which genomic coordinate of a reference sequence (or receives information
indicating alignment). Different reads have different lengths and include different nucleotide bases.
Accordingly, in some cases, the base-caller-recalibration system 106 analyzes each nucleotide of
each read to determine (or receives information indicating) where the read “fits” in relation to a
reference sequence—e.g., where the bases within the read align with bases in the reference. In
some cases, the base-caller-recalibration system 106 aligns many reads at a single genomic
coordinate, thus resulting a read pileup.

[0082] In certain embodiments, the base-caller-recalibration system 106 performs additional
statistical tests to determine or detect differences between metrics associated with a reference
nucleotide sequence and metrics associated with alternative supporting nucleotide reads. Through
these statistical tests, the base-caller-recalibration system 106 re-engineers raw sequencing metrics
to determine read-based sequencing metrics 306. In some cases, the base-caller-recalibration
system 106 determines or extracts raw sequencing metrics that include one or more of (1) alignment
metrics for quantifying alignment of sample nucleotide sequences with genomic coordinates of an
example nucleotide sequence (e.g., a reference genome or a nucleotide sequence from an ancestral
haplotype), (i1) depth metrics for quantifying depth of nucleobase calls for sample nucleotide
sequences at genomic coordinates of the example nucleotide sequence, or (ii1) call-quality metrics
for quantifying quality of nucleobase calls for sample nucleotide sequences at genomic coordinates
of the example nucleotide sequence. For instance, the base-caller-recalibration system 106

determines mapping-quality metrics (e.g., the MAPQ metrics indicated in FIG. 3A), soft-clipping

23



WO 2023/004323 PCT/US2022/073899

metrics, or other alignment metrics that measure an alignment of sample sequences with a reference
genome. As another example, the base-caller-recalibration system 106 determines forward-
reverse-depth metrics (or other such depth metrics) or callability metrics for variant-nucleobase
calls (or other such call-quality metrics).

[0083]  As just mentioned, in some embodiments, the base-caller-recalibration system 106 re-
engineers the raw sequencing metrics to generate read-based sequencing metrics 306 that are more
informative for comparing metrics associated with a reference nucleotide sequence with metrics
associated with various supporting alternative nucleotide reads. For example, the base-caller-
recalibration system 106 determines various metrics for a sample sequence in relation to a reference
sequence and further determines various metrics for the sample sequence in relation to alternative
supporting sequences. In addition, the base-caller-recalibration system 106 performs comparative
analyses between metrics associated with the reference sequence and the metrics associated with
the alternative supporting reads.

[0084]  For instance, the base-caller-recalibration system 106 compares how nucleotide bases
of a sample nucleotide sequence (e.g., sample genome) map to a reference sequence with how the
nucleotide bases map to various alternative supporting reads. In some cases, the base-caller-
recalibration system 106 determines mapping qualities associated with the reference sequence to
compare with mapping qualities associated with alternative supporting reads. For example, the
base-caller-recalibration system 106 determines mapping quality statistics reflecting differences in
the distribution of reads supporting a reference sequence versus reads supporting alternative alleles.
[0085] In these or other cases, the base-caller-recalibration system 106 determines mismatch
counts between the sample sequence and the reference sequence and between the reference
sequence and alternative supporting reads. The base-caller-recalibration system 106 further
compares the mismatch counts to determine a comparative-mismatch-count metric. Further, the
base-caller-recalibration system 106 determines soft-clipping metrics for the sample sequence in
relation to the reference sequence and further determines soft-clipping metrics in relation to
alternative supporting reads. The base-caller-recalibration system 106 also compares the soft
clipping metrics between the reference sequence and the alternative supporting reads to generate a
comparative-soft-clipping metric. Further still, the base-caller-recalibration system 106 compares
base-call-quality metrics in relation to the reference sequence and alternative supporting reads
and/or compares query positions of the sample sequence in relation to the reference sequence with
those in relation to alternative supporting reads.

[0086]  As further illustrated in FIG. 3A, the base-caller-recalibration system 106 utilizes the
comparisons and/or other statistical tests to generate the read-based sequencing metrics 306,

including: 1) a comparative-mapping-quality-distribution metric indicating a mapping quality
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distribution comparing mapping qualities in relation to the reference sequence and mapping
qualities in relation to alternative supporting reads, i1) a comparative-secondary-mapping-
alighment metric indicating a comparison between secondary mapping in relation to bases in the
reference sequence and bases in alternative supporting reads, ii1) a comparative-mismatch-count
metric indicating a comparison between mismatched nucleotide bases in relation to the reference
sequence and mismatched bases in relation to alternative supporting reads, iv) a comparative-soft-
clipping metric indicating a comparison between soft-clipping metrics in relation to the reference
sequence and soft-clipping metrics in relation to alternative supporting reads, v) one or more
comparative-read-depth metrics indicating comparisons between read depths of the nucleotide
reads 302 and one or more average read depths (e.g., local average read depths at a particular
genomic coordinate and global average read depths across a number genomic coordinates in a
region), vi) one or more comparative-base-quality metric indicating comparisons between base
qualities in relation to the reference sequence and base qualities in relation to alternative supporting
reads (e.g., for overall base quality, early base quality, and late base quality in the nucleotide reads
302), vii) a comparative-query-position metric indicating a comparison between query positions in
relation to the reference sequence and query positions in relation to alternative supporting reads,
viil) one or more contextual-information metrics indicating homopolymers and periodicity of
nucleotide-base calls, ix) a strand-bias metric indicating a strand bias associated with one or more
of the nucleotide reads 302, and x) a read-direction-bias metric indicating a read direction bias
associated with the nucleotide reads 302. In some cases, the base-caller-recalibration system 106
generates or re-engineers additional or alternative read-based sequencing metrics as part of the
read-based sequencing metrics 306.

[0087]  In addition to the read-based sequencing metrics 306, as illustrated in FIG. 3B, the base-
caller-recalibration system 106 generates call-model-generated sequencing metrics 312. In
particular, the base-caller-recalibration system 106 generates the call-model-generated sequencing
metrics from sequence data 308 utilizing a call-generation model 310. For example, the base-
caller-recalibration system 106 extracts or determines sequence data 308 based on the read
processing and mapping 304 described in relation to FIG. 3A. In some cases, the base-caller-
recalibration system 106 generates the sequence data 308 as part of one or more digital files, such
as BCL and FASTQ files.

[0088] To generate such files, in some embodiments, the sequencing device 114 (or the base-
caller-recalibration system 106) utilizes cluster generation and SBS chemistry to sequence millions
or billions of clusters in a flow cell. During SBS chemistry, for each cluster, the sequencing device
114 (or the base-caller-recalibration system 106) stores nucleotide-base calls from the nucleotide

reads 302 for every cycle of sequencing via real-time analysis (RTA) software. The sequencing
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device 114 (or the base-caller-recalibration system 106) utilizes RTA software to further store base-
call data in the form of individual base-call data files (or BCLs). In some cases, the sequencing
device 114 (or the base-caller-recalibration system 106) further converts the BCL files into
sequence data 308 (e.g., via BCL to FASTQ conversion). For instance, the sequencing device 114
(or the base-caller-recalibration system 106) generates a FASTQ file from the nucleotide reads 302,
where the FASTQ file includes sequence data 308.

[0089] In some cases, the base-caller-recalibration system 106 generates the sequence data 308
for each cluster that passes an initial quality filter from a sample sequence. For example, the base-
caller-recalibration system 106 generates entries for each cluster, where each entry includes four
lines (or four items of sequence data): 1) a sequence identifier with information about the
sequencing run and the cluster, i1) nucleotide-base calls that make up the sequence (e.g., a sequence
of A, C, T, G, and/or N calls), 1i1) a separator (e.g., a “+” sign), and iv) base-call-quality metrics
indicating probabilities of correctness for the nucleotide-base calls (Phred +33 encoded).

[0090]  As further illustrated in FIG. 3B, the base-caller-recalibration system 106 implements,
utilizes, or applies the call-generation model 310 to process or analyze the sequence data 308.
Indeed, in some embodiments, the base-caller-recalibration system 106 generates the call-model-
generated sequencing metrics 312 by utilizing the call-generation model 310 to re-engineer raw
sequencing metrics (e.g., raw sequencing metrics within the sequence data 308). In particular, the
call-generation model 310 includes mapping-and-alignment components to map and align
nucleotide-base calls from the sequence data 308. In addition, the call-generation model 310
includes variant-calling components to generate nucleotide-base calls (e.g., reference-base calls
such as variant calls or non-variant calls) from the sequence data 308. In some cases, the base-
caller-recalibration system 106 extracts the call-model-generated sequencing metrics 312 that have
been generated utilizing the mapping-and-alignment components and the variant-calling
components of the call-generation model 310.

[0091] To illustrate examples of the call-model-generated sequencing metrics 312, in some
cases, the base-caller-recalibration system 106 generates (variant-calling metrics including one or
more of’ 1) a base-call-quality metric (e.g., DRAGEN QUAL score) indicating a quality score for
nucleotide-base calls generated via the call-generation model 310, i1) a call-model-generated-
foreign-read-detection metric (e.g., foreign read detection (FRD) score) indicating a probability
that one or more of the nucleotide reads 302 in a pileup might be foreign reads (e.g., their true
location is elsewhere in the reference sequence), iii) a call-model-generated-base-quality-dropoff
metric (e.g., base quality dropoff (BQD) score) indicating a probability of base quality dropoff
based on one or more of strand bias, error position in a thread, or low mean base quality over a

subset of nucleotide reads 302, 1v) average read depths, v) indel statistics (e.g., a polymerase chain
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reaction or “PCR” curve) and/or vi) hidden Markov model (HMM) statistics, vii) a secondary-
alignment metric indicating a probability that a secondary nucleotide-base call is correct, viii) a
base-context metric indicating contextual information for nucleotide around a nucleotide-base call,
1v) a nearby-call metric indicating nearby (e.g., adjacent or within a threshold degree of separation
from) a nucleotide-base call, x) a joint-detection metric indicating a probability of detecting a joint
corresponding to two or more overlapping nucleotide-base calls, xii) read-filtering metrics
indicating threshold quality metrics or other metrics for filtering out nucleotide-base calls with low
mapping quality, base quality, or other quality metrics, or others. The base-caller-recalibration
system 106 generates the call-model-generated sequencing metrics 312 from internal (e.g.,
proprietary, and model-specific) variables that reflect interacting processing paths, corner cases,
and difficult predictions/decisions.

[0092]  Asindicated above, in some cases, the base-caller-recalibration system 106 determines
FRD scores according to the methods described in U.S. Patent Application No. 16/280,022 to Eric
Jon Ojard, entitled System and Method for Correlated Error Event Mitigation for Variant Calling,
which is incorporated by reference herein in its entirety. In certain implementations, the base-
caller-recalibration system 106 also (or alternatively) determines BQD scores, FRD scores, HMM
statistics, and/or other variant-calling metrics according to the methods described in U.S. Patent
Application Nos. 17/165,828, 15/643,381, and 14/811,836, which are incorporated by reference
herein in their entireties.

[0093] Asillustrated in FIG. 3B, the call-model-generated sequencing metrics 312 include, but
are not limited to, variant-calling metrics extracted via the variant-calling components of the call-
generation model 310. In addition or in the alternative to the examples of the call-model-generated
sequencing metrics 312 described above, in some cases, the base-caller-recalibration system 106
generates (e.g., via metric re-engineering) variant-calling metrics including one or more of: 1) a
number of samples in a population, i1) a number of reads processed for generating nucleotide-base
calls, a number of variants (e.g., SNPs, indels, and MNPs), ii1) a number of biallelic sites (e.g.,
genomic coordinates that contain two observed alleles), iv) a number of multiallelic sites (e.g., a
number of sites in a variant call file that contain three or more observed alleles), v) a number of
SNPs, vi) numbers of different types of indels (e.g., homozygous insertions, heterozygous
insertions, and heterozygous deletions), vii) a total number of heterozygous indels (e.g., insertion
+ deletion, insertion + SNP, or deletion + SNP), viii) a number of de novo SNPs (e.g., SNPs with
de novo quality metrics that satisfy a threshold level), ix) a number of de novo indels (e.g., indels
with de novo quality metrics that satisfy a threshold level), x) a number of de novo MNPs (e.g,,
MNPs with de novo quality metrics that satisfy a threshold level, xi) a number of SNPs in a first

chromosome divided by a number of SNPs in a second chromosome, xii) a number of SNP
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transitions, xiii) a number of SNP transversions, xiv) a number of heterozygous variants, xv) a
number of homozygous variants, xvi) a ratio between the number of heterozygous variants and the
number of homozygous variants, xvii) a number of variants detected within a dbSNP reference file,
and/or xviii) a total number of variants minus the number detected within the dbSNP file.

[0094]  Additionally, the call-model-generated sequencing metrics 312 can include mapping-
and-alignment sequencing metrics extracted via the mapping-and-alignment components of the
call-generation model 310. For instance, the base-caller-recalibration system 106 generates or
extracts (e.g., via metric re-engineering) mapping-and-alignment metrics including one or more of’
1) a number of total input reads, i1) a number of duplicate marked reads, ii1) a number of duplicate
marked and mate reads removed, iv) a number of unique reads, v) a number of reads with mate
sequenced, vi) a number of reads without mate sequenced, vii) indications of reads that fail quality
checks, viii) indications of mapped reads, ix) a number of unique and mapped reads, x) a number
of unmapped reads, xi) a number of singleton reads (e.g., where the read is mapped but the paired
mate could not be read), xii) a number of paired reads, xiii) a number of properly paired reads (e.g.,
where both reads in a pair are mapped and fall within an acceptable range from each other based
on an estimated insert length distribution), xiv) a number of discordant reads (e.g., not properly
paired reads), xv) a number of paired reads mapped to different chromosomes, xvi) a number of
paired reads mapped to different chromosomes that also have a mapping-quality metric of 10 or
greater, xvii) percentages of reads within indels R1 and R2, xviii) percentages of bases in R1 and
R2 that are soft clipped, xix) a numbers of mismatched bases in R1 and R2, xx) a number of bases
with a base quality of at least 30 (e.g., total and/or in R1 or R2), xxi) a number of alignments (e.g.,
total alignments, secondary alignments, and/or supplementary alignments), xxii) an estimated read
length, and xxiii) an estimated sample contamination.

[0095] Turning now to FIG. 3C, as illustrated in that figure, the base-caller-recalibration system
106 generates, extracts, or determines externally sourced sequencing metrics 316. In particular,
the base-caller-recalibration system 106 determines externally sourced sequencing metrics 316
from one or more databases external to the base-caller-recalibration system 106, such as a
sequencing information database 314 (e.g., the database 116). For example, the base-caller-
recalibration system 106 accesses sequencing metrics that are generic or applicable to sequencing
nucleotides generally. In addition, the base-caller-recalibration system 106 accesses or determines
sequencing information about a particular reference sequence (e.g., stored within the sequencing
information database 314). In some cases, the base-caller-recalibration system 106 determines
externally sourced sequencing metrics 316 including: 1) a mappability metric indicating an ease or
difficult of mapping a particular nucleotide sequence (or a particular nucleotide read or nucleotide-

base call), i1) a guanine-cytosine-content metric indicating a count (or a dropout or a mean) of
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guanine-cytosine content in a reference nucleotide sequence (e.g., reference genome), iii) a
replication-timing metric indicating a time required to replicate a particular number of nucleotides
from a reference sequence, 1v) one or more DNA-structure-metrics indicating DNA structures of a
reference sequence (e.g., reference genome), v) a conservation metric indicating a measure of
sequence conservation across multiple species (e.g., a measure of change relative to an average),
and/or others.

[0096] As mentioned, in certain described embodiments, the base-caller-recalibration system
106 utilizes a call-recalibration-machine-learning model together with a call-generation model to
generate a nucleotide-base call. In particular, the base-caller-recalibration system 106 utilizes the
call-recalibration-machine-learning model to modify data fields corresponding to a variant call file
representing a nucleotide-base call. FIG. 4 illustrates generating a nucleotide-base call by
modifying a variant call file utilizing a call-recalibration-machine-learning model and call-
generation model in accordance with one or more embodiments.

[0097]  Asillustrated in FIG. 4, the base-caller-recalibration system 106 accesses a sequencing
information database 402 (e.g., the sequencing information database 314), a reference sequence
403, and sequence data 404 (e.g., the sequence data 308) extrapolated from one or more nucleotide
reads. Indeed, the base-caller-recalibration system 106 performs sequencing-metric extraction 410
to extract or re-engineer sequencing metrics as described above in relation to FIGS. 3A-3C. For
example, the base-caller-recalibration system 106 generates read-based sequencing metrics,
externally sourced sequencing metrics, and call-model-generated sequencing metrics. In some
cases, the base-caller-recalibration system 106 utilizes mapping-and-alignment components 406 of
a call-generation model 420 (e.g., the call-generation model 310) to determine mapping-and-
alignment sequencing metrics as described above. In addition, the base-caller-recalibration system
106 utilizes variant-caller components 408 of the call-generation model 420 to generate variant-
calling metrics as described above. Further, the base-caller-recalibration system 106 determines
read-based sequencing metrics and externally source sequencing metrics as well (e.g., from
sequencing information database 402 and/or the reference sequence 403).

[0098]  As further illustrated in FIG. 4, the base-caller-recalibration system 106 generates
variant-call classifications 414. More specifically, the base-caller-recalibration system 106 utilizes
a call-recalibration-machine-learning model 412 to generate the variant-call classifications 414
from the sequencing metrics. For example, the call-recalibration-machine-learing model 412
generates variant-call classification 414 including a false-positive classification, a genotype-error
classification, and a true-positive classification. Specifically, the false-positive classification
indicates a probability that a nucleotide-base call (e.g., a variant call) is a false positive.

Conversely, a true-positive classification indicates a probability that a nucleotide-base call (e.g., a
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variant call) is a true positive. Additionally, a genotype-error classification indicates a probability
of error associated with a genotype for a nucleotide-base call (e.g., a variant call).

[0099] In some cases, the call-recalibration-machine-learning model 412 is an ensemble of
gradient boosted trees that processes the sequencing metrics to generate the variant-call
classifications 414. For instance, the call-recalibration-machine-learning model 412 includes a
series of weak learners such as non-linear decision trees that are trained in a logistic regression to
generate the variant-call classifications 414. In some cases, the call-recalibration-machine-learning
model 412 includes metrics within various trees that define how the call-recalibration-machine-
learning model 412 processes the sequencing metrics to generate the variant-call classifications
414. Additional detail regarding the training of the call-recalibration-machine-learning model 412
is provided below with reference to FIG. 5.

[0100]  In certain embodiments, the call-recalibration-machine-learning model 412 is a different
type of machine learning model such as a neural network, a support vector machine, or a random
forest. For example, in cases where the call-recalibration-machine-learning model 412 is a neural
network, the call-recalibration-machine-learning model 412 includes one or more layers each with
neurons that make up the layer for processing the sequencing metrics. In some cases, the call-
recalibration-machine-learning model 412 generates the variant-call classifications 414 by
extracting latent vectors from the sequencing metrics, passing the latent vectors from layer to layer
(or neuron to neuron) to manipulate the vectors until utilizing an output layer (e.g., one or more
fully connected layers) to generate the variant-call classifications 414 (e.g., as a set of three separate
classifications).

[0101]  Assuggested above, in some embodiments, the base-caller-recalibration system 106 can
utilize multiple call-recalibration-machine-learning models together. For example, the base-caller-
recalibration system 106 utilizes the call-recalibration-machine-learning model 412 to generate a
first set of variant-call classifications and further utilizes a second call-recalibration-machine-
learning model (e.g., with the same or a different architecture) to generate a second set of variant-
call classifications. For example, the base-caller-recalibration system 106 utilizes two (or more)
different call-recalibration-machine-learning models in parallel, each trained with different random
seeds (e.g., for different biases to process data differently), resulting in different variant-call
classifications from the same sequencing metrics.

[0102] In some embodiments, the base-caller-recalibration system 106 further generates a
combined set of variant-call classifications from the different variant-call classifications generated
via the different call-recalibration-machine-learning models. In some cases, the base-caller-
recalibration system 106 generates variant-call classifications (e.g., the variant-call classifications

414) from a first set and a second set of variant-call classifications generated from a first call-
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recalibration-machine-learning model and a second call-recalibration-machine-learning model,
respectively. For instance, the base-caller-recalibration system 106 determines an average or a
weighted combination of the first and second set of variant-call classifications to generate the
combined variant-call classifications for recalibrating a nucleotide-base call. In some
embodiments, the base-caller-recalibration system 106 determines a mean for each variant-call
classification across each call-recalibration-machine-learning model and renormalizes the mean
variant-call classification. In other embodiments, the base-caller-recalibration system 106 learns
linear weights and adapts the weights to minimize overall error or loss for the variant-call
classifications. In still other embodiments, the base-caller-recalibration system 106 weights the
variant-call classifications for each call-recalibration-machine-learning model based on the inverse
of average error across the models.

[0103] Inone or more implementations, the base-caller-recalibration system 106 further utilizes
a metamodel subsequent to the call-recalibration-machine-learning models. For example, the base-
caller-recalibration system 106 utilizes a classification-combiner-machine-learning model to
combine variant-call classifications generated from each call-recalibration-machine-learning
model—such as by selecting weights to apply to the variant-call classifications generated by each
call-recalibration-machine-learning model. Indeed, in some cases, the base-caller-recalibration
system 106 trains the classification-combiner-machine-learning model to determine, select, or
predict respective weights for call-recalibration-machine-learning models to result in a highest
accuracy or a minimized loss.

[0104] When generating the variant-call classifications 414, in some embodiments, the base-
caller-recalibration system 106 generates variant-call classifications by utilizing statistics to
summarize a mapping quality distribution (e.g., a comparative-mapping-quality-distribution
metric) of reference supporting reads and alternative supporting reads. For example, the base-
caller-recalibration system 106 can determine and utilize the mean of the MAPQ for reads
supporting an alternative allele as a variant-call classification. In these or other embodiments, the
call-recalibration-machine-learning model 412 learns from the data that, when the MAPQ of an
alternative allele is low and a depth metric is high relative to other MAPQ and depth metrics in
distributions, a resultant nucleotide-base call is more likely to be a false positive variant. Indeed,
as the probability of a false positive variant increases, the MAPQ metrics would likely decrease.
[0105]  As afurther example of generating the variant-call classifications 414 utilizing the call-
recalibration-machine-learning model 412, in some cases, the base-caller-recalibration system 106
compares a mapping quality (e.g., MAPQ) associated with a nucleotide read (e.g., from the
sequencing metrics) with a mapping-quality threshold. For instance, the base-caller-recalibration

system 106 utilizes a mapping-quality threshold such as a threshold difference between best and
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second-best alignment scores. Upon determining that the mapping quality does not satisfy the
threshold, the base-caller-recalibration system 106 adjusts one or more of the variant-call
classifications 414 accordingly. For instance, the base-caller-recalibration system 106 increases a
probability of genotype error and/or false positive error based on whether the mapping quality
satisfies the corresponding threshold.

[0106] In addition (or in the alternative) to the method of generating the variant-call
classifications 414 just described, the base-caller-recalibration system 106 can (i) utilize an
accumulation of statistical analyses over complex functions (depending on the architecture of the
call-recalibration-machine-learning model 412) to determine how to best fit the data (e.g., based
on relationship between the various metrics) or (i1) compare other metrics, such as read depth, base
quality, or others associated with a nucleotide-base call (e.g., from the sequencing metrics) with
corresponding thresholds. The base-caller-recalibration system 106 further generates variant-call
classifications 414 accordingly. For example, in some embodiments, the base-caller-recalibration
system 106 trains the call-recalibration-machine-learning model 412 to minimize a loss generated
from a number of (different types of) sequencing metrics to determine weights and biases that best
fit the data (e.g., that result in a reduced or minimized loss) for generating the variant-call
classifications 414. As another example, upon determining that a read depth fails to satisfy a read-
depth threshold (e.g., a maximum read depth corresponding to a particular genomic coordinate or
generally across all genomic coordinates), the base-caller-recalibration system 106 increases a
genotype-error probability and/or increases or decreases a false-positive probability and a true-
positive probability for a corresponding nucleotide-base call.

[0107] Inaddition to generating the variant-call classifications 414, as further illustrated in FIG.
4, the base-caller-recalibration system 106 performs data field generation 416. More specifically,
the base-caller-recalibration system 106 generates data fields for a nucleotide-base call
corresponding to a variant call file utilizing the variant-caller components 408 of the call-generation
model 420 and modifies or maintains values for such data fields based the variant-call
classifications 414. For instance, the base-caller-recalibration system 106 modifies various metrics
such as quality metrics, mapping metrics, or other metrics associated with the nucleotide-base call.
In certain embodiments, the nucleotide-base call is represented or defined by the variant call file
418 which includes metrics corresponding to the data fields, such as a call-quality metric
corresponding to a call-quality field, a genotype metric corresponding to a genotype field, and a
genotype-quality metric corresponding to a genotype-quality field.

[0108] In certain embodiments, the base-caller-recalibration system 106 generates (data fields
for) anucleotide-base call utilizing the variant-caller components 408 together with the variant-call

classifications 414. For instance, the base-caller-recalibration system 106 generates, utilizing the
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variant-caller components 408, data fields for various metrics of a nucleotide-base call such as
nucleotide(s) included in the call, a call quality (QUAL), a genotype (GT), and a genotype quality
(GQ).

[0109] In addition to generating a nucleotide-base call via the call-generation model 420, the
base-caller-recalibration system 106 also recalibrates or modifies the nucleotide-base call via the
variant-call classifications 414 from the call-recalibration-machine-learning model 412. In one or
more implementations, the base-caller-recalibration system 106 modifies the nucleotide-base call
by modifying or recalibrating data fields for one or more of the metrics associated with the
nucleotide-base call (e.g., as included within the variant call file 418). For example, the base-
caller-recalibration system 106 determines updated values for metrics such as the call quality, the
genotype, and the genotype quality from the variant-call classifications 414. Indeed, the base-
caller-recalibration system 106 combines or compares the variant-call classifications 414 to
recalibrate the corresponding metrics of the nucleotide-base call included in the variant call file
418.

[0110]  To update or recalibrate the call-quality metric associated with a nucleotide-base call,
the base-caller-recalibration system 106 determines how each of the variant-call classifications 414
impact or affect the base-call-quality metric and adjusts the base-call-quality metric accordingly.
For example, the base-caller-recalibration system 106 determines that a high probability for a
genotype error results in a lower overall genotype quality and possibly a different overall call
quality. As another example, the base-caller-recalibration system 106 determines that a high
probability for a false positive variant results in a lower overall call quality. As yet another
example, the base-caller-recalibration system 106 determines that a high probability for a true
positive variant results in a higher overall (variant) call quality. As a further example, if the base-
caller-recalibration system 106 determines a high probability for a genotype error (e.g., higher than
for the other two variant-call classifications of the variant-call classifications 414), then the base-
caller-recalibration system 106 determines that nucleotide-base call is most likely a true variant
with the wrong genotype. The base-caller-recalibration system 106 accordingly updates the
genotype along with the genotype quality and the call quality associated with the nucleotide-base
call.

[0111] In one or more implementations, the base-caller-recalibration system 106 generates a
combination (e.g., a weighted combination or an average) of the variant-call classifications 414 to
recalibrate the call-quality metric. In particular, the base-caller-recalibration system 106 weights
the false-positive classification, the genotype-error classification, and the true-positive
classification according to their respective impact on (variant) call quality. In some cases, the base-

caller-recalibration system 106 weights each variant-call classification evenly, while in other cases
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the base-caller-recalibration system 106 determines different weights for each variant-call
classification. In any event, the base-caller-recalibration system 106 determines a weighted
combination or a weighted average of the variant-call classifications 414 to recalibrate (increase or
decrease) a call-quality metric for a nucleotide-base call (e.g., an initial variant call).

[0112]  To update or recalibrate the genotype metric (e.g., within the GT field of the variant call
file 418) associated with a nucleotide-base call, the base-caller-recalibration system 106 utilizes
one or more of the variant-call classifications 414. For example, the base-caller-recalibration
system 106 compares the three variant-call classifications as the variant-call classifications 414
(e.g., the false-positive classification, the genotype-error classification, and the true-positive
classification) to determine which of the variant-call classifications 414 has a highest probability.
In some cases, the base-caller-recalibration system 106 utilizes the variant-call classification with
the highest probability to recalibrate the genotype metric (e.g., from 0 as corresponding to the
reference base to 1 as corresponding to a first alternative supporting read). For instance, if the
base-caller-recalibration system 106 determines a highest probability for the false-positive
classification, then the base-caller-recalibration system 106 recalibrates the genotype metric
accordingly. As another example, if the base-caller-recalibration system 106 determines a highest
probability for the true-positive classification, then the base-caller-recalibration system 106
recalibrates (or refrains from recalibrating) the genotype metric.

[0113] In other embodiments, the base-caller-recalibration system 106 utilizes only the
genotype-error probability to modify the genotype metric. For example, if the base-caller-
recalibration system 106 determines a high genotype-error probability, then the base-caller-
recalibration system 106 recalibrates the genotype metric to indicate a different genotype of a
nucleotide-base call.

[0114] To update or recalibrate the genotype-quality metric (e.g., within the GQ field of the
variant call file 418) associated with a nucleotide-base call, the base-caller-recalibration system
106 utilizes one or more of the variant-call classifications 414. More specifically, the base-caller-
recalibration system 106 determines how each of the variant-call classifications 414 affect the
genotype-quality metric and recalibrates the genotype-quality metric accordingly (e.g., by
increasing or decreasing the quality score between 0 to 10 or 0 to 100 or on some other scale). For
example, the base-caller-recalibration system 106 determines that a higher genotype-error
probability (generally) indicates a lower genotype-quality metric, and the base-caller-recalibration
system 106 reduces the metric accordingly.

[0115] In some cases, the base-caller-recalibration system 106 determines a combination (e.g.,
a weighted combination or a weighted average) of the variant-call classifications 414 to modify the

genotype-quality metric. For example, the base-caller-recalibration system 106 determines a
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combined effect that the variant-call classifications 414 have on the genotype-quality metric. As
another example, the base-caller-recalibration system 106 determines individual impacts that each
variant-call classification has on the genotype-quality metric and weights each variant-call
classification accordingly. The base-caller-recalibration system 106 further recalibrates the
genotype-quality metric by increasing or decreasing its value based on the indicated probabilities
associated with each of the variant-call classifications 414.

[0116] As described, the base-caller-recalibration system 106 generates variant-call
classifications 414 and a nucleotide-base call from the same set of sequencing metrics (or a subset
of the sequencing metrics that are shared between the call-recalibration-machine-learning model
412 and the call-generation model 420). Indeed, the base-caller-recalibration system 106 utilizes
the call-recalibration-machine-learning model 412 to generate the variant-call classifications 414
from sequencing metrics while also generating a nucleotide-base call for a sample sequence.
Indeed, the base-caller-recalibration system 106 can operate the call-recalibration-machine-
learning model 412 in parallel with the call-generation model 420 to generate metrics for a
nucleotide-base call and variant-call classifications 414 for recalibrating the generated metrics.
[0117]  As further illustrated in FIG. 4, the base-caller-recalibration system 106 generates a
variant call file 418. In particular, the base-caller-recalibration system 106 generates a variant call
file 418 that represents or defines a nucleotide-base call from the sequencing metrics corresponding
to a genomic coordinate. As shown, the variant call file 418 includes various call metrics such as
a call-quality metric (QUAL), a genotype metric (GT), and a genotype-quality metric (GQ). To
generate the variant call file 418, as described, the base-caller-recalibration system 106 generates
metrics for a nucleotide-base call utilizing the call-generation model 420 and recalibrates the
nucleotide-base call utilizing the variant-call classifications 414 from the call-recalibration-
machine-learning model 412.

[0118] In one or more implementations, the base-caller-recalibration system 106 updates or
otherwise modifies the data fields for the variant call file 418 according to particular algorithms.
After modifying such data fields, the base-caller-recalibration system 106 can generate the variant
call file 418 (e.g., a post-filter variant call file) to include metrics reflecting the updated data fields
for QUAL, GT, and GQ. For instance, in some cases, the base-caller-recalibration system 106
updates the QUAL field for every variant based on the probability of a false-positive variant (e.g.,
the false-positive classification). As indicated above, in some cases, QUAL indicates the
probability that there is some kind of variant (or other nucleotide-base call) at a given location,
measured in PHRED scale.

[0119] In addition, if the base-caller-recalibration system 106 determines that the highest

probability from among the three variant-call classifications as the variant-call classifications 414
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is the genotype-error classification (e.g., the probability of a het/hom error), then the base-caller-
recalibration system 106 updates the GQ field while preserving or maintaining the GT field.
Specifically, in some embodiments, the base-caller-recalibration system 106 updates the GQ field
based on the true-positive classification (e.g., the probability of a true genotype).

[0120]  Further, if the base-caller-recalibration system 106 determines that the highest
probability from among the variant-call classifications 414 is the true-positive classification, in
some cases, the base-caller-recalibration system 106 updates both the GQ field and the GT field.
Specifically, the base-caller-recalibration system 106 updates the GQ field based on the genotype-
error classification and further updates the GT field to switch the genotype depending on whether
the existing GT is 0/X or X/X (where X is a non-zero value).

[0121]  If the base-caller-recalibration system 106 determines that neither the true-positive
classification nor the genotype-error classification has the highest probability among the variant-
call classifications 414, in some embodiments, the base-caller-recalibration system 106 updates the
GQ field. In other words, if the base-caller-recalibration system 106 determines that the false-
positive classification has the highest probability, the base-caller-recalibration system 106 updates
the GQ field. In particular, the base-caller-recalibration system 106 updates the GQ field based on
the probability indicated by the true-positive classification.

[0122]  As suggested above, in some embodiments, the base-caller-recalibration system 106
increases or decreases a base-call-quality metric (e.g., Q score) for a nucleotide-base call. Based
on the variant-call classifications 414, for example, the base-caller-recalibration system 106
increases base-call-quality metrics for nucleotide-base calls that would not have previously passed
a quality filter and determines that the increased base-call-quality metrics now passes the quality
filter. In some such cases, the base-caller-recalibration system 106 includes nucleotide-base calls
with such increased base-call-quality metrics (passing the quality filter) in a post-filter variant call
file. By contrast, in other cases, the base-caller-recalibration system 106 decreases base-call-
quality metrics for nucleotide-base calls that previously would have passed a quality filter and
determines that the decreased base-call-quality metrics now fail the quality filter. In some such
cases, the base-caller-recalibration system 106 excludes nucleotide-base calls with decreased base-
call-quality metrics (failing the quality filter) from a post-filter variant call file, but includes the
nucleotide-base calls with such decreased base-call-quality metrics in a pre-filter variant call file.
[0123]  For example, the base-caller-recalibration system 106 can remove false positive variant
calls and recover false negative variant calls by changing corresponding base-call-quality metrics.
To remove a false positive, in some cases, the base-caller-recalibration system 106 decreases the
base-call-quality metric of a nucleotide-base call that initially passed a quality filter—based on the

variant-call classifications 414 from the call-recalibration-machine-learning model 412. Based on
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determining the decreased base-call-quality metric falls below a threshold metric (e.g., a Q score
of 3.0 or 10.0), the base-caller-recalibration system 106 determines that the nucleotide-base call no
longer passes the quality filter. The base-caller-recalibration system 106 thus filters out, or
removes, the false-positive-nucleotide-base call that initially passed the filter by changing its base-
call-quality metric.

[0124] In addition to removing false positives based on changes to base-call-quality metrics,
the base-caller-recalibration system 106 can remove false positive variant calls based on changes
to genotype. To remove a false positive, in some cases, the base-caller-recalibration system 106
changes a genotype of an initial nucleotide-base call indicating a different nucleotide base than a
reference base (e.g., GT = 1 or 2) to a genotype of an updated nucleotide-base call indicating a
same nucleotide base as the reference base (e.g., GT = 0)—based on the variant-call classifications
414 from the call-recalibration-machine-learning model 412. Based on the genotype being the
same as the reference base, the base-caller-recalibration system 106 does not identify the
nucleotide-base call as a variant and, in some cases, excludes data for the nucleotide-base call from
a variant call file.

[0125]  To recover a false negative, the base-caller-recalibration system 106 increases the base-
call-quality metric of a nucleotide-base call that initially failed a quality filter—based on the
variant-call classifications 414 from the call-recalibration-machine-learning model 412. Based on
determining the increased base-call-quality metric exceeds a threshold metric, the base-caller-
recalibration system 106 determines that the nucleotide-base call passes the quality filter. The base-
caller-recalibration system 106 thus recovers a false-negative-nucleotide-base call that was initially
filtered out by changing its base-call-quality metric.

[0126] In addition to recovering false negatives based on changes to base-call-quality metrics,
the base-caller-recalibration system 106 can recover false negative variant calls based on changes
to genotype. To recover a false negative, in some cases, the base-caller-recalibration system 106
changes a genotype of an initial nucleotide-base call indicating the same nucleotide base as a
reference base (e.g., GT = 0) to a different genotype of an updated nucleotide-base call indicating
a different nucleotide base than the reference base (e.g., GT = 1 or 2)—based on the variant-call
classifications 414 from the call-recalibration-machine-learning model 412. Based on the differing
genotype of the updated nucleotide-base call and a passing base-call-quality metric, the base-caller-
recalibration system 106 identifies the nucleotide-base call as a variant and includes the nucleotide-
base call within a variant call file.

[0127]  Indeed, in some implementations, the base-caller-recalibration system 106 operates in a
specific sequential order utilizing the call-generation model 420 and the call-recalibration-

machine-learning model 412. For example, the base-caller-recalibration system 106 generates a
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FASTQ file by converting a BCL file to FASTQ. In addition, the base-caller-recalibration system
106 (subsequently) utilizes the mapping-and-alignment components 406 of the call-generation
model 420 to map and align nucleotide bases from a sample nucleotide sequence. In some cases,
the base-caller-recalibration system 106 maps and aligns the nucleotide bases of the sample
sequence in relation to a reference sequence (e.g., reference genome) and/or various alternative
supporting reads.

[0128]  After mapping and aligning, as described herein, the base-caller-recalibration system
106 then utilizes the variant-caller components 408 of the call-generation model 420 to generate an
initial nucleotide-base call for the sample sequence corresponding to a particular genomic
coordinate—based on various sequencing metrics. After or at the same time, the base-caller-
recalibration system 106 also applies the call-recalibration-machine-learning model 412 to generate
the variant-call classifications 414 from sequencing metrics extracted via the mapping and aligning,
the variant calling, and/or from other sources as described above. Based on the variant-call
classifications 414, the base-caller-recalibration system 106 recalibrates the nucleotide-base call
(e.g., by modifying various data fields corresponding to specific metrics of the nucleotide-base call
such as QUAL, GT, and GQ).

[0129] In some cases, the base-caller-recalibration system 106 further applies a quality filter to
the nucleotide-base call to determine whether the nucleotide-base call passes the quality filter (e.g,,
a hard pass filter of Q20 or other Q score). The base-caller-recalibration system 106 subsequently
identifies a subset of nucleotide-base calls that represent variants from reference bases and pass the
quality filter. The base-caller-recalibration system 106 further generates a modified or updated
variant call file (e.g., the variant call file 418) that includes the subset of nucleotide-base calls and
recalibrated metrics for the subset of nucleotide-base calls, such as updated QUAL metrics, updated
GT metrics, and/or updated GQ metrics.

[0130]  As mentioned above, in certain embodiments, the base-caller-recalibration system 106
trains or tunes a call-recalibration-machine-learning model (e.g., the call-recalibration-machine-
learning model 412). In particular, the base-caller-recalibration system 106 utilizes an iterative
training process to fit a call-recalibration-machine-learning model by adjusting or adding decision
trees or learning parameters that result in accurate variant-call classifications (e.g., variant-call
classifications 414). FIG. 5 illustrates training a call-recalibration-machine-learning model in
accordance with one or more embodiments.

[0131]  As illustrated in FIG. 5, the base-caller-recalibration system 106 accesses sample
sequencing metrics 504 from a database 502 (e.g., the database 116). For example, the base-caller-
recalibration system 106 accesses sample sequencing metrics including sample read-based metrics,

sample externally sourced sequencing metrics, and sample call-model-generated sequencing
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metrics. In some cases, the sample sequencing metrics 504 have a corresponding ground truth
variant call file 516 associated with them, where the ground truth variant call file 516 indicates an
actual nucleotide-base call and its various metrics that result from the sample sequencing metrics
504. For instance, the base-caller-recalibration system 106 utilizes the sample sequencing metrics
504 and ground truth variant call files from a training dataset from the food and drug administration,
called the PrecisionFDA dataset. In some cases, the sample sequencing metrics 504 include a
subset of sample sequencing metrics for each nucleotide-base call in a ground truth variant call file.
The ground truth variant call file can have a ground truth variant call (e.g., genotype metric in a
genotype field) corresponding to each subset of sample sequencing metrics.

[0132]  As further illustrated in FIG. 5, the base-caller-recalibration system 106 generates
predicted variant-call classifications 508 based on the sample sequencing metrics 504. Specifically,
the base-caller-recalibration system 106 utilizes a call-recalibration-machine-learning model 506
(e.g., the call-recalibration-machine-learning model 412) to generate the predicted variant-call
classifications 508. Indeed, in some embodiments, the call-recalibration-machine-learning model
506 generates a set of three predicted variant-call classifications as the predicted variant-call
classifications 508 including a predicted false-positive classification, a predicted genotype-error
classification, and a predicted true-positive classification. The predicted variant-call classifications
508 can accordingly take the form of any of the variant-call classifications described above.
[0133] Based on the predicted variant-call classifications 508, the base-caller-recalibration
system 106 determines nucleotide-base calls and generates a modified variant call file 510
comprising the nucleotide-base calls and corresponding fields. Asindicated above, the base-caller-
recalibration system 106 can utilize (i) a call-generation model to generate an initial nucleotide-
base call and (ii) the call-recalibration-machine-learning model 506 to modify data fields
corresponding to a variant call file for the nucleotide-base call. Such modified or recalibrated
values are output in the modified variant call file 510 by, for example the call-generation model.
For example, the base-caller-recalibration system 106 determines recalibrated values for particular
metrics within the modified variant call file 510, including a call-quality metric (QUAL), a
genotype metric (GT), and a genotype-quality metric (GQ).

[0134]  As further illustrated in FIG. 5, the base-caller-recalibration system 106 performs a
comparison 512. Specifically, the base-caller-recalibration system 106 performs the comparison
512 between (1) variant-nucleotide-base calls and/or data fields in the modified variant call file 510
and (i1) variant-nucleotide-base calls and/or data fields in the ground truth variant call file 516. In
some embodiments, the base-caller-recalibration system 106 utilizes a loss function 514 to compare
variant-nucleotide-base calls and/or data fields from the two variant call files (e.g., to determine an

error or a measure of loss between them). For instance, in cases where the call-recalibration-
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machine-learning model 506 is an ensemble of gradient boosted trees, the base-caller-recalibration
system 106 utilizes a mean squared error loss function (e.g., for regression) and/or a logarithmic
loss function (e.g., for classification) as the loss function 514.

[0135] By contrast, in embodiments where the call-recalibration-machine-learning model 506
is a neural network, the base-caller-recalibration system 106 can utilize a cross entropy loss
function, an L1 loss function, or a mean squared error loss function as the loss function 514. For
example, the base-caller-recalibration system 106 utilizes the loss function 514 to determine a
difference between variant-nucleotide-base calls and/or data fields from the modified variant call
file 510 and the ground truth variant call file 516.

[0136]  As further illustrated in FIG. 5, the base-caller-recalibration system 106 performs model
fitting 518. In particular, the base-caller-recalibration system 106 fits the call-recalibration-
machine-learning model 506 based on the comparison 512. For instance, the base-caller-
recalibration system 106 performs modifications or adjustments to the call-recalibration-machine-
learning model 506 to reduce the measure of loss from the loss function 514 for a subsequent
training iteration.

[0137]  For gradient boosted trees, for example, the base-caller-recalibration system 106 trains
the call-recalibration-machine-learning model 506 on the gradients of the errors determined by the
loss function 514. For instance, the base-caller-recalibration system 106 solves a convex
optimization problem (e.g., of infinite dimensions) while regularizing the objective to avoid
overfitting. In certain implementations, the base-caller-recalibration system 106 scales the
gradients to emphasize corrections to under-represented classes (e.g., where there are significantly
more true positives than false positives).

[0138] In some embodiments, the base-caller-recalibration system 106 adds a new weak learner
(e.g., anew boosted tree) to the call-recalibration-machine-learning model 506 for each successive
training iteration as part of solving the optimization problem. For example, the base-caller-
recalibration system 106 finds a feature (e.g., a sequencing metric) that minimizes a loss from the
loss function 514 and either adds the feature to the current iteration’s tree or starts to build a new
tree with the feature.

[0139] In addition or in the alternative to gradient boosted decision trees, the base-caller-
recalibration system 106 trains a logistic regression to learn parameters for generating one or more
variant-call classifications such as a true-positive classification. To avoid overfitting, the base-
caller-recalibration system 106 further regularizes based on hyperparameters such as the learning
rate, stochastic gradient boosting, the number of trees, the tree-depth(s), complexity penalization,

and L1/L2 regularization.
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[0140] In embodiments where the call-recalibration-machine-learning model 506 is a neural
network, the base-caller-recalibration system 106 performs the model fitting 518 by modifying
internal parameters (e.g., weights) of the call-recalibration-machine-learning model 506 to reduce
the measure of loss for the loss function 514. Indeed, the base-caller-recalibration system 106
modifies how the call-recalibration-machine-learning model 506 analyzes and passes data between
layers and neurons by modifying the internal network parameters. Thus, over multiple iterations,
the base-caller-recalibration system 106 improves the accuracy of the call-recalibration-machine-
learning model 506.

[0141] Indeed, in some cases, the base-caller-recalibration system 106 repeats the training
process illustrated in FIG. 5 for multiple iterations. For example, the base-caller-recalibration
system 106 repeats the iterative training by selecting a new set of sequencing metrics for each
nucleotide-base call along with a corresponding ground truth nucleotide-base call in a
corresponding ground truth variant call file. The base-caller-recalibration system 106 further
generates a new set of predicted variant-call classifications for each iteration along with a new
modified variant call file. As described above, the base-caller-recalibration system 106 also
compares a variant-nucleotide-base calls and/or data fields from the modified variant call file at
each iteration with the corresponding variant-nucleotide-base calls and/or data fields from the
corresponding ground truth variant call file and further performs model fitting 518. The base-
caller-recalibration system 106 repeats this process until the call-recalibration-machine-learning
model 506 generates predicted variant-call classifications that result in variant calls that satisfies a
threshold measure of loss.

[0142] As mentioned above, in certain described embodiments, the base-caller-recalibration
system 106 generates and provides contribution measures associated with sequencing metrics. In
particular, the base-caller-recalibration system 106 determines respective contribution measures
indicating how impactful individual sequencing metrics are in determining a particular nucleotide-
base call. FIG. 6 illustrates an example visualization of contribution measures for sequencing
metrics associated with a nucleotide-base call in accordance with one or more embodiments.
[0143]  Asillustrated in FIG. 6, the client device 108 displays a contribution-measure interface
602 that includes individual depictions of contribution measures associated with corresponding
sequencing metrics. Indeed, the base-caller-recalibration system 106 determines a contribution
measure for a sequencing metric based on how impactful or influential the sequencing metric is on
a final nucleotide-base call. Unlike many prior systems that utilize deep learning architectures, the
structure of the call-generation model used by the base-caller-recalibration system 106 facilitates

the determination of such contribution measures on a metric-by-metric basis.
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[0144]  Forexample, the base-caller-recalibration system 106 determines contribution measures
by determining Shapley Additive Explanation (SHAP) values for each of the sequencing metrics
for a nucleotide-base call. Specifically, the base-caller-recalibration system 106 determines a
SHAP value by determining an impact of a sequencing metric as compared to the results of a
baseline value (e.g., a baseline value for the sequencing metric). As shown in FIG. 6, the base-
caller-recalibration system 106 determines contribution measures for a number of listed sequencing
metrics, where the thicker (e.g., more bulbous) portions of the graphs for each sequencing metric
(roughly) indicate its contribution measure.

[0145]  As further shown in FIG. 6, the base-caller-recalibration system 106 can rank the
sequencing metrics according to contribution measures as well. For instance, the base-caller-
recalibration system 106 determines that the contribution for the mapq_p metric is highest among
those displayed within the contribution-measure interface 602, followed by the qual metric, the gt0
metric, and so forth down the list.

[0146] As mentioned above, in certain described embodiments, the base-caller-recalibration
system 106 improves in accuracy over prior systems. In particular, the base-caller-recalibration
system 106 reduces false positive variant-nucleotide-base calls and false negative variant-
nucleotide-base calls compared to prior systems. Indeed, by utilizing a call-recalibration-machine-
learning model to recalibrate nucleotide-base calls, the base-caller-recalibration system 106 even
improves over previous versions of the call-generation model that did not utilize a call-
recalibration-machine-learning model (but which still outperform other systems). FIGS. 7A-7B
illustrate graphs depicting the improvements of the base-caller-recalibration system 106 in
accordance with one or more embodiments. Specifically, FIG. 7A illustrates improvements for
nucleotide-base calls of SNPs while FIG. 7B illustrates improvements for non-SNPs (e.g., indels).
[0147]  Asillustrated in FIG. 7A, a graph 702 includes a receiver operating characteristic (ROC)
curve that illustrates reductions in SNP false positives for the base-caller-recalibration system 106
as compared to a system utilizing a call-generation model (e.g., the call-generation model 420)
without recalibrating via variant-call classifications by a call-recalibration-machine-learning
model. The graph 702 depicts portions of two different ROC curves representing sensitivity over
false positive variants detected, where sensitivity represents a number of correctly determined true-
positive-variant calls divided by the sum of true-positive-variant calls and false-positive-variant
calls. In particular, the graph 702 depicts ROC curves for the base-caller-recalibration system 106
utilizing the call-recalibration-machine-learning model—that is, “Recalibrated Model.” The
“Recalibrated Model” refers to a call-recalibration-machine-learning model tested using
PrecisionFDA HGO002 high confidence truth set. Additionally, the graph 702 depicts a sensitivity

ROC curve for a call-generation model without a call-recalibration-machine-learning model, that
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is, “Non-Recalibrated Model.” To zoom in on the top of each ROC curve, the y-axis for sensitivity
starts around 0.985. At the end of the ROC curve for the “Recalibrated Model,” the sensitivity is
~0.998.

[0148]  Asshown, the base-caller-recalibration system 106 with the call-recalibration-machine-
learning model exhibits approximately a 65% improvement for false positives at certain
sensitivities (e.g., as indicated by the left shift of the Recalibrated Model curve as compared to the
Non-Recalibrated Model curve at the same y-axis values). As shown in table 704, as another
example, at their best measurement points, the base-caller-recalibration system 106 generates only
4,073 false positives, whereas the non-recalibrated system generates 6,972 false positives.

[0149]  As further depicted in the table 704, the base-caller-recalibration system 106 exhibits
other improvements as well. For example, the base-caller-recalibration system 106 generates fewer
false negatives and fewer genotype errors (e.g., het/hom errors) than the non-recalibrated system.
The base-caller-recalibration system 106 also improves over the non-recalibrated system in recall,
precision, and F-measure, all while adding minimally to overall computation time. In particular,
by adding a call-recalibration-machine-learning model to a call generation model, the call-
recalibration-machine-learning model adds approximately 1 to 5 minutes to generating a variant
call file from a sequencing run (e.g., approximately 21 to 25 minutes).

[0150]  Asillustrated in FIG. 7B, a graph 706 includes an ROC curve that illustrates reductions
in non-SNP (i.e., indels) false positives for the base-caller-recalibration system 106 as compared to
the non-recalibrated version of the call-generation model. Similar to the above discussion, the
graph 706 depicts the base-caller-recalibration system 106 utilizing the call-recalibration-machine-
learning model (“Recalibrated Model”) compared with the “Non-Recalibrated Model.” To zoom
in on the top of each ROC curve, the y-axis for sensitivity starts around 0.98.

[0151]  As shown by the graph 706, the base-caller-recalibration system 106 improves in non-
SNP false positives at the same sensitivity (e.g., as indicated by larger dots). As shown in a table
708, for example, at their best measurement points, the base-caller-recalibration system 106
generates only 998 false positives at the illustrated sensitivity while the non-recalibrated system
generates 1,342 false positives.

[0152]  As further depicted by the table 708, the base-caller-recalibration system 106 exhibits
other improvements over prior systems as well. For example, the base-caller-recalibration system
106 generates fewer genotype errors (e.g., het/hom errors) than the non-recalibrated system. The
base-caller-recalibration system 106 also improves over the non-recalibrated system in precision
and F-measure for non-SNPs.

[0153] In addition to the accuracy improvements shown by the ROC curves in FIGS. 7A and
7B, FIG. 8 illustrates a graph 802 that demonstrates improved accuracy by the base-caller-
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recalibration system 106 over non-calibrated systems. Specifically, the graph 802 depicts false
positive variant calls (FP) and false negative variant calls (FN) for the base-caller-recalibration
system 106 against those of non-recalibrated systems for both SNPs and indels (e.g., as generated
for both standard hash tables (HT) and graph hash tables). As shown, the base-caller-recalibration
system 106 greatly reduces the overall FP+FN value at a best F1 score measuring point for standard
and graph hash tables for both SNPs and indels. Indeed, the base-caller-recalibration system 106
reduces the number of false positives and the number of false negatives by utilizing a call-
recalibration-machine-learning model.

[0154] Turning now to FIG. 9, this figure illustrates a flowchart of a series of acts 900 of
generating a nucleotide-base call based on variant-call classifications from a call-recalibration-
machine-learning model in accordance with one or more embodiments. While FIG. 9 illustrates
acts according to one embodiment, alternative embodiments may omit, add to, reorder, and/or
modify any of the acts shown in FIG. 9. The acts of FIG. 9 can be performed as part of a method.
Alternatively, a non-transitory computer readable storage medium can comprise instructions that,
when executed by one or more processors, cause a computing device to perform the acts depicted
in FIG. 9. In still further embodiments, a system comprising at least one processor and a non-
transitory computer readable medium comprising instructions that, when executed by one or more
processors, cause the system to perform the acts of FIG. 9.

[0155]  Asshown in FIG. 9, the acts 900 include an act 902 of determining sequencing metrics
for nucleotide-base calls. In particular, the act 902 involves determining sequencing metrics for
nucleotide-base calls of nucleotide reads corresponding to a genomic coordinate of a sample
nucleotide sequence. For example, the act 902 involves determining one or more of read-based
sequencing metrics, call-model-generated sequencing metrics, or externally sourced sequencing
metrics. In some cases, determining call-model-generated sequencing metrics involves
determining variant-calling sequencing metrics and mapping-and-alignment sequencing metrics
from a call-generation model. In certain embodiments, the act 902 involves determining re-
engineered sequencing metrics derived from other sequencing metrics for the nucleotide-base calls.
The act 902 can also include determining one or more of read-based sequencing metrics comprising
metrics derived from the nucleotide reads of the sample nucleotide sequence, call-model-generated
sequencing metrics generated via a call-generation model, or externally sourced sequencing metrics
identified from one or more external databases.

[0156] In addition, the series of acts 900 includes an act 904 of generating variant-call
classifications based on the sequencing metrics. In particular, the act 904 involves generating,
utilizing a call-recalibration-machine-learning model and based on the sequencing metrics, one or

more variant-call classifications indicating an accuracy of identifying a variant at the genomic
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coordinate. In some embodiments, the series of acts 900 includes an act of modifying one or more
data fields corresponding to a variant call file for one or more of call quality, genotype, or genotype
quality based on the one or more variant-call classifications. In some cases, the act 904 involves
generating one or more of a false-positive classification, a genotype-error classification, or a true-
positive classification. The act 904 can involve utilizing the call-recalibration-machine-learning
model to generate one or more classifications corresponding to a genotype for the final nucleotide-
base call for the genomic coordinate. In some cases, the call-recalibration-machine-learning model
comprises one or more of a neural network, a deep-learning transformer, a gradient boost decision
tree, a random forest model, a linear regression, a support vector machine, or a logistic regression.
[0157] In certain embodiments, the act 904 involves generating the one or more variant-call
classifications based on the variant-calling sequencing metrics and the mapping-and-alignment
sequencing metrics utilizing the call-recalibration-machine-learning model. The act 904 can
include utilizing a machine-learning classifier to generate one or more of. a false-positive
probability that a variant call or a nucleotide-base call is a false positive, a genotype-error
probability that a genotype for the variant call or the nucleotide-base call is incorrect, or a true-
positive probability that the variant call or the nucleotide-base call is a true positive. The act 904
can also include utilizing a machine-learning classifier to generate one or more of: a false-positive
probability that the final nucleotide-base call is a false positive, a genotype-error probability that a
genotype for the final nucleotide-base call is incorrect, or a true-positive probability that the final
nucleotide-base call is a true positive.

[0158]  As further illustrated in FIG. 9, the series of acts 900 includes an act 906 of determining
a final nucleotide-base call based on the variant-call classifications. In particular, the act 906
involves determining a final nucleotide-base call for the genomic coordinate based on the one or
more variant-call classifications. For example, the act 906 involves determining an initial
nucleotide-base call for the genomic coordinate utilizing a call-generation model based on one or
more sequencing metrics and modifying one or more data fields corresponding to a variant call file
and the initial nucleotide-base call based on the one or more variant-call classifications from the
call-recalibration-machine-learning model. In some cases, the act 906 involves generating a variant
call for the genomic coordinate based on the one or more variant-call classifications. In some
embodiments, the act 906 involves determining the final nucleotide-base call as part of a variant
call comprising a single nucleotide polymorphism, a deletion, an insertion, or a structural variation
corresponding to the genomic coordinate.

[0159] Indeed, the act 906 can involve determining the final nucleotide-base call for the
genomic coordinate by changing a genotype of an initial nucleotide-base call to an updated

genotype of an updated nucleotide-base call. The series of acts 900 can also include acts of
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updating a base-call-quality metric for the variant call based on the one or more variant-call
classifications, determining that the base-call-quality metric for the variant call passes a quality
filter, and generating a variant call file comprising the variant call based on the base-call-quality
metric passing the quality filter.

[0160] In some embodiments, the series of acts 900 includes an act of increasing a base-call-
quality metric for the nucleotide-base call based on the one or more variant-call classifications. In
these or other embodiments, the series of acts 900 includes an act of determining the increased
base-call-quality metric passes a quality filter and generating a variant call file that includes the
final nucleotide-base call based on the increased base-call-quality metric or, alternatively, updating
a variant call file to include the final nucleotide-base call based on the increased base-call-quality
metric. In certain cases, the series of acts 900 includes acts of decreasing a base-call-quality metric
for the final nucleotide-base call based on the one or more variant-call classifications, determining
that the decreased base-call-quality metric does not pass a quality filter, and generating a post-filter
variant call file that excludes the final nucleotide-base call based on the decreased base-call-quality
metric not passing the quality filter or, alternatively, updating a variant call file to exclude the final
nucleotide-base call based on the decreased base-call-quality metric.

[0161] In one or more implementations, the series of acts 900 includes acts of determining
contribution measures for the sequencing metrics indicating respective measures of impact that the
sequencing metrics have on the variant call, nucleotide-base call, or the final nucleotide-base call
and providing, for display on a client device, a visualization of the contribution measures
corresponding to one or more of the sequencing metrics.

[0162] The methods described herein can be used in conjunction with a variety of nucleic acid
sequencing techniques. Particularly applicable techniques are those wherein nucleic acids are
attached at fixed locations in an array such that their relative positions do not change and wherein
the array is repeatedly imaged. Embodiments in which images are obtained in different color
channels, for example, coinciding with different labels used to distinguish one nucleotide base type
from another are particularly applicable. In some embodiments, the process to determine the
nucleotide sequence of a target nucleic acid (i.e., a nucleic-acid polymer) can be an automated
process. Preferred embodiments include sequencing-by-synthesis (SBS) techniques.

[0163] SBS techniques generally involve the enzymatic extension of a nascent nucleic acid
strand through the iterative addition of nucleotides against a template strand. In traditional methods
of SBS, a single nucleotide monomer may be provided to a target nucleotide in the presence of a
polymerase in each delivery. However, in the methods described herein, more than one type of
nucleotide monomer can be provided to a target nucleic acid in the presence of a polymerase in a

delivery.
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[0164] SBS can utilize nucleotide monomers that have a terminator moiety or those that lack
any terminator moieties. Methods utilizing nucleotide monomers lacking terminators include, for
example, pyrosequencing and sequencing using y-phosphate-labeled nucleotides, as set forth in
further detail below. In methods using nucleotide monomers lacking terminators, the number of
nucleotides added in each cycle is generally variable and dependent upon the template sequence
and the mode of nucleotide delivery. For SBS techniques that utilize nucleotide monomers having
a terminator moiety, the terminator can be effectively irreversible under the sequencing conditions
used as is the case for traditional Sanger sequencing which utilizes dideoxynucleotides, or the
terminator can be reversible as is the case for sequencing methods developed by Solexa (now
[lumina, Inc.).

[0165]  SBS techniques can utilize nucleotide monomers that have a label moiety or those that
lack alabel moiety. Accordingly, incorporation events can be detected based on a characteristic of
the label, such as fluorescence of the label; a characteristic of the nucleotide monomer such as
molecular weight or charge; a byproduct of incorporation of the nucleotide, such as release of
pyrophosphate; or the like. In embodiments, where two or more different nucleotides are present
in a sequencing reagent, the different nucleotides can be distinguishable from each other, or
alternatively, the two or more different labels can be the indistinguishable under the detection
techniques being used. For example, the different nucleotides present in a sequencing reagent can
have different labels and they can be distinguished using appropriate optics as exemplified by the
sequencing methods developed by Solexa (now Illumina, Inc.).

[0166]  Preferred embodiments include pyrosequencing techniques. Pyrosequencing detects the
release of inorganic pyrophosphate (PP1) as particular nucleotides are incorporated into the nascent
strand (Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlen, M. and Nyren, P. (1996) "Real-time
DNA sequencing using detection of pyrophosphate release." Analytical Biochemistry 242(1), 84-
9; Ronaghi, M. (2001) "Pyrosequencing sheds light on DNA sequencing." Genome Res. 11(1), 3-
11; Ronaghi, M., Uhlen, M. and Nyren, P. (1998) “A sequencing method based on real-time
pyrophosphate.” Science 281(5375), 363; U.S. Pat. No. 6,210,891; U.S. Pat. No. 6,258,568 and
U.S. Pat. No. 6,274,320, the disclosures of which are incorporated herein by reference in their
entireties). In pyrosequencing, released PPi can be detected by being immediately converted to
adenosine triphosphate (ATP) by ATP sulfurylase, and the level of ATP generated is detected via
luciferase-produced photons. The nucleic acids to be sequenced can be attached to features in an
array and the array can be imaged to capture the chemiluminescent signals that are produced due
to incorporation of a nucleotides at the features of the array. An image can be obtained after the
array 1s treated with a particular nucleotide type (e.g., A, T, C or G). Images obtained after addition

of each nucleotide type will differ with regard to which features in the array are detected. These
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differences in the image reflect the different sequence content of the features on the array.
However, the relative locations of each feature will remain unchanged in the images. The images
can be stored, processed and analyzed using the methods set forth herein. For example, images
obtained after treatment of the array with each different nucleotide type can be handled in the same
way as exemplified herein for images obtained from different detection channels for reversible
terminator-based sequencing methods.

[0167] In another exemplary type of SBS, cycle sequencing is accomplished by stepwise
addition of reversible terminator nucleotides containing, for example, a cleavable or
photobleachable dye label as described, for example, in WO 04/018497 and U.S. Pat. No.
7,057,026, the disclosures of which are incorporated herein by reference. This approach is being
commercialized by Solexa (now Illumina Inc.), and is also described in WO 91/06678 and WO
07/123,744, each of which is incorporated herein by reference. The availability of fluorescently-
labeled terminators in which both the termination can be reversed and the fluorescent label cleaved
facilitates efficient cyclic reversible termination (CRT) sequencing. Polymerases can also be co-
engineered to efficiently incorporate and extend from these modified nucleotides.

[0168]  Preferably in reversible terminator-based sequencing embodiments, the labels do not
substantially inhibit extension under SBS reaction conditions. However, the detection labels can
be removable, for example, by cleavage or degradation. Images can be captured following
incorporation of labels into arrayed nucleic acid features. In particular embodiments, each cycle
involves simultaneous delivery of four different nucleotide types to the array and each nucleotide
type has a spectrally distinct label. Four images can then be obtained, each using a detection
channel that is selective for one of the four different labels. Alternatively, different nucleotide
types can be added sequentially and an image of the array can be obtained between each addition
step. In such embodiments, each image will show nucleic acid features that have incorporated
nucleotides of a particular type. Different features are present or absent in the different images due
the different sequence content of each feature. However, the relative position of the features will
remain unchanged in the images. Images obtained from such reversible terminator-SBS methods
can be stored, processed and analyzed as set forth herein. Following the image capture step, labels
can be removed and reversible terminator moieties can be removed for subsequent cycles of
nucleotide addition and detection. Removal of the labels after they have been detected in a
particular cycle and prior to a subsequent cycle can provide the advantage of reducing background
signal and crosstalk between cycles. Examples of useful labels and removal methods are set forth
below.

[0169] In particular embodiments some or all of the nucleotide monomers can include

reversible terminators. In such embodiments, reversible terminators/cleavable fluors can include
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fluor linked to the ribose moiety via a 3' ester linkage (Metzker, Genome Res. 15:1767-1776 (2005),
which is incorporated herein by reference). Other approaches have separated the terminator
chemistry from the cleavage of the fluorescence label (Ruparel et al., Proc Natl Acad Sci USA 102:
5932-7 (2005), which is incorporated herein by reference in its entirety). Ruparel et al described
the development of reversible terminators that used a small 3' allyl group to block extension, but
could easily be deblocked by a short treatment with a palladium catalyst. The fluorophore was
attached to the base via a photocleavable linker that could easily be cleaved by a 30 second exposure
to long wavelength UV light. Thus, either disulfide reduction or photocleavage can be used as a
cleavable linker. Another approach to reversible termination is the use of natural termination that
ensues after placement of a bulky dye on a INTP. The presence of a charged bulky dye on the
dNTP can act as an effective terminator through steric and/or electrostatic hindrance. The presence
of one incorporation event prevents further incorporations unless the dye is removed. Cleavage of
the dye removes the fluor and effectively reverses the termination. Examples of modified
nucleotides are also described in U.S. Pat. No. 7,427,673, and U.S. Pat. No. 7,057,026, the
disclosures of which are incorporated herein by reference in their entireties.

[0170]  Additional exemplary SBS systems and methods which can be utilized with the methods
and systems described herein are described in U.S. Patent Application Publication No.
2007/0166705, U.S. Patent Application Publication No. 2006/0188901, U.S. Pat. No. 7,057,026,
U.S. Patent Application Publication No. 2006/0240439, U.S. Patent Application Publication No.
2006/0281109, PCT Publication No. WO 05/065814, U.S. Patent Application Publication No.
2005/0100900, PCT Publication No. WO 06/064199, PCT Publication No. WO 07/010,251, U.S.
Patent Application Publication No. 2012/0270305 and U.S. Patent Application Publication No.
2013/0260372, the disclosures of which are incorporated herein by reference in their entireties.
[0171] Some embodiments can utilize detection of four different nucleotides using fewer than
four different labels. For example, SBS can be performed utilizing methods and systems described
in the incorporated materials of U.S. Patent Application Publication No. 2013/0079232. As a first
example, a pair of nucleotide types can be detected at the same wavelength, but distinguished based
on a difference in intensity for one member of the pair compared to the other, or based on a change
to one member of the pair (e.g. via chemical modification, photochemical modification or physical
modification) that causes apparent signal to appear or disappear compared to the signal detected
for the other member of the pair. As a second example, three of four different nucleotide types can
be detected under particular conditions while a fourth nucleotide type lacks a label that is detectable
under those conditions, or is minimally detected under those conditions (e.g., minimal detection
due to background fluorescence, etc.). Incorporation of the first three nucleotide types into a

nucleic acid can be determined based on presence of their respective signals and incorporation of
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the fourth nucleotide type into the nucleic acid can be determined based on absence or minimal
detection of any signal. As a third example, one nucleotide type can include label(s) that are
detected in two different channels, whereas other nucleotide types are detected in no more than one
of the channels. The aforementioned three exemplary configurations are not considered mutually
exclusive and can be used in various combinations. An exemplary embodiment that combines all
three examples, is a fluorescent-based SBS method that uses a first nucleotide type that is detected
in a first channel (e.g. dATP having a label that is detected in the first channel when excited by a
first excitation wavelength), a second nucleotide type that is detected in a second channel (e.g.
dCTP having a label that is detected in the second channel when excited by a second excitation
wavelength), a third nucleotide type that is detected in both the first and the second channel (e.g.
dTTP having at least one label that is detected in both channels when excited by the first and/or
second excitation wavelength) and a fourth nucleotide type that lacks a label that is not, or
minimally, detected in either channel (e.g. dGTP having no label).

[0172]  Further, as described in the incorporated materials of U.S. Patent Application
Publication No. 2013/0079232, sequencing data can be obtained using a single channel. In such
so-called one-dye sequencing approaches, the first nucleotide type is labeled but the label is
removed after the first image is generated, and the second nucleotide type is labeled only after a
first image is generated. The third nucleotide type retains its label in both the first and second
images, and the fourth nucleotide type remains unlabeled in both images.

[0173] Some embodiments can utilize sequencing by ligation techniques. Such techniques
utilize DNA ligase to incorporate oligonucleotides and identify the incorporation of such
oligonucleotides. The oligonucleotides typically have different labels that are correlated with the
identity of a particular nucleotide in a sequence to which the oligonucleotides hybridize. As with
other SBS methods, images can be obtained following treatment of an array of nucleic acid features
with the labeled sequencing reagents. Each image will show nucleic acid features that have
incorporated labels of a particular type. Different features are present or absent in the different
images due the different sequence content of each feature, but the relative position of the features
will remain unchanged in the images. Images obtained from ligation-based sequencing methods
can be stored, processed and analyzed as set forth herein. Exemplary SBS systems and methods
which can be utilized with the methods and systems described herein are described in U.S. Pat. No.
6,969,488, U.S. Pat. No. 6,172,218, and U.S. Pat. No. 6,306,597, the disclosures of which are
incorporated herein by reference in their entireties.

[0174] Some embodiments can utilize nanopore sequencing (Deamer, D. W. & Akeson, M.
"Nanopores and nucleic acids: prospects for ultrarapid sequencing." Trends Biotechnol. 18, 147-

151 (2000); Deamer, D. and D. Branton, "Characterization of nucleic acids by nanopore analysis".
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Acc. Chem. Res. 35:817-825 (2002); Li, J.,, M. Gershow, D. Stein, E. Brandin, and J. A.
Golovchenko, "DNA molecules and configurations in a solid-state nanopore microscope” Nat.
Mater. 2:611-615 (2003), the disclosures of which are incorporated herein by reference in their
entireties). In such embodiments, the target nucleic acid passes through a nanopore. The nanopore
can be a synthetic pore or biological membrane protein, such as a-hemolysin. As the target nucleic
acid passes through the nanopore, each base-pair can be identified by measuring fluctuations in the
electrical conductance of the pore. (U.S. Pat. No. 7,001,792; Soni, G. V. & Meller, "A. Progress
toward ultrafast DNA sequencing using solid-state nanopores." Clin. Chem. 53, 1996-2001 (2007);
Healy, K. "Nanopore-based single-molecule DNA analysis." Nanomed. 2, 459-481 (2007);
Cockroft, S. L., Chu, J., Amorin, M. & Ghadiri, M. R. "A single-molecule nanopore device detects
DNA polymerase activity with single-nucleotide resolution." J. Am. Chem. Soc. 130, 818-820
(2008), the disclosures of which are incorporated herein by reference in their entireties). Data
obtained from nanopore sequencing can be stored, processed and analyzed as set forth herein. In
particular, the data can be treated as an image in accordance with the exemplary treatment of optical
images and other images that is set forth herein.

[0175] Some embodiments can utilize methods involving the real-time monitoring of DNA
polymerase activity. Nucleotide incorporations can be detected through fluorescence resonance
energy transfer (FRET) interactions between a fluorophore-bearing polymerase and y-phosphate-
labeled nucleotides as described, for example, in U.S. Pat. No. 7,329,492 and U.S. Pat. No.
7,211,414 (each of which is incorporated herein by reference) or nucleotide incorporations can be
detected with zero-mode waveguides as described, for example, in U.S. Pat. No. 7,315,019 (which
is incorporated herein by reference) and using fluorescent nucleotide analogs and engineered
polymerases as described, for example, in U.S. Pat. No. 7,405,281 and U.S. Patent Application
Publication No. 2008/0108082 (each of which is incorporated herein by reference). The
illumination can be restricted to a zeptoliter-scale volume around a surface-tethered polymerase
such that incorporation of fluorescently labeled nucleotides can be observed with low background
(Levene, M. J. et al. "Zero-mode waveguides for single-molecule analysis at high concentrations."
Science 299, 682-686 (2003); Lundquist, P. M. et al. "Parallel confocal detection of single
molecules in real time." Opt. Lett. 33, 1026-1028 (2008); Korlach, J. et al. "Selective aluminum
passivation for targeted immobilization of single DNA polymerase molecules in zero-mode
waveguide nano structures." Proc. Natl. Acad. Sci. USA 105, 1176-1181 (2008), the disclosures
of which are incorporated herein by reference in their entireties). Images obtained from such
methods can be stored, processed and analyzed as set forth herein.

[0176] Some SBS embodiments include detection of a proton released upon incorporation of a

nucleotide into an extension product. For example, sequencing based on detection of released
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protons can use an electrical detector and associated techniques that are commercially available
from Ion Torrent (Guilford, CT, a Life Technologies subsidiary) or sequencing methods and
systems described in US 2009/0026082 Al; US 2009/0127589 Al; US 2010/0137143 Al; or US
2010/0282617 Al, each of which is incorporated herein by reference. Methods set forth herein for
amplifying target nucleic acids using kinetic exclusion can be readily applied to substrates used for
detecting protons. More specifically, methods set forth herein can be used to produce clonal
populations of amplicons that are used to detect protons.

[0177] The above SBS methods can be advantageously carried out in multiplex formats such
that multiple different target nucleic acids are manipulated simultaneously. In particular
embodiments, different target nucleic acids can be treated in a common reaction vessel or on a
surface of a particular substrate. This allows convenient delivery of sequencing reagents, removal
of unreacted reagents and detection of incorporation events in a multiplex manner. In embodiments
using surface-bound target nucleic acids, the target nucleic acids can be in an array format. In an
array format, the target nucleic acids can be typically bound to a surface in a spatially
distinguishable manner. The target nucleic acids can be bound by direct covalent attachment,
attachment to a bead or other particle or binding to a polymerase or other molecule that is attached
to the surface. The array can include a single copy of a target nucleic acid at each site (also referred
to as a feature) or multiple copies having the same sequence can be present at each site or feature.
Multiple copies can be produced by amplification methods such as, bridge amplification or
emulsion PCR as described in further detail below.

[0178] The methods set forth herein can use arrays having features at any of a variety of
densities including, for example, at least about 10 features/cm2, 100 features/cm2, 500
features/cm2, 1,000 features/cm2, 5,000 features/cm2, 10,000 features/cm2, 50,000 features/cm2,
100,000 features/cm2, 1,000,000 features/cm2, 5,000,000 features/cm2, or higher.

[0179]  An advantage of the methods set forth herein is that they provide for rapid and efficient
detection of a plurality of target nucleic acid in parallel. Accordingly the present disclosure
provides integrated systems capable of preparing and detecting nucleic acids using techniques
known in the art such as those exemplified above. Thus, an integrated system of the present
disclosure can include fluidic components capable of delivering amplification reagents and/or
sequencing reagents to one or more immobilized DNA fragments, the system comprising
components such as pumps, valves, reservoirs, fluidic lines and the like. A flow cell can be
configured and/or used in an integrated system for detection of target nucleic acids. Exemplary
flow cells are described, for example, in US 2010/0111768 A1 and US Ser. No. 13/273,666, each
of which is incorporated herein by reference. As exemplified for flow cells, one or more of the

fluidic components of an integrated system can be used for an amplification method and for a
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detection method. Taking a nucleic acid sequencing embodiment as an example, one or more of
the fluidic components of an integrated system can be used for an amplification method set forth
herein and for the delivery of sequencing reagents in a sequencing method such as those
exemplified above. Alternatively, an integrated system can include separate fluidic systems to
carry out amplification methods and to carry out detection methods. Examples of integrated
sequencing systems that are capable of creating amplified nucleic acids and also determining the
sequence of the nucleic acids include, without limitation, the MiSeqTM platform (Illumina, Inc.,
San Diego, CA) and devices described in US Ser. No. 13/273,666, which is incorporated herein by
reference.

[0180] The sequencing system described above sequences nucleic-acid polymers present in
samples received by a sequencing device. As defined herein, "sample" and its derivatives, is used
in its broadest sense and includes any specimen, culture and the like that is suspected of including
atarget. In some embodiments, the sample comprises DNA, RNA, PNA, LNA, chimeric or hybrid
forms of nucleic acids. The sample can include any biological, clinical, surgical, agricultural,
atmospheric or aquatic-based specimen containing one or more nucleic acids. The term also
includes any isolated nucleic acid sample such a genomic DNA, fresh-frozen or formalin-fixed
paraffin-embedded nucleic acid specimen. Itis also envisioned that the sample can be from a single
individual, a collection of nucleic acid samples from genetically related members, nucleic acid
samples from genetically unrelated members, nucleic acid samples (matched) from a single
individual such as a tumor sample and normal tissue sample, or sample from a single source that
contains two distinct forms of genetic material such as maternal and fetal DNA obtained from a
maternal subject, or the presence of contaminating bacterial DNA in a sample that contains plant
or animal DNA. In some embodiments, the source of nucleic acid material can include nucleic
acids obtained from a newborn, for example as typically used for newborn screening.

[0181]  The nucleic acid sample can include high molecular weight material such as genomic
DNA (gDNA). The sample can include low molecular weight material such as nucleic acid
molecules obtained from FFPE or archived DNA samples. In another embodiment, low molecular
weight material includes enzymatically or mechanically fragmented DNA. The sample can include
cell-free circulating DNA. In some embodiments, the sample can include nucleic acid molecules
obtained from biopsies, tumors, scrapings, swabs, blood, mucus, urine, plasma, semen, hair, laser
capture micro-dissections, surgical resections, and other clinical or laboratory obtained samples.
In some embodiments, the sample can be an epidemiological, agricultural, forensic or pathogenic
sample. In some embodiments, the sample can include nucleic acid molecules obtained from an
animal such as a human or mammalian source. In another embodiment, the sample can include

nucleic acid molecules obtained from a non-mammalian source such as a plant, bacteria, virus or
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fungus. In some embodiments, the source of the nucleic acid molecules may be an archived or
extinct sample or species.

[0182]  Further, the methods and compositions disclosed herein may be useful to amplify a
nucleic acid sample having low-quality nucleic acid molecules, such as degraded and/or
fragmented genomic DNA from a forensic sample. In one embodiment, forensic samples can
include nucleic acids obtained from a crime scene, nucleic acids obtained from a missing persons
DNA database, nucleic acids obtained from a laboratory associated with a forensic investigation or
include forensic samples obtained by law enforcement agencies, one or more military services or
any such personnel. The nucleic acid sample may be a purified sample or a crude DNA containing
lysate, for example derived from a buccal swab, paper, fabric or other substrate that may be
impregnated with saliva, blood, or other bodily fluids. As such, in some embodiments, the nucleic
acid sample may comprise low amounts of, or fragmented portions of DNA, such as genomic DNA.
In some embodiments, target sequences can be present in one or more bodily fluids including but
not limited to, blood, sputum, plasma, semen, urine and serum. In some embodiments, target
sequences can be obtained from hair, skin, tissue samples, autopsy or remains of a victim. In some
embodiments, nucleic acids including one or more target sequences can be obtained from a
deceased animal or human. In some embodiments, target sequences can include nucleic acids
obtained from non-human DNA such a microbial, plant or entomological DNA. In some
embodiments, target sequences or amplified target sequences are directed to purposes of human
identification. In some embodiments, the disclosure relates generally to methods for identifying
characteristics of a forensic sample. In some embodiments, the disclosure relates generally to
human identification methods using one or more target specific primers disclosed herein or one or
more target specific primers designed using the primer design criteria outlined herein. In one
embodiment, a forensic or human identification sample containing at least one target sequence can
be amplified using any one or more of the target-specific primers disclosed herein or using the
primer criteria outlined herein.

[0183] The components of the base-caller-recalibration system 106 can include software,
hardware, or both. For example, the components of the base-caller-recalibration system 106 can
include one or more instructions stored on a computer-readable storage medium and executable by
processors of one or more computing devices (e.g., the client device 108). When executed by the
one or more processors, the computer-executable instructions of the base-caller-recalibration
system 106 can cause the computing devices to perform the bubble detection methods described
herein. Alternatively, the components of the base-caller-recalibration system 106 can comprise

hardware, such as special purpose processing devices to perform a certain function or group of
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functions. Additionally, or alternatively, the components of the base-caller-recalibration system
106 can include a combination of computer-executable instructions and hardware.

[0184]  Furthermore, the components of the base-caller-recalibration system 106 performing the
functions described herein with respect to the base-caller-recalibration system 106 may, for
example, be implemented as part of a stand-alone application, as a module of an application, as a
plug-in for applications, as a library function or functions that may be called by other applications,
and/or as a cloud-computing model. Thus, components of the base-caller-recalibration system 106
may be implemented as part of a stand-alone application on a personal computing device or a
mobile device. Additionally, or alternatively, the components of the base-caller-recalibration
system 106 may be implemented in any application that provides sequencing services including,
but not limited to Illumina BaseSpace, Illumina DRAGEN, or Illumina TruSight software.
“Illumina,” “BaseSpace,” “DRAGEN,” and “TruSight,” are either registered trademarks or
trademarks of Illumina, Inc. in the United States and/or other countries.

[0185] Embodiments of the present disclosure may comprise or utilize a special purpose or
general-purpose computer including computer hardware, such as, for example, one or more
processors and system memory, as discussed in greater detail below. Embodiments within the
scope of the present disclosure also include physical and other computer-readable media for
carrying or storing computer-executable instructions and/or data structures. In particular, one or
more of the processes described herein may be implemented at least in part as instructions
embodied in a non-transitory computer-readable medium and executable by one or more computing
devices (e.g., any of the media content access devices described herein). In general, a processor
(e.g., a microprocessor) receives instructions, from a non-transitory computer-readable medium,
(e.g., amemory, etc.), and executes those instructions, thereby performing one or more processes,
including one or more of the processes described herein.

[0186] Computer-readable media can be any available media that can be accessed by a general
purpose or special purpose computer system. Computer-readable media that store computer-
executable instructions are non-transitory computer-readable storage media (devices). Computer-
readable media that carry computer-executable instructions are transmission media. Thus, by way
of example, and not limitation, embodiments of the disclosure can comprise at least two distinctly
different kinds of computer-readable media: non-transitory computer-readable storage media
(devices) and transmission media.

[0187] Non-transitory computer-readable storage media (devices) includes RAM, ROM,
EEPROM, CD-ROM, solid state drives (SSDs) (e.g., based on RAM), Flash memory, phase-
change memory (PCM), other types of memory, other optical disk storage, magnetic disk storage

or other magnetic storage devices, or any other medium which can be used to store desired program
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code means in the form of computer-executable instructions or data structures and which can be
accessed by a general purpose or special purpose computer.

[0188] A “network” is defined as one or more data links that enable the transport of electronic
data between computer systems and/or modules and/or other electronic devices. When information
is transferred or provided over a network or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a computer, the computer properly views
the connection as a transmission medium. Transmissions media can include a network and/or data
links which can be used to carry desired program code means in the form of computer-executable
instructions or data structures and which can be accessed by a general purpose or special purpose
computer. Combinations of the above should also be included within the scope of computer-
readable media.

[0189]  Further, upon reaching various computer system components, program code means in
the form of computer-executable instructions or data structures can be transferred automatically
from transmission media to non-transitory computer-readable storage media (devices) (or vice
versa). For example, computer-executable instructions or data structures received over a network
or data link can be buffered in RAM within a network interface module (e.g., a NIC), and then
eventually transferred to computer system RAM and/or to less volatile computer storage media
(devices) at a computer system. Thus, it should be understood that non-transitory computer-
readable storage media (devices) can be included in computer system components that also (or even
primarily) utilize transmission media.

[0190] Computer-executable instructions comprise, for example, instructions and data which,
when executed at a processor, cause a general purpose computer, special purpose computer, or
special purpose processing device to perform a certain function or group of functions. In some
embodiments, computer-executable instructions are executed on a general-purpose computer to
turn the general-purpose computer into a special purpose computer implementing elements of the
disclosure. The computer executable instructions may be, for example, binaries, intermediate
format instructions such as assembly language, or even source code. Although the subject matter
has been described in language specific to structural features and/or methodological acts, it is to be
understood that the subject matter defined in the appended claims is not necessarily limited to the
described features or acts described above. Rather, the described features and acts are disclosed as
example forms of implementing the claims.

[0191]  Those skilled in the art will appreciate that the disclosure may be practiced in network
computing environments with many types of computer system configurations, including, personal
computers, desktop computers, laptop computers, message processors, hand-held devices, multi-

processor systems, microprocessor-based or programmable consumer electronics, network PCs,
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minicomputers, mainframe computers, mobile telephones, PDAs, tablets, pagers, routers, switches,
and the like. The disclosure may also be practiced in distributed system environments where local
and remote computer systems, which are linked (either by hardwired data links, wireless data links,
or by a combination of hardwired and wireless data links) through a network, both perform tasks.
In a distributed system environment, program modules may be located in both local and remote
memory storage devices.

[0192] Embodiments of the present disclosure can also be implemented in cloud computing
environments. In this description, “cloud computing” is defined as a model for enabling on-demand
network access to a shared pool of configurable computing resources. For example, cloud
computing can be employed in the marketplace to offer ubiquitous and convenient on-demand
access to the shared pool of configurable computing resources. The shared pool of configurable
computing resources can be rapidly provisioned via virtualization and released with low
management effort or service provider interaction, and then scaled accordingly.

[0193] A cloud-computing model can be composed of various characteristics such as, for
example, on-demand self-service, broad network access, resource pooling, rapid elasticity,
measured service, and so forth. A cloud-computing model can also expose various service models,
such as, for example, Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure
as a Service (IaaS). A cloud-computing model can also be deployed using different deployment
models such as private cloud, community cloud, public cloud, hybrid cloud, and so forth. In this
description and in the claims, a “cloud-computing environment” is an environment in which cloud
computing is employed.

[0194] FIG. 10 illustrates a block diagram of a computing device 1000 that may be configured
to perform one or more of the processes described above. One will appreciate that one or more
computing devices such as the computing device 1000 may implement the base-caller-recalibration
system 106 and the sequencing system 104. As shown by FIG. 10, the computing device 1000 can
comprise a processor 1002, a memory 1004, a storage device 1006, an I/O interface 1008, and a
communication interface 1010, which may be communicatively coupled by way of a
communication infrastructure 1012. In certain embodiments, the computing device 1000 can
include fewer or more components than those shown in FIG. 10. The following paragraphs
describe components of the computing device 1000 shown in FIG. 10 in additional detail.

[0195] In one or more embodiments, the processor 1002 includes hardware for executing
instructions, such as those making up a computer program. As an example, and not by way of
limitation, to execute instructions for dynamically modifying workflows, the processor 1002 may
retrieve (or fetch) the instructions from an internal register, an internal cache, the memory 1004, or

the storage device 1006 and decode and execute them. The memory 1004 may be a volatile or non-
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volatile memory used for storing data, metadata, and programs for execution by the processor(s).
The storage device 1006 includes storage, such as a hard disk, flash disk drive, or other digital
storage device, for storing data or instructions for performing the methods described herein.
[0196] The I/O interface 1008 allows a user to provide input to, receive output from, and
otherwise transfer data to and receive data from computing device 1000. The I/O interface 1008
may include a mouse, a keypad or a keyboard, atouch screen, a camera, an optical scanner, network
interface, modem, other known 1/0O devices or a combination of such I/O interfaces. The I/O
interface 1008 may include one or more devices for presenting output to a user, including, but not
limited to, a graphics engine, a display (e.g., a display screen), one or more output drivers (e.g.,
display drivers), one or more audio speakers, and one or more audio drivers. In certain
embodiments, the I/O interface 1008 is configured to provide graphical data to a display for
presentation to a user. The graphical data may be representative of one or more graphical user
interfaces and/or any other graphical content as may serve a particular implementation.

[0197] The communication interface 1010 can include hardware, software, or both. In any
event, the communication interface 1010 can provide one or more interfaces for communication
(such as, for example, packet-based communication) between the computing device 1000 and one
or more other computing devices or networks. As an example, and not by way of limitation, the
communication interface 1010 may include a network interface controller (NIC) or network adapter
for communicating with an Ethernet or other wire-based network or a wireless NIC (WNIC) or
wireless adapter for communicating with a wireless network, such as a WI-FIL.

[0198]  Additionally, the communication interface 1010 may facilitate communications with
various types of wired or wireless networks. The communication interface 1010 may also facilitate
communications using various communication protocols. The communication infrastructure 1012
may also include hardware, software, or both that couples components of the computing device
1000 to each other. For example, the communication interface 1010 may use one or more networks
and/or protocols to enable a plurality of computing devices connected by a particular infrastructure
to communicate with each other to perform one or more aspects of the processes described herein.
To illustrate, the sequencing process can allow a plurality of devices (e.g., a client device,
sequencing device, and server device(s)) to exchange information such as sequencing data and error
notifications.

[0199] In the foregoing specification, the present disclosure has been described with reference
to specific exemplary embodiments thereof. Various embodiments and aspects of the present
disclosure(s) are described with reference to details discussed herein, and the accompanying
drawings illustrate the various embodiments. The description above and drawings are illustrative

of the disclosure and are not to be construed as limiting the disclosure. Numerous specific details
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are described to provide a thorough understanding of various embodiments of the present
disclosure.

[0200]  The present disclosure may be embodied in other specific forms without departing from
its spirit or essential characteristics. The described embodiments are to be considered in all respects
only as illustrative and not restrictive. For example, the methods described herein may be
performed with less or more steps/acts or the steps/acts may be performed in differing orders.
Additionally, the steps/acts described herein may be repeated or performed in parallel with one
another or in parallel with different instances of the same or similar steps/acts. The scope of the
present application is, therefore, indicated by the appended claims rather than by the foregoing
description. All changes that come within the meaning and range of equivalency of the claims are

to be embraced within their scope.

59



WO 2023/004323 PCT/US2022/073899

CLAIMS
We Claim:

1. A system comprising:

at least one processor; and

a non-transitory computer readable medium comprising instructions that, when executed
by the at least one processor, cause the system to:

determine sequencing metrics for nucleotide-base calls of nucleotide reads
corresponding to a genomic coordinate of a sample nucleotide sequence;

generate, utilizing a call-recalibration-machine-learning model and based on the
sequencing metrics, one or more variant-call classifications indicating an accuracy of
identifying a variant at the genomic coordinate; and

determine a final nucleotide-base call for the genomic coordinate based on the one
or more variant-call classifications.

2. The system of claim 1, further comprising instructions that, when executed by the
at least one processor, cause the system to:

increase a base-call-quality metric for the final nucleotide-base call based on the one or
more variant-call classifications;

determine the increased base-call-quality metric passes a quality filter; and

generate a variant call file that includes the final nucleotide-base call based on the increased
base-call-quality metric.

3. The system of claim 1, further comprising instructions that, when executed by the
at least one processor, cause the system to:

decrease a base-call-quality metric for the final nucleotide-base call based on the one or
more variant-call classifications;

determine that the decreased base-call-quality metric does not pass a quality filter; and

generate a post-filter variant call file that excludes the final nucleotide-base call based on
the decreased base-call-quality metric not passing the quality filter.

4. The system of claim 1, further comprising instructions that, when executed by the
at least one processor, cause the system to determine the final nucleotide-base call for the genomic
coordinate by:

determining an initial nucleotide-base call for the genomic coordinate utilizing a call-
generation model based on one or more sequencing metrics; and

modifying one or more data fields corresponding to a variant call file and the initial
nucleotide-base call based on the one or more variant-call classifications from the call-

recalibration-machine-learning model.
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5. The system of claim 1, further comprising instructions that, when executed by the
at least one processor, cause the system to modify one or more data fields corresponding to a variant
call file for one or more of call quality, genotype, or genotype quality based on the one or more
variant-call classifications.

6. The system of claim 1, further comprising instructions that, when executed by the
at least one processor, cause the system to determine the sequencing metrics for the nucleotide-
base calls by determining one or more of read-based sequencing metrics, call-model-generated
sequencing metrics, or externally sourced sequencing metrics.

7. The system of claim 6, further comprising instructions that, when executed by the
at least one processor, cause the system to determine the call-model-generated sequencing metrics
by determining variant-caller sequencing metrics and mapping-and-alignment sequencing metrics
from a call-generation model.

8. The system of claim 1, further comprising instructions that, when executed by the
at least one processor, cause the system to determine the sequencing metrics for the nucleotide-
base calls by determining re-engineered sequencing metrics derived from other sequencing metrics
for the nucleotide-base calls.

9. The system of claim 1, further comprising instructions that, when executed by the
at least one processor, cause the system to generate the one or more variant-call classifications by
generating one or more of a false-positive classification, a genotype-error classification, or a true-
positive classification.

10. The system of claim 1, further comprising instructions that, when executed by the
at least one processor, cause the system to:

determine contribution measures for the sequencing metrics indicating respective measures
of impact that the sequencing metrics have on the final nucleotide-base call; and

provide, for display on a client device, a visualization of the contribution measures
corresponding to one or more of the sequencing metrics.

11 A non-transitory computer readable medium comprising instructions that, when
executed by at least one processor, cause a computing device to:

determine sequencing metrics for nucleotide-base calls of nucleotide reads corresponding
to a genomic coordinate of a sample nucleotide sequence;

generate, utilizing a call-recalibration-machine-learning model and based on the
sequencing metrics, one or more variant-call classifications indicating an accuracy of identifying a
variant at the genomic coordinate; and

determine a final nucleotide-base call for the genomic coordinate based on the one or more

variant-call classifications.
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12. The non-transitory computer readable medium of claim 11, further comprising
instructions that, when executed by the at least one processor, cause the computing device to
determine the final nucleotide-base call as part of a variant call comprising a single nucleotide
polymorphism, a deletion, or an insertion corresponding to the genomic coordinate.

13. The non-transitory computer readable medium of claim 11, further comprising
instructions that, when executed by the at least one processor, cause the computing device to
determine the final nucleotide-base call for the genomic coordinate by changing a genotype of an
initial nucleotide-base call to an updated genotype of an updated nucleotide-base call.

14. The non-transitory computer readable medium of claim 11, further comprising
instructions that, when executed by the at least one processor, cause the computing device to
generate the one or more variant-call classifications by utilizing the call-recalibration-machine-
learning model to generate one or more classifications corresponding to a genotype for the final
nucleotide-base call for the genomic coordinate.

15. The non-transitory computer readable medium of claim 11, further comprising
instructions that, when executed by the at least one processor, cause the computing device to:

determine the sequencing metrics by determining variant-caller sequencing metrics and
mapping-and-alignment sequencing metrics from a call-generation model; and

generate the one or more variant-call classifications based on the variant-caller sequencing
metrics and the mapping-and-alignment sequencing metrics utilizing the call-recalibration-
machine-learning model.

16. A computer-implemented method comprising:

determining sequencing metrics for nucleotide-base calls of nucleotide reads corresponding
to a genomic coordinate of a sample nucleotide sequence;

generating, utilizing a call-recalibration-machine-learning model and based on the
sequencing metrics, one or more variant-call classifications indicating an accuracy of identifying a
variant at the genomic coordinate; and

determining a variant call for the genomic coordinate based on the one or more variant-call
classifications.

17. The computer-implemented method of claim 16, further comprising:

updating a base-call-quality metric for the variant call based on the one or more variant-
call classifications;

determining that the base-call-quality metric for the variant call passes a quality filter; and

generating a variant call file comprising the variant call based on the base-call-quality

metric passing the quality filter.
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18. The computer-implemented method of claim 16, wherein generating the one or
more variant-call classifications comprises utilizing a machine-learning classifier to generate one
or more of’

a false-positive probability that the variant call is a false positive;

a genotype-error probability that a genotype for the variant call is incorrect; or

a true-positive probability that the variant call is a true positive.

19. The computer-implemented method of claim 16, wherein determining the
sequencing metrics comprises determining one or more of read-based sequencing metrics
comprising metrics derived from the nucleotide reads of the sample nucleotide sequence, call-
model-generated sequencing metrics generated via a call-generation model, or externally sourced
sequencing metrics identified from one or more external databases.

20. The computer-implemented method of claim 16, further comprising determining
contribution measures for the sequencing metrics indicating respective measures of impact that the
sequencing metrics have on the variant call for the genomic coordinate.

21. The computer-implemented method of claim 16, wherein the call-recalibration-
machine-learning model comprises one or more of a neural network, a deep-learning transformer,
a gradient boost decision tree, a random forest model, a support vector machine, a linear regression,

or a logistic regression.
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