wo 2013/188122 A2 I} 00O 0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/188122 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Filing Date:
30 May 2013 (30.05.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/524,508 15 June 2012 (15.06.2012) US

Applicant: APPLE INC. [US/US]; 1 Infinite Loop, Cu-
pertino, California 95014 (US).

Inventors: BLASCO-ALLUE, Conrado; 1 Infinite Loop,
M/S 23-2CHP, Cupertino, California 95014 (US). KOUN-
TANIS, Ian D.; 1 Infinite Loop, M/S 23-2CHP, Cupettino,
California 95014 (US).

Agent: RANKIN, Rory D.; Meyertons, Hood, Kivlin,
Kowert & Goetzel, P.O. Box 398, Austin, Texas 78767-
0398 (US).

19 December 2013 (19.12.2013) WIPO | PCT
International Patent Classification: (81)
GO6F 9/38 (2006.01)

International Application Number:
PCT/US2013/043328

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: LOOP BUFFER LEARNING

(57) Abstract: Methods, apparatuses, and processors for tracking loop can-

Feich Front End

Lane | tane | Lane | Lane | Lane | Lane
0 1 2 3 4 5 ates.
e
Loop Buffer Controf
Unit 64
Loop Buffer 62
s Uops_From_Start
] Yops_From_Start
68 Branch Tracking
Table 66
6
Dec | | Dec | | Dec | | Dec | | Dec | | Dec
I0A || 0B || T0C || Z0D || LE || IOF
To Map/Dispatch Unit
FIG. 3

didates in an instruction stream. A load buffer control unit detects a back-
wards taken branch and starts tracking the loop candidate. The control unit
tracks taken branches of the loop candidate, and keeps track of the distance
to each taken branch from the start of the loop. If the distance to each taken
branch stays the same over multiple iterations of the loop, then the loop is
stored in a loop bufter. The loop is then dispatched from the loop buffer,
and the front-end of the processor is powered down until the loop termin-

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
TITLE: LOOP BUFFER LEARNING

BACKGROUND

Field of the Invention

[0001] The present invention relates generally to processors, and in particular to methods and
mechanisms for identifying and learning the characteristics of a loop within an instruction

stream.

Description of the Related Art

[0002] Modern day processors are generally structured as multiple stages in a pipelined
fashion. Typical pipelines often include separate units for fetching instructions, decoding
instructions, mapping instructions, executing instructions, and then writing results to another
unit, such as a register. An instruction fetch unit of a microprocessor is responsible for
providing a constant stream of instructions to the next stage of the processor pipeline. Typically,
fetch units utilize an instruction cache in order to keep the rest of the pipeline continuously
supplied with instructions. The fetch unit and instruction cache tend to consume a significant
amount of power while performing their required functions. It is a goal of modern
microprocessors to reduce power consumption as much as possible, especially for

microprocessors that are utilized in battery-powered devices.

[0003] In many software applications, the same software steps may be repeated many times to
perform a specific function or task. In these situations, the fetch unit will continue to fetch
instructions and consume power even though the same loop of instructions are continuously
being executed. If the loop could be detected and cached in a loop buffer, then the fetch unit
could be shutdown to reduce power consumption while the loop executes. However, it is
difficult to detect and learn a loop of instructions within program code when the loop includes
multiple branches. It is also challenging to accurately determine if the loop is invariant prior to

caching the loop in the loop buffer.

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
SUMMARY

[0004] Apparatuses, processors and methods for detecting and tracking loops within an
instruction stream are disclosed. A processor pipeline may include a loop buffer and a loop
buffer control unit. The loop buffer control unit may detect loop termination branches in the
instruction stream. In one embodiment, when the loop buffer control unit detects a loop
termination branch, the control unit may latch the instruction address of the loop termination
branch, a loop detection flag may be set, and a loop iteration counter and a uop counter may be

started.

[0005] The next time the same loop termination branch is detected, the control unit may
compare the value of the uop counter to the size of the loop buffer. If the value of the uop
counter is greater than the size of the loop buffer, then this loop candidate is not capable of being
stored in the loop buffer, and so loop tracking will be terminated. If the uop counter is less than
the size of the loop buffer, then the contents of the loop may be tracked for multiple iterations of
the loop. For each iteration of the loop, if the contents of the loop stay the same during the

iteration, then the loop iteration counter may be incremented and loop tracking may continue.

[0006] In one embodiment, the taken branches of the loop may be tracked during each
iteration of the loop. The distance from the start of the loop to each taken branch may be stored
in a branch tracking table during the first iteration of the loop, and during subsequent iterations
of the loop, the value of the uop counter when a branch is detected may be compared to the
corresponding value stored in the branch tracking table. If the distances from the start of the
loop to the branches of the loop are invariant, then loop tracking may continue. When the value
of the loop iteration counter exceeds a predetermined threshold, then the loop may be cached in
the loop buffer. The loop may be read from the loop buffer and the fetch unit may be shutdown

until the loop terminates.

[0007] These and other features and advantages will become apparent to those of ordinary

skill in the art in view of the following detailed descriptions of the approaches presented herein.

10

15

20

25

WO 2013/188122 PCT/US2013/043328

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The above and further advantages of the methods and mechanisms may be better
understood by referring to the following description in conjunction with the accompanying
drawings, in which:

[0009] FIG. 1 illustrates one embodiment of a portion of an integrated circuit.

[0010] FIG. 2 is a block diagram that illustrates one embodiment of a processor core.

[0011] FIG. 3 is a block diagram illustrating one embodiment of a front end of a processor

pipeline.

[0012] FIG. 4 illustrates a block diagram of another embodiment of a loop buffer within a

fetch and decode unit.

[0013] FIG. 5 is one embodiment of a sample loop.

[0014] FIG. 6 illustrates one embodiment of a loop buffer control unit.

[0015] FIG. 7 is a generalized flow diagram illustrating one embodiment of a method for

tracking a loop candidate.

[0016] FIG. 8 is a block diagram of one embodiment of a system.

[0017] FIG. 9 is a block diagram of one embodiment of a computer readable medium.

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
DETAILED DESCRIPTION OF EMBODIMENTS

[0018] In the following description, numerous specific details are set forth to provide a
thorough understanding of the methods and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various embodiments may be practiced without
these specific details. In some instances, well-known structures, components, signals, computer
program instructions, and techniques have not been shown in detail to avoid obscuring the
approaches described herein. It will be appreciated that for simplicity and clarity of illustration,
elements shown in the figures have not necessarily been drawn to scale. For example, the

dimensions of some of the elements may be exaggerated relative to other elements.

[0019] This specification includes references to “one embodiment”. The appearance of the
phrase “in one embodiment” in different contexts does not necessarily refer to the same
embodiment. Particular features, structures, or characteristics may be combined in any suitable
manner consistent with this disclosure. Furthermore, as used throughout this application, the
word "may" is used in a permissive sense (i.e., meaning having the potential to), rather than the

mandatory sense (i.e., meaning must). Similarly, the words "include", "including”, and

"includes" mean including, but not limited to.

[0020] Terminology. The following paragraphs provide definitions and/or context for terms

found in this disclosure (including the appended claims):

[0021] “Comprising.” This term is open-ended. As used in the appended claims, this term
does not foreclose additional structure or steps. Consider a claim that recites: “A processor
comprising a loop buffer control unit” Such a claim does not foreclose the processor from

including additional components (e.g., a cache, a fetch unit, an execution unit).

[0022] “Configured To.” Various units, circuits, or other components may be described or
claimed as “configured to” perform a task or tasks. In such contexts, “configured to” is used to
connote structure by indicating that the units/circuits/components include structure (e.g.,

circuitry) that performs the task or tasks during operation. As such, the unit/circuit/component

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

can be said to be configured to perform the task even when the specified unit/circuit/component
is not currently operational (e.g., is not on). The units/circuits/components used with the
“configured to” language include hardware—for example, circuits, memory storing program
instructions executable to implement the operation, etc. Reciting that a unit/circuit/component is
“configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112,
sixth paragraph, for that unit/circuit/component. Additionally, “configured to” can include
generic structure (e.g., generic circuitry) that is manipulated by software and/or firmware (e.g.,
an FPGA or a general-purpose processor executing software) to operate in a manner that is
capable of performing the task(s) at issue. “Configured to” may also include adapting a
manufacturing process (e.g., a semiconductor fabrication facility) to fabricate devices (e.g.,

integrated circuits) that are adapted to implement or perform one or more tasks.

[0023] “Based On.” As used herein, this term is used to describe one or more factors that
affect a determination. This term does not foreclose additional factors that may affect a
determination. That is, a determination may be solely based on those factors or based, at least in
part, on those factors. Consider the phrase “determine A based on B.” While B may be a factor
that affects the determination of A, such a phrase does not foreclose the determination of A from

also being based on C. In other instances, A may be determined based solely on B.

[0024] Referring now to FIG. 1, a block diagram illustrating one embodiment of a portion of
an integrated circuit (IC) is shown. In the illustrated embodiment, IC 10 includes a processor
complex 12, memory controller 22, and memory physical interface circuits (PHYs) 24 and 26. It
is noted that IC 10 may also include many other components not shown in FIG. 1. In various
embodiments, IC 10 may also be referred to as a system on chip (SoC), an application specific

integrated circuit (ASIC), or an apparatus.

[0025] Processor complex 12 may include central processing units (CPUs) 14 and 16, level
two (L2) cache 18, and bus interface unit (BIU) 20. In other embodiments, processor complex
12 may include other numbers of CPUs. CPUs 14 and 16 may also be referred to as processors
or cores. It is noted that processor complex 12 may include other components not shown in FIG.

1.

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
[0026] The CPUs 14 and 16 may include circuitry to execute instructions defined in an

instruction set architecture. Specifically, one or more programs comprising the instructions may
be executed by CPUs 14 and 16. Any instruction set architecture may be implemented in
various embodiments. For example, in one embodiment, the ARM™ instruction set architecture
(ISA) may be implemented. The ARM instruction set may include 16-bit (or Thumb) and 32-bit
instructions. Other exemplary ISA’s may include the PowerPC™ instruction set, the MIPS™
instruction set, the SPARC™ instruction set, the x86 instruction set (also referred to as IA-32),

the TA-64 instruction set, etc.

[0027] In one embodiment, each instruction executed by CPUs 14 and 16 may be associated
with a PC value. Also, one or more architectural registers may be specified within some
instructions for reads and writes. These architectural registers may be mapped to actual physical
registers by a register rename unit. Furthermore, some instructions (e.g., ARM Thumb
instructions) may be broken up into a sequence of instruction operations (or micro-ops), and
cach instruction operation of the sequence may be referred to by a unique micro-op (or uop)

number.

[0028] Each of CPUs 14 and 16 may also include a level one (L1) cache (not shown), and
cach L1 cache may be coupled to L2 cache 18. Other embodiments may include additional
levels of cache (e.g., level three (L3) cache). In one embodiment, L2 cache 18 may be
configured to cache instructions and data for low latency access by CPUs 14 and 16. The L2
cache 18 may comprise any capacity and configuration (e.g. direct mapped, set associative). L2
cache 18 may be coupled to memory controller 22 via BIU 20. BIU 20 may also include various

other logic structures to couple CPUs 14 and 16 and L2 cache 18 to various other devices and

blocks.

[0029] Memory controller 22 may include any number of memory ports and may include
circuitry configured to interface to memory. For example, memory controller 22 may be
configured to interface to dynamic random access memory (DRAM) such as synchronous
DRAM (SDRAM), double data rate (DDR) SDRAM, DDR2 SDRAM, Rambus DRAM
(RDRAM), etc. Memory controller 22 may also be coupled to memory physical interface
circuits (PHYs) 24 and 26. Memory PHYs 24 and 26 are representative of any number of

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
memory PHY's which may be coupled to memory controller 22. Memory PHY's 24 and 26 may

be configured to interface to memory devices (not shown).

[0030] It is noted that other embodiments may include other combinations of components,
including subsets or supersets of the components shown in FIG. 1 and/or other components.
While one instance of a given component may be shown in FIG. 1, other embodiments may
include two or more instances of the given component. Similarly, throughout this detailed
description, two or more instances of a given component may be included even if only one is
shown, and/or embodiments that include only one instance may be used even if multiple

instances are shown.

[0031] Turning now to FIG. 2, one embodiment of a processor core is shown. Core 30 is one
example of a processor core, and core 30 may be utilized within a processor complex, such as
processor complex 12 of FIG. 1. In one embodiment, each of CPUs 14 and 16 of FIG. 1 may
include the components and functionality of core 30. Core 30 may include fetch and decode
(FED) unit 32, map and dispatch unit 36, memory management unit (MMU) 40, core interface
unit (CIF) 42, execution units 44, and load-store unit (LSU) 46. It is noted that core 30 may

include other components and interfaces not shown in FIG. 2.

[0032] FED unit 32 may include circuitry configured to read instructions from memory and
place them in level one (L1) instruction cache 34. L1 instruction cache 34 may be a cache
memory for storing instructions to be executed by core 30. L1 instruction cache 34 may have
any capacity and construction (e.g. direct mapped, set associative, fully associative, etc.).
Furthermore, L1 instruction cache 34 may have any cache line size. FED unit 32 may also
include branch prediction hardware configured to predict branch instructions and to fetch down
the predicted path. FED unit 32 may also be redirected (e.g. via misprediction, exception,

interrupt, flush, etc.).

[0033] FED unit 32 may be configured to decode the instructions into instruction operations.
In addition, FED unit 32 may also be configured to decode multiple instructions in parallel.
Generally, an instruction operation may be an operation that the hardware included in execution
units 44 and LSU 46 is capable of executing. Each instruction may translate to one or more

instruction operations which, when executed, result in the performance of the operations defined
7

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

for that instruction according to the instruction set architecture. It is noted that the terms
“instruction operation” and “uop” may be used interchangeably throughout this disclosure. In
other embodiments, the functionality included within FED unit 32 may be split into two or more

separate units, such as a fetch unit, a decode unit, and/or other units.

[0034] In various ISA’s, some instructions may decode into a single uop. FED unit 32 may
be configured to identify the type of instruction, source operands, etc., and each decoded
instruction operation may comprise the instruction along with some of the decode information.
In other embodiments in which each instruction translates to a single uop, each uop may simply
be the corresponding instruction or a portion thercof (e.g., the opcode field or fields of the
instruction). In some embodiments, the FED unit 32 may include any combination of circuitry
and/or microcode for generating uops for instructions. For example, relatively simple uop
generations (e.g., one or two uops per instruction) may be handled in hardware while more
extensive uop generations (e.g., more than three uops for an instruction) may be handled in

microcode.

[0035] Decoded uops may be provided to map/dispatch unit 36. Map/dispatch unit 36 may be
configured to map uops and architectural registers to physical registers of core 30. Map/dispatch
unit 36 may implement register renaming to map source register addresses from the uops to the
source operand numbers identifying the renamed source registers. Map/dispatch unit 36 may
also be configured to dispatch uops to reservation stations (not shown) within execution units 44

and LSU 46.

[0036] In one embodiment, map/dispatch unit 36 may include reorder buffer (ROB) 38. In
other embodiments, ROB 38 may be located elsewhere. Prior to being dispatched, the uops may
be written to ROB 38. ROB 38 may be configured to hold uops until they can be committed in
order. Each uop may be assigned a ROB index (RNUM) corresponding to a specific entry in
ROB 38. RNUMs may be used to keep track of the operations in flight in core 30.
Map/dispatch unit 36 may also include other components (e.g., mapper array, dispatch unit,
dispatch buffer) not shown in FIG. 2. Furthermore, in other embodiments, the functionality
included within map/dispatch unit 36 may be split into two or more separate units, such as a map

unit, a dispatch unit, and/or other units.

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

[0037] Execution units 44 may include any number and type of execution units (e.g., integer,
floating point, vector). Each of execution units 44 may also include one or more reservation
stations (not shown). CIF 42 may be coupled to LSU 46, FED unit 32, MMU 40, and an L2
cache (not shown). CIF 42 may be configured to manage the interface between core 30 and the
L2 cache. MMU 40 may be configured to perform address translation and memory management

functions.

[0038] LSU 46 may include L1 data cache 48, store queue 50, and load queue 52. Load and
store operations may be dispatched from map/dispatch unit 36 to reservation stations within LSU
46. Store queue 50 may store data corresponding to store operations, and load queue 52 may
store data associated with load operations. LSU 46 may also be coupled to the L2 cache via CIF
42. 1t is noted that LSU 46 may also include other components (e.g., reservation stations,

register file, prefetch unit, translation lookaside buffer) not shown in FIG. 2.

[0039] It should be understood that the distribution of functionality illustrated in FIG. 2 is not
the only possible microarchitecture which may be utilized for a processor core. Other processor
cores may include other components, omit one or more of the components shown, and/or include

a different arrangement of functionality among the components.

[0040] Referring now to FIG. 3, a block diagram of one embodiment of a front end of a
processor pipeline is shown. In one embodiment, the front end logic shown in FIG. 3 may be
located within a fetch and decode unit, such as FED Unit 32 (of FIG. 2). It should be understood
that the distribution of functionality illustrated in FIG. 3 is only one possible structure to
implement a loop buffer within a processor pipeline. Other suitable distributions of logic for

implementing a loop buffer are possible and are contemplated.

[0041] Fetch front end 60 may be configured to fetch and pre-decode instructions and then
convey pre-decoded uops to loop buffer 62 and the decoders 70A-F (via multiplexer 68). In one
embodiment, fetch front end 60 may be configured to output six pre-decoded uops per cycle. In
other embodiments, fetch front end 60 may be configured to output other numbers of pre-

decoded uops per cycle.

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
[0042] Loop buffer 62, multiplexer 68, and decoder 70A-F may have six lanes for processing

and/or storing six uops per cycle. Each lane may include a valid bit to indicate if the lane
contains a valid uop. It is noted that the “lanes” of loop buffer 62, multiplexer 68, and decoder
70A-F may also be referred to as “slots” or “entries”. In other embodiments, loop buffer 62,
multiplexer 68, and decoder 70A-F may include more or fewer than six lanes, and fetch front end
60 may be configured to output as many uops per cycle as may be accommodated by the next

stage of the pipeline.

[0043] Fetch front end 60 may expand instructions into uops and feed these uops to loop
buffer 62 and multiplexer 68. In one embodiment, the instructions fetched by fetch front end 60
and decoded into pre-decoded uops may be based on the ARM ISA. Each pre-decoded uop may
include instruction opcode bits, instruction predecode bits, and a uop number. The instruction
opcode bits specify the operation that is to be performed. The predecode bits indicate the
number of uops that the instruction maps to. The uop number represents which uop in a multi-
uop instruction sequence should be generated. In other embodiments, other ISAs may be

utilized, and the instructions may be decoded and formatted in a variety of manners.

[0044] When the processor is not in loop buffer mode, then the uops output from fetch front
end 60 may be conveyed to decoders 70A-F via multiplexer 68. A select signal from loop buffer
control unit 64 may be coupled to multiplexer 68 to determine which path is coupled through
multiplexer 68 to the inputs of decoders 70A-F. When the processor is in loop buffer mode,
uops may be read out of loop buffer 62 and conveyed to decoders 70A-F. Uops may be
conveyed from the outputs of decoders 70A-F to the next stage of the processor pipeline. In one
embodiment, the next stage of the processor pipeline may be a map/dispatch unit, such as

map/dispatch unit 36 of FIG. 2.

[0045] Loop buffer control unit 64 may be configured to identify a loop within the fetched
and pre-decoded instructions. Once a loop has been identified with some degree of certainty,
then the loop may be cached in loop buffer 62, fetch front end 60 may be shutdown, and then the
rest of the processor pipeline may be fed from loop buffer 62. In one embodiment, one iteration
of the loop may be cached in loop buffer 62, and this cached iteration may be repeatedly
dispatched down the pipeline. In another embodiment, multiple iterations of the loop may be

cached in loop buffer 62.
10

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

[0046] To identify a loop for caching, first a backwards taken branch may be detected among
the fetched instructions. A “backwards taken branch” may be defined as a taken branch that
branches to a previous instruction in the instruction sequence. The instruction to which the
backwards taken branch goes to may be considered the start of the loop. In one embodiment,
only certain types of loops may be considered as candidates for buffering. For example, in one
embodiment, for a loop candidate to be considered for buffering, all of the iterations of the loop
have to be invariant. In other words, the loop candidate executes the same instruction sequence
on cach iteration. Furthermore, loops with indirect taken branches (e.g., BX - branch exchange,
BLX - branch with link exchange) in the instruction sequence of the loop may be excluded from
consideration for buffering. Still further, only one backwards taken branch per loop may be
permitted. The rest of the branches in the loop should be forward branches. In other
embodiments, all types of loops may be considered, such that all types of loops may be loop
candidates, while the only criteria that may be enforced may be invariance of the loop. For
example, more than one backwards taken branch may be allowed in a loop candidate, such as in

a nested loop.

[0047] Loop buffer control unit 64 may monitor the instruction stream for instructions that
form loops that meet the criteria for loop buffering. Loop buffer control unit 64 may capture all
of the information of what a given loop candidate looks like. For a certain period of time, the
loop candidate may be tracked over multiple iterations to make sure that the loop candidate stays
the same. For example, the distances from the start of the loop to one or more instructions
within the loop may be recorded on a first iteration and monitored on subsequent iterations to

determine if these distances remain the same.

[0048] In some embodiments, even if the loop candidate is invariant and meets the other
criteria listed above, other characteristics of the loop candidate may disqualify it from being
cached in loop buffer 62. For example, if the size of the loop candidate is too large to fit in loop
buffer 62, then the loop candidate may be disqualified. Also, there may be a maximum
allowable number of taken branches within the loop, equal to the size of branch tracking table
66. If the number of taken branches exceeds this number, then the loop may be excluded from
consideration as a candidate for caching in loop buffer 62. In one embodiment, branch tracking

table 66 may include eight entries for taken branches within a loop. In other embodiments,
11

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

branch tracking table 66 may have more or less than eight entries for taken branches within a
loop. Once a loop candidate has been disqualified from being cached in loop buffer 62, the
instruction address of the backwards taken branch for this disqualified loop candidate may be
recorded. Therefore, if this backwards taken branch is detected again, the loop tracking logic

may ignore this branch and restart only when a new backwards taken branch is detected.

[0049] In one embodiment, once the same backwards taken branch has been detected more
than once, then a state machine to capture the information for that loop may be started by loop
buffer control unit 64. For example, loop buffer control unit 64 may utilize branch tracking table
66 to track the taken branches of a loop candidate. Branch tracking table 66 may keep track of
the distance from the start of the loop to each taken branch. In one embodiment, the distance
may be measured in uops. In another embodiment, the distance may be measured in instructions.
In other embodiments, the distance may be measured using other metrics, and/or a combination
of two or more metrics. Measuring the distance from the start of the loop to each taken branch is

a way to determine that the path through the underlying code has not changed.

[0050] If each iteration of the loop executes such that there are the same number of uops from
the start of the loop to each branch, then the loop candidate may be considered invariant. The
distance to each branch in table 66 may be tracked for a certain number of iterations before
determining the loop candidate is invariant and should be cached. The amount of time allocated
for tracking the invariance of the loop candidate may be based on a number of loop iterations

and/or on a number of branches encountered.

[0051] In one embodiment, the only taken branches that are allowable within a loop candidate
may be conditional branches which have the same target. In this embodiment, indirect branches
may not be supported since an indirect branch may have a different target on different iterations
of the loop. It is possible that an indirect branch may take two different paths through the code
on two separate iterations but the loop may still be considered by loop buffer control unit 64 to
be invariant. This may occur because it is possible that the distances would be the same even
though the loop took two different paths on the two separate iterations. This would lead to the
false determination that the loop is invariant. To prevent these false positives, indirect branches
may not be supported. Therefore, in this embodiment, loop buffer control unit 64 may only

allow branches within a loop candidate that have the same target on each loop iteration.
12

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

[0052] In another embodiment, indirect branches may be supported and may be allowable
within loop candidates. In this embodiment, branch tracking table 66 may also include
information indicating the target of each taken branch, to ensure that the loop is invariant.
During each iteration of the loop candidate, the target of each branch in the loop may be
compared to the value stored in table 66 to ensure the target has not changed. In further
embodiments, additional information may be included in branch tracking table 66 to ensure the

loop contents are invariant.

[0053] In one embodiment, the decoders 70A-F may detect a branch and signal this to loop
buffer control unit 64. In another embodiment, fetch front end 60 may detect a branch and
convey an indication of the detection to unit 64. Alternatively, in a further embodiment, unit 64
may monitor the instruction stream for branches and detect branches independently of decoders
70A-F or fetch front end 60. Unit 64 may include a uop counter (not shown) that counts the
number of uops from the start of the loop. On the first iteration of the loop, unit 64 may write
the value of the uop counter to branch tracking table 66 whenever a branch is detected in the
loop. A pointer to table 66 may also be incremented each time a branch is detected, to move to
the next entry in table 66. On subsequent iterations of the loop, whenever a branch is detected,
the value of the uop counter may be compared to the value in the corresponding entry in table
66. Each entry of table 66 may include a value representing a number of uops from the start of
the loop for a respective branch. Each entry may also include a valid bit to indicate that entry
corresponds to a taken branch in the loop. In other embodiments, each entry of table 66 may
include other information, such as a branch identifier or tag, a target of the branch, and/or other

information.

[0054] In one embodiment, any time a mispredicted branch is detected, then a reset signal
may be conveyed to loop buffer control unit 64. Also, anytime there is an event signaled from
the backend that redirects fetch front end 60, loop buffer control unit 64 may flush and restart the
candidate detection logic. These scenarios will typically result in the program breaking out of

whatever stream of code is being tracked by unit 64.

[0055] After a certain predetermined period of time, unit 64 may determine that the loop

candidate should be cached in loop buffer 62. The length of the predetermined period of time
13

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

may be based on one or more of a variety of factors. For example, in one embodiment, the
predetermined period of time may be measured by a certain number of iterations of the loop. If
the number of iterations while the loop has been invariant is above a threshold, then the loop
may be cached in the loop buffer 62. Alternatively, the period of time may be based on a
number of taken branches that have been detected. For example, if the loop candidate includes 8
taken branches, then a count of 40 such branches may be used to indicate a particular number of
iterations (5 in this example) have occurred. In one embodiment, the predetermined period of
time may be based on providing the branch predictor with enough time to predict the end of the

loop. Numerous ways of tracking such iterations are possible and are contemplated.

[0056] Turning now to FIG. 4, another embodiment of a loop buffer within a fetch and
decode unit is shown. In one embodiment, loop buffer 84 may be located downstream from
decoders 82A-F in the processor pipeline, as shown in FIG. 4. This is in contrast to loop buffer
62 (of FIG. 3) which is located in the processor pipeline prior to decoders 70A-F. Fetch front-
end 80 may fetch instructions and pre-decode the fetched instructions into pre-decoded uops.
Then, the pre-decoded uops may be conveyed to decoders 82A-F. In one embodiment, fetch

front-end 80 may be configured to generate and convey six pre-decoded uops per cycle to the six

lanes of decoders 82A-F.

[0057] Decoders 82A-F may decode the pre-decoded uops into decoded uops. Then,
decoders 82A-F may convey the decoded uops to the next stage of the processor pipeline via
multiplexer 90. Also, decoders 82A-F may convey uops to loop buffer 84 when a loop candidate
has been identified and has met the criteria for being cached into loop buffer 84. The outputs of
multiplexer 90 may be coupled to the next stage of the processor pipeline. In one embodiment,

the next stage of the processor pipeline may be a map/dispatch unit.

[0058] Loop buffer 84, loop buffer control unit 86, and branch tracking table 88 may be
configured to perform functions similar to those described in relation to the processor front end
shown in FIG. 3. One key difference in FIG. 4 is that loop buffer 84 may store decoded uops as
opposed to loop buffer 62 storing pre-decoded uops in FIG. 3. Therefore, loop buffer 84 may be
of larger size than loop buffer 62 to accommodate the larger amount of data, since decoded uops
typically have more information than pre-decoded uops. It is noted that loop buffer 84 may also

be located at other locations within a processor pipeline, in addition to the two locations shown
14

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
in FIG. 3 and 4. For example, loop buffer 84 may be located within a fetch front end, or

alternatively, loop buffer 84 may be located within a map/dispatch unit. Depending on where
the loop buffer is located in the pipeline, the contents of the loop that are stored in the loop
buffer may vary based on the amount of instruction processing that has been performed at that

point in the pipeline.

[0059] In one embodiment, on an initial iteration of a loop candidate, loop buffer control unit
86 may populate branch tracking table 88 with the distance from the start of the loop to each
taken branch of the loop. On subsequent iterations of the loop, control unit 86 may determine if
cach branch is the same distance from the start of the loop as the corresponding distance stored
in table 88. After a loop candidate has been invariant for a certain number of iterations, then the
loop candidate may be cached in loop buffer 84 and fed to the rest of the pipeline from loop
buffer 84. Fetch front end 80 and decoders 82A-F may be powered down while the loop is being
dispatched out of loop buffer 84 to the rest of the processor pipeline.

[0060] Referring now to FIG. 5, one embodiment of a sample loop is shown. It is noted that
the program code of loop 100 shown in FIG. 5 is utilized for illustrative purposes. Other loops

may be structured differently with other numbers of instructions and branches.

[0061] Loop 100 may begin at instruction address 0001 with instruction 102. Instruction 102
is followed by instruction 104, and these instructions may be any type of non-branching
instructions that are defined in the ISA. Branch 106 may follow instruction 104, and branch 106

may be a forward branch that branches to instruction address 0025.

[0062] As shown in table 120, the instructions 102 and 104 and branch 106 may each be
cracked into a single uop. This is purely for illustrative purposes, and instructions within a
program or loop may correspond to any number of uops, and the examples shown in table 120
are for illustrative purposes only. It is noted that table 120 showing the uops per instruction is
not a table utilized or stored by the processor pipeline, but is shown in FIG. 5 for the purposes of

this discussion.

15

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
[0063] Branch 106 is the first forward branch encountered in loop 100, and the number of

uops from the start of loop 100 may be entered in branch tracking table 130. Therefore, based on
the two instructions, each with only one uop, the first value stored in branch tracking table 130
may be two. Branch 106 may jump to instruction address 0025, which corresponds to
instruction 108. Instruction 108 may be any type of non-branch instruction. Then, after
instruction 108, another forward branch may be executed, in this case branch instruction 110.
As can be seen in table 120, instruction 108 is cracked into three uops. Therefore, the value
written to the second entry of branch tracking table 130 may be six for the number of uops from

the start of the loop to branch 110.

[0064] Branch 110 may jump to instruction 112 at instruction address 0077. Instruction 112
may be followed by instruction 114 and then branch 116. Branch 116 is a backwards taken
branch such that it branches back to a previous address in the instruction sequence. Instruction
112 cracks into two uops and instruction 114 cracks into four uops, as shown in table 120.
Therefore, the distance in uops from the start of the loop to branch 116 is 13, and this value may

be stored in the third entry of branch tracking table 130.

[0065] When branch 116 is detected for the first time, this may trigger a state machine within
a loop buffer control unit to start tracking loop 100 as a loop buffer candidate. The loop buffer
control unit may determine the number of uops in the loop 100 and the number of branches in
the loop 100. If both of these values are less than the thresholds that are supported by the loop
hardware, then branch tracking table 130 may be populated on the next iteration of loop 100.
Alternatively, branch tracking table 130 may be populated on the first iteration of loop 100 after
detecting branch 116. If loop 100 does not meet all of the criteria required by the loop hardware
for loop candidates, then loop tracking may be abandoned. If loop 100 meets all of the criteria,
then, on subsequent iterations of loop 100, whenever a branch is encountered, the corresponding
value in table 130 may be read out and compared with the distance in uops from the start of the

loop.

[0066] It is noted that for other loops, table 130 may include other numbers of valid entries
depending on the number of branches in the loop. It is also noted that in other embodiments, the
distance stored in branch tracking table 130 may be measured in other values besides uops. For

example, in another, the distances stored in table 130 may be measured in instructions.
16

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

Furthermore, in other embodiments, branch tracking table 130 may include other fields of
information in each entry. For example, there may be a valid bit for each entry to indicate if the
entry corresponds to a branch in the loop candidate and contains a valid distance. In the example
shown in FIG. 5 for table 130 and loop 100, only the first three entries would have a valid bit set
to ‘1’ and the rest of the valid bits in the other entries may be set to ‘0’. Furthermore, in other

embodiments, a branch target address may be stored in each entry.

[0067] Turning now to FIG. 6, a block diagram of one embodiment of a loop buffer control
unit 140 is shown. Unit 140 may include comparator 142, which may compare a backwards
taken branch (BTB) instruction address of a current BTB instruction with an instruction address
from latch 144. Latch 144 may hold the most recently encountered BTB instruction address, and
this may be compared to the current BTB instruction address. Latch 144 and comparator 142
may receive a signal indicating a backwards taken branch (BTB) has been detected. Latch 144
and comparator 142 may also receive the instruction address of the detected BTB. Latch 144
may store the instruction of the address of the most recent backwards taken branch (BTB).
Then, the next time a BTB is detected, the instruction address of the BTB may be compared with
the instruction address of the previous BTB stored in latch 144. Alternatively, in another
embodiment, latch 144 may be a register or other unit of memory. Comparator 142 provides an

indication that a loop may have been detected in the instructions stream.

[0068] In one embodiment, comparator 142 may have two outputs, a first output indicating
equality and a second output indicating inequality. The first output, indicating equality, may be
coupled to detection started flag 146, OR-gate 160, and iteration counter 150. The equality
output from comparator 142 may be a pulse for one or more clock cycles that indicates a BTB
has been detected and that the BTB has been seen at least twice in a row. The equality output
from comparator 142 may increment iteration counter 150, and iteration counter 150 may
provide a count of the number of loop iterations that have been detected in the instruction
stream. For this embodiment, if the same BTB is encountered twice in a row, with no other
BTBs in between, then this indicates a loop candidate has been encountered. Therefore, the loop

tracking circuitry may be started to learn more about the loop candidate.

[0069] The second output from comparator 142, indicating inequality, may be coupled to OR-

gate 162. The output of OR-gate 162 may be coupled to reset the detection started flag 146. The
17

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
second output from comparator 142 may be high when the currently detected BTB is different

than the previously detected BTB. This indicates that the previous BTB was not part of a loop
candidate for this embodiment. Although not shown in FIG 6, the second output from
comparator 142 may also be coupled to other locations to indicate that loop detection has been

reset.

[0070] Uop counter 148 may be configured to keep track of the number of uops that have
been detected since the start of the loop candidate. One or more signals may be coupled to uop
counter 148 indicating the number of uops that have been detected. These input(s) to uop
counter 148 may indicate a number of uops that have been fetched and/or decoded. In one
embodiment, the signal(s) may come from a fetch unit. In one embodiment, if the fetch unit
outputs six decoded uops per clock, then a high input coupled to uop counter 148 may cause uop
counter 148 to increment its count by six. In another embodiment, these signals may be coupled

to uop counter 148 from the decoder units.

[0071] Uop counter 148 may also include other logic for determining the number of uops to
the specific uop corresponding to a branch. When a branch is encountered, uop counter 148 may
also receive an input indicating the lane in which the uop was located. Then, uop counter 148
may determine how many of the uops of the most recent cycle were in front of the branch uop.
In this way, uop counter 148 may generate an accurate count of the number of uops from the
start of the loop to the specific branch uop corresponding to the branch that was detected. Uop
counter 148 may be reset if the BTB is detected (signifying the end of the loop), if a mispredict
or flush is signaled from the backend of the processor, or if comparator 152 signals an inequality

was detected on a branch distance.

[0072] Iteration counter 150 may be configured to keep track of the number of iterations of
the loop that have fetched and/or decoded. Iteration counter 150 may be reset if a mispredict or
flush is signaled from the backend of the processor or if the distance to one of the branches of
the loop is different from the stored value in the branch tracking table (not shown). This may be
indicated by comparator 152, which may generate a signal indicating inequality if the current
uop counter value for a detected branch is not equal to the corresponding value stored in the
branch tracking table (BTT). Comparator 152 may receive a branch detected signal and the

value from the BTT for the current branch of the loop. Comparator 152 may compare the BTT
18

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

value to the current uop counter value and output the result of this comparison. If the

comparison results in an inequality, then the loop detection logic may be reset.

[0073] In one embodiment, comparator 154 may be configured to compare the output of
iteration counter 150 with a threshold 156. When the iteration counter 150 matches or exceeds
the threshold 156, comparator 154 may output a signal that initiates loop buffer mode for the
processor. In this embodiment, the loop candidate may be tracked over multiple iterations before
loop buffer mode is initiated, and the number of iterations required for tracking may be indicated
by threshold 156. In various embodiments, the threshold 156 is a programmable value. In one
embodiment, the value of the threshold may be based on the time or number of cycles needed for
the processor’s branch prediction mechanism to detect the end of the loop. In some
embodiments, the branch prediction mechanism may be shutdown while the processor is in loop

buffer mode.

[0074] In another embodiment, the number of branches may be counted, and when the
number of branches reaches a threshold, then loop buffer mode may be initiated. For example, if
a loop has five branches, and the branch threshold is 40, then the loop candidate would require
eight iterations to reach the branch threshold. In other embodiments, other ways of determining
how long to track a loop candidate before initiating loop buffer mode may be utilized. For
example, in another embodiment, if either a certain number of branches or a certain number of

iterations are reached, then the processor may enter loop buffer mode.

[0075] Although unit 140 is shown as receiving various signals, such as BTB detected,
number of uops detected, and branch detected, in another embodiment, unit 140 may generate
these signals internally by monitoring the uops that are traversing the processor pipeline. It
should also be understood that the distribution of functionality illustrated in FIG. 6 is not the
only possible distribution of logic for implementing a loop buffer control unit within a processor
pipeline. Other embodiments may include other components and logic and have any suitable
distribution of these components and logic. Furthermore, each of the individual components
may be replaced by one or more similar components that may be configured differently
depending on the embodiment. For example, in the embodiment shown in FIG. 6, only one

backwards taken branch is allowable within a loop candidate. However, in other embodiments, a

19

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

loop candidate may include more than one backwards taken branch, and the logic of the loop

buffer control unit may be modified accordingly.

[0076] Referring now to FIG. 7, one embodiment of a method for tracking a loop candidate is
shown. For purposes of discussion, the steps in this embodiment are shown in sequential order.
It should be noted that in various embodiments of the method described below, one or more of
the elements described may be performed concurrently, in a different order than shown, or may

be omitted entirely. Other additional elements may also be performed as desired.

[0077] In one embodiment, a loop termination branch may be detected in a processor pipeline
(block 172). In various embodiments, a loop termination branch may be defined as a direct
backwards taken branch excluding subroutine calls. In various embodiments, the loop
termination branch may be detected in a fetch stage, in a decoder stage, or in another stage of the
processor pipeline. The loop termination branch uop may be marked so that it may be identified

as the end of a possible loop buffer candidate.

[0078] In response to detecting the loop termination branch, the instruction address of the
loop termination branch may be latched in a loop buffer control unit, a detection started flag may
be set, an iteration counter may be started, and a uop counter may be started (block 174). The
iteration counter may be utilized to keep track of the number of iterations of the loop. Also, in
some embodiments, a branch counter may be started to keep track of the number of branches that
have been detected in all of the iterations of the loop candidate. The value of the iteration
counter and/or the value of the branch counter may be utilized to determine when to initiate loop
buffer mode. When loop buffer mode is initiated, the loop candidate may be cached in the loop
buffer and the fetch front end may be shutdown. The uop counter may be utilized for
determining the distance (in number of uops) to each branch that is detected within the loop

candidate.

[0079] It is noted that in one embodiment, the count maintained by the uop counter may
include vacant slots that are generated as part of the fetch and decode stages. In this
embodiment, it may be assumed for the purposes of this discussion that the fetch unit is
configured to output six uops per cycle. For some clock cycles, the fetch unit may not generate a

full six uop output for a variety of reasons. Therefore, a row of uops sent to the decoder units
20

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

may not include a full row of valid uops. The uops counter may take this into account and count
six for each row even if the row does not contain six valid uops. For example, a loop may
include six rows of uops, and the loop termination branch may be the last slot of the last row of
the sixth cycle of uops generated. The uop counter may count that the loop has 36 uops for the
six cycles, even if one or more of the rows contained less than six valid uops. For example, an
intermediate row may only contain two valid uops, and the remaining four slots of the row may
be empty. Therefore, the loop would include 32 valid uops, but the loop counter will count that
the loop includes 36 uops. Generally speaking, in this embodiment, the uop counter may keep
track of how many slots will be needed in the loop buffer to store the loop candidate even if

some of these slots do not contain valid uops.

[0080] After setting up the counters and any additional tracking logic, the loop candidate may
be executed and tracked (block 176). In one embodiment, tracking the loop candidate may
include detecting branches in the loop candidate and populating a branch tracking table with
distances from the start of the loop to each detected branch (block 178). Next, a loop
termination branch may be detected at the end of the loop candidate (block 180). If the loop
termination branch is the same branch that was previously detected (conditional block 182), then

the iteration counter may be incremented (block 186).

[0081] If the loop termination branch is not the same branch that was previously detected
(conditional block 182), then tracking of the loop candidate may be stopped and the counters,
latch, detection started flag, and branch tracking table may be reset (block 184). Also, tracking
of the loop candidate may be terminated if any excluded instructions are detected in the loop.
After block 184, method 170 may reset and wait for a loop termination branch to be detected

(block 172).

[0082] After block 186, the uop counter may be compared to the size of the loop buffer
(conditional block 188) to determine if the loop candidate can fit in the loop buffer.
Alternatively, in another embodiment, these steps of method 170 may be reordered. For
example, if it is determined that the uop counter exceeds the size of the loop buffer (conditional
block 188) prior to detecting a loop termination branch (block 180), then loop detection may be

cancelled.

21

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
[0083] If the uop counter is less than the size of the loop buffer (conditional block 188), then

the loop candidate can fit in the loop buffer, and so the next condition may be checked, if the
number of branches in the loop candidate is less than the size of the branch tracking table (BTT)
(conditional block 190). If the uop counter is greater than the size of the loop buffer (conditional
block 188), then the loop candidate is too large to fit in the loop buffer and tracking may be
terminated. Method 170 may return to block 184 and the counters, latch, detection started flag,

and branch tracking table may be reset.

[0084] If the number of branches in the loop candidate is less than the size of the BTT
(conditional block 190), then the loop candidate is still in consideration, and the uop counter may
be restarted (block 192). Then, another iteration of the loop may be executed and tracked (block
194). Tracking the iteration of the loop may include monitoring the taken branches and the
number of uops from the start of the loop to cach taken branch. The distance to each taken
branch from the start of the loop may be compared to the values stored in the branch tracking

table.

[0085] When an iteration of the loop completes, a loop termination branch should be
detected, and it may be determined if it is the same loop termination branch (conditional block
196). Alternatively, if the loop termination branch is not detected, loop tracking may be
terminated by monitoring the uop counter and the last entry in the branch tracking table and
determining the loop termination branch should have already been detected. If the loop
termination branch is detected and it is the same loop termination branch (conditional block
196), then it may be determined if the loop contents were invariant for this iteration of the loop

(conditional block 198).

[0086] Alternatively, conditional block 198 may be checked prior to conditional block 196 in
some scenarios. For example, it may be determined that the loop contents have changed prior to
detecting the loop termination branch if one of the branches of the loop is not at the same
distance from the start of the loop as the value stored in the branch tracking table. In this case,

tracking of the loop may be terminated prior to detecting the same loop termination branch.

22

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328

[0087] If the loop contents were invariant for this iteration of the loop (conditional branch
198), then this indicates the same loop is being executed, and then the iteration counter may be
incremented (block 200). Then, it may be determined if the iteration counter is above a
threshold to determine if the loop has been tracked long enough for the loop to be buffered
(conditional block 202). Alternatively, in another embodiment, a branch counter may be

compared to a threshold to determine if the processor should enter loop buffer mode.

[0088] If the iteration counter is below the threshold (conditional block 202), then method
170 may restart the uop counter (block 192). If the iteration counter is above the threshold
(conditional block 202), then the processor may enter loop buffer mode and the loop may be
cached in the loop buffer (block 204). After block 204, method 170 may end. At this point, the
front end of the processor may be turned off and uops may be dispatched out of the loop buffer.
When the loop terminates, the processor may convey a signal to exit loop buffer mode and the
front end of the processor may be turned back on. At this point, method 170 may be restarted,
and the loop buffer control unit may go back to monitoring the instruction stream for loop

termination branches (block 172).

[0089] Referring next to FIG. 8, a block diagram of one embodiment of a system 210 is
shown. As shown, system 210 may represent chip, circuitry, components, etc., of a desktop
computer 220, laptop computer 230, tablet computer 240, cell phone 250, or otherwise. In the
illustrated embodiment, the system 210 includes at least one instance of IC 10 (of FIG. 1)

coupled to an external memory 212.

[0090] IC 10 is coupled to one or more peripherals 214 and the external memory 212. A
power supply 216 is also provided which supplies the supply voltages to IC 10 as well as one or
more supply voltages to the memory 212 and/or the peripherals 214. In various embodiments,
power supply 216 may represent a battery (e.g., a rechargeable battery in a smart phone, laptop
or tablet computer). In some embodiments, more than one instance of IC 10 may be included

(and more than one external memory 212 may be included as well).

[0091] The memory 212 may be any type of memory, such as dynamic random access

memory (DRAM), synchronous DRAM (SDRAM), double data rate (DDR, DDR2, DDR3, etc.)

23

10

15

20

25

30

WO 2013/188122 PCT/US2013/043328
SDRAM (including mobile versions of the SDRAMs such as mDDR3, etc., and/or low power

versions of the SDRAMs such as LPDDR2, etc.), RAMBUS DRAM (RDRAM), static RAM
(SRAM), etc. One or more memory devices may be coupled onto a circuit board to form
memory modules such as single inline memory modules (SIMMs), dual inline memory modules

(DIMMs), etc.

[0092] The peripherals 214 may include any desired circuitry, depending on the type of
system 210. For example, in one embodiment, peripherals 214 may include devices for various
types of wireless communication, such as wifi, Bluetooth, cellular, global positioning system,
etc. The peripherals 214 may also include additional storage, including RAM storage, solid state
storage, or disk storage. The peripherals 214 may include user interface devices such as a
display screen, including touch display screens or multitouch display screens, keyboard or other

input devices, microphones, speakers, etc.

[0093] Turning now to FIG. 9, one embodiment of a block diagram of a computer readable
medium 260 including one or more data structures representative of the circuitry included in IC
10 (of FIG. 1) is shown. Generally speaking, computer readable medium 260 may include any
non-transitory storage media such as magnetic or optical media, e.g., disk, CD-ROM, or DVD-
ROM, volatile or non-volatile memory media such as RAM (e.g. SDRAM, RDRAM, SRAM,
etc.), ROM, etc., as well as media accessible via transmission media or signals such as electrical,
electromagnetic, or digital signals, conveyed via a communication medium such as a network

and/or a wireless link.

[0094] Generally, the data structure(s) of the circuitry on the computer readable medium 260
may be read by a program and used, directly or indirectly, to fabricate the hardware comprising
the circuitry. For example, the data structure(s) may include one or more behavioral-level
descriptions or register-transfer level (RTL) descriptions of the hardware functionality in a high
level design language (HDL) such as Verilog or VHDL. The description(s) may be read by a
synthesis tool which may synthesize the description to produce one or more netlists comprising
lists of gates from a synthesis library. The netlist(s) comprise a set of gates which also represent
the functionality of the hardware comprising the circuitry. The netlist(s) may then be placed and
routed to produce one or more data sets describing geometric shapes to be applied to masks. The

masks may then be used in various semiconductor fabrication steps to produce a semiconductor
24

10

15

WO 2013/188122 PCT/US2013/043328

circuit or circuits corresponding to the circuitry. Alternatively, the data structure(s) on computer
readable medium 230 may be the netlist(s) (with or without the synthesis library) or the data
set(s), as desired. In yet another alternative, the data structures may comprise the output of a

schematic program, or netlist(s) or data set(s) derived therefrom.

[0095] While computer readable medium 260 includes a representation of IC 10, other
embodiments may include a representation of any portion or combination of portions of IC 10

(e.g., loop buffer, loop buffer control unit).

[0096] It should be emphasized that the above-described embodiments are only non-limiting
examples of implementations. Numerous variations and modifications will become apparent to
those skilled in the art once the above disclosure is fully appreciated. It is intended that the

following claims be interpreted to embrace all such variations and modifications.

25

WO 2013/188122 PCT/US2013/043328
WHAT IS CLAIMED IS:

10

15

20

25

30

1. An apparatus comprising:

a loop buffer configured to store instruction operations, wherein instruction operations
are dispatched from the loop buffer responsive to detecting the apparatus is in a
loop buffer mode; and

a loop buffer control unit coupled to the loop buffer, wherein the loop buffer control unit
is configured to:
track a distance from a start of a loop candidate comprising a plurality of

instructions to each taken branch within the loop candidate; and
initiate the loop buffer mode, responsive to detecting distances from the start of
the loop candidate to each of the taken branches are invariant for at least a

given number of iterations of the loop candidate.
The apparatus as recited in claim 1, further comprising a fetch unit and an instruction cache,

wherein the apparatus is configured to shut down at least one of the fetch unit and the

instruction cache responsive to the loop buffer mode being initiated.

The apparatus as recited in claim 1, wherein instruction operations are dispatched from the

loop buffer to a decode unit when the apparatus is in the loop buffer mode.

The apparatus as recited in claim 1, wherein a distance from the start of the loop candidate to

cach taken branch is measured in instruction operations.

The apparatus as recited in claim 1, wherein the given number of iterations corresponds to a

number of iterations greater than a threshold.

The apparatus as recited in claim 5, wherein the threshold is based on an amount of time

needed for a branch predictor to predict an end of loop candidate.

26

10

15

20

25

7.

8.

10.

11.

12.

WO 2013/188122 PCT/US2013/043328

The apparatus as recited in claim 1, further comprising a branch tracking table, wherein the
branch tracking table comprises an entry for each taken branch of the loop candidate, and
wherein each entry includes a value which corresponds to a distance from the start of the

loop candidate to the respective taken branch.

A processor comprising:

a loop buffer; and
a loop buffer control unit coupled to the loop buffer;
wherein the loop buffer control unit is configured to:
monitor a loop candidate responsive to detecting a backwards taken branch;
track one or more distances from a start of the loop candidate to one or more
instructions within the loop candidate;
cause the loop candidate to be stored in the loop buffer responsive to detecting the
one or more distances are invariant for a first plurality of detected taken

branches.

The processor as recited in claim 8, wherein the one or more instructions that are tracked are

one or more taken branches.

The processor as recited in claim 8, wherein the start of the loop candidate is identified as an

instruction after the backwards taken branch.

The processor as recited in claim 8, wherein only one backwards taken branch is allowed in a

loop candidate.

The processor as recited in claim 8, further comprising a map and dispatch unit, wherein
instruction operations are dispatched from the loop buffer to the map and dispatch unit when

the loop candidate is stored in the loop buffer.

27

WO 2013/188122 PCT/US2013/043328

13. The processor as recited in claim 9, wherein the loop buffer control unit is further configured
to terminate monitoring and tracking of the loop candidate responsive to detecting a distance
from the start of the loop candidate to any taken branch has changed on any subsequent

iteration of the loop candidate.

14. The processor as recited in claim 8, wherein the loop buffer control unit is further configured
to terminate monitoring and tracking of the loop candidate responsive to detecting the loop

candidate is unable to fit in the loop buffer.

15. A method comprising:

detecting a loop termination branch;

starting an instruction operation counter and an iteration counter;

tracking a plurality of instructions of a loop candidate;

compare the instruction operation counter to a size of a loop buffer, responsive to
detecting the loop termination branch for a second time;

terminating tracking of the loop candidate responsive to determining the instruction
operation counter is greater than the size of the loop buffer when the loop
termination branch is detected for the second time;

continuing tracking of the loop candidate and incrementing the iteration counter
responsive to determining the instruction operation counter is not greater than the
size of the loop buffer; and

caching the loop candidate in the loop buffer responsive to the iteration counter

exceeding a threshold.

16. The method as recited in claim 15, further comprising:

monitoring a distance from a start of the loop candidate to each taken branch of the loop
candidate on a first number of iterations of the loop candidate; and

terminating tracking of the loop candidate responsive to determining a distance from the
start of the loop candidate to any taken branch of the loop candidate has changed

on any of the first number of iterations of the loop candidate.

28

10

WO 2013/188122 PCT/US2013/043328

17. The method as recited in claim 15, further comprising shutting down a fetch unit responsive

to caching the loop candidate in the loop buffer.

18. The method as recited in claim 15, further comprising dispatching the loop candidate from
the loop buffer to a next stage of a processor pipeline responsive to caching the loop

candidate in the loop buffer.

19. The method as recited in claim 18, wherein the next stage of the processor pipeline is a

decode unit.

20. The method as recited in claim 18, wherein the next stage of the processor pipeline is a map

and dispatch unit.

29

PCT/US2013/043328

WO 2013/188122

1/9

E

21 xojduwon 408800

9l
ndo

14
ndo

4

A

\

81
ayoen
A

Oc
nig

A4

] 52
A AHd
18{j04U0D)
Aiowspyy
- > m
AHdA

0}

PCT/US2013/043328

WO 2013/188122

2/9

ayoes
¢10l1

¢ 9ld

2§ enanp peo]

0G 8nanp 8.0]S

y oyoe) eleqg |

A

7r
(410) hun oeBlU| 8100

y

9
(nS7) wun 91015/pL0T

3

4

74
SHUn UoNIBX3

0y
(o) wun
justusbeueyy Aowsyy

8¢ (90y)
Jayng J1epJosy

9¢
pun yoedsiqydeyy

G¢
Jayng doo7

7€ 8yoe)
UoNINASU

b1

[y

143
nn
(a34) spoosg
pue yoje

0% 2409

WO 2013/188122 PCT/US2013/043328
3/9
Fetch Front End
60
6
v
Vv v v b I
Lane | Lane | Lane | Lane | Lane | Lane
0 1 2 3 4 5 >
Loop Buffer Control
. Unit 64
—P
Loop Buffer 62

'

'

I

I

'

68

Dec Dec Dec Dec Dec Dec
70A 708 70C 70D 70E Z0F

RS

To Map/Dispatch Unit

FIG. 3

I

Uops_From_Start

Uops_From_Start

Branch Tracking
Table 66

WO 2013/188122

PCT/US2013/043328

4/9
Fetch Front End
80
6
Dec Dec Dec Dec Dec Dec
82A 828 82C 82D 82E 82f

Lane | Lane | Lane | Lane | Lane | Lane
0 1 2 3 5
Loop Buffer 84

|

.y

Loop Buffer Control
Unit 86

I

Uops_From_Start

Uops_From_Start

*

Branch Tracking
Table 88

90

To Map/Dispatch Unit

FIG. 4

WO 2013/188122 PCT/US2013/043328
579
Address Instruction
0001 Instruction 102 &———
0002 Instruction 104
0003 Branch 106
Sample
Program
Code of 0025 Instruction 108 4—
Loop "% 0026 Branch 110
100 - -
0077 Instruction 112 j¢—
0078 Instruction 114
0079 Branch 116
. Number of
Instruction Uops
102 1
104 1
106 1
Uops per
Instruction ~_, 108 3
Table 110 1
120 112 2
114 4
116 1
Number of Uops
From Start of Loop
Branch 2
Tracking ~_, 6
Table 13
130

FIG. 5

PCT/US2013/043328

6/9

WO 2013/188122

OPO Jajing
doo] ajeluy

9 9OlId

oneA 119
Gt -
Joereduwion | pejasleq youelg
9sr 3
pjoysaiy
4
— 1058y
iz 05} zﬂlw YSni 10 Joipaldsiyy
19junoy
Jojeseduwior uoneso)| 8g1
’ B e E—
pajosjeq sdon
— 0 48quInN
g 5%
18JUN0Y
QOD < 091)
PPl ERETE
e " p a 4.4
Ssalppy g.149
mﬂ 1989y
5T el
orl
poues 291 - <
juf joqued -
dajng doo] Honoeiea m kemkmwwcoo -

WO 2013/188122

Start — Detect Loop
Buffer Candidate

o
P

y

PCT/US2013/043328

170

>

172A

Detect a Loop Termination
Branch

174
y A

Latch the Instruction
Address of the Branch, Set
Detection Started Flag, and

Start lteration and Uop
Counters

Number of
Branches Less than
Size of BTT?

192 Yes |

Y Y

Restart Uop Counter

176
\ Pt

194
y c

Execute and Track the
Candidate Loop

Execute and Track the
Candidate Loop

178
¥ -

Populate the Branch
Tracking Table

180
s

Detect a Loop Termination
Branch

182

is it the
Same Loop
Termination
Branch?

Loop Contents
Invariant?

200
B

184 Nol«
2 Y

Increment lteration Counter

T

Reset Counters, Latch,
Flag, and BTT

186

e

Increment lteration Counter

¢ 188

Uop Counter
Less than Size of
Loop Buffer?

is lteration

Counter >
Threshold?

204
J

Enter Loop Buffer Mode
and Cache the Loop in the
Loop Buffer

FIG. 7

Y

End - Detect Loop
Buffer Candidate

PCT/US2013/043328

WO 2013/188122

8/9

Y

viZ
sjessyduad

cic

Aiowsyy |

[euieXg

Y

9z
Addng semog

WO 2013/188122

9/9

PCT/US2013/043328

Computer Readable Medium 260

FIG. 9

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings

