
(12) United States Patent
Talagala et al.

US009208071B2

US 9,208,071 B2
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54) APPARATUS, SYSTEM, AND METHOD FOR
ACCESSING MEMORY

(71)

(72)

Applicant: Fusion-io, Inc., Salt Lake City, UT (US)

Inventors: Nisha Talagala, Livermore, CA (US);
David Flynn, Sandy, UT (US)

(73) Assignee: SanDisk Technologies, Inc., Plano, TX
(US)

Notice: (*) Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 249 days.

(21)

(22)

Appl. No.: 13/836,826

Filed: Mar 15, 2013

(65) Prior Publication Data

US 2013/02272O1 A1 Aug. 29, 2013

Related U.S. Application Data
(63) Continuation-in-part of application No. 13/694,000,

filed on Dec. 4, 2012, now Pat. No. 9,047,178, and a
continuation-in-part of application No. 13/324.942,
filed on Dec. 13, 2011, now Pat. No. 8,527,693.

(Continued)

Int. C.
G06F 12/02
G06F 2/08
G06F 3/06
G06F 3/28
U.S. C.
CPC G06F 12/0246 (2013.01); G06F 3/0619

(2013.01); G06F 3/0656 (2013.01); G06F
3/0679 (2013.01); G06F 12/0804 (2013.01);

G06F 13/28 (2013.01); G06F 2212/202
(2013.01); G06F 2212/7205 (2013.01)

Field of Classification Search
None
See application file for complete search history.

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(52)

(58)

to
ACMUser:03

(56) References Cited

U.S. PATENT DOCUMENTS

4,980,861 A 12/1990 Herdt et al.
5, 193,184 A 3, 1993 Belsan et al.
5,261,068 A 11/1993 Gaskins et al.
5,325,509 A 6/1994 Lautzenheiser

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1771495 5, 2006
EP O747822 12/1996

(Continued)

OTHER PUBLICATIONS

“Internet Backbone and Colocation Provider'. Hurricane Electric
Internet Services, downloaded Sep. 28, 2011, p. 1. http://www.he.
net/.

(Continued)

Primary Examiner — Aimee Li
Assistant Examiner — Tracy Chan
(74) Attorney, Agent, or Firm — Kunzler Law Group, PC

(57) ABSTRACT

Apparatuses, systems, methods, and computer program prod
ucts are disclosed for providing access to auto-commit
memory. An auto-commit memory module is configured to
cause a volatile memory buffer to commit data from the
volatile memory buffer to a non-volatile memory medium in
response to a trigger. A mapping module is configured to
determine whether to associate a range of data with the Vola
tile memory buffer. A bypass module is configured to service
a request for the range of data directly from the volatile
memory buffer in response to the mapping module determin
ing to associate the range of data with the Volatile memory
buffer.

25 Claims, 13 Drawing Sheets

Primary Power
Correctics

3D

Memory System 118

Storage Management
Layer 1050

Storage Controller
1 104

Non-Wolatile Storage device 102
auto-commit Memory 1114

3ML API
1019

Auto-Commit
Buffer
1013

ACN Metadata
105

Non-violatile Memory
1110

Crit
Management

1122

Secondary
Power Supply

1824

US 9,208,071 B2

7,243,203 B2 7/2007 Scheuerlein

Page 2

Related U.S. Application Data 6,735,546 B2 5, 2004 Scheuerlein
6,751,155 B2 6/2004 Gorobets

(60) Provisional application No. 61/583,133, filed on Jan. 6,754,774 B2 6/2004 Gruner et al.
4, 2012, provisional application No. 61/637,257, filed Sg E: 38: R tal

- ujisawa et al.
on Apr. 23, 2012, provisional application No. 61/661, 6,779,088 B1 8/2004 Benveniste et al.
742, filed on Jun. 19, 2012, provisional application No. 6,785,785 B2 8, 2004 Piccirillo et al.
61/691.221, filed on Aug. 20, 2012, provisional appli- 6,807,097 B2 10/2004 Takano et al.
cation No. 61/705,058, filed on Sep. 24, 2012, provi- 85. 58. healist

w I-1 OW ca.

sional application No. 61/422,635, filed on Dec. 13, 6,877,076 B1 4/2005 Cho et al.
2010. 6,880,049 B2 4/2005 Gruner et al.

6,883,079 B1 4/2005 Priborsky
(56) References Cited 6,887,058 B2 5/2005 Fujiwara

6,892,298 B2 5, 2005 West
U.S. PATENT DOCUMENTS 6,938,133 B2 8, 2005 Johnson et al.

6,957,158 B1 10/2005 Hancock et al.
6.959,369 B1 10/2005 Ashton et al.

s A E. Rs 6,981,070 B1 12/2005 Luket al.
5504.882 A 4, 1996 Chai 6,996,676 B2 2/2006 Megiddo
5.535.399 A 7, 1996 Blitz 7,010,652 B2 3/2006 Piccirillo et al.
5548,757 A 8, 1996 Matsuyama 7,042,664 B2 5, 2006 Gill et al.

y 7,043,599 B1 5, 2006 Ware et al. 5,553,261 A 9, 1996 Hasbun et al.
5,594,883. A 1, 1997 Pricer 7,050,337 B2 5, 2006 Iwase et al.

-- I 7.057,936 B2 6/2006 Yaegashi et al. 5,598.370 A 1/1997 Niijima et al. g 7,058,769 B1 6/2006 Danilak 5,651,133 A 7, 1997 Burkes 7,064,994 B1 6, 2006 Wu 5,682,497 A 10, 1997 Robinson
5.682.499. A 10, 1997 Bakke et al. 7,089,391 B2 8/2006 Geiger et al.

7,096,321 B2 8, 2006 Modha 5,701434 A 12/1997 Nakagawa 7,167,944 B1 1/2007 Estakhri 5,721,874 A 2f1998 Carnevale
5,754.563 A 5, 1998 White 7,167,953 B2 1/2007 Megiddo et al.

7,173,852 B2 2/2007 Gorobets 5,799,140 A 8/1998 Niijima et al. 7, 177,197 B2 2/2007 Cernea 5,799,200 A 8, 1998 Brant et al.
5.8O2.6O2 A 9, 1998 Rahman et al. 7,181,572 B2 2/2007 Walmsley
5.812457 A 9, 1998 Arase 7,185,162 B1 2/2007 Snyder

7,194.577 B2 3/2007 Johnson et al. 5,845,329 A 12/1998 Onishi et al. 7,194,740 B1 3/2007 Frank et al. 5,960,462 A 9, 1999 Solomon et al.
7,219,238 B2 5/2007 Saito et al. 6,000,019 A 12/1999 Dykstal et al.

6,014,724. A 1/2000 Jenett 7,227,777 B2 6/2007 Roohparvar

&E A 258 *Ster 7,246,179 B2 7/2007 Camara et al.
6.70039 B1 1/2001 Kishida 7,257,129 B2 8, 2007 Lee et al.

T.263,591 B2 8, 2007 Estakhri et al.
6,170,047 B1 1/2001 Dye 4- W -
6,173,381 B1 1/2001 Dye 7,275,135 B2 9, 2007 Coulson

7,305.520 B2 12/2007 Voigt et al. 6,185,654 B1 2/2001 Van Doren - W -
6,205,521 B1 3/2001 Schumann 7,328.307 B2 2/2008 Hoogterp
6,236,593 B1 5/2001 Hong et al. 7,340,558 B2 3/2008 Lee et al.
6,240,040 B1 5/2001 Akaogi et al. 7.340,566 B2 3/2008 Voth

7.340,581 B2 3/2008 Gorobets et al. 6.256,642 B1 7/2001 Krueger et al. 7,380,081 B2 5/2008 Jiet al. 6.278,633 B1 8/2001 Wong et al. 7,398,348 B2 7/2008 Moore et al. 6,295,571 B1 9/2001 Scardamalia et al. T.424,593 B2 9, 2008 E 1
6,295,581 B1 9/2001 DeRoo 4 stakhri et al.

7,441,090 B2 10/2008 Estakhri et al.
6,330,688 B1 12/2001 Brown 7.450,420 B2 11/2008 Sinclair et al.
6,336,174 B1 1/2002 Li et al.
6,356,986 B1 3/2002 Solomon et al. 7.460.432 B2 12/2008 Warner
6,370,631 B1 4/2002 Dye 7,463,521 B2 12/2008 Li
6,385.710 B 5/2002 Gol etal 7.464,240 B2 12/2008 Caulkins et al.
6.404647 Bi 6/2002 dan 7,487.320 B2 2/2009 Bansal et al.
6,412,080 B1 6/2002 Fleming et al. 7,509,454 B2 3/2009 Kano

7,532,537 B2 5/2009 Solomon et al.
6,418.478 B1 7/2002 Ignatius et al. 7.548.464 B2 6, 2009 Ki
6,467,011 B2 10/2002 Scardamalia et al. - I w Im.
6,507.911 B1 1/2003 Langford 7,552,271 B2 6/2009 Sinclair et al.

7,599,967 B2 10/2009 Girkar et al.
6,515,928 B2 2/2003 Sato et al. 7,619,912 B2 11/2009 Bhakta et al.
6,523,102 B1 2/2003 Dye et al. 7,644,239 B2 1/2010 Ergan et al.
3. R $39. NER, 7,725,628 B1 5/2010 E.
6.587,915 B 72003 Kim 7,752,360 B2 7.2010 Galles
6,601.21 B1 7/2003 Norman 7,761,625 B2 7/2010 Karamcheti et al.
6,608.793 B2 8/2003 Parket al. 7,773.521 B2 * 8/2010 Zhang et al. 370,235
6,625,685 B1 9/2003 Choetal. 7,777,652 B2 8/2010 Lee et al.
6,629, 112 B1 9/2003 Shank 7,778,092 B2 8/2010 Klein
6,633,956 B1 10/2003 Mitani 7,818,525 B1 10/2010 Frost et al.
6,655,758 B2 12/2003 Pasotti et al. 7,873,782 B2 1/2011 Terry
6,658.438 B1 12/2003 Moore et al. 7,881,150 B2 2/2011 Solomon et al.
6,671,757 B1 12/2003 Multer et al. 7,898,867 B2 3/2011 Hazama et al.
6,683,810 B2 1/2004 Sakamoto 7,903.468 B2 3/2011 Litzyn et al.
6,694,453 B1 2/2004 Shukla et al. 7,908,501 B2 3/2011 Kim et al.
6,715,027 B2 3/2004 Kim et al. 7,944,762 B2 5/2011 Gorobets
6,715,046 B1 3, 2004 Shoham et al. 7.978,541 B2 7/2011 Sutardja

US 9,208,071 B2
Page 3

(56) References Cited 2007, OO16699 A1 1/2007 Minami
2007/0033325 A1 2/2007 Sinclair

U.S. PATENT DOCUMENTS 2007/0033326 A1 2/2007 Sinclair
2007/0033327 A1 2/2007 Sinclair

8.001.334 B2 8, 2011 Lee 2007/0033362 A1 2/2007 Sinclair
8001434 B 8, 2011 Lee et al. 2007.0043900 A1 2/2007 Yun
8,055,922 B2 11/2011 Brittain et al. 2007/0050571 A1 3/2007 Nakamura
8,081,536 B1 12/2011 Solomon et al. 2007/0061508 A1 3/2007 Zweighaft
8.250.295 B2 8/2012 Amidi et al. 2007, OO86260 A1 4/2007 Sinclair
8,301.833 Bf 10/2012 Cheneral 2007/0088666 A1 4, 2007 Saito
8,359,501 B1 1/2013 Lee et al. 2007/011.8713 A1 5, 2007 Guterman
8423,710 B1 4/2013 Gole T11 103 2007.0143560 A1 6/2007 Gorobets
8,516, 185 B2 8, 2013 Lee et al. 2007.0143566 A1 6/2007 Gorobets
8,516,187 B2 8, 2013 Chen et al. 2007/O156998 A1 7/2007 Gorobets
8,549,330 Bf 10/2013 Chatterjee et al. 2007/0168641 A1 7/2007 Hummel et al.

2002/0066047 A1 5/2002 Olarig et al. 2007. O168698 A1 7/2007 Coulson et al.
2002fOO69318 A1 6, 2002 Chow et al. 2007/O19877O A1 8, 2007 Horii et al.
2002/01038.19 A1 8, 2002 Duvillier 2007/02O8790 A1 9, 2007 Reuter et al.
2002/0133743 A1 9, 2002 Oldfield et al. 2007/0220227 Al 9, 2007 Long
2002fO181134 A1 12/2002 Bunker et al. 2007/0230253 A1 10, 2007 Kim
2003/0028704 A1 2/2003 Mukaida et al. 2007/0233937 A1 10, 2007 Coulson et al.
2003/006 1296 A1 3f2003 Craddock et al. 2007/0233938 A1 10, 2007 Cho et al.
2003/O126475 A1 7/2003 Bodas 2007/023.4021 A1 10/2007 Ruberg et al.
2003. O145230 A1 7, 2003 Chiu et al. 2007/0239728 A1 10, 2007 Smits
2003/0163630 A1 8/2003 Aasheim et al. 2007/0245076 A1 10/2007 Chang et al.
2003/0163663 A1 8/2003 Aasheim et al. 2007.0245094 A1 10, 2007 Lee et al.
2003/0198084 A1 10/2003 Fujisawa et al. 2007/0260608 Al 11/2007 Hertzberg et al.
2003/0210601 A1 11/2003 Lin et al. 2007,0260813 A1 11/2007 Lin
2004.0003002 A1 1/2004 Adelmann 2007,0260821 A1 11/2007 Zeffer et al.
2004, OO64647 A1 4, 2004 DeWhitt et al. 2007/0266037 A1 1 1/2007 Terry
2004/O103238 A1 5/2004 Avraham et al. 2007/0274150 A1 11/2007 Gorobets
2004/O1483.60 A1 7/2004 Mehra et al. 2007/0300008 Al 12/2007 Rogers et al.
2004/O186946 A1 9, 2004 Lee 2008, OO 10395 A1 1/2008 Mylly et al.
2004/0225719 A1 1 1/2004 Kisley et al. 2008.0025.126 A1 1/2008 Jewell et al.
2004/0268359 A1 12, 2004 Hanes 2008/00524.83 A1 2/2008 Rangarajan et al.
2005.0002263 A1 1/2005 Iwase et al. 2008/0059820 A1 3/2008 Vaden et al.
2005.0015539 A1 1/2005 Horii et al. 2008.008O243 A1 4/2008 Edahiro et al.
2005, OO18527 A1 1/2005 Gorobets 2008. O104344 A1 5/2008 Shimozono et al.
2005, OO27951 A1, 2, 2005 Piccirillo et al. 2008/01 17686 Al 5/2008 Yamada
2005, 0141313 A1 6, 2005 Gorobets 2008/O126507 A1 5/2008 Wilkinson
2005/0144361 A1 6/2005 Gonzalez et al. 2008/O126686 A1 5/2008 Sokolov et al.
2005/0172099 A1 8, 2005 Lowe 2008/O140737 A1 6/2008 Garst et al.
2005/0193166 A1 9, 2005 Johnson et al. 2008/0162590 Al 7/2008 Kundu et al.
2005/0210323 A1 9, 2005 Batchelor et al. 2008/0243966 A1 10/2008 Croisettier et al.
2005/0216653 A1 9, 2005 Aasheim et al. 2008/025631.6 A1 10, 2008 Evanchik et al.
2005/024O713 A1 10, 2005 Wu 2008/0263259 A1 10/2008 Sadovsky et al.
2005/024651.0 A1 11/2005 Retnamma et al. 2008/0263305 A1 10, 2008 Shu et al.
2005, O246558 A1 11, 2005 Ku 2008/0263569 A1 10, 2008 Shu et al.
2005/0257017 A1 1 1/2005 Yagi 2008/0266973 A1 10, 2008 Sekar et al.
2005/0257213 A1 11/2005 Chu et al. 2008/0301.475 A1 12/2008 Felter et al.
2005/0262150 Al 1 1/2005 Krishnaswamy 2009/0031098 A1 1/2009 Sartore
2005/0270927 A1 12/2005 Hayashi 20090037778 Al 2, 2009 Resnick
2005/0273476 A1 12, 2005 Wertheimer 2009/0091979 A1 4, 2009 Shalvi
2006,0004955 A1 1/2006 Ware et al. 2009/009 1996 A1 4/2009 Chen et al.
2006.0020744 A1 1/2006 Sinclair 2009/0094676 A1 4/2009 Burugula et al. 726/2
2006, OO26221 A1 2/2006 Chen et al. 2009/0106479 A1 4/2009 Okin et al.
2006/0059326 A1 3f2006 Aasheim et al. 2009.0125700 A1 5, 2009 Kisel
2006/0064556 A1 3f2006 Aasheim et al. 2009. O144818 A1 6/2009 Kumar et al.
2006/0069870 A1 3f2006 Nicholson et al. 2009, O150599 A1 6, 2009 Bennett
2006/0074877 A1 4/2006 Kuersch et al. 2009, O150621 A1 6, 2009 Lee
2006, OO75057 A1 4, 2006 Gildea et al. 2009/0172253 Al 7/2009 Rothman et al.
2006/0085471 A1 4/2006 Rajan et al. 2009/0248763 Al 10/2009 Rajan
2006/0106990 A1 5/2006 Benhase et al. 2009,0287887 A1 11/2009 Matsuki
2006/01 1705.6 A1 6/2006 Havewala et al. 2009,0292861 Al 11/2009 Kanevsky et al.
2006, O136464 A1 6/2006 Rossmann 2010.0005228 A1 1/2010 Fukutomi
2006/O136779 A1 6, 2006 Lee et al. 2010, 0023682 A1 1/2010 Lee et al.
2006, O139069 A1 6, 2006 Frank et al. 2010, OO95059 A1 4/2010 Kisley et al.
2006/01498.93 A1 7/2006 Barfuss et al. 2010.0102999 A1 4/2010 Lee et al.
2006/0149916 A1 7/2006 Nase 2010/0106917 A1 4/2010 Ruberg et al.
2006/0179263 A1 8/2006 Song et al. 2010, 0110748 A1 5, 2010 Best
2006, O184722 A1 8, 2006 Sinclair 2010/0122017 A1 5/2010 Toyama
2006/0184736 A1 8/2006 Benhase et al. 2010, 0124123 A1 5, 2010 Lee
2006/0190552 A1 8/2006 Henze et al. 2010, 0131826 A1 5, 2010 Shalvi et al.
2006/0212644 A1 9, 2006 Acton et al. 2010.0153680 A1 6, 2010 Baum et al.
2006/0230295 A1 10, 2006 Schumacher et al. 2010, 0199.020 A1 8, 2010 Lin et al.
2006/0248387 A1 11/2006 Nicholson et al. 2010/0205335 A1 8, 2010 Phan et al.
2006/0265624 A1 1 1/2006 Moshayedi 2010/0211737 A1 8/2010 Flynn
2006/0265636 A1 11/2006 Hummler 2010/0228936 A1 9/2010 Wright et al.
2006/0280048 Al 12/2006 Jung et al. 2010, O250831 A1 9, 2010 O’Brien et al.

US 9,208,071 B2
Page 4

(56) References Cited

U.S. PATENT DOCUMENTS

2010, O2573O4 A1
2010, O262738 A1
2010, O26274.0 A1
2010, O262757 A1
2010, O262758 A1
2010, O262759 A1
2010, O262760 A1
2010, O262761 A1
2010, O262762 A1
2010, O262766 A1
2010, O262767 A1
2010, O262773 A1
2010, O262894 A1
2010, O262979 A1
2010/0268974 A1
2010/02873.47 A1
2010/0332871 A1
2010/0332897 A1
2011 0035562 A1 2/2011 Gaither
2011/0208911 A1 8/2011 Taguchi et al.
2012/0096.217 A1* 4/2012 Son et al. T11 103
2012fO239860 A1 9/2012 Atkisson et al.
2012fO239868 A1 9/2012 Ryan et al.

10/2010 Rajan et al.
10/2010 Swing et al.
10/2010 Borchers et al.
10/2010 Sprinkle et al.
10/2010 Swing et al.
10/2010 Borchers et al.
10/2010 Swing et al.
10/2010 Borchers et al.
10/2010 Borchers et al.
10/2010 Sprinkle et al.
10/2010 Borchers et al.
10/2010 Borchers et al.
10/2010 Swing et al.
10/2010 Borchers et al.
10/2010 Floyd et al.
11/2010 Cameron et al.
12/2010 Allaloufetal.
12/2010 Wilson

FOREIGN PATENT DOCUMENTS

GB O123416 9, 2001
JP 1032O270 11, 1998
KR 20000026300 5, 2000
KR 2001.00344.76 4/2001
KR 2005OO24278 3, 2005
KR 2006O107728 10, 2006
WO O131512 5, 2001
WO O2O1365 1, 2002
WO 2004O77219 9, 2004
WO 2004O99989 11, 2004
WO 2005103878 11, 2005
WO 2006.062511 6, 2006
WO 2006065626 6, 2006
WO 2008130799 3, 2008
WO 2008070799 6, 2008
WO 201005.3756 5, 2010
WO 2011 106394 9, 2011
WO 2012050934 4/2012
WO 2012O82792 6, 2012

OTHER PUBLICATIONS

Savov, Vlad, “Viking Modular's SATADIMM Jacks an SSD Into
Your Memory Slot', Engadget, Aug. 27, 2010, pp. 6, http://www.
engadget.com/2010/08/27/viking-modulars-Satadimm-jacks-an
SSd-into-your.
Wu, Michael, “eNVy: A Non-Volatile, Main Memory Storage Sys
tem”, ACM, 1994, pp. 12, 0-89791-660-3/94/0010, San Jose, Cali
fornia, US.
2380.2.53pct, P201009PCT, Application No. PCT/US2011/053792,
International Search Report and Written Opinion, May 4, 2012.
2380.2.53pct, P201009pct, Application No. PCT/US2011/053792,
International Preliminary Report on Patentability, Apr. 11, 2013.
U.S. Appl. No. 13/248,006, 2380.2.53, P201009US1, Office Action,
Aug. 30, 2013.
U.S. Appl. No. 13/248,006, 2380.2.53, P201009US1, Notice of
Allowance, Nov. 8, 2013.
U.S. Appl. No. 14/011.395, 2380.2.71US2, Office Action, Oct. 31,
2014.
“Problem: Non-Volatile RAMs Today'. AGIGATech, pp. 11, San
Diego, California, US.
AgigaRAM Company review, Feb. 17, 2010, p. 1.
“Finding the Perfect Memory”, AGIGATech, Sep. 3, 2009, pp. 15,
Agiga Tech White Paper.
“Pivot3 RAIGE Storage Cluster', Pivot3, Jun. 2007, pp. 17, Tech
nology Overview White Paper.

Plank, James S., "A Tutorial on Reed-Solomon Coding for Fault
Tolerance in RAID-like Systems”. University of Tennessee, pp. 19.
Technical Report CS-96-332, http://www.cs.utk.edu/plank?papers/
CS-03-504.html.
“Introduction to Samsung's Linux Flash File System—RFS'.
Samsung Electronics, Nov. 2006, pp. 6, Application Note, Version
1.0.

U.S. Appl. No. 1 1/952,113, 2380.2.7. Office Action, Dec. 15, 2010.
“SCSI Object-Based Storage Device Commands (OSD), ANSI, Jul.
30, 2004, pp. 187. Information Technology, Revision 10, Reference
No. ISO/IEC 14776-391.
Lottiaux, Renaud, OpenMosix. OpenSSland Kerrighed: A Compara
tive Study, Inria, Nov. 2004, pp. 23. Institut National De Recherche
en Informatique et en Automatique.
Magenheimer, Dan, "(Take 2): Transcendent Memory (“tmem”) for
Linux', LWN Merchandise, Jul. 7, 2009, http://lwn.net/Articles/
340409?.
Rose, Mike, “FPGA PCIe Bandwidth”, University of California San
Diego, Jun. 9, 2010, pp. 7.
Condit, Jeremy, "Better I/O Through Byte-Addressable, Persistent
Memory”, Microsoft Research, Oct. 11-14, 2009, pp. 14, ACM978
1-60558-742-3/09/10.
Wu, Michael, “eNVy: A Non-Volatile, Main Memory Storage Sys
tem”, ACM, 1994, pp. 12, 0-89791-660-3/94/0010.
Ajanovic, Jasmin, PCI Express (PCIe) 3.0 Accelerator Features,
Intel Corporation, 2008, pp. 10.
“NAND Flash 101: An Introduction to NAND Flash and How to
Design. It into your Next Product”. Micron Technical Note, 2006, pp.
28, TN-29-19: NAND Flash 101 Introduction.
“Pivot3 Raige Storage Cluster” Pivot3 Technology Overview, Jun.
2007, pp. 17. White Paper.
PCT/US2007/025049, 2380.2.15pct, International Preliminary
Report on Patentability, Mar. 11, 2009.
Application No. 200780050983.8, 2380.2.16CN, Office Action, May
18, 2011.
PCT/US2007/025048, 2380.2.16pct, International Search Report
and Written Opinion, May 27, 2008.
PCT/US2007/025048, 2380.2.16pct, International Preliminary
Report on Patentability, Jun. 18, 2009.
U.S. Appl. No. 12/878.981, 2380.2.34US1, Notice of Allowance,
Jun. 25, 2012.
U.S. Appl. No. 12/878.981, 2380.2.34US1, Notice of Allowance,
Aug. 28, 2012.
Application No. 07865334.2, 2380.2.3 EP, Office Action, Nov. 17,
2010.
Application No. 07865334.2, 2380.2.3 EP, Office Action, Jan. 30,
2012.
PCT/US2007/086687, 2380.2.3pct,
Report on Patentability, Mar. 18, 2009.
PCT/US2007/086687. 2380.2.3pct, International Search Report and
Written Opinion, Sep. 5, 2008.
U.S. Appl. No. 1 1/952,101, 2380.2.4, Office Action, Jan. 6, 2011.
PCT/US2011/025885, 2380.2.43pct, International Search Report
and Written Opinion, Sep. 28, 2011.
PCT/US2011/025885, 2380.2.43pct, International Preliminary
Report on Patentability, Sep. 7, 2012.
U.S. Appl. No. 13/015,458,2380.2.45, Notice of Allowance, Sep. 19,
2012.
U.S. Appl. No. 12176826.1, 2380.2.45EP2, P20 1002EP2, Search
Report, Dec. 10, 2012.
U.S. Appl. No. 13/189,402, 2380.2.45US2, Notice of Allowance,
Nov. 15, 2012.
PCT/US2007/086688, 2380.2.4pct,
Report on Patentability, Mar. 16, 2009.
PCT/US2007/086688, 2380.2.4pct, International Search Report and
Written Opinion, Apr. 28, 2008.
PCT/US2011/053795, 2380.2.56pct, P201010pct, International
Search Report and Patentability, May 4, 2012.
U.S. Appl. No. 1 1/952,109,2380.2.6, Office Action, Nov. 29, 2011.
U.S. Appl. No. 1 1/952,109,2380.2.6, Office Action, May 1, 2012.
U.S. Appl. No. 1 1/952,109,2380.2.6, Office Action, Mar. 17, 2011.
U.S. Appl. No. 1 1/952,109,2380.2.6, Office Action, Jul. 1, 2011.

International Preliminary

International Preliminary

US 9,208,071 B2
Page 5

(56) References Cited

OTHER PUBLICATIONS

Application No. 200780050970.0, 2380.2.6CN, Office Action, Oct.
28, 2010.
Application No. 200780050970.0, 2380.2.6CN, Office Action, Jun.
29, 2011.
Application No. 200780050970.0, 2380.2.6CN, Office Action, Jan.
5, 2012.
PCT/US2007 1086691, 2380.2.6pct, International Search Report and
Written Opinion, May 8, 2008.
PCT/US2007 1086691, 2380.2.6pct, International Preliminary
Report on Patentability, Feb. 16, 2009.
U.S. Appl. No. 1 1/952,113, 2380.2.7. Office Action, Mar. 6, 2012.
Application No. 200780051020.X., 2380.2.7CN, Office Action, Nov.
11, 2010.
Application No. 200780051020.X., 2380.2.7CN, Office Action, Nov.
7, 2011.
Application No. 07865345.8, 2380.2.7EP, Office Action, Nov. 17,
2010.

Application No. 07865345.8, 2380.2.7EP, Office Action, Jan. 30,
2012.
PCT/US2007/086701, 2380.2.7pct,
Report on Patentability, Mar. 16, 2009.
PCT/US2007/086701, 2380.2.7pct, International Search Report and
Written Opinion, Jun. 5, 2008.
PCT/US2007/086702, 2380.2.8pct,
Report on Patentability, Nov. 19, 2009.
PCT/US2007/086702, 2380.2.8pct, International Search Report and
Written Opinion, Nov. 4, 2009.
Suh, Kang-Deog, "A 3.3 V 32 Mb NAND Flash Memory with Incre
mental Step Pulse Programming Scheme", IEEE Journal of Solid
State Circuits, Nov.30, 1995, pp. 8, XP000553051, New York, US.
“NAND Flash Memories and Programming NAND Flash Memories
Using ELNEC Device Programmers'. ELNEC, Aug. 2008, pp. 44.
Application Note, an elnec nand flash, version 2.10.
Wright, Charles P. “Amino: Extending ACID Semantics to the File
System”, first cited Feb. 15, 2012, pp. 1.
“File Level Caching”. Adabas, accessed Aug. 3, 2012, pp. 9, http://
documentation. Softwareag.com/adabas?ada824mfr/addons/acfser
vices/file-level-caching.htm.
Gal, Eran, "A Transactional Flash File System for Microcontrollers'.
Tel-Aviv University, 2005, pp. 16, USENIX Annual Technical Con
ference.
Garfinkel, Simson L., “One Big File is Not Enough', Harvard Uni
versity, Jun. 28, 2006, pp. 31.
Gutmann, Peter, “Secure Deletion of Data from Magnetic and Solid
State Memory”. Sixth USENIX Security Symposium Proceedings,
Jul. 22-25, 1996, pp. 18, San Jose, California, US.
“Information Technology-SCSI Object-Based Storage Device Com
mands (OSD). Seagate Technology, Jul. 30, 2004, pp. 187. Project
T10/1355-D, Revision 10.
Kawaguchi, Atsuo, “A Flash-Memory Based File System'. Hitachi,
Ltd., 1995, pp. 10, Hatoyama, Saitama, Japan.
Leventhal, Adam, “Flash Storage Memory”. Communications of the
ACM, Jul. 2008, pp. 5, vol. 51, No. 7.
Kim. Jin-Ki, "Low Stress Program and Single Wordline Erase
Schemes for NAND Flash Memory”, MOSAID Technologies Inc.,
2007, pp. 2, 1-4244-0753-2/07, Ontario, Canada.
Mesnier, Mike, "Object-Based Storage'. IEEE Communications
Magazine, Aug. 2003, pp.7, 0163-680403.
Morgenstern, David, “Is There a Flash Memory Raid in Your
Future?”. Ziff Davis Enterprise Holdings, Inc., Nov. 8, 2006, pp. 4.
“File System Primer'. CoolSolutionsWiki, downloaded Oct. 18.
2006, pp. 5. http://wiki.novell.com/index.php/File System Primer.
PCT/US2008/059048, International Search Report and Written
Opinion, Aug. 25, 2008.
PCT/US2010/048320, 2380.2.34pct2, International Search Report
and Written Opinion, Apr. 28, 2011.
PCT/US2010/048321, 2380.2.34pct1. International Search Report
and Written Opinion, Apr. 28, 2011.

International Preliminary

International Preliminary

Porter, Donald E., "Operating System Transactions”. University of
Texas at Austin, Oct. 11-14, 2009, pp. 20, Big Sky, Montana, US.
Arpaci-Duseau, Andrea C., “Removing the Costs of Indirection in
Flash-based SSDs with Nameless Writes”. University of sconsin
Madison, Microsoft Research, Jun. 2010, pp. 5.
Rosenblum, Mendel, “The Design and Implementation of a Log
Structured File System”, ACM Transactions on Computer Systems,
Feb. 1992, pp. 27, vol. 10, No. 1.
“Introduction to Samsung's Linux Flash File System-RFS'.
Samsung Electronics, Nov. 2006, pp. 6, Application Note, Version
1.0.
Sears, Russell C. “Statis: Flexible Transactional Storage'. Univer
sity of California at Berkeley, Jan. 8, 2010, pp. 176, Technical Report
No. UCB/EECS-2010-2, http://www.eecs.berkeley.edu/Pubs/
TechRpts/2010/EECS-2010-2.html.
Seltzer, Margo Ilene, “File System Performance and Transaction
Support', University of California at Berkeley, 1983, pp. 131.
Seltzer, Margo I., “Transaction Support in a Log-Structured File
System'. Harvard University, Jan. 1, 1993, pp. 8.
Seltzer, Margo, “Transaction Support in Read Optimized and Write
Optimized File Systems”. University of California, 1990, pp. 12,
Proceedings of the 16th VLDB Conference, Brisbane, Australia.
“Data Management Software (DMS) for AMD Simultaneous Read/
Write Flash Memory Devices'. Spansion, Jul. 2003, pp. 10, Publi
cation No. 22274, Revision A, Amendment 0.
Spillane, Richard P. "Enabling Transactional FileAccess via Light
weight Kernel Extensions'. IBM T.J. Watson Research Center, 2009,
pp. 23, Proceedings of the 7th USENIX Conference on File and
Storage Technologies.
Tal, Arie. “NAND vs. NOR Flash Technology”. Hearst Electronic
Products, Mar. 5, 2013, pp. 3. http://www.electronicproducts.com/
Digital ICs/NAND vs NOR flash.
Van Hensbergen, Eric, "Dynamic Policy Disk Caching for Storage
Networking”, IBM Research Report, Nov. 28, 2006, pp. 13,
RC24123 (W0611-189).
Volos, Haris, “Mnemosyne: Lightweight Persistent Memory”, Uni
versity of Wisconsin-Madison, Mar. 5-11, 2011, pp. 13, ASPLOS 11.
Plank, James S., "A Tutorial on Reed-Solomon Coding for Fault
Tolerance in RAID-like Systems”. University of Tennessee, first
cited Jan. 9, 2012, pp. 19, Technical Report CS-96-332, http://www.
cs.utk.edu/-plank?papers/cs-03-504.html.
"Actel Fusion FPGAs Supporting Intelligent Peripheral Management
Interface (IPMI) Applications”. Actel, Oct. 2006, pp. 17. Application
Note AC286.
"Method for Fault Tolerance in Nonvolatile Storage'.
Prior ArtDatabase, Feb. 3, 2005, pp. 6, IPCOMO00042269D.
Ari, Ismail, “Performance Boosting and Workload Isolation in Stor
age Area Networks with SANCache', Hewlett Packard Laboratories,
May 2006, pp. 11, Proceedings of the 23rd IEEE/14th NASA God
dard Conference on Mass Storage Systems and Technologies (MSST
2006), College Park, Maryland, US.
“ASPMC-660 Rugged IDE Flash Drive PMC Module”, ASINE,
copyright 2002, pp. 3. http://www.asinegroup.com/products/
aspmc660.html.
Brandon, Daniel, Jr., “Sparse Matrices in CS Education'. Consor
tium for Computing Sciences in Colleges, 2009, pp. 6.
Coburn, Joel, “NV-Heaps: Making Persistent Objects Fast and Safe
with Next-Generation, Non-Volatile Memories'. University of Cali
fornia, San Diego, Mar. 5-11, 2011, pp. 13, 2011 ACM 978-1-4503
0266-1/11/03, Newport Beach, California, US.
Dan, Raz, “Implementing MLC NAND Flash for Cost-Effective,
High-Capacity Memory. M-Systems White Paper, Sep. 2003, pp.
13, 91-SR-014-02-8L, Rev 1.1.
Application No. 200780051020.X., 2380.2.7CN, Office Action, Jul.
6, 2011.
PCT/US2007/086691, 2380.2.6pct, International Search Report and
Written Opinion, May 8, 2008.
2380.2.71 pct, P201021 PCT, Application No. PCT/US2011/064728,
International Search and Written Opinion, Jul. 31, 2012.
Mellor, Chris, “New RAM Shunts Data into Flash in Power Cuts',
The Channel, Oct. 29, 2011, http://www.channelregisterco.uk/2011/
10/19/viking hybrid dram nand?.
AgigaRAM Company, Technology Review, Feb. 17, 2010.

US 9,208,071 B2
Page 6

(56) References Cited

OTHER PUBLICATIONS

“Problem. Non-Volatile RAMs Today”, AgigaTech, pp. 11.
“Bulletproof Memory for RAID Servers, Part 1". Agigatech, 2009,
pp. 4. http://agigatech.com/blog/bulletproof-memory-for-raid-Serv
ers-part-1/.
Ajanovic, Jasmin, “PCI Express* (PCIe)3.0 Accelerator Features'.
Intel Corporation, 2008, pp. 10.
“DDRdrive Hits the ground Running with its PCI-E RAM-based
SSD. PCPerspective, pp. 2, downloaded Dec. 10, 2010, pp. 2. http://
www.peper.com/article.php?aid=704.
Hutsell, Woody, “An In-Depth Look at the RamSan-500 Cached
Flash Solid State Disk”, Texas Memory Systems, Mar. 2008, pp. 16.
Shrout, Ryan, "Gigabyte iRAM Solid State SATA Storage Review”.
part 1, PCPerspective, Apr. 5, 2006, pp. 2. http://www.pcper.com/
article.php?aid=224&type=expert.
Shrout, Ryan, "Gigabyte iRAM Solid State SATA Storage Review”.
part 2, PCPerspective, Apr. 5, 2006, pp. 4. http://www.pcper.com/
article.php?aid=224&type=expert&pid=3.
U.S. Appl. No. 13/324.942, 2380.2.71 US1, P201021US1, Notice of
Allowance, May 2, 2013.
U.S. Appl. No. 1 1/952,098, 2380.2.3, Office Action, Jan. 7, 2011.
U.S. Appl. No. 1 1/952,098, 2380.2.3, Office Action, Jan. 13, 2012.
U.S. Appl. No. 1 1/952,098, 2380.2.3, Office Action, Sep. 18, 2012.
U.S. Appl. No. 1 1/952,098, 2380.2.3, Office Action, Oct. 8, 2013.
U.S. Appl. No. 13/174,449, 2380.2.3US2, Office Action, Sep. 6,
2011.
U.S. Appl. No. 13/174,449, 2380.2.3US2, Office Action, Sep. 11,
2012.
U.S. Appl. No. 60/625,495, Provisional, Nov. 6, 2044.
U.S. Appl. No. 60/718,768, Provisional, Aug. 20, 2005.
U.S. Appl. No. 60/797,127. Provisional, May 3, 2006.
“BiTMICRO Introduces E-Disk PMC flash Disk Module',
BiTMICRO, May 18, 2004, pp. 2, Military & Aerospace Electronics
East 2004, http://www.bitmicro.com/press news releases
20040518 prt.php.
U.S. Appl. No. 14/011,395, 2380.2.71US2, P201021US2, Office
Action, Jan. 16, 2014.

U.S. Appl. No. 14/011,395, 2380.2.104, P201230US1, Final Office
Action, Jun. 26, 2014.
Application No. 10816108.4, 2380.2.34EP, Examination Report,
Feb. 4, 2014.
Application No. PCT/US2014/048129, 23802.110PCT, Interna
tional Search Report and Written Opinion, Nov. 7, 2014.
AgigaRAM Company, Technology Review, reviewed Feb. 17, 2010.
U.S. Appl. No. 14/011,395, 2380.2.71US2, Office Action, Jun. 26,
2014.
Megiddo, Nimrod, "ARC: A Self-Tuning, Low Overhead Replace
ment Cache'. Proceedings of FAST 03: 2nd USENIX Conference
on file and Storage Technologies, Mar. 31-Apr. 2, 2003, pp. 17, San
Francisco, California, US.
Coburn, Joel, “From ARIS to MARS: Reengineering Transaction
Management for Next-Generation, Solid-State Drives'. UCSD CSE
Technical Report, downloaded Jul. 11, 2013, pp. 17, San Diego,
California, US.
Volos, Haris, “Mnemosyne: Lightweight Persistent Memory” poster,
University of Wisconsin, 2010.
Volos, Haris, “Mnemosyne: Lightweight Persistent Memory', poster
abstract, University of Wisconsin, 2010.
Guerra, Jorge, “Software Persistent Memory”, Florida International
University, downloaded Jul. 11, 2013, pp. 13.
Application No. PCT/US2007/025049, 2380.2.15PCT, International
Preliminary Report on Patentability, Mar. 11, 2009.
Application No. 11848174.6, 2380.2.71 EP P201021 EP, Search
Report, Apr. 2, 2014.
Application No. PCT/US2007/086702, 2380.2.8PCT, International
Preliminary Report on Patentability, Nov. 19, 2009.
Application No. PCT/US2007/086691, 2380.2.6PCT, International
Preliminary Report on Patentability, Feb. 16, 2009.
U.S. Appl. No. 13/694,000, 2380.2.104, Notice of Allowance, Feb. 4,
2015.
U.S. Appl. No. 14,042,189, 2380.2.67US2, Office Action, Jun. 4,
2015.
Application No. 2011800598.626, 2380.2.71CN, Office Action, Apr.
1, 2015.
U.S. Appl. No. 14/011.395, 2380.2.71 US2, Final Office Action, May
8, 2015.

* cited by examiner

U.S. Patent

1OO

Acknowledgement

Storage
Device
102

Storage
Controller

104.

Auto-Commit
Memory 1011

Secondary
Power Supply

124

Dec. 8, 2015

3

Sheet 1 of 13

Non-Volatile Memory
110

FIG. 1

g

US 9.208,071 B2

Primary
Power

Connection
130

U.S. Patent Dec. 8, 2015 Sheet 2 of 13 US 9.208,071 B2

too
ACMUSer 1016

SML API
1019

Storage Management
Layer 1050

Auto-Commit Memory 1011

Controller Commit Agent
1004 1020

Auto-Commit
1030 Buffer

Primary Power 1013
Connection

ACM Metadata
1015

Secondary
Power Supply

1024

FIG 2

U.S. Patent Dec. 8, 2015 Sheet 3 of 13 US 9.208,071 B2

1100

N
ACMUSer 1016

Memory System 10 18
Primary Power

Connection
1030

SML API

Storage Management
Layer 1050

Non-Volatile Storage Device 1102

Storage Controller Auto-Commit Memory 1111
1104.

Auto-Commit
Buffer

Write Data 1013
Pipeline Read Data
1106 Pipeline ACM Metadata

1108 1015

Commit Secondary
Non-Volatile Memory Management Power Supply

1110 1024

U.S. Patent Dec. 8, 2015 Sheet 4 of 13 US 9.208,071 B2

1200 N ACM User 1016

Memory System 1 0 18

ACM Address Range

SML API
1019

Storage Management
Layer 1050

ACM 101 1A ACM 1011B

FIG. 4

U.S. Patent Dec. 8, 2015 Sheet 5 of 13 US 9.208,071 B2

isolation Zone - Tight Coupling

Commit Management Apparatus
1122

Monitor Module
1310

Non-Volatile
Storage
Controller

1304 Commit MOCule U

1320

Write Dat ldentification Terminate Corruption
E" Module Module Module
1306 1312 1314 1316

ACM Module Completion
MOCule

1317
Non-Volatile 1318

Storage Media
1310

Secondary Power
Supply 1324

U.S. Patent Dec. 8, 2015 Sheet 6 of 13 US 9.208,071 B2

HOSt 1014
File:

ea ?ts

Memory System 1018 SMAP

1500

LD 1025

ACM Address
Range
1021

Memory Semantic
Interface
1522

Block Device Interface
1520

BUS 1040

ACM 1011
Auto-Commit Buffer

Non-Volatile Storage
1502

Secondary Power
Supply
1024

FIG. 6

U.S. Patent Dec. 8, 2015 Sheet 7 of 13 US 9.208,071 B2

1600 y

1620 Map Auto-Commit Buffer into Memory
System

1630 Arm Auto-COmmit Buffer

1640 Provide Access Using Memory
SemanticS

1650

FIG. 7

U.S. Patent Dec. 8, 2015 Sheet 8 of 13 US 9.208,071 B2

1700 y

1710

1720 Map Auto-Commit Buffer, Arm with
Logical lodentifier

1730 Memory Semantic Access to Triggered
Auto-COmmit Buffer

1740
Detect Reset Condition

1750 Implement Triggered Auto-Commit
Operations

FIG. 8

U.S. Patent Dec. 8, 2015 Sheet 9 of 13 US 9.208,071 B2

1800 y

Detect Reset Condition

1830
ACCeSS Armed Auto-COmmit Buffers

1840
Perform Triggered Commit Action(s)

FIG. 9

U.S. Patent Dec. 8, 2015 Sheet 10 of 13

ACM Module
1317

Mapping
Module
1904

US 9.208,071 B2

Mapping
Module
1904

FIG 1 OA

ACM Module
1317

Read Write
MOdule MOCule
1912 1914

FIG 1 OB

HaS-Been
Written Module

1908

Security
Module
1910

U.S. Patent Dec. 8, 2015 Sheet 11 of 13 US 9.208,071 B2

2009, 2102

2008
2106 A M

B G

21 1 O 2112 2018 2114 2116 21 18

212, 21.30 2134

aaa2 ccc... x 2 yyyy2222222.
2122 2124 2126

U.S. Patent Dec. 8, 2015 Sheet 12 of 13 US 9.208,071 B2

2200

22O2 Receive Request for Data

ldentify Relationship
between Data and ACM

Satisfy Request
Using ACM

2204

2206

FIG. 12

U.S. Patent Dec. 8, 2015 Sheet 13 of 13 US 9.208,071 B2

2300

2302

ASSOciate
With ACM

Yes

Map to ACM

Satisfy Request from
Non-Volatile Medium

ASSOCiated
With ACM

2304

2310
Satisfy Request

Directly from ACM

FIG. 13

US 9,208,071 B2
1.

APPARATUS, SYSTEM, AND METHOD FOR
ACCESSING MEMORY

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application:
is a continuation-in-part of and claims priority to U.S.

patent application Ser. No. 13/694,000, now U.S. Pat.
No. 9,047,178, entitled “APPARATUS, SYSTEM,
AND METHOD FOR AUTO-COMMIT MEMORY
MANAGEMENT and filed on Dec. 4, 2012 for Nisha
Talagala, et al.:

claims the benefit of U.S. Provisional Patent Application
No. 61/705,058 entitled “APPARATUS, SYSTEM,
AND METHOD FOR SNAPSHOTS IN A STORAGE
DEVICE’ and filed on Sep. 24, 2012 for Nisha Talagala,
et al.;

claims the benefit of U.S. Provisional Patent Application
No. 61/691,221 entitled “APPARATUS, SYSTEM,
AND METHOD FOR AUTO-COMMIT MEMORY
and filed on Aug. 20, 2012 for Nisha Talagala, et al.:

claims the benefit of U.S. Provisional Patent Application
No. 61/661,742 entitled “APPARATUS, SYSTEM,
AND METHOD FOR AUTO-COMMIT MEMORY
and filed on Jun. 19, 2012 for Nisha Talagala, et al.:

claims the benefit of U.S. Provisional Patent Application
No. 61/637,257 entitled “APPARATUS, SYSTEM,
AND METHOD FOR AUTO-COMMIT MEMORY
and filed on Apr. 23, 2012 for David Flynn, et al.:

claims the benefit of U.S. Provisional Patent Application
No. 61/583,133 entitled “APPARATUS, SYSTEM,
AND METHOD FOR AUTO-COMMIT MEMORY
and filed on Jan. 4, 2012 for David Flynn, et al.:

is a continuation-in-part application of and claims priority
to U.S. patent application Ser. No. 13/324.942, now U.S.
Pat. No. 8,527,693, entitled “APPARATUS, SYSTEM,
AND METHOD FOR AUTO-COMMIT MEMORY
and filed on Dec. 13, 2011 for David Flynn, et al.; and

claims the benefit of U.S. Provisional Patent Application
No. 61/422,635 entitled “APPARATUS, SYSTEM,
AND METHOD FOR AUTO-COMMIT MEMORY
and filed on Dec. 13, 2010 for David Flynn, et al., each
of which are incorporated herein by reference.

TECHNICAL FIELD

This disclosure relates to auto-commit memory and more
particularly to an interface for accessing auto-commit
memory.

BACKGROUND

Volatile memory Such as random access memory (RAM)
typically has faster access times than non-volatile storage,
such as NAND flash, magnetic hard disk drives, or the like.
While the capacities of volatile memory continue to increase
as the price of Volatile memory decreases, volatile memory
remains more expensive per unit of capacity than most non
Volatile storage.

This often leads to design tradeoffs between the speed and
performance of volatile memory and the lower price of non
Volatile storage at larger capacities. Further, to achieve the
speed and performance benefits of volatile memory, a system
typically sacrifices the persistence of non-volatile memory,
causing data to be irretrievably lost without power.

10

15

25

30

35

40

45

50

55

60

65

2
SUMMARY

Methods for providing access to auto-commit memory are
presented. In one embodiment, a method includes receiving a
request for data. A request, in certain embodiments, includes
a namespace identifier. A method, in one embodiment,
includes identifying a relationship between a namespace
identifier and a memory. In one embodiment, a method
includes satisfying a request using a memory without passing
the request through an operating system storage Stack in
response to an identified relationship associating a
namespace identifier with the memory.

Apparatuses for providing access to auto-commit memory
are presented. In one embodiment, an auto-commit memory
module is configured to cause a volatile memory buffer to
commit data from the volatile memory buffer to a non-volatile
memory medium in response to the data filling the Volatile
memory buffer. A mapping module, in a further embodiment,
is configured to determine whether to associate a range of
addresses for data with a volatile memory buffer. In certain
embodiments, a bypass module is configured to service a
request for a range of addresses for data directly from a
Volatile memory buffer in response to an auto-commit map
ping module determining to associate a range of addresses for
data with the volatile memory buffer.
An apparatus, in one embodiment, includes means for

associating a logical identifier with a page of Volatile
memory. In a further embodiment, an apparatus includes
means for bypassing an operating system storage stack to
satisfy a storage request for data of a page of volatile memory
directly. In certain embodiments, an apparatus includes
means for preserving data of a page of volatile memory in
response to a failure condition.

Systems for providing access to auto-commit memory are
presented. In one embodiment, a system includes a recording
device comprising one or more auto-commit pages config
ured to preserve data of the auto-commit pages in response to
a restart event. A system, in a further embodiment, includes a
device driver for a recording device. A device driver, in cer
tain embodiments, is configured to cause data of auto-commit
pages to be mapped, from kernel-space, into virtual memory.
A device driver, in one embodiment, is configured to service
requests, from user-space, for data of auto-commit pages.
Computer program products comprising a computer read

able storage medium storing computer usable program code
executable to perform operations for providing access to
auto-commit memory is also presented. In one embodiment,
an operation includes intercepting, in user-space, a storage
request for a memory device. A storage request, in certain
embodiments, comprises a file identifier and an offset. An
operation, in a further embodiment, includes servicing a stor
age request in user-space directly from a volatile memory of
a memory device in response to determining that an offset and
a file identifier are mapped to the Volatile memory. An opera
tion, in one embodiment, includes mapping an offset and a file
identifier to a Volatile memory in response to determining that
a file identifier is not mapped to the volatile memory.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the advantages of this disclosure will be
readily understood, a more particular description of the dis
closure briefly described above will be rendered by reference
to specific embodiments that are illustrated in the appended
drawings. Understanding that these drawings depict only
typical embodiments of the disclosure and are not therefore to
be considered to be limiting of its scope, the disclosure will be

US 9,208,071 B2
3

described and explained with additional specificity and detail
through the use of the accompanying drawings, in which:

FIG. 1 is a schematic block diagram illustrating one
embodiment of a system for auto-commit memory;

FIG. 2 is a block diagram of one embodiment of an auto
commit memory;

FIG. 3 is a block diagram of another embodiment of an
auto-commit memory;

FIG. 4 is a block diagram of a system comprising a plural
ity of auto-commit memories;

FIG. 5 is a block diagram of an auto-commit memory
implemented with a commit management apparatus;

FIG. 6 is a block diagram of another embodiment of a
system comprising an auto-commit memory;

FIG. 7 is a flow diagram of one embodiment of a method
for providing an auto-commit memory;

FIG. 8 is a flow diagram of another embodiment of a
method for providing an auto-commit memory;

FIG. 9 is a flow diagram of another embodiment of a
method for providing an auto-commit memory;

FIG. 10A is a schematic block diagram illustrating one
embodiment of an auto-commit memory module:

FIG. 10B is a schematic block diagram illustrating another
embodiment of an auto-commit memory module:

FIG. 11 is a schematic block diagram illustrating one
embodiment of a mapping structure, a sparse logical address
space, and a log-based writing structure;

FIG. 12 is a schematic flow chart diagram illustrating one
embodiment of a method for providing access to auto-commit
memory; and

FIG. 13 is a schematic flow chart diagram illustrating
another embodiment of a method for providing access to
auto-commit memory.

DETAILED DESCRIPTION

Reference throughout this specification to features, advan
tages, or similar language does not imply that all of the
features and advantages that may be realized with the present
disclosure should be or are in any single embodiment of the
disclosure. Rather, language referring to the features and
advantages is understood to mean that a specific feature,
advantage, or characteristic described in connection with an
embodiment is included in at least one embodiment of the
present disclosure. Thus, discussion of the features and
advantages, and similar language, throughout this specifica
tion may, but do not necessarily, refer to the same embodi
ment.

Furthermore, the described features, advantages, and char
acteristics of the disclosure may be combined in any suitable
manner in one or more embodiments. One skilled in the
relevant art will recognize that the disclosure may be prac
ticed without one or more of the specific features or advan
tages of a particular embodiment. In other instances, addi
tional features and advantages may be recognized in certain
embodiments that may not be present in all embodiments of
the disclosure. These features and advantages of the present
invention will become more fully apparent from the following
description and appended claims, or may be learned by the
practice of the disclosure as set forth hereinafter.
Many of the functional units described in this specification

have been labeled as modules, in order to more particularly
emphasize their implementation independence. For example,
a module may be implemented as a hardware circuit compris
ing custom VLSI circuits or gate arrays, off-the-shelf semi
conductors such as logic chips, transistors, or other discrete
components. A module may also be implemented in program

10

15

25

30

35

40

45

50

55

60

65

4
mable hardware devices such as field programmable gate
arrays, programmable array logic, programmable logic
devices or the like.
Modules may also be implemented in software for execu

tion by various types of processors. An identified module of
executable code may, for instance, comprise one or more
physical or logical blocks of computer instructions which
may, for instance, be organized as an object, procedure, or
function. Nevertheless, the executables of an identified mod
ule need not be physically located together, but may comprise
disparate instructions stored in different locations which,
when joined logically together, comprise the module and
achieve the stated purpose for the module.

Indeed, a module of executable code may be a single
instruction, or many instructions, and may even be distributed
over several different code segments, among different pro
grams, and across several memory devices. Similarly, opera
tional data may be identified and illustrated herein within
modules, and may be embodied in any suitable form and
organized within any Suitable type of data structure. The
operational data may be collected as a single data set, or may
be distributed over different locations including over different
storage devices, and may exist, at least partially, merely as
electronic signals on a system or network. Where a module or
portions of a module are implemented in Software, the Soft
ware portions are stored on one or more computer readable
media.

Reference throughout this specification to “one embodi
ment.” “an embodiment, or similar language means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the present disclosure. Thus, appearances of
the phrases “in one embodiment,” “in an embodiment, and
similar language throughout this specification may, but do not
necessarily, all refer to the same embodiment.

Reference to a computer readable medium may take any
form capable of storing machine-readable instructions on a
digital processing apparatus. A computer readable medium
may be embodied by a compact disk, digital-Video disk, a
magnetic tape, a Bernoulli drive, a magnetic disk, a punch
card, flash memory, integrated circuits, or other digital pro
cessing apparatus memory device.

Furthermore, the described features, structures, or charac
teristics of the disclosure may be combined in any suitable
manner in one or more embodiments. In the following
description, numerous specific details are provided. Such as
examples of programming, Software modules, user selec
tions, network transactions, database queries, database struc
tures, hardware modules, hardware circuits, hardware chips,
etc., to provide a thorough understanding of embodiments of
the disclosure. One skilled in the relevant art will recognize,
however, that the disclosure may be practiced without one or
more of the specific details, or with other methods, compo
nents, materials, and so forth. In other instances, well-known
structures, materials, or operations are not shown or described
in detail to avoid obscuring aspects of the disclosure.
The schematic flow chart diagrams included herein are

generally set forth as logical flow chart diagrams. As such, the
depicted order and labeled steps are indicative of one embodi
ment of the presented method. Other steps and methods may
be conceived that are equivalent in function, logic, or effect to
one or more steps, or portions thereof, of the illustrated
method. Additionally, the format and symbols employed are
provided to explain the logical steps of the method and are
understood not to limit the scope of the method. Although
various arrow types and line types may be employed in the
flow chart diagrams, they are understood not to limit the scope

US 9,208,071 B2
5

of the corresponding method. Indeed, some arrows or other
connectors may be used to indicate only the logical flow of the
method. For instance, an arrow may indicate a waiting or
monitoring period of unspecified duration between enumer
ated steps of the depicted method. Additionally, the order in
which a particular method occurs may or may not strictly
adhere to the order of the corresponding steps shown.

FIG. 1 depicts one embodiment of a system 100 for data
and/or power management in the event of a power failure,
power reduction, or other power loss. In the depicted embodi
ment, the system 100 includes a host computing device 114
and a storage device 102. The host 114 may be a computer
Such as a server, laptop, desktop, or other computing device
known in the art. The host 114 typically includes components
Such as memory, processors, buses, and other components as
known to those of skill in the art.
The host 114 stores data in the storage device 102 and

communicates data with the storage device 102 via a com
munications connection (not shown). The storage device 102
may be internal to the host 114 or external to the host 114. The
communications connection may be abus, a network, or other
manner of connection allowing the transfer of data between
the host 114 and the storage device 102. In one embodiment,
the storage device 102 is connected to the host 114 by a PCI
connection such as PCI express (PCI-e). The storage device
102 may be a card that plugs into a PCI-e connection on the
host 114.

The storage device 102 also has a primary power connec
tion 130 that connects the storage device 102 with a primary
power source that provides the storage device 102 with the
power that it needs to perform data storage operations such as
reads, writes, erases, etc. The storage device 102, under nor
mal operating conditions, receives the necessary power from
the primary power source over the primary power connection
130. In certain embodiments, such as the embodiment shown
in FIG. 1, the primary power connection 130 connects the
storage device 102 to the host 114, and the host 114 acts as the
primary power source that Supplies the storage device 102
with power. In certain embodiments, the primary power con
nection 130 and the communications connection discussed
above are part of the same physical connection between the
host 114 and the storage device 102. For example, the storage
device 102 may receive power over a PCI connection.

In other embodiments, the storage device 102 may connect
to an external power Supply via the primary power connection
130. For example, the primary power connection 130 may
connect the storage device 102 with a primary power Source
that is a power converter (often called a power brick). Those
in the art will appreciate that there are various ways by which
a storage device 102 may receive power, and the variety of
devices that can act as the primary power source for the
storage device 102.
The storage device 102 provides nonvolatile storage,

memory, and/or recording media 110 for the host 114. FIG. 1
shows the storage device 102 comprising a write data pipeline
106, a read data pipeline 108, nonvolatile memory 110, a
storage controller 104, an auto-commit memory 1011, and a
secondary power Supply 124. The storage device 102 may
contain additional components that are not shown in order to
provide a simpler view of the storage device 102.
The nonvolatile memory 110 stores data such that the data

is retained even when the storage device 102 is not powered.
Examples of nonvolatile memory 110 include flash memory,
nano random access memory (nano RAM or NRAM), nanoc
rystal wire-based memory, silicon-oxide based sub-10
nanometer process memory, graphene memory, Silicon-OX
ide-Nitride-Oxide-Silicon (SONOS), Resistive random-ac

10

15

25

30

35

40

45

50

55

60

65

6
cess memory (RRAM), programmable metallization cell
(PMC), conductive-bridging RAM (CBRAM), magneto-re
sistive RAM (MRAM), dynamic RAM (DRAM), phase
change RAM (PRAM), or other non-volatile solid-state stor
age media. In other embodiments, the non-volatile memory
110 may comprise magnetic media, optical media, or other
types of non-volatile storage media. For example, in those
embodiments, the non-volatile storage device 102 may com
prise a hard disk drive, an optical storage drive, or the like.

While the non-volatile memory 110 is referred to herein as
“memory media, in various embodiments, the non-volatile
memory 110 may more generally comprise a non-volatile
recording media capable of recording data, the non-volatile
recording media may be referred to as a non-volatile memory
media, a non-volatile storage media, or the like. Further, the
non-volatile storage device 102, in various embodiments,
may comprise a non-volatile recording device, a non-volatile
memory device, a non-volatile storage device, or the like.
The storage device 102 also includes a storage controller

104 that coordinates the storage and retrieval of data in the
nonvolatile memory 110. The storage controller 104 may use
one or more indexes to locate and retrieve data, and perform
other operations on data stored in the storage device 102. For
example, the storage controller 104 may include a groomer
for performing data grooming operations such as garbage
collection.
As shown, the storage device 102, in certain embodiments,

implements a write data pipeline 106 and a read data pipeline
108, an example of which is described in greater detail below
with regard to FIG. 3. The write data pipeline 106 may per
form certain operations on data as the data is transferred from
the host 114 into the nonvolatile memory 110. These opera
tions may include, for example, error correction code (ECC)
generation, encryption, compression, and others. The read
data pipeline 108 may perform similar and potentially inverse
operations on data that is being read out of nonvolatile
memory 110 and sent to the host 114.
The storage device 102 also includes a secondary power

supply 124 that provides power in the event of a complete or
partial power disruption resulting in the storage device 102
not receiving enough electrical power over the primary power
connection 130. A power disruption is any event that unex
pectedly causes the storage device 102 to stop receiving
power over the primary power connection 130, or causes a
significant reduction in the power received by the storage
device 102 over the primary power connection 130. A signifi
cant reduction in power, in one embodiment, includes the
power falling below a predefined threshold. The predefined
threshold, in a further embodiment, is selected to allow for
normal fluctuations in the level of power from the primary
power connection 130. For example, the power to a building
where the host 114 and the storage device 102 may go out. A
user action (such as improperly shutting down the host 114
providing power to the storage device 102), a failure in the
primary power connection 130, or a failure in the primary
power Supply may cause the storage device 102 to stop receiv
ing power. Numerous, varied power disruptions may cause
unexpected power loss for the storage device 102.
The secondary power Supply 124 may include one or more

batteries, one or more capacitors, a bank of capacitors, a
separate connection to a power Supply, or the like. In one
embodiment, the secondary power Supply 124 provides
power to the storage device 102 for at least a power hold-up
time during a power disruption or other reduction in power
from the primary power connection 130. The secondary
power Supply 124, in a further embodiment, provides a power
hold-up time long enough to enable the storage device 102 to

US 9,208,071 B2
7

flush data that is not in nonvolatile memory 110 into the
nonvolatile memory 110. As a result, the storage device 102
can preserve the data that is not permanently stored in the
storage device 102 before the lack of power causes the storage
device 102 to stop functioning. In certain implementations,
the secondary power Supply 124 may comprise the Smallest
capacitors possible that are capable of providing a predefined
power hold-up time to preserve space, reduce cost, and sim
plify the storage device 102. In one embodiment, one or more
banks of capacitors are used to implement the secondary
power Supply 124 as capacitors are generally more reliable,
require less maintenance, and have a longer life than other
options for providing secondary power.

In one embodiment, the secondary power Supply 124 is
part of an electrical circuit that automatically provides power
to the storage device 102 upon a partial or complete loss of
power from the primary power connection 130. Similarly, the
system 100 may be configured to automatically accept or
receive electric power from the secondary power supply 124
during a partial or complete power loss. For example, in one
embodiment, the secondary power Supply 124 may be elec
trically coupled to the storage device 102 in parallel with the
primary power connection 130, so that the primary power
connection 130 charges the secondary power Supply 124 dur
ing normal operation and the secondary power Supply 124
automatically provides power to the storage device 102 in
response to a power loss. In one embodiment, the system 100
further includes a diode or other reverse current protection
between the secondary power Supply 124 and the primary
power connection 130, to prevent current from the secondary
power Supply 124 from reaching the primary power connec
tion 130. In another embodiment, the auto-commit memory
1011 may enable or connect the secondary power supply 124
to the storage device 102 using a Switch or the like in response
to reduced power from the primary power connection 130.
An example of data that is not yet in the nonvolatile

memory 110 may include data that may be held in volatile
memory as the data moves through the write data pipeline
106. If data in the write data pipeline 106 is lost during a
power outage (i.e., not written to nonvolatile memory 110 or
otherwise permanently stored), corruption and data loss may
result.

In certain embodiments, the storage device 102 sends an
acknowledgement to the host 114 at some point after the
storage device 102 receives data to be stored in the nonvolatile
memory 110. The write data pipeline 106, or a sub-compo
nent thereof, may generate the acknowledgement. It is advan
tageous for the storage device 102 to send the acknowledge
ment as soon as possible after receiving the data.

In certain embodiments, the write data pipeline 106 sends
the acknowledgement before data is actually stored in the
nonvolatile memory 110. For example, the write data pipeline
106 may send the acknowledgement while the data is still in
transit through the write data pipeline 106 to the nonvolatile
memory 110. In such embodiments, it is highly desirable that
the storage device 102 flush all data for which the storage
controller 104 has sent an acknowledgement to the nonvola
tile memory 110 before the secondary power supply 124 loses
Sufficient power in order to prevent data corruption and main
tain the integrity of the acknowledgement sent.

In addition, in certain embodiments, some data within the
write data pipeline 106 may be corrupted as a result of the
power disruption. A power disruption may include a power
failure as well as unexpected changes in power levels Sup
plied. The unexpected changes in power levels may place data
that is in the storage device 102, but not yet in nonvolatile
memory 110, at risk. Data corruption may begin to occur

10

15

25

30

35

40

45

50

55

60

65

8
before the auto-commit memory 1011 is even aware (or noti
fied) that there has been a disruption in power.

For example, the PCI-e specification indicates that, in the
event that a power disruption is signaled, data should be
assumed corrupted and not stored in certain circumstances.
Similar potential corruption may occur for storage devices
102 connected to hosts 114 using other connection types,
Such as PCI, serial advanced technology attachment (serial
ATA or SATA), parallel ATA (PATA), small computer system
interface (SCSI), IEEE 1394 (FireWire), Fiber Channel, uni
versal serial bus (USB), PCIe-AS, or the like. A complication
may arise when a power disruption occurs (meaning that data
received from that point to the present time may be presumed
corrupt), a period of time passes, the disruption is sensed and
signaled, and the auto-commit memory 1011 receives the
signal and becomes aware of the power disruption. The lag
between the power disruption occurring and the auto-commit
memory 1011 discovering the power disruption can allow
corrupt data to enter the write data pipeline 106. In certain
embodiments, this corrupt data should be identified and not
stored to the nonvolatile memory 110. Alternately, this cor
rupt data can be stored in the nonvolatile memory 110 and
marked as corrupt as described below. For simplicity of
description, identifying corrupt data and not storing the data
to the nonvolatile memory 110 will be primarily used to
describe the functions and features herein. Furthermore, the
host 114 should be aware that this data was not stored, or
alternatively data for which integrity is a question is not
acknowledged until data integrity can be verified. As a result,
corrupt data should not be acknowledged.
The storage device 102 also includes the auto-commit

memory 1011. In certain embodiments, the auto-commit
memory 1011 is in communication with, managed by, or at
least partially integrated with the storage controller 104. The
auto-commit memory 1011 may, for instance, cooperate with
a software driver and/or firmware for the storage device 102.
In one embodiment, at least a portion of the auto-commit
memory 1011 is implemented on the storage device 102, so
that the auto-commit memory 1011 continues to function
during a partial or complete power loss using power from the
secondary power Supply 124, even if the host 114 is no longer
functioning.

In one embodiment, the auto-commit memory 1011 ini
tiates a power loss mode in the storage device 102 in response
to a reduction in power from the primary power connection
130. During the power loss mode, the auto-commit memory
1011, in one embodiment flushes data that is in the storage
device 102 that is not yet stored in nonvolatile memory 110
into the nonvolatile memory 110. In particular embodiments,
the auto-commit memory 1011 flushes the data that has been
acknowledged and is in the storage device 102 that is not yet
stored in nonvolatile memory 110 into the nonvolatile
memory 110. In certain embodiments, described below, the
auto-commit memory 1011 may adjust execution of data
operations on the storage device 102 to ensure that essential
operations complete before the secondary power Supply 124
loses sufficient power to complete the essential operations,
i.e. during the power hold-up time that the secondary power
Supply 124 provides.

In certain embodiments, the essential operations comprise
those operations for data that has been acknowledged as
having been stored. Such as acknowledged write operations.
In other embodiments, the essential operations comprise
those operations for data that has been acknowledged as
having been stored and erased. In other embodiments, the
essential operations comprise those operations for data that
have been acknowledged as having been stored, read, and

US 9,208,071 B2
9

erased. The auto-commit memory 1011 may also terminate
non-essential operations to ensure that those non-essential
operations do not consume powerunnecessarily and/or do not
block essential operations from executing; for example, the
auto-commit memory 1011 may terminate erase operations,
read operations, unacknowledged write operations, and the
like.

In one embodiment, terminating non-essential operations
preserves power from the secondary power Supply 124.
allowing the secondary power Supply 124 to provide the
power hold-up time. In a further embodiment, the auto-com
mit memory 1011 quiesces or otherwise shuts down operation
of one or more subcomponents of the storage device 102
during the power loss mode to conserve power from the
secondary power Supply 124. For example, in various
embodiments, the auto-commit memory 1011 may quiesce
operation of the read data pipeline 108, a read direct memory
access (DMA) engine, and/or other Subcomponents of the
storage device 102 that are associated with non-essential
operations.
The auto-commit memory 1011 may also be responsible

for determining what data was corrupted by the power dis
ruption, preventing the corrupt data from being Stored in
nonvolatile memory 110, and ensuring that the host 114 is
aware that the corrupted data was never actually stored on the
storage device 102. This prevents corruption of data in the
storage device 102 resulting from the power disruption.

In one embodiment, the system 100 includes a plurality of
storage devices 102. The auto-commit memory 1011, in one
embodiment, manages power loss modes for each storage
device 102 in the plurality of storage devices 102, providing
a system-wide power loss mode for the plurality of storage
devices 102. In a further embodiment, each storage device
102 in the plurality of storage devices 102 includes a separate
auto-commit memory 1011 that manages a separate power
loss mode for each individual storage device 102. The auto
commit memory 1011, in one embodiment, may quiesce or
otherwise shut down one or more storage devices 102 of the
plurality of storage devices 102 to conserve power from the
secondary power Supply 124 for executing essential opera
tions on one or more other storage devices 102.

In one embodiment, the system 100 includes one or more
adapters for providing electrical connections between the
host 114 and the plurality of storage devices 102. An adapter,
in various embodiments, may include a slot or port that
receives a single storage device 102, an expansion card or
daughter card that receives two or more storage devices 102.
or the like. For example, in one embodiment, the plurality of
storage devices 102 may each be coupled to separate ports or
slots of the host 114. In another example embodiment, one or
more adapters, such as daughter cards or the like, may be
electrically coupled to the host 114 (i.e. connected to one or
more slots or ports of the host 114) and the one or more
adapters may each provide connections for two or more Stor
age devices 102.

In one embodiment, the system 100 includes a circuit
board, such as a motherboard or the like, that receives two or
more adapters, such as daughter cards or the like, and each
adapter receives two or more storage devices 102. In a further
embodiment, the adapters are coupled to the circuit board
using PCI-e slots of the circuit board and the storage devices
102 are coupled to the adapters using PCI-e slots of the
adapters. In another embodiment, the storage devices 102
each comprise a dual in-line memory module (DIMM) of
non-volatile solid-state storage. Such as Flash memory, or the
like. In one embodiment, the circuit board, the adapters, and
the storage devices 102 may be external to the host 114, and

10

15

25

30

35

40

45

50

55

60

65

10
may include a separate primary power connection 130. For
example, the circuit board, the adapters, and the storage
devices 102 may be housed in an external enclosure with a
power supply unit (PSU) and may be in communication with
the host 114 using an external bus such as eSATA, eSATAp,
SCSI, FireWire, Fiber Channel, USB, PCIe-AS, or the like. In
another embodiment, the circuit board may be a motherboard
of the host 114, and the adapters and the storage devices 102
may be internal storage of the host 114.

In view of this disclosure, one of skill in the art will rec
ognize many configurations of adapters and storage devices
102 for use in the system 100. For example, each adapter may
receive two storage devices 102, four storage devices 102, or
any number of storage devices. Similarly, the system 100 may
include one adapter, two adapters, three adapters, four adapt
ers, or any supported number of adapters. In one example
embodiment, the system 100 includes two adapters and each
adapter receives four storage devices 102, for a total of eight
storage devices 102.

In one embodiment, the secondary power Supply 124 pro
vides electric power to each of a plurality of storage devices
102. For example, the secondary power supply 124 may be
disposed in a circuit on a main circuit board or motherboard
and may provide power to several adapters. In a further
embodiment, the system 100 includes a plurality of secondary
power supplies that each provide electric power to a subset of
a plurality of storage devices 102. For example, in one
embodiment, each adapter may include a secondary power
supply 124 for storage devices 102 of the adapter. In a further
embodiment, each storage device 102 may include a second
ary power supply 124 for the storage device 102. In view of
this disclosure, one of skill in the art will recognize different
arrangements of secondary power Supplies 124 for providing
power to a plurality of storage devices 102.
The systems, methods, and apparatus described above may

be leveraged to implement an auto-commit memory capable
of implementing memory semantic write operations (e.g.,
persistent writes) at CPU memory write granularity and
speed. By guaranteeing that certain commit actions for the
write operations will occur, even in the case of a power failure
or other restart event, in certain embodiments, volatile
memory such as DRAM, SRAM, BRAM, or the like, may be
used as, considered, or represented as non-volatile.
A restart event, as used herein, comprises an intentional or

unintentional loss of power to at least a portion of the host
computing device and/or a non-volatile storage device. A
restart event may comprise a system reboot, reset, or shut
down event; a power fault, power loss, or power failure event;
or another interruption or reduction of power. By guarantee
ing certain commit actions, the auto-commit memory may
allow storage clients to resume execution states, even after a
restart event, may allow the storage clients to persist different
independent data sets, or the like.
As used herein, the term “memory semantic operations, or

more generally, “memory operations.” refers to operations
having a granularity, Synchronicity, and access semantics of
Volatile memory accesses, using manipulatable memory
pointers, or the like. Memory semantic operations may
include, but are not limited to: load, store, peek, poke, write,
read, set, clear, and so on. Memory semantic operations may
operate at a CPU-level of granularity (e.g., single bytes,
words, cachelines, or the like), and may be synchronous (e.g.,
the CPU waits for the operation to complete). In certain
embodiments, providing access at a larger sized granularity,
Such as cache lines, may increase access rates, provide more
efficient write combining, or the like than smaller sized
granularity access.

US 9,208,071 B2
11

The ACM may be available to computing devices and/or
applications (both local and remote) using one or more of a
variety of memory mapping technologies, including, but not
limited to, memory mapped I/O (MMIO), port I/O, port
mapped IO (PMIO). Memory mapped file I/O, and the like.
For example, the ACM may be available to computing
devices and/or applications (both local and remote) using a
PCI-e BaseAddress Register (BAR), or other suitable mecha
nism. ACM may also be directly accessible via a memory bus
of a CPU, using an interface such as a double data rate (DDR)
memory interface, HyperTransport, QuickPath Interconnect
(QPI), or the like. Accordingly, the ACM may be accessible
using memory access semantics, such as CPU load/store,
direct memory access (DMA), 3" party DMA, remote DMA
(RDMA), atomic test and set, and so on. The direct, memory
semantic access to the ACM disclosed herein allows many of
the system and/or virtualization layer calls typically required
to implement committed operations to be bypassed, (e.g., call
backs via asynchronous Input/Output interfaces may be
bypassed). In some embodiments, an ACM may be mapped to
one or more virtual ranges (e.g., virtual BAR ranges, virtual
memory addresses, or the like). The virtual mapping may
allow multiple computing devices and/or applications to
share a single ACM address range 1021 (e.g., access the same
ACM simultaneously, within different virtual address
ranges). An ACM may be mapped into an address range of a
physical memory address space addressable by a CPU so that
the CPU may use load/store instructions to read and write data
directly to the ACM using memory semantic accesses. A
CPU, in a further embodiment, may map the physically
mapped ACM into a virtual memory address space, making
the ACM available to user-space processes or the like as
virtual memory.
The ACM may be pre-configured to commit its contents

upon detection of a restart condition (or other pre-determined
triggering event) and, as Such, operations performed on the
ACM may be viewed as being “instantly committed. For
example, an application may perform a “write-commit”
operation on the ACM using memory semantic writes that
operate at CPU memory granularity and speed, without the
need for separate corresponding "commit” commands, which
may significantly increase the performance of applications
affected by write-commit latencies. As used herein, a write
commit operation is an operation in which an application
writes data to a memory location (e.g., using a memory
semantic access), and then issues a Subsequent commit com
mand to commit the operation (e.g., to persistent storage or
other commit mechanism).

Applications whose performance is based on write-commit
latency, the time delay between the initial memory write and
the Subsequent persistent commit operation, typically attempt
to reduce this latency by leveraging a virtual memory system
(e.g., using a memory backed file). In this case, the applica
tion performs high-performance memory semantic write
operations in System RAM, but, in order to commit the opera
tions, must perform Subsequent “commit” commands to per
sist each write operation to the backing file (or other persistent
storage). Accordingly, each write-commit operation may
comprise its own separate commit command. For example, in
a database logging application, each log transaction must be
written and committed before a next transaction is logged.
Similarly, messaging systems (e.g., store and forward sys
tems) must write and commit each incoming message, before
receipt of the message can be acknowledged. The write
commit latency, therefore, comprises a relatively fast
memory semantic write followed by a much slower operation
to commit the data to persistent storage. Write-commit

10

15

25

30

35

40

45

50

55

60

65

12
latency may include several factors including, access times to
persistent storage, system call overhead (e.g., translations
between RAM addresses, backing store LBA, etc.), and so on.
Examples of applications that may benefit from reduced
write-commit latency include, but are not limited to: database
logging applications, filesystem logging, messaging applica
tions (e.g., Store and forward), semaphore primitives, and so
O.

The systems, apparatus, and methods for auto-commit
memory disclosed herein may be used to significantly
increase the performance of write-commit latency bound
applications by providing direct access to a memory region at
any suitable level of addressing granularity including byte
level, page level, cache-line level, or other memory region
level, that is guaranteed to be committed in the event of a
system failure or other restart event, without the application
issuing a commit command. Accordingly, the write-commit
latency of an application may be reduced to the latency of a
memory semantic access (a single write over a system bus).

FIG. 2 is a block diagram of a system 1000 comprising one
embodiment of an auto-commit memory (ACM) 1011. As
used herein, an auto-commit memory comprises low-latency,
high reliability memory media, exposed to ACM users for
direct memory semantic access, at a memory semantic access
and address granularity level of at least byte level, combined
with logic and components together configured to restore the
same state of data stored in the ACM 1011 that existed prior
to the restart event and the same level of memory semantic
access to data stored in the auto-commit memory after a
restart event. In certain embodiments, the ACM 1011 guar
antees that data stored in the ACM 1011 will be accessible
after a restart event. The ACM 1011, in one embodiment,
comprises a volatile memory media coupled to a controller,
logic, and other components that commit data to a non-vola
tile storage medium when necessary or when directed by an
ACM user. In a further embodiment, the ACM 1011 may
include a natively non-volatile storage medium such as phase
change memory (PCM or PRAM), and a triggered commit
action may process data on the non-volatile storage medium
in response to a restart event Such that the data remains
available to an owner of the data after the restart event.

Accordingly, when data is written to the ACM 1011, it may
not initially be “committed perse (is not necessarily stored
on a persistent memory media and/or state); rather, a pre
configured process is setup to preserve the ACM data and its
state, if a restart event occurs while the ACM data is stored in
the ACM 1011. The pre-configuring of this restart survival
process is referred to herein as “arming.” The ACM 1011 may
be capable of performing the pre-configured commit action
autonomously and with a high degree of assurance, despite
the system 1000 experiencing failure conditions or another
restart event. As such, an entity that stores data on the ACM
1011 may consider the data to be “instantaneously commit
ted' or safe from loss or corruption, at least as safe as if the
data were stored in a non-volatile storage device Such as a
hard disk drive, tape storage media, or the like.

In embodiments where the ACM 1011 comprises a volatile
memory media, the ACM 1011 may make the volatile
memory media appear as a non-volatile memory, may present
the Volatile memory as a non-volatile medium, or the like,
because the ACM 1011 preserves data, such as ACM data
and/or ACM metadata 1015, across system restart events. The
ACM 1011 may allow a volatile memory media to be used as
a non-volatile memory media by determining that a trigger
event, such as a restart or failure condition, has occurred,
copying the contents of the Volatile memory media to a non
Volatile memory media during a hold-up time after the trigger

US 9,208,071 B2
13

event, and copying the contents back into the Volatile memory
media from the non-volatile memory media after the trigger
event is over, power has been restored, the restart event has
completed, or the like.

In one embodiment, the ACM 1011 is at least byte addres
sable. A memory media of the ACM 1011, in certain embodi
ments, may be natively byte addressable, directly providing
the ACM 1011 with byte addressability. In another embodi
ment, a memory media of the ACM 1011 is not natively byte
addressable, but a volatile memory media of the ACM 1011 is
natively byte addressable, and the ACM 1011 writes or com
mits the contents of the byte addressable volatile memory
media to the non-byte addressable memory media of the
ACM 1011 in response to a trigger event, so that the volatile
memory media renders the ACM 1011 byte addressable.
The ACM 1011 may be accessible to one or more comput

ing devices, such as the host 1014. As used herein a comput
ing device (such as the host 1014) refers to a computing
device capable of accessing an ACM. The host 1014 may be
a computing device that houses the ACM 1011 as a periph
eral; the ACM 1011 may be attached to a system bus 1040 of
the host 1014; the ACM 1011 may be in communication with
the host 1014 over a data network; and/or the ACM 1011 may
otherwise be in communication with the host 1014. The host
1014, in certain embodiments, may access the ACM 1011
hosted by another computing device. The access may be
implemented using any Suitable communication mechanism,
including, but not limited to: CPU programmed IO (CPIO),
port-mapped IO (PMIO), memory-mapped IO (MMIO), a
Block interface, a PCI-e bus, Infiniband, RDMA, or the like.
The host 1014 may comprise one or more ACM users 1016.
As used herein, an ACM user 1016 refers to any operating
system (OS), virtual operating platform (e.g., an OS with a
hypervisor), a guest OS, application, process, thread, entity,
utility, user, or the like, that is configured to access the ACM
1011.
The ACM 1011 may be physically located at one or more

levels of the host 1014. In one embodiment, the ACM 1011
may be connected to a PCI-e bus and may be accessible to the
host 1014 with MMIO. In another embodiment, the ACM
1011 may be directly accessible to a CPU of the host 1014 via
a memory controller. For example, the ACM 1011 may be
directly attached to and/or directly (e.g., Quick Path Intercon
nect (QPI)) in communication with a CPU of the host 1014 or
the like. Volatile media of the ACM 1011 and non-volatile
backing media of the ACM 1011, in certain embodiments,
may not be physically co-located within the same apparatus,
but may be in communication over a communications bus, a
data network, or the like. In other embodiments, as described
below, hardware components of the ACM 1011 may be
tightly coupled, and integrated in a single physical hardware
apparatus. Volatile memory media and/or non-volatile
memory media of the ACM 1011, in one embodiment, may be
integrated with, or may otherwise cooperate with, a CPU
cache hierarchy of the host 1014, to take advantage of CPU
caching technologies such as write combining or the like.
One or more ACM buffers 1013, in certain embodiments,

may be mapped into an address range of a physical memory
address space addressable by a CPU, a kernel, or the like of
the host device 1014, such as the memory system 1018
described below. For example, one or more ACM buffers
1013 may be mapped as directly attached physical memory,
as MMIO addressable physical memory over a PCI-e bus, or
otherwise mapped as one or more pages of physical memory.
At least a portion of the physically mapped ACM buffers

10

15

25

30

35

40

45

50

55

60

65

14
1013, in a further embodiment, may be mapped into a virtual
memory address space, accessible to user-space processes or
the like as virtual memory.

Allowing ACM users 1016 to directly address the ACM
buffers 1013, in certain embodiments, bypasses one or more
layers of the traditional operating system memory stack of the
host device 1014, providing direct load/store operation access
to kernel-space and/or user-space applications. An operating
system, using a kernel module, an application programming
interface, the storage management layer (SML) 1050
described below, or the like, in one embodiment, maps and
unmaps ACM buffers 1013 to and from the memory system
1018 for one or more ACM users 1016, and the ACM users
1016 may directly access an ACM buffer 1013 once the
operating system maps the ACM buffer 1013 into the memory
system 1018. In a further embodiment, the operating system
may also service system flush calls for the ACM buffers 1013,
or the like.
The SML 1050 and/or the SML API 1019 described below,

in certain embodiments, provide an interface for ACM users
1016, an operating system, and/or other entities to request
certain ACM functions, such as a map function, an unmap
function, a flush function, and/or other ACM functions. To
perform a flush operation in response to a flush request, the
ACM 1011 may perform a commit action for each ACM
buffer 1013 associated with the flush request. Each ACM
buffer 1013 is committed as indicated by the ACM metadata
1015 of the associated ACM buffer 1013. A flush function, in
various embodiments, may be specific to one or more ACM
buffers 1013, system-wide for all ACM buffers 1013, or the
like. In one embodiment, a CPU, an operating system, or the
like for the host 1014 may request an ACM flush operation in
response to, or as part of a CPU cache flush, a system-wide
data flush for the host 1014, or another general flush opera
tion.
An ACM user 1016, an operating system, or the like may

request a flush operation to maintain data consistency prior to
performing a maintenance operation, Such as a data Snapshot
or a backup, to commit ACM data prior to reallocating an
ACM buffer 1013, to prepare for a scheduled restart event, or
for other circumstances where flushing data from an ACM
buffer 1013 may be beneficial. An ACM user 1016, an oper
ating system, or the like, in certain embodiments, may request
that the ACM 1011 map and/or unmap one or more ACM
buffers 1013 to perform memory management for the ACM
buffers 1013; to reallocate the ACM buffers 1013 between
applications or processes; to allocate ACM buffers 1013 for
new data, applications, or processes; to transfer use of the
ACM buffers 1013 to a different host 1014 (in shared ACM
1011 embodiments); or to otherwise manipulate the memory
mapping of the ACM buffers 1013. In another embodiment,
the SML 1050 may dynamically allocate, map, and/or unmap
ACM buffers 1013 using a resource management agent as
described below.

Since the ACM 1011 is guaranteed to auto-commit the data
stored thereon in the event of a trigger event, the host 1014 (or
ACM user 1016) may view data written to the ACM 1011 as
being instantaneously “committed' or non-volatile, as the
host 1014 or ACM user 1016 may access the data both before
and after the trigger event. Advantageously, while the restart
event may cause the ACM user 1016 to be re-started or re
initialized the data stored in the ACM 1011 is in the same
state/condition after the restart event as it was before the
restart event. The host 1014 may, therefore, write to the ACM
1011 using memory write semantics (and at CPU speeds and
granularity), without the need for explicit commit commands

US 9,208,071 B2
15

by relying on the pre-configured trigger of the ACM 1011 to
commit the data in the event of a restart (or other trigger
event).
The ACM 1011 may comprise a plurality of auto-commit

buffers 1013, each comprising respective ACM metadata
1015. As discussed below, the ACM metadata 1015 may
include data to facilitate committing of ACM data in response
to a triggering event for the auto-commit buffer 1013, such as
a logical identifier for data in the ACM buffer 1013, an iden
tifier of a commit agent 1020, instructions for a commit
process or other processing procedure, security data, or the
like. The auto-commit buffers 1013 may be of any suitable
size, from a single sector, page, byte, or the like, to a virtual or
logical page size (e.g., 80 to 400 kb). The size of the auto
commit buffers 1013 may be adapted according to the storage
capacity of the underlying non-volatile storage media, and or
hold-up time available from the secondary power Supply
1024.

In one embodiment, the ACM 1011 may advertise or
present to the host 1014, to ACM users 1016, or the like, a
storage capacity of the ACM buffers 1013 that is larger than
an actual storage capacity of memory of the ACM buffers
1013. To provide the larger storage capacity, the ACM 1011
may dynamically map and unmap ACM buffers 1013 to the
memory system 1018 and to the non-volatile backing
memory of the ACM 1011, such as the non-volatile memory
110 described above. For example, the ACM 1011 may pro
vide virtual address ranges for the ACM buffers 1013, and
demand page data and/or ACM buffers 1013 to the non
volatile memory 110 as ACM buffer 1013 accesses necessi
tate. In another embodiment, for ACM buffers 1013 that are
armed to commit to one or more predefined LBAs of the
non-volatile memory 110, the ACM 1011 may dynamically
move the ACM data and ACM metadata 1015 from the ACM
buffers 1013 to the associated LBAs of the non-volatile
memory 110, freeing storage capacity of the ACM buffers
1013 to provide a larger storage capacity. The ACM 1011 may
further return the ACM data and ACM metadata 1015 back to
one or more ACM buffers 1013 as ACM buffers become
available, certain addresses outside the data of currently
loaded ACM buffers 1013 is requested, or the like, managing
storage capacity of the ACM buffers 1013.
The ACM 1011 is pre-configured or “armed to implement

one or more “triggered commit actions' in response to a
restart condition (or other, pre-determined condition). As
used herein, a restart condition or event may include, but is
not limited to a software or hardware shutdown/restart of a
host 1014, a failure in a host 1014 computing device, a failure
of a component of the host 1014 (e.g., failure of the bus 1040),
a Software fault (e.g., an fault in Software running on the host
1014 or other computing device), a loss of the primary power
connection 1030, an invalid shutdown, or another event that
may cause the loss of data stored in a volatile memory.

In one embodiment, a restart event comprises the act of the
host 1014 commencing processing after an event that can
cause the loss of data stored within a volatile memory of the
host 1014 or a component in the host 1014. The host 1014
may commence/resume processing once the restart condition
or eventhas finished, a primary power source is available, and
the like.

The ACM 1011 is configured to detect that a restart event/
condition has occurred and/or respond to a restart event by
initiating a recovery stage. During a recovery stage, the ACM
1011 may restore the data of the ACM 1011 to the state prior
to the restart event. Alternatively, or in addition, during the
recovery stage, the ACM 1011 may complete processing of
ACM data or ACM metadata 1015 needed to satisfy a guar

10

15

25

30

35

40

45

50

55

60

65

16
antee that data in the ACM 1011 is available to ACM users
after the restart event. Alternatively, or in addition, during the
recovery stage, the ACM 1011 may complete processing of
ACM data or ACM metadata 1015 needed to satisfy a guar
antee that data in the ACM 1011 is committed after the restart
event. As used herein, "commit” means data in the ACM 1011
is protected from loss or corruption even after the restart event
and is persisted as required per the arming information asso
ciated with the data. In certain embodiments, the recovery
stage includes processing ACM data and ACM metadata 1015
such that the ACM data is persisted, even though the restart
event occurred.
As used herein, a triggered commit action is a pre-config

ured commit action that is armed to be performed by the ACM
1011 in response to a triggering event (e.g., a restart event, a
flush command, or other pre-determined event). In certain
embodiments, the triggered commit action persists at least
enough ACM data and/or ACM metadata 1015 to make data
of the ACM 1011 available after a system restart, to satisfy a
guarantee of the ACM 1011 that the data will be accessible to
an ACM user after a restart event, in certain embodiments,
this guarantee is satisfied, at least in part, by committing
and/or persisting data of the ACM 1011 to non-volatile
memory media. A triggered commit action may be completed
before, during, and/or after a restart event. For example, the
ACM 1011 may write ACM data and ACM metadata 1015 to
a predefined temporary location in the nonvolatile memory
110 during a hold-up time after a restart event, and may copy
the ACM databack into the ACM buffers 1013, to an intended
location in the nonvolatile memory 110, or perform other
processing once the restart event is complete.
A triggered commit action may be 'armed” when the ACM

1011 is requested and/or a particular ACM buffer 1013 is
allocated for use by a host 1014. In some embodiments, an
ACM 1011 may be configured to implement a triggered com
mit action in response to other, non-restart conditions. For
example, an operation directed to a particular logical address
(e.g., a poke), may trigger the ACM 1011, a flush operation
may trigger the ACM 1011, or the like. This type of triggering
may be used to commit the data of the ACM 1011 during
normal operation (e.g., non-restart or non-failure conditions).
The arming may occur when an auto-commit buffer 1013 is

mapped into the memory system 1018 of the host 1014.
Alternatively, arming may occur as a separate operation. As
used herein, arming an auto-commit buffer 1013 comprises
performing the necessary configuration steps needed to com
plete the triggered action when the action is triggered. Arming
may include, for example, providing the ACM metadata 1015
to the ACM 1011 or the like. In certain embodiments, arming
further includes performing the necessary configuration steps
needed to complete a minimal set of steps for the triggered
action, Such that the triggered action is capable of completing
after a trigger event. In certain embodiments, arming further
includes verifying the arming data (e.g., Verifying that the
contents of the auto-commit buffer 1013, or portion thereof,
can be committed as specified in the ACM metadata 1015)
and verifying that the ACM 1011 is capable and configured to
properly perform the triggered action without error or inter
ruption.
The verification may ensure that once armed, the ACM

1011 can implement the triggered commit action when
required. If the ACM metadata 1015 cannot be verified (e.g.,
the logical identifier or other ACM metadata 1015 is invalid,
corrupt, unavailable, or the like), the arming operation may
fail; memory semantic operations on the auto-commit buffer
1013 may not be allowed unit the auto-commit buffer 1013 is
successfully armed with valid ACM metadata 1015. For

US 9,208,071 B2
17

example, an auto-commit buffer 1013 that is backed by a hard
disk having a one-to-one mapping between LBA and physical
address, may fail to arm if the LBA provided for the arming
operation does not map to a valid (and operational) physical
address on the disk. Verification in this case may comprise
querying the disk to determine whether the LBA has a valid,
corresponding physical address and/or using the physical
address as the ACM metadata 1015 of the auto-commit buffer
1013.
The armed triggered commit actions are implemented in

response to the ACM 1011 (or other entity) detecting and/or
receiving notification of a triggering event. Such as a restart
condition. In some embodiments, an armed commit action is
a commit action that can be performed by the ACM 1011, and
that requires no further communication with the host 1014 or
other devices external to the "isolation Zone' of the ACM
1011 (discussed below). Accordingly, the ACM 1011 may be
configured to implement triggered commit actions autono
mously of the host 1014 and/or other components thereof.
The ACM 1011 may guarantee that triggered commit actions
can be committed without errors and/or despite external error
conditions. Accordingly, in some embodiments, the triggered
commit actions of the ACM 1011 do not comprise and/or
require potentially error-introducing logic, computations,
and/or calculations. In some embodiments, a triggered com
mit action comprises committing data stored on the Volatile
ACM 1011 to a persistent storage location. In other embodi
ments, a triggered commit action may comprise additional
processing of committed data, before, during, and/or after a
triggering event, as described below. The ACM 1011 may
implement pre-configured triggered commit actions autono
mously; the ACM 1011 may be capable of implementing
triggered commit actions despite failure or restart conditions
in the host 1014, loss of primary power, or the like. The ACM
1011 can implement triggered commit actions independently
due to arming the ACM 1011 as described above.
The ACM metadata 1015 for an ACM buffer 1013, in

certain embodiments, identifies the data of the ACM buffer
1013. For example, the ACM metadata 1015 may identify an
owner of the data, may describe the data itself, or the like. In
one embodiment, an ACM buffer 1013 may have multiple
levels of ACM metadata 1015, for processing by multiple
entities or the like. The ACM metadata 1015 may include
multiple nested headers that may be unpackaged upon restart,
and used by various entities or commit agents 1020 to deter
mine how to process the associated ACM data to fulfill the
triggered commit action as described above. For example, the
ACM metadata 1015 may include block metadata, file meta
data, application level metadata, process execution point or
callback metadata, and/or other levels of metadata. Each level
of metadata may be associated with a different commit agent
1020, or the like. In certain embodiments, the ACM metadata
1015 may include security data, Such as a signature for an
owner of the associated ACM data, a pre-shared key, a nonce,
or the like, which the ACM 1011 may use during recovery to
verify that a commit agent 1020, an ACM user 1016, or the
like is authorized to access committed ACM metadata 1015
and/or associated ACM data. In this manner, the ACM 1011
may prevent ownership spoofing or other unauthorized
access. In one embodiment, the ACM 1011 does not release
ACM metadata 1015 and/or associated ACM data until a
requesting commit agent 1020, ACM user 1016, or the like
provides valid authentication, Such as a matching signature or
the like.
One or more commit agents 1020, such as the commit

management apparatus 1122 described below with regard to
FIG. 3, in certain embodiments, process ACM databased on

10

15

25

30

35

40

45

50

55

60

65

18
the associated ACM metadata 1015 to execute a triggered
commit action. A commit agent 1020, in various embodi
ments, may comprise Software. Such as a device driver, a
kernel module, the SML 1050, a thread, a user space appli
cation, or the like, and/or hardware, such as the controller
1004 described below, that is configured to interpret ACM
metadata 1015 and to process the associated ACM data
according to the ACM metadata 1015. In embodiments with
multiple commit agents 1020, the ACM metadata 1015 may
identify one or more commit agents 1020 to process the
associated ACM data. The ACM metadata 1015 may identify
a commit agent 1020, in various embodiments, by identifying
a program/function of the commit agent 1020 to invoke (e.g.,
a file path of the program), by including computer executable
code of the commit agent 1020 (e.g., binary code or Scripts),
by including a unique identifier indicating which of a set of
registered commit agents 1020 to use, and/or by otherwise
indicating a commit agent 1020 associated with committed
ACM metadata 1015. The ACM metadata 1015, in certain
embodiments, may be a functor or envelope which contains
the information, such as function pointer and bound param
eters for a commit agent 1020, to commit the ACM data upon
restart recovery.

In one embodiment, a primary commit agent 1020 pro
cesses ACM metadata 1015, and hands-offortransfers ACM
metadata 1015 and/or ACM data to one or more secondary
commit agents 1020 identified by the ACM metadata 1015. A
primary commit agent 1020, in one embodiment, may be
integrated with the ACM 1011, the controller 1004, or the
like. An ACM user 1016 or other third party, in certain
embodiments, may provide a secondary commit agent 1020
for ACM data that the ACM user 1016 or other third party
owns, and the primary commit agent 1020 may cooperate
with the provided secondary commit agent 1020 to process
the ACM data. The one or more commit agents 1020 for ACM
data, in one embodiment, ensure and/or guarantee that the
ACM data remains accessible to an owner of the ACM data
after a restart event. As described above with regard to trig
gered commit actions, a commit agent 1020 may process
ACM metadata 1015 and associated ACM data to perform
one or more triggered commit actions before, during, and/or
after a trigger event, such as a failure or other restart event.

In one embodiment, a commit agent 1020, in cooperation
with the ACM 1011 or the like, may store the ACM metadata
1015 in a persistent or non-volatile location in response to a
restart or other trigger event. The commit agent 1020 may
store the ACM metadata 1015 at a known location, may store
pointers to the ACM metadata 1015 at a known location, may
provide the ACM metadata 1015 to an external agent or data
store, or the like so that the commit agent 1020 may process
the ACM metadata 1015 and associated ACM data once the
restart or other trigger event has completed. The known loca
tion may include one or more predefined logical block
addresses or physical addresses of the non-volatile memory
110, a predefined file, or the like. In certain embodiments,
hardware of the ACM 1011 is configured to cooperate to write
the ACM metadata 1015 and/or pointers to the ACM metadata
1015 at a known location. In one embodiment, the known
location may be a temporary location that stores the ACM
data and ACM metadata 1015 until the host 1014 has recov
ered from a restart event and the commit agent 1020 may
continue to process the ACM data and ACM metadata 1015.
In another embodiment, the location may be a persistent
location associated with the ACM metadata 1015.

In response to completion of a restart event or other trigger
event, during recovery, in one embodiment, a commit agent
1020 may locate and retrieve the ACM metadata 1015 from

US 9,208,071 B2
19

the non-volatile memory 110, from a predefined location or
the like. The commit agent 1020, in response to locating and
retrieving the ACM metadata 1015, locates the ACM data
associated with the retrieved ACM metadata 1015. The com
mitagent 1020, in certain embodiments, may locate the ACM
data in a Substantially similar manner as the commit agent
1020 locates the ACM metadata 1015, retrieving ACM data
from a predefined location, retrieving pointers to the ACM
data from a predefined location, receiving the ACM data from
an external agent or data store, or the like. In one embodiment,
the ACM metadata 1015 identifies the associated ACM data
and the commit agent 1020 uses the ACM metadata 1015 to
locate and retrieve the associated ACM data. For example, the
commit agent 1020 may use a predefined mapping to associ
ate ACM data with ACM metadata 1015 (e.g. the Nth piece of
ACM data may be associated with the Nth piece of ACM
metadata 1015 or the like), the ACM metadata 1015 may
include a pointer or index for the associated ACM data, or
another predefined relationship may exist between commit
ted ACM metadata 1015 and associated ACM data. In another
embodiment, an external agent may indicate to the commit
agent 1020 where associated ACM data is located.

In response to locating and retrieving the ACM metadata
1015 and associated ACM data, the commit agent 1020 inter
prets the ACM metadata 1015 and processes the associated
ACM databased on the ACM metadata 1015. For example, in
one embodiment, the ACM metadata 1015 may identify a
block storage Volume and LBA(s) where the commit agent
1020 is to write the ACM data upon recovery. In another
embodiment, the ACM metadata 1015 may identify an offset
within a file within a file system where the commit agent 1020
is to write the ACM data upon recovery. In a further embodi
ment, the ACM metadata 1015 may identify an application
specific persistent object where the commit agent 1020 is to
place the ACM data upon recovery, Such as a database record
or the like. The ACM metadata 1015, in an additional embodi
ment, may indicate a procedure for the commit agent 1020 to
call to process the ACM data, such as a delayed procedure call
or the like. In an embodiment where the ACM 1011 advertises
or presents volatile ACM buffers 1013 as nonvolatile
memory, the ACM metadata 1013 may identify an ACM
buffer 1013 where the commit agent 1020 is to write the ACM
data upon recovery.

In certain embodiments, the ACM metadata 1015 may
identify one or more secondary commit agents 1020 to further
process the ACM metadata 1015 and/or associated ACM data.
A secondary commit agent 1020 may process ACM metadata
1015 and associated ACM data in a substantially similar
manner to the commit agent 1020 described above. Each
commit agent 1020 may process ACM data in accordance
with a different level or subset of the ACM metadata 1015, or
the like. The ACM metadata 1015 may identify a secondary
commit agent 1020, in various embodiments, by identifying a
program/function of the secondary commit agent 1020 to
invoke (e.g., a file path of the program), by including com
puter executable code of the secondary commit agent 1020,
by including a unique identifier indicating which of a set of
registered secondary commit agents 1020 to use, and/or by
otherwise indicating a secondary commit agent 1020 associ
ated with committed ACM metadata 1015.

In one embodiment, a secondary commit agent 1020 pro
cesses a remaining portion of the ACM metadata 1015 and/or
of the ACM data after a previous commit agent 1020 has
processed the ACM metadata 1015 and/or the ACM data. In a
further embodiment, the ACM metadata 1015 may identify
another non-volatile medium separate from the ACM 1011
for the secondary commit agent 1020 to persist the ACM data

10

15

25

30

35

40

45

50

55

60

65

20
even after a host experiences a restart event. By committing
the ACM metadata 1015 and the associated ACM data from
the ACM buffers 1013 in response to a trigger event, such as
a failure or other restart condition, and processing the ACM
metadata 1015 and the associated ACM data once the trigger
event has completed or recovered, the ACM 1011 may guar
antee persistence of the ACM data and/or performance of the
triggered commit action(s) defined by the ACM metadata
1015.
The ACM 1011 is communicatively coupled to a host 1014,

which, like the host 114 described above, may comprise oper
ating systems, virtual machines, applications, a processor
complex 1012, a central processing unit 1012 (CPU), and the
like. In the FIG. 2 example, these entities are referred to
generally as ACM users 1016. Accordingly, as used herein, an
ACM user may refer to an operating system, a virtual machine
operating system (e.g., hypervisor), an application, a library,
a CPU fetch-execute algorithm, or other program or process.
The ACM 1011 may be communicatively coupled to the host
1014 (as well as the ACM users 1016) via a bus 1040, such as
a system bus, a processor's memory exchange bus, or the like
(e.g., HyperTransport, QuickPath Interconnect (QPI), PCI
bus, PCI-e bus, or the like). In some embodiments, the bus
1040 comprises the primary power connection 1030(e.g., the
non-volatile storage device 1102 may be powered through the
bus 1040). Although some embodiments described herein
comprise Solid-state storage devices, such as certain embodi
ments of the non-volatile storage device 1102, the disclosure
is not limited in this regard, and could be adapted to use any
suitable recording/memory/storage device 1102 and/or
recording/memory/storage media 1110.
The ACM 1011 may be tightly coupled to the device used

to perform the triggered commit actions. For example, the
ACM 1011 may be implemented on the same device, periph
eral, card, or within the same "isolation Zone' as the control
ler 1004 and/or secondary power source 1024. The tight cou
pling of the ACM 1011 to the components used to implement
the triggered commit actions defines an "isolation Zone.”
which may provide an acceptable level of assurance (based on
industry standards or other metric) that the ACM 1011 is
capable of implementing the triggered auto-commit actions
in the event of a restart condition. In the FIG. 2 example, the
isolation Zone of the ACM 1011 is provided by the tight
coupling of the ACM 1011 with the autonomous controller
1004 and secondary power supply 1024 (discussed below).
The controller 1004 may comprise an I/O controller, such

as a network controller (e.g., a network interface controller),
storage controller, dedicated restart condition controller, or
the like. The controller 1004 may comprise firmware, hard
ware, a combination offirmware and hardware, or the like. In
the FIG. 2 example, the controller 1004 comprises a storage
controller, Such as the storage controller 104 and/or non
volatile storage device controller described above. The con
troller 1004 may be configured to operate independently of
the host 1014. As such, the controller 1004 may be used to
implement the triggered commit action(s) of the ACM 1011
despite the restart conditions discussed above. Such as fail
ures in the host 1014 (and/or ACM users 1016) and/or loss of
the primary power connection 1030.
The ACM 1011 is powered by a primary power connection

1030, which, like the primary power connection 130
described above, may be provided by a system bus (bus
1040), external power supply, the host 1014, or the like. In
certain embodiments, the ACM 1011 also includes and/or is
coupled to a secondary power source 1024. The secondary
power source 1024 may power the ACM 1011 in the event of
a failure to the primary power connection 1030. The second

US 9,208,071 B2
21

ary power source 1024 may be capable of providing at least
enough power to enable the ACM 1011 and/or controller 1004
to autonomously implement at least a portion of a pre-con
figured triggered commit action(s) when the primary power
connection 1030 has failed. The ACM 1011, in one embodi
ment, commits or persists at least enough data (e.g., ACM
data and ACM metadata 1015) while receiving power from
the secondary power source 1024, to allow access to the data
once the primary power connection 1030 has been restored.
In certain embodiments, as described above, the ACM 1011
may perform at least a portion of the pre-configured triggered
commit action(s) after the primary power connection 1030
has been restored, using one or more commit agents 1020 or
the like.

The ACM 1011 may comprise volatile memory storage. In
the FIG. 2 example, the ACM 1011 includes one or more
auto-commit buffers 1013. The auto-commit buffers 1013
may be implemented using a volatile Random Access
Memory (RAM). In some embodiments, the auto-commit
buffers 1013 may be embodied as independent components of
the ACM 1011 (e.g., in separate RAM modules). Alterna
tively, the auto-commit buffers 1013 may be implemented on
embedded volatile memory (e.g., BRAM) available within
the controller 1004, a processor complex 1012, an FPGA, or
other component of the ACM 1011.

Each of the auto-commit buffers 1013 may be pre-config
ured (armed) with a respective triggered commit action. In
some embodiments, each auto-commit buffer 1013 may com
prise its own, respective ACM metadata 1015. The ACM
metadata 1015, in some embodiments, identifies how and/or
where the data stored on the auto-commit buffer 1013 is to be
committed. In some examples, the ACM metadata 1015 may
comprise a logical identifier (e.g., an object identifier, logical
block address (LBA), file name, or the like) associated with
the data in the auto-commit buffer 1013. The logical identifier
may be predefined. In one embodiment, when an auto-com
mit buffer 1013 is committed, the data therein may be com
mitted with the ACM metadata 1015 (e.g., the data may be
stored at a physical storage location corresponding to the
logical identifier and/or in association with the logical iden
tifier). To facilitate committing of ACM data during a hold-up
time after a restart event, the ACM 1011 may write ACM data
and ACM metadata 1015 in a single atomic operation, such as
a single page write or the like. To permit writing of ACM and
ACM metadata 1015 in a single atomic operation, the ACM
buffers 1013 may be sized to correspond to a single write unit
for a non-volatile storage media that is used by the ACM
1011. In some embodiments, the ACM metadata 1015 may
comprise a network address, an LBA, or another identifier of
a commit location for the data.

In a further embodiment, a logical identifier may associate
data of an auto-commit buffer 1013 with an owner of the data,
so that the data and the owner maintain the ownership rela
tionship after a restart event. For example, the logical identi
fier may identify an application, an application type, a process
ID, an ACM user 1016, or another entity of a host device
1014, so that the ACM data is persistently associated with the
identified entity. In one embodiment, a logical identifier may
be a member of an existing namespace. Such as a file system
namespace, a user namespace, a process namespace, or the
like. In other embodiments, a logical identifier may be a
member of a new or separate namespace. Such as an ACM
namespace. For example, a globally unique identifier
namespace, as is typically used in distributed systems for
identifying communicating entities, may be used as an ACM
namespace for logical identifiers. The ACM 1011 may pro
cess committed ACM data according to a logical identifier for

5

10

15

25

30

35

40

45

50

55

60

65

22
the data once a restart event has completed. For example, the
ACM 1011 may commit the ACM data to a logical identifier
associated with a temporary location in response to a restart
event, and may write the ACM data to a persistent location
identified by another logical identifier during recovery after
the restart event.
As described above, the ACM 1011 may be tightly coupled

with the components used to implement the triggered commit
actions (e.g., the ACM 1011 is implemented within an “iso
lation Zone'), which ensures that the data on the ACM 1011
will be committed in the event of a restart condition. As used
herein, a “tight coupling refers to a configuration wherein
the components used to implement the triggered commit
actions of the ACM 1011 are within the same "isolation
Zone or two or more distinct trusted "isolation Zones, and
are configured to operate despite external failure or restart
conditions, such as the loss of power, invalid shutdown, host
1014 failures, or the like. FIG. 2 illustrates a tight coupling
between the ACM 1011, the auto-commit buffers 1013, the
controller 1004, which is configured to operate independently
of the host 1014, and the secondary power source 1024, which
is configured to power the controller 1004 and the ACM 1011
(including the auto-commit buffers 1013) while the triggered
commit actions are completed. Examples of a tight coupling
include but are not limited to including the controller 1004,
the secondary power source 1024, and the auto-commit buff
ers 1013 on a single printed circuit board (PCB), within a
separate peripheral in electronic communication with the host
1014, and the like. In other embodiments, the ACM 1011 may
be tightly coupled to other a different set of components (e.g.,
redundant host devices, redundant communication buses,
redundant controllers, alternative power Supplies, and so on).
The ACM 1011 may be accessible by the host 1014 and/or

ACM users 1016 running thereon. Access to the ACM 1011
may be provided using memory access semantics, such as
CPU load/store commands, DMA commands, 3rd party
DMA commands, RDMA commands, atomic test and set
commands, manipulatable memory pointers, and so on. In
Some embodiments, memory semantic access to the ACM
1011 is implemented over the bus 1040 (e.g., using a PCI-e
BAR as described below).

In a memory semantic paradigm, ACM users 1016 running
on the host 1014 may access the ACM 1011 via a memory
system 1018 of the host 1014. The memory system 1018 may
comprise a memory management unit, virtual memory sys
tem, virtual memory manager, virtual memory Subsystem (or
similar memory address space) implemented by an operating
system, a virtualization system (e.g., hypervisor), an applica
tion, or the like. A portion of the ACM 1011 (e.g., one or more
auto-commit buffers 1013) may be mapped into the memory
system 1018, Such that memory semantic operations imple
mented within the mapped memory address range (ACM
address range 1021) are performed on the ACM 1011.
The SML 1050, in certain embodiments, allocates and/or

arbitrates the storage capacity of the ACM 1011 between
multiple ACM users 1016, using a resource management
agent or the like. The resource management agent of the SML
1050 may comprise a kernel module provided to an operating
system of the host device 1014, a device driver, a thread, a
user space application, or the like. In one embodiment, the
resource management agent determines how much storage
capacity of the ACM buffers 1013 to allocate to an ACM user
1016 and how long the allocation is to last. Because, in certain
embodiments, the ACM 1011 commits or persists data across
restart events, the resource management agent may allocate
storage capacity of ACM buffers 1013 across restart events.

US 9,208,071 B2
23

The resource management agent may assign different
ACM buffers 1013 to different ACM users 1016, such as
different kernel and/or user space applications. The resource
management agent may allocate ACM buffers 1013 to differ
ent usage types, may map ACM buffers 1013 to different
non-volatile memory 110 locations for destaging, or the like.
In one embodiment, the resource management agent may
allocate the ACM buffers 1013 based on commit agents 1020
associated with the ACM buffers 1013 by the ACM metadata
1015 or the like. For example, a master commit agent 1020
may maintain an allocation map in ACM metadata 1015 iden
tifying allocation information for ACM buffers 1013 of the
ACM 1011 and identifying, in one embodiment, one or more
secondary commit agents 1020, and the master commit agent
1020 may allocate a portion of the ACM buffers 1013 to each
of the secondary commit agents 1020. In another embodi
ment, commit agents 1020 may register with the resource
managementagent, may request resources such as ACM buff
erS 1013 from the resource management agent, or the like.
The resource management agent may use a predefined
memory management policy, Such as a memory pressure
policy or the like, to allocate and arbitrate ACM buffer 1013
storage capacity between ACM users 1016.

In some embodiments, establishing an association between
an ACM address range 1021 within the memory system 1018
and the ACM 1011 may comprise pre-configuring (arming)
the corresponding auto-commit buffer(s) 1013 with a trig
gered commit action. As described above, this pre-configu
ration may comprise associating the auto-commit buffer 1013
with a logical identifier or other metadata, which may be
Stored in the ACM metadata 1015 of the buffer 1013. As
described above, the ACM 1011 may be configured to commit
the buffer data to the specified logical identifier in the event of
a restart condition, or to perform other processing in accor
dance with the ACM metadata 1015.
Memory semantic access to the ACM 1011 may be imple

mented using any suitable address and/or device association
mechanism. In some embodiments, memory semantic access
is implemented by mapping one or more auto-commit buffers
1013 of the ACM 1011 into the memory system 1018 of the
host 1014. In some embodiments, this mapping may be
implemented using the bus 1040. For example, the bus 1040
may comprise a PCI-e (or similar) communication bus, and
the mapping may comprise associating a Base Address Reg
ister (BAR) of an auto-commit buffer 1013 of the ACM 1011
on the bus 1040 with the ACM address range 1021 in the
memory system 1018 (e.g., the host 1014 mapping a BAR
into the memory system 1018).
The association may be implemented by an ACM user

1016 (e.g., by a virtual memory system of an operating sys
tem or the like), through an API of a storage layer, such as the
storage management layer (SML) 1050. The SML 1050 may
be configured to provide access to the auto-commit memory
1011 to ACM users 1016. The storage management layer
1050 may comprise a driver, kernel-level application, user
level application, library, or the like. One example of an SML
is the Virtual Storage Layer(R) of Fusion-io, Inc. of Salt Lake
City, Utah. The SML 1050 may provide a SML API 1019
comprising, inter alia, an API for mapping portions of the
auto-commit memory 1011 into the memory system 1018 of
the host 1014, for unmapping portions of the auto-commit
memory 1011 from the memory system 1018 of the host
1014, for flushing the ACM buffers 1013, and the like. The
SML 1050 may be configured to maintain metadata 1051,
which may include a forward index 1053 comprising asso
ciations between logical identifiers of a logical address space
and physical storage locations on the auto-commit memory

10

15

25

30

35

40

45

50

55

60

65

24
1011 and/or persistent storage media. In some embodiments,
ACM 1011 may be associated with one or more virtual ranges
that map to different address ranges of a BAR (or other
addressing mechanism). The virtual ranges may be accessed
(e.g., mapped) by different ACM users 1016. Mapping or
exposing a PCI-e ACMBAR to the host memory 1018 may be
enabled on demand by way of a SML API 1019 call.
The SML API 1019 may comprise interfaces for mapping

an auto-commit buffer 1013 into the memory system 1018. In
some embodiments, the SML API 1019 may extend existing
memory management interfaces, such as malloc, calloc, or
the like, to map auto-commit buffers 1013 into the virtual
memory range of ACM user applications 1016 (e.g., a malloc
call through the SML API 1019 may map one or more auto
commit buffers 1013 into the memory system 1018). Alter
natively, or in addition, the SML API 1019 may comprise one
or more explicit auto-commit mapping functions, such as
ACM alloc.” ACM free or the like. Mapping an auto
commit buffer 1013 may further comprise configuring a
memory system 1018 of the host to ensure that memory
operations are implemented directly on the auto-commit
buffer 1013 (e.g., prevent caching memory operations within
a mapped ACM address range 1021).
The association between the ACM address range 1021

within the host memory system 1018 and the ACM 1011 may
be such that memory semantic operations performed within a
mapped ACM address range 1021 are implemented directly
on the ACM 1011 (without intervening system RAM, or other
intermediate memory, in a typical write commit operation,
additional layers of system calls, or the like). For example, a
memory semantic write operation implemented within the
ACM address range 1021 may cause data to be written to the
ACM 1011 (on one or more of the auto-commit buffers 1013).
Accordingly, in some embodiments, mapping the ACM
address range 1021 may comprise disabling caching of
memory operations within the ACM address range 1021, such
that memory operations are performed on an ACM 1011 and
are not cached by the host (e.g., cached in a CPU cache, in
host volatile memory, or the like). Disabling caching within
the ACM address range 1021 may comprise setting a “non
cacheable’ flag attribute associated with the ACM range
1021, when the ACM range 1021 is defined.
As discussed above, establishing an association between

the host memory system 1018 and the ACM 1011 may com
prise “arming the ACM 1011 to implement a pre-determined
triggered commit action. The arming may comprise provid
ing the ACM 1011 with a logical identifier (e.g., a logical
block address, a file name, a network address, a stripe or
mirroring pattern, or the like). The ACM 1011 may use the
logical identifier to arm the triggered commit action. For
example, the ACM 1011 may be triggered to commit data to
a persistent storage medium using the logical identifier (e.g.,
the data may be stored at a physical address corresponding to
the logical identifier and/or the logical identifier may be
stored with the data in a log-based data structure). Arming the
ACM 1011 allows the host 1014 to view subsequent opera
tions performed within the ACM address range 1021 (and on
the ACM 1011) as being “instantly committed, enabling
memory semantic write granularity (e.g., byte level opera
tions) and speed with instant commit semantics.
Memory semantic writes such as a “store' operation for a

CPU are typically synchronous operations such that the CPU
completes the operation before handling a Subsequent opera
tion. Accordingly, memory semantic write operations per
formed in the ACM memory range 1021 can be viewed as
“instantly committed,” obviating the need for a correspond
ing "commit” operation in the write-commit operation, which

US 9,208,071 B2
25

may significantly increase the performance of ACM users
1016 affected by write-commit latency. The memory seman
tic operations performed within the ACM memory range
1021 may be synchronous. Accordingly, ACM 1011 may be
configured to prevent the memory semantic operations from
blocking (e.g., waiting for an acknowledgement from other
layers, such as the bus 1040, or the like). Moreover, the
association between ACM address range 1021 and the ACM
1011 allow memory semantic operations to bypass system
calls (e.g., separate write and commit commands and their
corresponding system calls) that are typically included in
write-commit operations.

Data transfer between the host 1014 and the ACM 1011
may be implemented using any Suitable data transfer mecha
nism including, but not limited to: the host 1014 performing
processor IO operations (PIO) with the ACM 1011 via the bus
1040; the ACM 1011 (or other device) providing one or more
DMA engines or agents (data movers) to transfer data
between the host 1014 and the ACM 1011; the host 1014
performing processor cache write/flush operations; or the
like.
As discussed above, an ACM may be configured to auto

matically perform a pre-configured triggered commit action
in response to detecting certain conditions (e.g., restart or
failure conditions). In some embodiments, the triggered com
mit action may comprise committing data stored on the ACM
1014 to a persistent storage media. Accordingly, in some
embodiments, an ACM, such as the ACM 1011 described
above, may be comprise persistent storage media. FIG. 3 is a
block diagram of a system 1100 depicting an embodiment of
an ACM configured to implement triggered commit actions,
which may include committing data to a persistent, solid
state, and/or non-volatile storage.
The ACM 1111 of the FIG. 3 example may be tightly

coupled to the non-volatile storage device 1102, which com
prises a controller 1104. The controller 1104 may comprise a
write data pipeline 1106 and a read data pipeline 1108, which
may operate as described above. The non-volatile storage
device 1102 may be capable of persisting data on a non
Volatile memory 1110. Such as Solid-state storage media.
A commit management apparatus 1122 is used to commit

data to the non-volatile memory 1110 in response to a trigger
event, such as loss of primary power connection, or other
pre-determined trigger event. Accordingly, the commit man
agement apparatus 1122 may comprise and/or be configured
to perform the functions of the auto-commit memory 1011
described above. The commit management apparatus 1122
may be further configured to commit data on the ACM 1111
(e.g., the contents of the auto-commit buffers 1013) to the
non-volatile memory 1110 in response to a restart condition
(or on request from the host 1014 and/or ACM users 1016)
and in accordance with the ACM metadata 1015. The commit
management apparatus 1122 is one embodiment of a commit
agent 1020.
The data on the ACM 1111 may be committed to the

persistent storage 1110 in accordance with the ACM metadata
1015, such as a logical identifier or the like. The ACM 1111
may commit the data to a temporary location for further
processing after a restart event, may commit the data to a final
intended location, or the like as, described above. If the non
Volatile memory 1110 is sequential storage device, commit
ting the data may comprise storing the logical identifier or
other ACM metadata 1015 with the contents of the auto
commit buffer 1013 (e.g., in a packet or container header). If
the non-volatile memory 1110 comprises a hard disk having
a 1:1 mapping between logical identifier and physical
address, the contents of the auto-commit buffer 1013 may be

10

15

25

30

35

40

45

50

55

60

65

26
committed to the storage location to which the logical iden
tifier maps. Since the logical identifier or other ACM meta
data 1015 associated with the data is pre-configured (e.g.,
armed), the ACM 1111 implements the triggered commit
action independently of the host 1014. The secondary power
supply 1024 supplies power to the volatile auto-commit buff
ers 1013 of the ACM 1111 until the triggered commit actions
are completed (and/or confirmed to be completed), or until
the triggered commit actions are performed to a point at
which the ACM 1111 may complete the triggered commit
actions during recovery after a restart event.

In some embodiments, the ACM 1111 commits data in a
way that maintains an association between the data and its
corresponding logical identifier (per the ACM metadata
1015). If the non-volatile memory 1110 comprises a hard
disk, the data may be committed to a storage location corre
sponding to the logical identifier, which may be outside of the
isolation Zone 1301 (e.g., using a logical identifier to physical
address conversion). In other embodiments in which the non
Volatile memory 1110 comprises a sequential media, such as
Solid-state storage media, the data may be stored sequentially
and/or in a log-based format as described in above and/or in
U.S. Provisional Patent Application Publication No. 61/373,
271, entitled “APPARATUS, SYSTEM, AND METHOD
FOR CACHING DATA.” and filed 12 Aug. 2010, which is
hereby incorporated by reference in its entirety. The sequen
tial storage operation may comprise storing the contents of an
auto-commit buffer 1013 with a corresponding logical iden
tifier (as indicated by the ACM metadata 1015). In one
embodiment, the data of the auto-commit buffer 1013 and the
corresponding logical identifier are stored together on the
media according to a predetermined pattern. In certain
embodiments, the logical identifier is stored before the con
tents of the auto-commit buffer 1013. The logical identifier
may be included in a header of a packet comprising the data,
or in another sequential and/or log-based format. The asso
ciation between the data and logical identifier may allow a
data index to be reconstructed as described above.
As described above, the auto-commit buffers 1013 of the

ACM 1011 may be mapped into the memory system 1018 of
the host 1014, enabling the ACM users 1016 of access these
buffers 1013 using memory access semantics. In some
embodiments, the mappings between logical identifiers and
auto-commit buffers 1013 may leverage a virtual memory
system of the host 1014.

For example, an address range within the memory system
1018 may be associated with a “memory mapped file.” As
discussed above, a memory mapped file is a virtual memory
abstraction in which a file, portion of a file, or block device is
mapped into the memory system 1018 address space for more
efficient memory semantic operations on data of the non
volatile storage device 1102. An auto-commit buffer 1013
may be mapped into the host memory system 1018 using a
similar abstraction. The ACM memory range 1021 may,
therefore, be represented by a memory mapped file. The
backing file must be stored on the non-volatile memory 1110
within the isolation zone 1301 (See FIG. 5 below) or another
network attached non-volatile storage device 1102 also pro
tected by an isolation Zone 1301. The auto-commit buffers
1013 may correspond to only a portion of the file (the file
itself may be very large, exceeding the capacity of the auto
commit buffers 1013 and/or the non-volatile memory 1110).
When a portion of a file is mapped to an auto-commit buffer
1013, the ACM user 1016 (or other entity) may identify a
desired offset within the file and the range of blocks in the file
that will operate with ACM characteristics (e.g., have ACM
semantics). This offset will have a predefined logical identi

US 9,208,071 B2
27

fier and the logical identifier and range may be used to trigger
committing the auto-commit buffer(s) 1013 mapped within
the file. Alternatively, a separate offset for a block (or range of
blocks) into the file may serve as a trigger for committing the
auto-commit buffer(s) 1013 mapped to the file. For example,
anytime a memory operation (load, store, poke, etc.) is per
formed on data in the separate offset or range of blocks may
result in a trigger event that causes the auto-commit buffer(s)
1013 mapped to the file to be committed.
The underlying logical identifier may change, however

(e.g., due to changes to other portions of the file, file size
changes, etc.). When a change occurs, the SML 1050 (via the
SML API 1019, an ACM user 1016, or other entity) may
update the ACM metadata 1015 of the corresponding auto
commit buffers 1013. In some embodiments, the SML 1050
may be configured to query the host 1014 (operating system,
hypervisor, or other application) for updates to the logical
identifier of files associated with auto-commit buffers 1013.
The queries may be initiated by the SML API 1019 and/or
may be provided as a hook (callback mechanism) into the host
1014. When the ACM user 1016 no longer needs the auto
commit buffer 1013, the SML 1050 may de-allocate the
buffer 1013 as described above. De-allocation may further
comprise informing the host 1014 that updates to the logical
identifier are no longer needed.

In some embodiments, a file may be mapped across mul
tiple storage devices (e.g., the storage devices may beformed
into a RAID group, may comprise a virtual storage device, or
the like). Associations between auto-commit buffers 1013
and the file may be updated to reflect the file mapping. This
allows the auto-commit buffers 1013 to commit the data to the
proper storage device. The ACM metadata 1015 of the auto
commit buffers 1013 may be updated in response to changes
to the underlying file mapping and/or partitioning as
described above. Alternatively, the file may be “locked to a
particular mapping or partition while the auto-commitbuffers
1013 are in use. For example, ifa remapping/repartitioning of
a file is required, the corresponding auto-commit buffers
1013 may commit data to the file, and then be re-associated
with the file under the new mapping/partitioning scheme. The
SML API 1019 may comprise interfaces and/or commands
for using the SML 1050 to lock a file, release a file, and/or
update ACM metadata 1015 in accordance with changes to a
file.

Committing the data to Solid-state, non-volatile storage
1110 may comprise the storage controller 1104 accessing
data from the ACM 1111 auto-commit buffers 1013, associ
ating the data with the corresponding logical identifier (e.g.,
labeling the data), and injecting the labeled data into the write
data pipeline 1106 as described above. In some embodiments,
to ensure there is a page program command capable of per
sisting the ACM data, the storage controller 1104 maintains
two or more pending page programs during operation. The
ACM data may be committed to the non-volatile memory
1110 before writing the power loss identifier (power-cut fill
pattern) described above.

FIG. 4 depicts one embodiment of a system 1200 compris
ing a plurality of auto-commit memories. In the FIG. 4
example, memory semantic accesses implemented by the
host 1014 may be stored on a plurality of ACMs, including
1011A and 1011B. In some embodiments, host data may be
mirrored between the ACMs 1011A and 1011B. The mirror
ing may be implemented using a multi-cast bus 1040. Alter
natively, or in addition, one of the ACMs (AM 1011A) may be
configured to rebroadcast data to the ACM 1011B. The ACMs
1011A and 1011 B may be local to one another (e.g., on the
same local bus). Alternatively, the ACMs 1011A and 1011B

10

15

25

30

35

40

45

50

55

60

65

28
may located on different systems, and may be communica
tively coupled via a bus that Supports remove data access,
such as Infiniband, a remote PCI bus, RDMA, or the like.

In some embodiments, the ACMs 1011A and 1011 B may
implement a striping scheme (e.g., a RAID Scheme). In this
case, different portions of the host data may be sent to differ
ent ACMs 1011A and/or 1011B. Driver level software, such
as a volume manager implemented by the SML 1050 and/or
operating system 1018 may map host data to the proper ACM
per the striping pattern.

In some configurations, the memory access semantics pro
vided by the ACMs may be adapted according to a particular
storage Striping pattern. For example, if host data is mirrored
from the ACM 1011A to the ACM 1011B, a memory semantic
write may not complete (and/oranacknowledgement may not
be returned) until the ACM 1011 A verifies that the data was
sent to the ACM 1011B (under the “instant commit seman
tic). Similar adaptations may be implemented when ACMs
are used in a striping pattern (e.g., a memory semantic write
may be not return and/or be acknowledged, until the striping
pattern for a particular operation is complete). For example,
in a copy on write operation, the ACM 1011 A may store the
data of an auto-commit buffer, and then cause the data to be
copied to the ACM 1011B. The ACM 1011A may not return
an acknowledgment for the write operation (or allow the data
to be read) until the data is copied to the ACM 1011B.
The use of mirrored ACM devices 1011A and 1011B may

be used in a high-availability configuration. For example, the
ACM devices 1011A and 1011B may be implemented in
separate host computing devices. Memory semantic accesses
to the devices 1011A and 1011B are mirrored between the
devices as described above (e.g., using PCI-e access). The
devices may be configured to operate in high-availability
mode. Such that device proxying may not be required.
Accordingly, trigger operations (as well as other memory
semantic accesses) may be mirrored across both devices
1011A and 1011B, but the devices 1011A and 1011B may not
have to wait for a “acknowledge' from the other before pro
ceeding, which removes the other device from the write
commit latency path.

FIG. 5 is a block diagram of a one embodiment 1300 of a
commit management apparatus 1122. The commit manage
ment apparatus 1122 may be tightly coupled (e.g., within an
isolation Zone 1301) to the auto-commit memory 1011, the
non-volatile storage controller 1304, the non-volatile storage
media 1310, and/or the secondary power supply 1324. The
tight coupling may comprise implementing these compo
nents 132, 1011, 1304, 1310, and/or 1324 on the same die, the
same peripheral device, on the same card (e.g., the same
PCB), within a pre-defined isolation Zone, or the like. The
tight coupling may ensure that the triggered commit actions
of the ACM buffers 1013 are committed in the event of a
restart condition.
The commit management apparatus 1122 includes a moni

tor module 1310, which may be configured to detect restart
conditions, such as power loss or the like. The monitor mod
ule 1310 may be configured to sense triggering events, such as
restart conditions (e.g., shutdown, restart, power failures,
communication failures, host or application failures, and so
on) and, in response, to initiate the commit module 1320 to
initiate the commit loss mode of the apparatus 1122 (failure
loss mode) and/or to trigger the operations of other modules,
such as modules 1312, 1314, 1316, 1317, and/or 1318. The
commit module 1320 includes an identification module 1312,
terminate module 1314, corruption module 1316, and
completion module 1318, which may operate as described
above.

US 9,208,071 B2
29

The identification module 1312 may be further configured
to identify triggered commit actions to be performed for each
ACM buffer 1013 of the ACM 1011. As discussed above, the
identification module 1312 may prioritize operations based
on relative importance, with acknowledged operations being
given a higher priority than non-acknowledged operations.
The contents of auto-commit buffers 1013 that are armed to
be committed may be assigned a high priority due to the
“instant commit semantics Supported thereby. In some
embodiments, the ACM triggered commit actions may be
given a higher priority than the acknowledged contents of the
write data pipeline 1306. Alternatively, the contents of armed
auto-commit buffers 1013 may be assigned the “next-highest
priority. The priority assignment may be user configurable
(via an API, IO control (IOCTL), or the like).
The termination module 1314 terminates non-essential

operations to allow “essential’ to continue as described
above. The termination module 1314 may be configured to
hold up portions of the ACM 1011 that are “armed” to be
committed (e.g., armed auto-commit buffers), and may ter
minate power to non-armed (unused) portions of the auto
commit memory 1011. The termination module 1314 may be
further configured to terminate power to portions of the ACM
1011 (individual auto-commit buffers 1013) as the contents
of those buffers are committed.
The corruption module 1316 identifies corrupt (or poten

tially corrupt) data in the write data pipeline 1306 as
described above. The module 1316 may be further configured
to identify corrupt ACM data 1011 (data that was written to
the ACM 1011 during a power disturbance or other restart
condition). The corruption module 1316 may be configured to
prevent corrupt data on the ACM 1011 from being committed
in a triggered commit action.
An ACM module 1317 is configured to access armed auto

commit buffers in the auto-commit memory 1011, identify
the ACM metadata 1015 associated therewith (e.g., label the
data with the corresponding logical identifier per the ACM
metadata 1015), and inject the data (and metadata) into the
write data pipeline of the non-volatile storage controller
1304. In some embodiments, the logical identifier (or other
ACM metadata 1015) of the auto-commit buffer 1013 may be
stored in the buffer 1013 itself. In this case, the contents of the
auto-commit buffer 1013 may be streamed directly into a
sequential and/or log-based storage device without first iden
tifying and/or labeling the data. The ACM module 1317 may
inject data before or after data currently in the write data
pipeline 1306. In some embodiments, data committed from
the ACM 1011 is used to “fill out the remainder of a write
buffer of the write data pipeline 1306 (after removing poten
tially corrupt data). If the remaining capacity of the write
buffer is insufficient, the write buffer is written to the non
volatile storage 1310, and a next write buffer is filled with the
remaining ACM data.
As discussed above, in some embodiments, the non-vola

tile storage controller 1304 may maintain an armed write
operation(logical page write) to store the contents of the write
data pipeline 1306 in the event of power loss. When used with
an ACM 1011, two (or more) armed write operations (logical
page writes) may be maintained to ensure the contents of both
the write data pipeline 1306, and all the armed buffers 1013 of
the ACM 1011 can be committed in the event of a restart
condition. Because a logical page in a write buffer may be
partially filled when a trigger event occurs, the write buffer is
sized to hold at least one more logical page of data than the
total of all the data Stored in all ACM buffers 1013 of the ACM
1011 and the capacity of data in the write data pipeline that
has been acknowledged as persisted. In this manner, there will

10

15

25

30

35

40

45

50

55

60

65

30
be sufficient capacity in the write buffer to complete the
persistence of the ACM 1011 in response to a trigger event.
Accordingly, the auto-commit buffers 1013 may be sized
according to the amount of data the ACM 1011 is capable of
committing. Once this threshold is met, the SML 1050 may
reject requests to use ACM buffers 1013 until more become
available.
The completion module 1318 is configured to flush the

write data pipeline regardless of whether the certain buffers,
packets, and/or pages are completely filled. The completion
module 1318 is configured to perform the flush (and insert the
related padding data) after data on the ACM 1011 (if any) has
been injected into the write data pipeline 1306. The comple
tion module 1318 may be further configured to inject comple
tion indicator into the write data pipeline, which may be used
to indicate that a restart condition occurred (e.g., a restart
condition fill pattern). This fill pattern may be included in the
write data pipeline 1306 after injecting the triggered data
from the ACM 1011.
As discussed above, the secondary power Supply 1324 may

be configured to provide sufficient power to store the contents
of the ACM 1011 as well as data in the write data pipeline
1306. Storing this data may comprise one or more write
operations (e.g., page program operations), in which data is
persistently stored on the non-volatile storage media 1310. In
the event a write operation fails, another write operation, on a
different storage location, may be attempted. The attempts
may continue until the data is successfully persisted on the
non-volatile storage media 1310. The secondary power sup
ply 1324 may be configured to provide sufficient power for
each of a plurality of such page program operations to com
plete. Accordingly, the secondary power Supply 1324 may be
configured to provide sufficient power to complete double (or
more) page program write operations as required to store the
data of the ACM 1011 and/or write data pipeline 1306.

FIG. 6 is a block diagram 1500 depicting a host computing
device 1014 accessing an ACM using memory access seman
tics. The host computing device 1014 may comprise a pro
cessor complex/CPU 1012, which may include, but is not
limited to, one or more of a general purpose processor, an
application-specific processor, a reconfigurable processor
(FPGA), a processor core, a combination of processors, a
processor cache, a processor cache hierarchy, or the like. In
one embodiment, the processor complex 1012 comprises a
processor cache, and the processor cache may include one or
more of a write combine buffer, an L1 processor cache, an L2
processor cache, an L3 processor cache, a processor cache
hierarchy, and other types of processor cache. One or more
ACM users 1016 (e.g., operating systems, applications, and
so on) operate on the host 1014.
The host 1014 may be communicatively coupled to the

ACM 1011 via a bus 1040, which may comprise a PCI-e bus,
or the like. Portions of the ACM 1011 are made accessible to
the host 1014 may mapping in auto-commit buffers 1013 into
the host 1014. In some embodiments, mapping comprises
associating an address range within the host memory system
1018 with an auto-commit buffer 1013 of the ACM 1011.
These associations may be enabled using the SML API 1019
and/or SML 1050 available on the host 1014.
The SML 1050 may comprise libraries and/or provide

interfaces (e.g., SML API 1019) to implement the memory
access semantics described above. The API 1019 may be used
to access the ACM 1011 using memory access semantics via
a memory semantic access module 1522. Other types of
access, such as access to the non-volatile storage 1502, may
be provided via a block device interface 1520.

US 9,208,071 B2
31

The SML 1050 may be configured to memory map auto
commit buffers 1013 of the ACM 1011 into the memory
system 1018 (via the SML API 1019). The memory map may
use a virtual memory abstraction of the memory system 1018.
For example, a memory map may be implemented using a
memory mapped file abstraction. In this example, the operat
ing system (or application) 1016 designates a file to be
mapped into the memory system 1018. The file is associated
with a logical identifier (LID) 1025 (e.g., logical block
address), which may be maintained by a file system, an oper
ating system 1016, or the like.
The memory mapped file may be associated with an auto

commit buffer 1013 of the ACM 1013. The association may
be implemented by the SML 1050 using the bus 1040. The
SML 1050 associates the address range of the memory
mapped file (in the memory system 1018) with a device
address of an auto-commit buffer 1013 on the ACM 1011. The
association may comprise mapping a PCI-e BAR into the
memory system 1018. In the FIG. 6 example, the ACM
address range 1021 in the memory system 1018 is associated
with the auto-commit buffer 1013.
As discussed above, providing memory access semantics

to the ACM 1011 may comprise “arming the ACM 1011 to
commit data stored thereon in the event of failure or other
restart. The pre-configured arming ensures that, in the event
of a restart, data stored on the ACM 1011 will be committed
to the proper logical identifier. The pre-configuration of the
trigger condition enables applications 1016 to access the
auto-commit buffer 1013 using “instant-commit’ memory
access semantics. The logical identifier used to arm the auto
commit buffer may be obtained from an operating system, the
memory system 1018 (e.g., virtual memory system), or the
like.
The SML 1050 may be configured to arm the auto-commit

buffers 1013 with a logical identifier (e.g., automatically, by
callback, and/or via the SML API 1019). Each auto-commit
buffer 1013 may be armed to commit data to a different
logical identifier (different LBA, persistent identifier, or the
like), which may allow the ACM 1011 to provide memory
semantic access to a number of different, concurrent ACM
users 1016. In some embodiments, arming an auto-commit
buffer 1013 comprises setting the ACM metadata 1015 with a
logical identifier. In the FIG. 6 example, the ACM address
range 1021 is associated with the logical identifier 1025, and
the ACM metadata 1015 of the associated auto-commit buffer
is armed with the corresponding logical identifier 1025.
The SML 1050 may arm an auto-commit buffer using an

I/O control (IOCTL) command comprising the ACM address
range 1021, the logical identifier 1025, and/or an indicator of
which auto-commit buffer 1013 is to be armed. The SML
1050 (through the SML API 1019) may provide an interface
to disarm or “detach' the auto-commit buffer 1013. The dis
arm command may cause the contents of the auto-commit
buffer 1013 to be committed as described above (e.g., com
mitted to the non-volatile storage device 1502). The detach
may further comprise “disarming the auto-commit buffer
1013 (e.g., clearing the ACM metadata 1015). The SML 1050
may be configured to track mappings between address ranges
in the memory system 1018 and auto-commit buffers 1013 so
that a detach command is performed automatically.

Alternatively, or in addition, the SML 1050 may be inte
grated into the operating system (or virtual operating system,
e.g., hypervisor) of the host 1014. This may allow the auto
commit buffers 1013 to be used by a virtual memory demand
paging system. The operating system may (through the SML
API 1019 or other integration technique) map/arm auto-com
mit buffers for use by ACMusers 1016. The operating system

10

15

25

30

35

40

45

50

55

60

65

32
may issue commit commands when requested by an ACM
user 1016 and/or its internal demand paging system. Accord
ingly, the operating system may use the ACM 1011 as
another, generally available virtual memory resource.
Once an ACM user 1016 has mapped the ACM address

range 1021 to an auto-commit buffer 1013 and has armed the
buffer 1013, the ACM user 1016 may access the resource
using memory access semantics, and may consider the
memory accesses to be “logically committed as soon as the
memory access has completed. The ACM user 1016 may
view the memory semantic accesses to the ACM address
range 1021 to be “instantly committed” because the ACM
1011 is configured to commit the contents of the auto-commit
buffer (to the logical identifier 1025) regardless of experienc
ing restart conditions. Accordingly, the ACM user 1016 may
not be required to perform separate write and commit com
mands (e.g., a single memory semantic write is Sufficient to
implement a write-commit). Moreover, the mapping between
the auto-commit buffer 1013 and the ACM 1011 disclosed
herein removes overhead due to function calls, system calls,
and even a hypervisor (if the ACM user 1016 is running in a
virtual machine) that typically introduce latency into the
write-commit path. The write-commit latency time of the
ACMuser 1016 may therefore be reduced to the time required
to access the ACM 1011 itself.
As described above, in certain embodiments, the host 1014

may map one or more ACM buffers 1013 into an address
range of a physical memory address space addressable by a
CPU, a kernel, or the like of the host device 1014, such as the
memory system 1018, as directly attached physical memory,
as MMIO addressable physical memory over a PCI-e bus, or
otherwise mapped as one or more pages of physical memory.
The host 1014 may further map at least a portion of the
physically mapped ACM buffers 1013 into a virtual memory
address space, accessible to user-space processes or the like
as virtual memory. The host 1014 may map the entire capacity
of the physically mapped ACM buffers 1013 into a virtual
memory address space, a portion of the physically mapped
ACM buffers 1013 into a virtual memory address space, or the
like.

In a similar manner, the host 1014 may include a virtual
machine hypervisor, host operating system, or the like that
maps the physically mapped ACM buffers 1013 into an
address space for a virtual machine or guest operating system.
The physically mapped ACM buffers 1013 may appear to the
virtual machine or guest operating system as physically
mapped memory pages, with the virtual machine hypervisor
or host operating system spoofing physical memory using the
ACM buffers 1013. A resource management agent, as
described above, may allocate/arbitrate storage capacity of
the ACM buffers 1013 among multiple virtual machines,
guest operating systems, or the like.

Because, in certain embodiments, virtual machines, guest
operating systems, or the like detect the physically mapped
ACM buffers 1013 as if they were simply physically mapped
memory, the virtual machines can Sub-allocate/arbitrate the
ACM buffers 1013 into one or more virtual address spaces for
guest processes, or the like. This allows processes within
guest operating systems, in one embodiment, to change ACM
data and/or ACM metadata 1015 directly, without making
guest operating system calls, without making requests to the
hypervisor or host operating system, or the like.

In another embodiment, instead of spoofing physical
memory for a virtual machine and/or guest operating system,
a virtual machine hypervisor, a host operating system, or the
like of the host device 1014 may use para-virtualization tech
niques. For example, a virtual machine and/or guest operating

US 9,208,071 B2
33

system may be aware of the virtual machine hypervisor or
host operating system and may work directly with it to allo
cate/arbitrate the ACM buffers 1013, or the like. When the
ACM 1011 is used in a virtual machine environment, in which
one or more ACM users 1016 operate within a virtual
machine maintained by a hypervisor, the hypervisor may be
configured to provide ACM users 1016 operating within the
virtual machine with access to the SML API 1019 and/or
SML 1050.
The hypervisor may access the SML API 1019 to associate

logical identifiers with auto-commit buffers 1013 of the ACM
1011, as described above. The hypervisor may then provide
one or more armed auto-commit buffers 1013 to the ACM
users 1016 (e.g., by mapping an ACM address range 1021
within the virtual machine memory system to the one or more
auto-commit buffers 1013). The ACM user 1016 may then
access the ACM 1011 using memory access semantics (e.g.,
efficient write-commit operations), without incurring over
heads due to, interalia, hypervisor and other system calls. The
hypervisor may be further configured to maintain the ACM
address range 1021 in association with the auto-commit buff
ers 1013 until explicitly released by the ACM user 1016 (e.g.,
the keep the mapping from changing during use). Para-virtu
alization and cooperation, in certain embodiments, may
increase the efficiency of the ACM 1011 in a virtual machine
environment.

In some embodiments, the ACM user 1016 may be adapted
to operate with the “instant commit’ memory access seman
tics provided by the ACM 1013. For example, since the armed
auto-commit buffers 1013 are triggered to commit in the
event of a restart (without an explicit commit command), the
order in which the ACM user 1016 performs memory access
to the ACM 1011 may become a consideration. The ACMuser
1016 may employ memory barriers, complier flags, and the
like to ensure the proper ordering of memory access opera
tions.

For example, read before write hazards may occur where
an ACM user 1016 attempts to read data through the block
device interface 1520 that is stored on the ACM 1011 (via the
memory semantic interface 1522). In some embodiments, the
SML 1050 may maintain metadata tracking the associations
between logical identifiers and/or address ranges in the
memory system 1018 and auto-commit buffers 1013. When
an ACM user 1016 (or other entity) attempts to access a
logical identifier that is mapped to an auto-commit buffer
1013 (e.g., through the block device interface 1520), the SML
1050 directs the request to the ACM 1011 (via the memory
semantic interface 1522), preventing a read before write haz
ard.
The SML 1050 may be configured to provide a “consis

tency' mechanism for obtaining a consistent state of the ACM
1011 (e.g., a barrier, Snapshot, or logical copy). The consis
tency mechanism may be implemented using metadata main
tained by the SML 1050, which, as described above, may
track the triggered auto-commit buffers 1013 in the ACM
1011. A consistency mechanism may comprise the SML 1050
committing the contents of all triggered auto-commit buffers
1013, such that the state of the persistent storage is main
tained (e.g., Store the contents of the auto-commit buffers
1013 on the non-volatile storage 1502, or other persistent
storage).
As described above, ACM users 1016 may access the ACM

1011 using memory access semantics, at RAM granularity,
with the assurance that the operations will be committed if
necessary (in the event of restart, failure, power loss, or the
like). This is enabled by, inter alia, a mapping between the
memory system 1018 of the host 1014 and corresponding

10

15

25

30

35

40

45

50

55

60

65

34
auto-commit buffers 1013; memory semantic operations
implemented within an ACM memory range 1021 mapped to
an auto-commit buffer 1013 are implemented directly on the
buffer 1013. As discussed above, data transfer between the
host 1041 and the ACM 1011 may be implemented using any
Suitable data transfer mechanism including, but not limited
to: the host 1014 performing processor IO operations (PIO)
with the ACM 1011 via the bus 1040 (e.g., MMIO, PMIO, and
the like); the ACM 1011 (or other device) providing one or
more DMA engines or agents (data movers) to transfer data
between the host 1014 and the ACM 1011; the host 1014
performing processor cache write/flush operations; or the
like. Transferring data on the bus 1040 may comprise issuing
a bus “write' operation followed by a “read.” The subsequent
“read may be required where the bus 1040 (e.g., PCI bus)
does not provide an explicit write acknowledgement.

In some embodiments, an ACM user may wish to transfer
data to the ACM 1011 in bulk as opposed to a plurality of
Small transactions. Bulk transfers may be implemented using
any suitable bulk transfer mechanism. The bulk transfer
mechanism may be predicated on the features of the bus 1040.
For example, in embodiments comprising a PCI-e bus 1040.
bulk transfer operations may be implemented using bulk reg
ister store CPU instructions.

Similarly, certain data intended for the ACM 1011 may be
cached in processor cache of the processor complex 1012.
Data that is cached in a processor cache may be explicitly
flushed to the ACM 1011 (to particular auto-commit buffers
1013) using a CPU cache flush instruction, or the like, such as
the serializing instruction described below.
The DMA engines described above may also be used to

perform bulk data transfers between an ACM user 1016 and
the ACM 1011. In some embodiments, the ACM 1011 may
implement one or more of the DMA engines, which may be
allocated and/or accessed by ACMusers 1016 using the SML
1050 (through the SML API 1019). The DMA engines may
comprise local DMA transfer engines for transferring data on
a local, system bus as well as RDMA transfer engines for
transferring data using a network bus, network interface, or
the like.

In some embodiments, the ACM 1011 may be used in
caching applications. For example, the non-volatile storage
device 1502 may be used as cache for other backing store,
Such as a hard disk, network-attached storage, or the like (not
shown). One or more of the ACM 1011 auto-commit buffers
1013 may be used as a front-end to the non-volatile storage
1502 cache (a write-back cache) by configuring one or more
of the auto-commit buffers 1013 of the ACM 1011 to commit
data to the appropriate logical identifiers in the non-volatile
storage 1502. The triggered buffers 1013 are accessible to
ACM users 1016 as described above (e.g., by mapping the
buffers 1013 into the memory system 1018 of the host 1014).
A restart condition causes the contents of the buffers 1013 to
be committed to the non-volatile storage 1502 cache. When
the restart condition is cleared, the cached data in the non
volatile storage 1502 (committed by the auto-commit buffers
1013 on the restart condition) will be viewed as “dirty' in the
write cache and available for use and/or migration to the
backing store. The use of the ACM 1011 as a cache front-end
may increase performance and/or reduce wear on the cache
device.

In some embodiments, auto-commit buffers 1013 of the
ACM 1011 may be leveraged as a memory write-back cache
by an operating system, virtual memory system, and/or one or
more CPUs of the host 1014. Data cached in the auto-commit
buffers 1013 as part of a CPU write-back cache may be armed
to commit as a group. When committed, the auto-commit

US 9,208,071 B2
35

buffers 1013 may commit both data and the associated cache
tags. In some embodiments, the write-back cache auto-com
mit buffers 1013 may be armed with an ACM address (or
armed with a predetermined write-back cache address).
When the data is restored, logical identifier information, such
as LBA and the like, may be determined from a log or other
data.

In some embodiments, the SML 1050 may comprise librar
ies and/or publish APIs adapted to a particular set of ACM
users 1016. For example, the SML 1050 may provide an
Instant Committed Log Library (ICL) 1552 adapted for appli
cations whose performance is tied to write-commit latency,
Such as transaction logs (database, file system, and other
transaction logs), store and forward messaging systems, per
sistent object caching, storage device metadata, and the like.
The ICL 1552 provides mechanisms for mapping auto

commit buffers 1013 of the ACM 1011 into the memory
system 1018 of an ACM user 1016 as described above. ACM
users 1016 (or the ICL 1552 itself) may implement an effi
cient “Supplier/consumer paradigm for auto-commit buffer
1013 allocation, arming, and access. For example, a “Sup
plier thread or process (in the application space of the ACM
users 1016) may be used to allocate and/or arm auto-commit
buffers 1013 for the ACM user 1016 (e.g., map auto-commit
buffers 1013 to address ranges within the memory system
1018 of the host 1014, arm the auto-commit buffers 1013 with
a logical identifier, and so on). A "consumer thread or pro
cess of the ACM user 1016 may then accesses the pre-allo
cated auto-commit buffers 1013. In this approach, allocation
and/or arming steps are taken out of the write-commit latency
path of the consumer thread. The consumer thread of the
ACM user 1016 may consider memory semantic accesses to
the memory range mapped to the triggered auto-commit buff
ers (the ACM memory range 1021) as being “instantly com
mitted as described above.

Performance of the consumer thread(s) of the ACM user
1016 may be enhanced by configuring the supplier threads of
an Instant Committed Log Library (ICL) 1552 (or ACM user
1016) to allocate and/or arm auto-commit buffers 1013 in
advance. When a next auto-commit buffer 1013 is needed, the
ACM user 1016 have access a pre-allocated/armed buffer
from a pool maintained by the Supplier. The Supplier may also
perform cleanup and/or commit operations when needed. For
example, if data written to an auto-commit buffer is to be
committed to persistent storage, a Supplier thread (or another
thread outside of the write-commit path) may cause the data
to be committed (using the SML API 1019). Committing the
data may comprise re-allocating and/or re-arming the auto
commit buffer 1013 for a consumer thread of the ACM user
1016 as described above.
The “supplier/consumer approach described above may

be used to implement a “rolling buffer.” An ACM user 1016
may implement an application that uses a pre-determined
amount of “rolling data. For example, an ACM user 1016
may implement a message queue that stores the “last 20
inbound messages” and/or the ACM user 1016 may manage
directives for a non-volatile storage device (e.g., persistent
trim directives or the like). A supplier thread may allocate
auto-commit buffers 1013 having at least enough capacity to
hold the “rolling data' needed by the ACM user 1016 (e.g.,
enough capacity to hold the last 20 inbound messages). A
consumer thread may access the buffers using memory access
semantics (load and store calls) as described above. The SML
API 1019 (or supplier thread of the ACM user 1016) may
monitor the use of the auto-commit buffers 1013. When the
consumer thread nears the end of its auto-commit buffers
1013, the supplier thread may re-initialize the “head of the

10

15

25

30

35

40

45

50

55

60

65

36
buffers 1013, by causing the data to be committed (if neces
sary), mapping the data to another range within the memory
system 1018, and arming the auto-commit buffer 1013 with a
corresponding logical identifier. As the consumer continues
to access the buffers 1013, the consumer stores new data at a
new location that “rolls over to the auto-commit buffer 1013
that was re-initialized by the Supplier thread, and continues to
operate. In some cases, data written to the rolling buffers
described above may never be committed to persistent stor
age (unless a restart condition or other triggering condition
occurs). Moreover, if the capacity of the auto-commit buffers
1013 is sufficient to hold the rolling data of the ACM user, the
Supplier threads may not have to perform re-initialize/re
arming described above. Instead, the Supplier threads may
simply re-map auto-commit buffers 1013 that comprise data
that has “rolled over (and/or discard the “rolled over data
therein).

In its simplest form, a rolling buffer may comprise two
ACM buffers 1013, and the SML 1050 may write to one ACM
buffer 1013 for an ACMuser 1016 while destaging previously
written data from the other ACM buffer 1013 to a storage
location, such as the non-volatile memory 1110 or the like. In
response to filling one ACM buffer 1013 and completing a
destaging process of the other ACM buffer 1013, the SML
1050 may transparently switch the two ACM buffers such that
the ACM user 1016 writes to the other ACM buffer 1013
during destaging of the one ACM buffer 1013, in a ping-pong
fashion. The SML 1050 may implement a similar rolling
process with more than two ACM buffers 1013. The ICL
1552, in certain embodiments, includes and/or supports one
or more transactional log API functions. An ACM user 1016
may use the ICL 1552, in these embodiments, to declare or
initialize a transactional log data structure.
As a parameter to a transactional log API command to

create a transactional log data structure, in one embodiment,
the ICL 1552 receives a storage location, such as a location in
a namespace and/or address space of the non-volatile storage
1502 or the like, to which the SML 1050 may commit, empty,
and/or destage data of the transactional log from two or more
ACM buffers 1013 in a rolling or circular manner as described
above. Once an ACM user 1016 has initialized or declared a
transactional log data structure, in one embodiment, the use
of two or more ACM buffers 1013 to implement the transac
tional log data structure is Substantially transparent to the
ACM user 1016, with the performance and benefits of the
ACM 1011. The use of two or more ACM buffers 1013, in
certain embodiments, is transparent when the destage rate for
the two or more ACM buffers 1013 is greater than or equal to
the rate at which the ACMuser 1016 writes to the two or more
ACM buffers 1013. The ICL 1552, in one embodiment, pro
vides byte-level writes to a transactional log data structure
using two or more ACM buffers 1013.

In another example, a Supplier thread may maintain four
(4) or more ACM buffers 1013. A first ACM buffer 1013 may
be armed and ready to accept data from the consumer, as
described above. A second ACM buffer 1013 may be actively
accessed (e.g., filled) by a consumer thread, as described
above. A third ACM buffer 1013 may be in a pre-arming
process (e.g., re-initializing, as described above), and a fourth
ACM buffer 1013 may be “emptying or “destaging” (e.g.,
committing to persistent storage, as described above).

In some embodiments, the ICL 1552 and/or rolling log
mechanisms described above may be used to implement an
Intent Log for Synchronous Writes for a filesystem (e.g., the
ZFS file system). The log data (ZIL) may be fairly small (1 to
4 gigabytes) and is typically “write only.” Reads may only be
performed for file system recovery. One or more auto-commit

US 9,208,071 B2
37

buffers 1013 may be used to store filesystem data using a
rolling log and/or demand paging mechanism as described
above.
The ICL library 1552 may be configured to operate in a

high-availability mode as described above in conjunction
with FIG. 4. In a high-availability mode, the SML 1050
and/or bus 1040 sends commands pertaining to memory
semantic accesses to two or more ACM 1011, each of which
may implement the requested operations and/or be triggered
to commit data in the event of a restart condition.

The ACM 1011 disclosed herein may be used to enable
other types of applications, such as durable synchronization
primitives. A synchronization primitive may include, but is
not limited to: a semaphore, mutex, atomic counter, test and
set, or the like.
A synchronization primitive may be implemented on an

auto-commit buffer 1013. ACMusers 1016 (or other entities)
that wish to access the synchronization primitive may map the
auto-commit buffer 1013 into the memory system 1018. In
some embodiments, each ACM user 1016 may map the syn
chronization primitive auto-commit buffer 1013 into its own,
respective address range in the memory system 1018. Since
the different address ranges are all mapped to the same auto
commit buffer 1013, all will show the same state of the
synchronization primitive. ACM users 1016 on remote com
puting devices may map the synchronization primitive auto
commit buffer 1013 into their memory system using an
RDMA network or other remote access mechanism (e.g.,
Infiniband, remote PCI, etc.).

In some embodiments, the SML 1050 may comprise a
Durable Synchronization Primitive Library (DSL) 1554 to
facilitate the creation of and/or access to synchronization
primitives on the ACM 1011. The DSL 1554 may be config
ured to facilitate one-to-many mappings as described above
(one auto-commit buffer 1030-to-many address ranges in the
memory system 1018).
The ACM users 1016 accessing the semaphore primitive

may consider their accesses to be “durable.” since if a restart
condition occurs while the Synchronization primitive is in
use, the state of the synchronization primitive will be per
sisted as described above (the auto-commit buffer 1013 of the
synchronization primitive will be committed to the non-vola
tile storage 1502, or other persistent storage).
As described above, the SML 1050 may be used to map a

file into the memory system 1018 (virtual address space) of
the host 1014. The file may be mapped in an “Instant Com
mitted Memory” (ICM) mode. In this mode, all changes made
to the memory mapped file are guaranteed to be reflected in
the file, even if a restart condition occurs. This guarantee may
be made by configuring the demand paging system to use an
auto-commit buffer 1013 of the ACM 1011 for all “dirty”
pages of the ICM file. Accordingly, when a restart condition
occurs, the dirty page will be committed to the file, and no
data will be lost.

In some embodiments, the SML 1050 may comprise an
ICM Library (ICML) 1556 to implement these features. The
ICML 1556 may be integrated with an operating system
and/or virtual memory system of the host 1014. When a page
of an ICM memory mapped file is to become dirty, the ICML
1556 prepares an auto-commit buffer 1013 to hold the dirty
page. The auto-commit buffer 1013 is mapped into the
memory system 1018 of the host 1014, and is triggered to
commit to a logical identifier associated with the memory
mapped file. As described above, changes to the pages in the
memory system 1018 are implemented on the auto-commit
buffer 1013 (via the memory semantic access module 1522).

5

10

15

25

30

35

40

45

50

55

60

65

38
The ICML 1556 may be configured to commit the auto

commit buffers 1013 of the memory mapped file when restart
conditions occur and/or when the demand paging system of
the host 1014 needs to use the auto-commit buffer 1013 for
another purpose. The determination of whether to “detach'
the auto-commit buffer 1013 from a dirty page may be made
by the demand paging system, by the SML 1050 (e.g., using
a least recently used (LRU) metric, or the like), or by some
other entity (e.g., an ACM user 1016). When the auto-commit
buffer is detached, the SML 1050 may cause its contents to be
committed. Alternatively, the contents of the auto-commit
buffer 1013 may be transferred to system RAM at which point
the virtual memory mapping of the file may transition to use
a RAM mapping mechanisms.

In some embodiments, the SML 1050 (or ICML 1556) may
be configured to provide a mechanism to notify the operating
system (virtual memory system or the like) that a page of a
memory mapped file is about to become dirty in advance of an
ACM user 1016 writing the data. This notification may allow
the operating system to prepare an auto-commit buffer 1013
for the dirty page in advance, and prevent stalling when the
write actually occurs (while the auto-commit buffer is
mapped and armed). The notification and preparation of the
auto-commit buffer 1013 may implemented in a separate
thread (e.g., a Supplier thread as described above).
The SML 1050 and/or ICML 1556 may provide an API to

notify the operating system that a particular page that is about
to be written has no useful contents and should be zero filled.
This notification may help the operating system to avoid
unnecessary read operations.
The mechanisms for memory mapping a file to the ACM

1011 may be used in log-type applications. For example, the
ICL library 1552 may be implemented to memory map a log
file to one or more auto-commit buffers 1013 as described
above. A supplier thread may provide notifications to the
operating system regarding which pages are about to become
dirty and/or to identify pages that do not comprise valid data.

Alternatively, or in addition, the ICML 1556 may be imple
mented without integration into an operating system of the
host 1014. In these embodiments, the ICML 1556 may be
configured to monitor and/or trap system signals, such as
improtect, mmap, and manual segmentation fault signals to
emulate the demand paging operations typically performed
by an operating system.

FIG. 7 is a flow diagram of one embodiment of a method
1600 for providing an auto-commit memory. At step 1610 the
method 1600 may start and be initialized. Step 1610 may
comprise the method 1600 initiating communication with an
ACM over a bus (e.g., initiating communication with ACM
1011 via bus 1040).
At step 1620, an auto-commit buffer of the ACM may be

mapped into the memory system of a computing device (e.g.,
the host 1014). The mapping may comprise associating a
BAR address of the auto-commit buffer with an address range
in the memory system.
At step 1630, the auto-commit buffer may be armed with

ACM metadata configured to cause the auto-commit buffer to
be committed to a particular persistent storage and/or at a
particular location in the persistent storage in the event of a
restart condition. In some embodiments, the ACM metadata
may comprise a logical identifier Such as a LBA, object iden
tifier, or the like. Step 1630 may comprise verifying that the
ACM metadata is valid and/or can be used to commit the
contents of the auto-commit buffer.
At step 1640, an ACM user, Such as an operating system,

application, or the like, may access the armed auto-commit
buffer using memory access semantics. The ACM user may

US 9,208,071 B2
39

consider the accesses to be “instantly committed' due to the
arming of step 1630. Accordingly, the ACM user may imple
ment “instant committed writes that omit a separate and/or
explicit commit command. Moreover, since the memory
semantic accesses are directly mapped to the auto-commit
buffer (via the mapping of step 1620), the memory semantic
accesses may bypass systems calls typically required in Vir
tual memory systems.

At step 1650 the method 1600 ends until a next auto
commit buffer is mapped and/or armed.

FIG. 8 is a flow diagram of another embodiment of a
method 1700 for providing an auto-commit memory. At step
1710 the method 1700 starts and is initialized as described
above.
At step 1720, an auto-commit buffer of an ACM is mapped

into the memory system of a computing device (e.g., the host
1014), and is armed as described above.
At step 1730, an ACM user accesses the auto-commit

buffer using memory access semantics (e.g., by implement
ing memory semantic operations within the memory range
mapped to the auto-commit buffer at step 1720).

At step 1740, a restart condition is detected. As described
above, the restart condition may be a system shutdown, a
system restart, a loss of power, a loss of communication
between the ACM and the host computing device, a software
fault, or any other restart condition that precludes continued
operation of the ACM and/or the host computing device.

At step 1750, the ACM implements the armed triggered
commit actions on the auto-commit buffer. The triggered
commit action may comprise committing the contents of the
auto-commit buffer to persistent storage, such as a solid-state
or other non-volatile storage or the like.

At step 1760, the method 1700 ends until a next auto
commit buffer is mapped and/or armed or a restart condition
is detected.

FIG. 9 is a flow diagram of another embodiment for pro
viding an auto-commit memory. At step 1810, the method
1800 starts and is initialized as described above. At step 1820,
a restart condition is detected.
At step 1830, the method 1800 accesses armed auto-com

mit buffers on the ACM (if any). Accessing the armed auto
commit buffer may comprise the method 1800 determining
whetheran auto-commit buffer has been armed by inspecting
the triggered ACM metadata thereof. If no triggered ACM
metadata exists, or the ACM metadata is invalid, the method
1800 may determine that the auto-commit buffer is not armed.
If valid triggered ACM metadata does exist for a particular
auto-commit buffer, the method 1800 identifies the auto
commit buffer as an armed buffer and continues to step 1840.

At step 1840, the triggered commit action for the armed
auto-commit buffers is performed. Performing the triggered
commit action may comprise persisting the contents of the
auto-commit buffer to a sequential and/or log-based storage
media, such as a Solid-state or other non-volatile storage
media. Accordingly, the triggered commit action may com
prise accessing a logical identifier of the auto-commit buffer,
labeling the data with the logical identifier, and injecting the
labeled data into a write data pipeline. Alternatively, the trig
gered commit action may comprise storing the data on a
persistent storagehaving a one-to-one mapping between logi
cal identifier and physical storage address (e.g., a hard disk).
The triggered commit action may comprise storing the con
tents of the armed auto-commit buffer to the specified physi
cal address.

Performing the triggered commit action at step 1840 may
comprise using a secondary power Supply to power the ACM,

10

15

25

30

35

40

45

50

55

60

65

40
Solid-state storage medium, and/or other persistent, non-vola
tile storage medium, until the triggered commit actions are
completed.

In certain embodiments, instead of or in addition to using a
Volatile memory namespace, such as a physical memory
namespace, a virtual memory namespace, or the like and/or
instead oforin addition to using a storage namespace, such as
a file system namespace, a logical unit number (LUN)
namespace, or the like, one or more commit agents 1020, as
described above, may implement an independent persistent
memory namespace for the ACM 1011. For example, a vola
tile memory namespace, which is typically accessed using an
offset in physical and/or virtual memory, is not persistent or
available after a restart event such as a reboot, failure event, or
the like and a process that owned the data in physical and/or
virtual memory prior to the restart event typically no longer
exists after the restart event. Alternatively, a storage
namespace is typically accessed using a file name and an
offset, a LUN ID and an offset, or the like. While a storage
namespace may be available after a restart event, a storage
namespace may have too much overhead for use with the
ACM 1011. For example, saving a state for each executing
process using a file system storage namespace may result in a
separate file for each executing process, which may not be an
efficient use of the ACM 1011.
The one or more commit agents 1020 and/or the controller

1004, in certain embodiments, provide ACMusers 1016 with
a new type of persistent memory namespace for the ACM
1011 that is persistent through restart events without the over
head of a storage namespace. One or more processes, such as
the ACM user 1016, in one embodiment, may access the
persistent memory namespace using a unique identifier, such
as a globally unique identifier (GUID), universal unique iden
tifier (UUID), or the like so that data stored by a first process
for an ACM user 1016 prior to a restart event is accessible to
a second process for the ACMuser 1016 after the restart event
using a unique identifier, without the overhead of a storage
namespace, a file system, or the like.
The unique identifier, in one embodiment, may be assigned

to an ACM user 1016 by a commit agent 1020, the controller
1004, or the like. In another embodiment, an ACM user 1016
may determine its own unique identifier. In certain embodi
ments, the persistent memory namespace is sufficiently large
and/or ACM users 1016 determine a unique identifier in a
predefined, known manner (e.g., based on a Sufficiently
unique seed value, nonce, or the like) to reduce, limit, and/or
eliminate collisions between unique identifiers. In one
embodiment, the ACM metadata 1015 includes a persistent
memory namespace unique identifier associated with an
owner of an ACM buffer 1013, an owner of one or more pages
of an ACM buffer 1013, or the like.

In one embodiment, the one or more commit agents 1020
and/or the controller 1004 provide a persistent memory
namespace API to ACM users 1016, over which the ACM
users 1016 may access the ACM 1011 using the persistent
memory namespace. In various embodiments, the one or
more commit agents 1020 and/or the controller 1004 may
provide a persistent memory namespace API function to tran
sition, convert, map, and/or copy data from an existing
namespace. Such as a volatile memory namespace or a storage
namespace, to a persistent memory namespace; a persistent
memory namespace API function to transition, convert, map.
and/or copy data from a persistent memory namespace to an
existing namespace, such as a volatile memory namespace or
a storage namespace; a persistent memory namespace API
function to assign a unique identifier Such as a GUID, a
UUID, or the like; a persistent memory namespace API func

US 9,208,071 B2
41

tion to list or enumerate ACM buffers 1013 associated with a
unique identifier, a persistent memory namespace API func
tion to export or migrate data associated with a unique iden
tifier so that an ACM user 1016 such as an application and/or
process may take its ACM data to a different host 1014, to a
different ACM 1011, or the like; and/or other persistent
memory namespace API functions for the ACM 1011.

For example, an ACM user 1016, in one embodiment, may
use a persistent memory namespace API function to map one
or more ACM buffers 1013 of a persistent memory
namespace into virtual memory of an operating system of the
host 1014, or the like, and the mapping into the virtual
memory may end in response to a restart event while the ACM
user 1016 may continue to access the one or more ACM
buffers 1013 after the restart event using the persistent
memory namespace. In certain embodiments, the SML 1050
may provide the persistent memory namespace API in coop
eration with the one or more commit agents 1020 and/or the
controller 1004.
The persistent memory namespace, in certain embodi

ments, is a flat non-hierarchical namespace of ACM buffers
1013 (and/or associated ACM pages), indexed by the ACM
metadata 1015. The one or more commit agents 1020 and/or
the controller 1004, in one embodiment, allow the ACM
buffers 1013 to be queried by ACM metadata 1015. In
embodiments where the ACM metadata 1015 includes a
unique identifier, in certain embodiments, an ACM user 1016
may query or search the ACM buffers 1013 by unique iden
tifier to locate ACM buffers 1013 (and/or stored data) asso
ciated with a unique identifier. In a further embodiment, the
one or more commit agents 1020 and/or the controller 1004
may provide one or more generic metadata fields in the ACM
metadata 1015 such that an ACM user 1016 may define its
own ACM metadata 1015 in the generic metadata field, or the
like. The one or more commit agents 1020 and/or the control
ler 1004, in one embodiment, may provide access control for
the ACM 1011, based on unique identifier, or the like.

In one embodiment, an ACM buffer 1013 may be a member
of a persistent memory namespace and one or more additional
namespaces, such as a volatile namespace, a storage
namespace or the like. In a further embodiment, the one or
more commit agents 1020 and/or the controller 1004 may
provide multiple ACM users 1016 with simultaneous access
to the same ACM buffers 103. For example, multiple ACM
users 1016 of the same type and/or with the same unique
identifier, multiple instances of a single type of ACM user
1016, multiple processes of a single ACM user 1016, or the
like may share one or more ACM buffers 1013. Multiple
ACM users 1016 accessing the same ACM buffers 1013, in
one embodiment, may provide their own access control for
the shared ACM buffers 1013, such as a locking control,
turn-based control, moderator-based control, or the like. In a
further embodiment, using a unique identifier, a new ACM
user 1016, an updated ACM user 1016, or the like on the host
1014 may access

In certain embodiments, the ACM 1011 may comprise a
plurality of independent access channels, buses, and/orports,
and may be at least dual ported (e.g., dual ported, triple
ported, quadruple ported). In embodiments where the ACM
1011 is at least dual ported, the ACM 1011 is accessible over
a plurality of independent buses 1040. For example, the ACM
1011 may be accessible over redundant bus 1040 connections
with a single host 1014, may be accessible to a plurality of
hosts 1014 over separate buses 104 with the different hosts
1014, or the like. In embodiments where the ACM 1011 is at
least dual ported, if one node and/or access channel fails (e.g.,
a host 1014, a bus 1040), one or more additional nodes and/or

10

15

25

30

35

40

45

50

55

60

65

42
access channels to the ACM 1011 remain functional, obviat
ing the need for redundancy, replication, or the like between
multiple hosts 1014.

In one embodiment, the ACM 1011 comprises a PCI-e
attached dual port device, and the ACM 1011 may be con
nected to and in communication with two hosts 1014 over
independent PCI-e buses 1040. For example, the ACM 1011
may comprise a plurality of PCI-e edge connectors for con
necting to a plurality of PCI-e slot connectors, or the like. In
a further embodiment, the power connection 1030 may also
be redundant, with one power connection 1030 per bus 1040
or the like. At least one of the plurality of connections, in
certain embodiments, may comprise a data network connec
tion such as a NIC or the like. For example, the ACM 1011
may comprise one or more PCI-e connections and one or
more data network connections.

In one embodiment, the controller 1004 may arbitrate
between a plurality of hosts 1014 to which the ACM 1011 is
coupled, such that one host 1014 may access the ACM buffers
1013 at a time. The controller 1004, in another embodiment,
may accept a reservation request from a host 1014 and may
provide the requesting host 1014 with access to the ACM
buffers 1013 in response to receiving the reservation request.
The ACM 1011 may natively support a reservation request as
an atomic operation of the ACM 1011. In other embodiments,
the ACM 1011 may divide ACM buffers 1013 between hosts
1014, may divide ACM buffers 1013 between hosts but share
backing non-volatile memory 1110 between hosts, or may
otherwise divide the ACM buffers 1013, the non-volatile
memory 1110, and/or associated address spaces between
hosts 1014.

In one embodiment, the controller 1004, the one or more
commit agents 1020, and/or other elements of the ACM 1011
may be dual-headed, split-brained, or the like, each head or
brain being configured to communicate with a host 1014 and
with each other to provide redundant functions for the ACM
1011. By being at least dual ported, in certain embodiments,
the ACM 1011 may be redundantly accessible, without the
overhead of replication, duplication, or the like which would
otherwise reduce I/O speeds of the ACM 1011, especially if
Such replication, duplication, were performed over a data
network or the like.

FIG. 10A depicts one embodiment of an ACM module
1317. The ACM module 1317, in certain embodiments, may
be substantially similar to the ACM module 1317 described
above with regard to FIG. 5. In other embodiments, the ACM
module 1317 may include, may be integrated with, and/or
may be in communication with the SML 1050, the storage
controller 1004, 1104, 1304, and/or the commit agent 1020.

In general, the ACM module 1317 services auto-commit
requests from an ACM user 1016 or other client for the ACM
1011. As described above with regard to the ACM users 1016,
as used herein, a client may comprise one or more of an
operating system (OS), virtual operating platform (e.g., an
OS with a hypervisor), guest OS, application, process, thread,
entity, utility, user, or the like, that is configured to access or
use the ACM 1011. In the depicted embodiment, the ACM
module 1317 includes a request module 1902, a mapping
module 1904, and a bypass module 1906. The ACM module
1317, in certain embodiments, provides an interface whereby
an ACM user 1016 or other client may access data stored in
the byte addressable ACM buffers 1013, whether the ACM
buffers 1013 are natively volatile or non-volatile, regardless
of the type of media used for the ACM buffers 1013.

Instead of or in addition to the above methods of accessing
the ACM 1011. Such as using a memory map (e.g., mmap)
interface, in certain embodiments, the ACM module 1317

US 9,208,071 B2
43

may expose the auto-commit buffers 1013 directly to ACM
users 1016 or other clients, bypassing one or more operating
system and/or kernel layers, which may otherwise reduce
performance of the ACM 1011, increasing access times,
introducing delays, or the like. The ACM module 1317 may
provide access to the ACM 1011 using an existing I/O inter
face, such as a standard read/write API or the like, so that
ACM users 1016 or other clients may access the ACM 1011
and receive its benefits with little or no modification or cus
tomization. In another embodiment, the ACM module 1317
may provide a custom or modified ACM interface, which may
provide ACM users 1016 and other clients more control over
operation of the ACM 1011 than may be provided by existing
interfaces.
As described above, in certain embodiments, the ACM

module 1317 and/or the ACM 1011 enable clients such as the
ACM users 1016 to access fast, byte-addressable, persistent
memory, combining benefits of Volatile memory and non
Volatile storage. Auto-commit logic inside the hardware of
the storage device 102. Such as the auto-commit memory
1011 described above with regard to FIG. 1, in certain
embodiments, provides power-cut protection for data written
to the auto-commit buffers 1013 of the ACM 1011. The ACM
module 1317 and/or its sub-modules, in various embodi
ments, may at least partially be integrated with a device driver
executing on the processor 1012 of the host computing device
1014 such as the SML 1050, may at least partially be inte
grated with a hardware controller 1004, 1104 of the ACM
1011 and/or non-volatile storage device 1102, as microcode,
firmware, logic circuits, or the like, or may be divided
between a device driver and a hardware controller 1004,
1104, or the like.

In one embodiment, the request module 1902 is configured
to monitor, detect, intercept, or otherwise receive requests for
data of the non-volatile memory device 1102 from clients,
such as the ACM users 1016 described above, another mod
ule, a host computing device 1014, or the like. The request
module 1902 may receive data requests over an API, a shared
library, a communications bus, or another interface. As used
herein, a data request may comprise a storage request, a
memory request, an auto-commit request, or the like to access
data, Such as the open, read, write, trim, load, and/or store
requests described above.
The request module 1902 may receive data requests using

an existing or standard I/O interface. Such as read and write
requests over the block device interface 1520, load and store
commands over the memory semantic interface 1522, or the
like. By using the auto-commit buffers 1013 to support stan
dard requests or commands, in certain embodiments, the
request module 1902 may allow the ACM users 1016 or other
clients to access the ACM 1011 transparently, with little or no
modification or customization using the standard requests or
commands. For example, an ACM user 1016 may send data
requests to the request module 1902 over the block device
interface 1520, the memory semantic interface 1522, or the
like using standard requests or commands, with no knowl
edge of whether the ACM module 1317 services or satisfies
the request using the auto-commit buffers 1013 or the non
Volatile memory media 1110, allowing the mapping module
1904 described below to dynamically determine how to allo
cate data between the non-volatile memory media 1110 and
the auto-commit buffers 1013. The request module 1902 may
intercept data requests using an existing or standard interface
using a filter driver, overloading an interface, using LD PRE
LOAD, intercepting or trapping a segmentation fault, or the
like.

10

15

25

30

35

40

45

50

55

60

65

44
In certain embodiments, the request module 1902 may

receive data requests using a custom or modified ACM inter
face, such as an ACM API, the SML API 1019, or the like.
Data requests received over a custom or modified interface, in
certain embodiments, may indicate whether a requesting
ACM user 1016 or other client intends the data request to be
serviced using the auto-commit buffers 1013 or the non
volatile memory medium 1102 (e.g., whether data of the
request is to be associated with the auto-commit buffers 1013
or the non-volatile memory medium 1102). For example, the
request module 1902 may receive data requests including an
auto-commit flag indicating whether data of the request is
associated with or is to be associated with an auto-commit
buffer 1013 of the ACM 1011. An auto-commit flag may
comprise a bit, a field, a variable, a parameter, a namespace
identifier or other logical identifier, or another indicator.

In certain embodiments, instead of a separate auto-commit
flag, a data request may indicate whether the data is associ
ated with an auto-commit buffer 1013 or with the non-volatile
memory media 1110 based on a namespace identifier or other
logical indicator of the data request. As used herein, a
namespace comprises a container or range of logical or physi
cal identifiers that index or identify data, data locations, or the
like. As described above, examples of namespaces may
include a file system namespace, a LUN namespace, a logical
address space, a storage namespace, a virtual memory
namespace, a persistent ACM namespace, a Volatile memory
namespace, an object namespace, a network namespace, a
global or universal namespace, a BAR namespace, or the like.
A namespace identifier, as used herein, comprises an indi

cation of a namespace to which data belongs. In one embodi
ment, a namespace identifier may comprise a logical identi
fier, as described above. For example, a namespace identifier
may include a file identifier and/or an offset from a file system
namespace, a LUNID and an offset from a LUN namespace,
an LBA or LBA range from a storage namespace, one or more
virtual memory addresses from a virtual memory namespace,
an ACM address from a persistent ACM namespace, a volatile
memory address from a volatile memory namespace of the
host device 1014, an object identifier, a network address, a
GUID, UUID, or the like, a BAR address or address range
from a BAR namespace, or another logical identifier. In a
further embodiment, a namespace identifier may comprise a
label or a name for a namespace. Such as a directory, a file
path, a device identifier, or the like. In another embodiment, a
namespace identifier may comprise a physical address or
location for data. As described above, certain namespaces,
and therefore namespace identifiers, may be temporary or
volatile, and may not be available to an ACM user 1016 after
a restart event. Other namespaces, and therefore namespace
identifiers, may be persistent, Such as a file system
namespace, a LUN namespace, a persistent ACM namespace,
or the like, and data associated with the persistent namespace
may be accessible to an ACMuser 1016 or other client after a
restart event using the persistent namespace identifier.
An address or range of addresses may be associated with a

namespace if the address or range of addresses comprises an
identifier from the namespace, if the address or range of
addresses is mapped into the namespace, or the like. Data or
a range of data may be associated with a namespace if the data
is stored in a storage medium of the namespace. Such as the
auto-commit buffers 1013 or the non-volatile memory media
1102, if the data is mapped to the namespace in a logical-to
physical mapping structure, if the data is associated with a
namespace identifier for the namespace, or the like.
A logical namespace may be associated with both the auto

commit buffers 1013 and the non-volatile memory media

US 9,208,071 B2
45

1110, with different logical identifiers from the logical
namespace mapped to different physical identifiers or loca
tions for the auto-commit buffers 1013 and/or the non-vola
tile memory media 1110. For example, certain data associated
with file identifiers of a file system may be stored in the 5
auto-commit buffers 1013 while other data associated with
file identifiers of the file system may be stored in the non
volatile memory media 1110, even data at different offsets
within the same file.

The request module 1902 may receive an open request to 10
initialize a namespace identifier or other logical identifier,
such as opening a file or the like. The request module 1902
may receive a write request, a store request, or the like to store
data in the auto-commit buffers 1013 and/or the non-volatile
memory medium 1110 of the non-volatile memory device 15
1102. The request module 1902 may receive a read request, a
load request, or the like to read data from the auto-commit
buffers 1013 and/or the non-volatile memory medium 1110
of the non-volatile memory device 1102. In one embodiment,
a namespace identifier of a data request identifies both a 20
namespace for and data of the data request, Such as the logical
identifiers described above. In another embodiment, a data
request may comprise both a namespace identifier and a sepa
rate logical identifier for the data.
The request module 1902, in certain embodiments, may 25

receive data requests in user-space. As used herein, kernel
space may comprise an area of memory (e.g., volatile
memory, virtual memory, main memory) of the host comput
ing device 1014; a set of privileges, libraries, or functions; a
level of execution; or the like reserved for a kernel, operating 30
system, or other privileged or trusted processes or applica
tions. User-space, as used herein, may comprise an area of
memory (e.g., volatile memory, virtual memory, main
memory) of the host computing device 1014; a set of privi
leges, libraries, or functions; a level of execution; or the like 35
available to untrusted, unprivileged processes or applications.
Due to access control restrictions, privilege requirements,

or the like for kernel-space, providing a device driver, library,
API, or the like for the ACM 1011 in kernel-space may have
greater delays than in user-space. Further, use of a storage 40
stack of a kernel or operating system, in certain embodiments,
may introduce additional delays. An operating system or
kernel storage stack, as used herein, may comprise one or
more layers of device drivers, translation layers, file systems,
caches, and/or interfaces provided in kernel-space, for 45
accessing a data storage device. As described in greater detail
below, with regard to the bypass module 1906, the ACM
module 1317 may provide direct access to the ACM 1011 by
bypassing and/or replacing one or more layers of an operating
system or kernel storage stack, reading and writing data 50
directly between the ACM buffers 1013 and user-space or the
like.

In one embodiment, the mapping module 1904 is config
ured to map or associate namespace identifiers, logical iden
tifiers, or the like to the ACM buffers 1013 and/or the non- 55
volatile memory media 1110. In certain embodiments, the
mapping module 1904 may maintain a logical-to-physical
mapping structure, as described below with regard to FIG. 11,
mapping logical identifiers or other namespace identifiers to
physical locations in the non-volatile memory media 1110 60
and/or the ACM buffers 1013. In one embodiment, the map
ping module 1904 may access and/or maintain separate logi
cal-to-physical mapping structures, one for the non-volatile
memory media 1110 and one for the ACM buffers 1013. As
described above, in certain embodiments, the ACM buffers 65
1013 and the non-volatile memory media 1110 may be acces
sible and/or addressable at different granularities. For

46
example, the ACM buffers 1013 may be byte-addressable,
while the non-volatile memory media 1110 may be block
addressable (e.g., 512 byte blocks, 4KiB blocks, or the like).

In response to the request module 1902 receiving a data
request for a range of data, for a logical identifier or other
namespace identifier, or the like. Such as an open request, a
write request, a read request, a load request, a store request, or
the like, the mapping module 1904 may determine whether
there is a relationship between the data and/or namespace
identifier and one or more auto-commit buffers 1013. Data
and/or a logical identifier or other namespace identifier for the
data may have a relationship with an auto-commit buffer 1013
if the data is stored in the auto-commit buffer 1013, if the data
is targeted for or intended to be stored in the auto-commit
buffer 1013, if the data is identified in a data request for an
auto-commit buffer 1013, or the like. The mapping module
1904, in one embodiment, may determine whether an existing
association or mapping exists between requested data and/or
a namespace identifier and the auto-commit buffers 1013. In
a further embodiment, the mapping module 1904 may deter
mine whether or not to map or create an association between
requested data and an auto-commit buffer 1013.

In one embodiment, the mapping module 1904 maps or
associates data with an auto-commit buffer 1013 in response
to an auto-commit flag of a data request for the data, as
described above. For example, as described above, in
embodiments where the request module 1902 receives data
requests over a custom or extended interface, an ACM user
1016 or other client may indicate which data is to be stored in
and associated with the auto-commit buffers 1013, using
auto-commit flags or other indicators.

In a further embodiment, where the request module 1902
receives data requests transparently, using an existing, stan
dard interface or the like, the mapping module 1904 may
dynamically determine which data is stored in and associated
with the auto-commit buffers 1013 and which data is stored in
the non-volatile memory media 1110. The mapping module
1904 may be configured to optimally distribute data between
the auto-commit buffers 1013 and the non-volatile memory
media 1110, based on one or more efficiency factors for
namespace identifiers, for data, or the like. An efficiency
factor, as used herein, may comprise an indicator or represen
tation of an effect or impact of storing or associating data
within the auto-commit buffers 1013.
The mapping module 1904 may monitor or track efficiency

factors for different data, different ACM users 1016, different
namespace identifiers, or the like. In one embodiment, an
efficiency factor may include an access frequency for data.
For example, the mapping module 1904 may be more likely to
store data in the auto-commit buffers 1013 that is more fre
quently accessed. In various embodiments, efficiency factors
may include a size of data, a type of data, a quality of service
(QoS) for data or for an ACM user 1016, a service level
agreement with an ACM user 1016, an age of data, an amount
of available storage capacity in the auto-commit buffers 1013
and/or in the non-volatile memory medium 1110, or the like.
The mapping module 1904 may balance or weigh multiple
efficiency factors to determine whether to associate or store
data of a certain namespace identifier or range of namespace
identifiers with the auto-commit buffers 1013.

In one embodiment, the mapping module 1904 cooperates
with the SML 1050 to determine mappings for data in a
logical address space or other namespace of the non-volatile
memory media 1110 and to preserve the mappings as meta
data 1051 or a forward index 1053, such as the logical-to
physical mapping structure described below with regard to
FIG. 11. In other embodiments, the mapping module 1904

US 9,208,071 B2
47

may cooperate with an operating system, a file manager, a
storage stack, a memory system 1018, or the like to create
mappings, to assign namespace identifiers, or the like.

In certain embodiments, mapping a namespace identifier,
such as a filename and an offset, to an ACM buffer 1013, or
otherwise initializing or creating a mapping may be a privi
leged operation, performed in kernel-space or the like. The
mapping module 1904 may use an IOCTL call, a shared
memory queue between user-space and kernel-space, or the
like so that data requests for the auto-commit buffers 1013 can
be serviced or satisfied from user-space, while mappings may
be performed, at least partially, in kernel-space. In one
embodiment, the mapping module 1904, as part of or in
addition to mapping namespace identifiers such as filenames
and offsets to the auto-commit buffers 1013, maps the asso
ciated page of an ACM buffer 1013 into a virtual address
space of the requesting ACM user 1016, as described above,
so that the data is accessible to the ACM user 1016 as virtual
memory of the host computing device 1014.
The mapping module 1904 may map and/or store an entire

data object, such as a file or the like, to an ACM buffer 1013.
In certain embodiments, the mapping module 1904 may map
and/or store a portion of a data object, Such as a particular
offset or range of data within a file, to an ACM buffer 1013.
The mapping module 1904 may map and/or store the remain
der of a file mapped partially to an ACM buffer 1013 to the
non-volatile memory media 1110.
The mapping module 1904, in certain embodiments, coop

erates with the ACM module 1317 and/or a commit agent
1020 to arm ACM buffers 1013 with ACM metadata 1015
including mappings of namespace identifiers, or the like, so
that the ACM buffers 1013 are configured to perform appro
priate commit actions for the data in the ACM buffers 1013 to
remain persistently associated with the namespace identifi
ers, even after a restart event. In this manner, the ACM users
1016 may continue to access the data using the same
namespace identifiers even after the restart event. As
described above, the ACM metadata 1015 may include mul
tiple sections, or parts. In one embodiment, the ACM meta
data 1015 includes a logical identifier to which the ACM
buffer 1013 is to commit the data in the non-volatile memory
media 1110 (e.g., an LBA or the like) and a namespace
identifier (e.g., a filename, a filename and an offset, an inode
number, a LUN address, or the like) for the data, which the
commit agent 1020 may use to recover the data after a restart
event, allowing the ACM users 1016 to continue to access the
data using the namespace identifier.

In one embodiment, the bypass module 1906 is configured
to service and/or satisfy requests that the request module
1902 receives, using the ACM buffers 1013 and/or the non
Volatile memory media 1110. In response to the mapping
module 1904 determining that a namespace identifier of a
data request is associated with the ACM buffers 1013, the
bypass module 1906 may service or satisfy the data request
using the ACM buffers 1013 (e.g., storing the data in the ACM
buffers 1013 in response to a write or store request, reading
the data from the ACM buffers 1013 in response to a read or
load request, or the like).

In certain embodiments, the bypass module 1906 services
or satisfies data requests directly from the ACM buffers 1013,
accessing hardware of the ACM buffers 1013 directly from
user-space without using an operating system or kernel Stor
age stack, writing data directly to the ACM buffers 1013,
reading data directly from the ACM buffers 1013, or the like.
The bypass module 1906, in embodiments where one or more
pages of the ACM buffers 1013 are mapped into virtual
memory of an ACM user 1016 on the host device 1014, may

10

15

25

30

35

40

45

50

55

60

65

48
access the hardware of the ACM buffers 1013 directly and
copy data from the ACM buffers 1013 directly into or from the
virtual memory at an offset indicated by a namespace identi
fier of the data request from user-space, without any kernel
space libraries, calls, memory accesses, or the like.

For example, the bypass module 1906 may be integrated
with and/or cooperate with a user-space device driver for the
non-volatile memory device 1102, executing on the processor
1012 of the host device 1014, and may service or satisfy data
requests by mapping or copying data to and from hardware of
the auto-commit buffers 1013 and a virtual memory of a
requesting client, Such as a shared virtual memory for a plu
rality of ACM users 1016, separate virtual memory spaces of
different ACM users 1016, or the like, all from user-space. By
servicing data requests in user-space, directly from an auto
commit buffer 1013 without passing through an operating
system or kernel storage stack, in certain embodiments, the
bypass module 1906 may reduce operating system or kernel
overhead associated with accessing the non-volatile memory
device 1102, decrease access times, or the like.

For data requests that the mapping module 1904 deter
mines are not associated with an auto-commit buffer 1013,
the bypass module 1906 may service or satisfy the requests
using the non-volatile memory medium 1110 (e.g., storing
the data in the non-volatile memory medium 1110 in response
to a write request, reading the data from the non-volatile
memory medium 1110 in response to a read request, or the
like). For certain data requests, the mapping module 1904
may determine that a range of data and/or range of namespace
identifiers is partially associated with the auto-commit buff
ers 1013 and partially associated with the non-volatile
memory medium 1110, and the bypass module 1906 may
split the data request, satisfying it partially from the auto
commit buffers 1013 and partially from the non-volatile
memory medium 1110, may consolidate the data in either the
auto-commit buffers 1013 or the non-volatile memory
medium 1110, or the like.

FIG. 10B depicts another embodiment of an ACM module
1317. In one embodiment, the ACM module 1317 may be
substantially similar to one or more of the ACM modules
1317 described above with regard to FIGS. 5 and 10A. In the
depicted embodiment, the ACM module 1317 of FIG. 10B
includes a request module 1902, a mapping module 1904, and
a bypass module 1906 and further includes a has-been-writ
ten module 1908 and a security module 1910. The bypass
module 1906 in FIG. 10B includes a read module 1912 and a
write module 1914. In one embodiment, the request module
1902 and the mapping module 1904 are substantially similar
to the request module 1902 and the mapping module 1904
described above with regard to FIG. 10A.

In one embodiment, the bypass module 1906 uses the read
module 1912 to service or satisfy read requests for data. The
read module 1912, in response to the mapping module 1904
determining that the namespace identifier of a read request is
mapped to the auto-commit buffers 1013, reads the data
specified in the read request (e.g., data at a specified offset
within a file, or the like) directly from the mapped location in
the auto-commit buffers 1013 from user-space, bypassing or
skipping an operating system or kernel storage stack. If the
mapping module 1904 determines that the namespace iden
tifier of the read request is not mapped to or associated with
the auto-commit buffers 1013, the read module 1912 may
read the data from the non-volatile memory media 1110. The
bypass module 1906 may use the read module 1912 to return
the read data to a requesting client such as an ACM user 1016,

US 9,208,071 B2
49

mapping or copying the read data into virtual memory for the
requesting client, sending the data to the requesting client, or
the like.

In one embodiment, the bypass module 1906 uses the write
module 1914 to service or satisfy write requests for data. In
response to the mapping module 1904 determining that the
namespace identifier of a write request is mapped to the
auto-commit buffers 1013, the write module 1914 may write
the data specified in the write request directly to the mapped
location in the auto-commit buffers 1013 from user-space,
bypassing or skipping an operating system or kernel storage
stack. If the mapping module 1904 determines that the
namespace identifier of the write request is not mapped to or
associated with the auto-commit buffers 1013, the write mod
ule 1914 may write the data to the non-volatile memory media
1110. The write module 1914 may read or copy the write data
from virtual memory for the requesting client, sending the
data to the auto-commit buffers 1013 and/or the non-volatile
memory media 1110, or the like.

In one embodiment, the has-been-written module 1908
may track which portions of data of the auto-commit buffers
1013 have been updated, are not yet stored in the non-volatile
memory media 1110, or the like. In certain embodiments,
portions of the data of the auto-commit buffers 1013 may
already be stored in and/or committed to the non-volatile
memory media 1110. In response to a restart event or another
commit trigger, it may be more efficient for the auto-commit
buffers 1013 to commit, flush, or destage just data that is not
already stored in the non-volatile memory media 1110.
instead of committing all of the data. Further, the commit
agent 1020 may need to know which portions of a page or
other storage region have been updated in order to recover the
page or other storage region after a restart event.

Similarly, reading an entire page's contents back into the
auto-commit buffers 1013 from the backing non-volatile
memory media 1110 may also be an expensive or time con
Suming operation. For example, if the cost of reading the page
contents in from the non-volatile memory media 1110 is 50
us, and each write to the auto-commit buffers 1013 takes 500
ns or less, even if the page is written 100 times after the initial
read the cost of the initial read will still represent 50% of the
latency associated with accessing the page.
The has-been-written module 1908 may track which data

in the auto-commit buffers 1013 has been updated and is not
stored by the non-volatile memory media 1110, which data is
already stored in the non-volatile memory media 1110, or the
like. For example, the has-been-written module 1908 may
maintain a bitmap or other data structure such as a bitmap.
bitmask, bit field, table, vector, or the like, populated with
indicators of which data has been updated since the data was
loaded, since a previous commit operation, or the like. The
has-been-written module 1908, periodically or in response to
a restart event, may persista has-been-written bitmap or other
data structure to the non-volatile memory media 1110, and
the has-been-written module 1908 may cooperate with the
commit agent 1020 to merge updates to data and/or different
versions of data. In one embodiment, the has-been-written
module 1908 allows the auto-commit buffers 1908 to commit
or copy just data that has been updated, in response to a
commit trigger or restart event, and the commit agent 1020
may merge the updates with a previous version of the data
preserved in a sequential log of the non-volatile memory
media 1110 after recovery from the restart event or the like.

In one embodiment, the has-been-written module 1908
associates a has-been-written bitmap or other has-been-writ
ten metadata with each ACM page of the auto-commit buffers
1013. The has-been-written module 1908 may track updates

10

15

25

30

35

40

45

50

55

60

65

50
or changes to data in the auto-commit buffers 1013 at a
byte-level, with a bit in a has-been-written bitmap for each
byte or the like, indicating whether or not the corresponding
byte has been written or updated. Upon destaging, instead of
using a read modify write, the controller 1104 may cooperate
with the has-been-written module 1908 to identify updated
regions of the page, allowing Sub-block writes or the like.

In one embodiment, the has-been-written module 1908
may provide ACM users 1016 with access to has-been-writ
ten bitmaps. For example, an ACM page of the ACM buffers
1013 may store a last page/block of a log file. Each update to
the ACM page may increase the size of the file. Instead of
noting and storing each change to the file length, to reduce the
overhead of system calls, a has-been-written bitmap from the
has-been-written module 1908 may be used to derive a new
file length while maintaining the ACM 1011 efficiency.

In a further embodiment, the has-been-written module
1908 may maintain one or more has-been-written data struc
tures at a Sub-page granularity, Such as a byte granularity, an
error correcting code (ECC) chunk or block granularity, or the
like. A has-been-written data structure, in certain embodi
ments, may allow the commit agent 1020 or the like to deter
mine what data within a page is dirty and not stored by the
non-volatile memory media 1110, if there are holes in a range
of data due to out-of-order delivery, or the like.
The has-been-written module 1908, in certain embodi

ments, provides access to a has-been-written data structure
using memory access (e.g., load/store semantics), provides a
“clear-all” byte to clear a set of has-been-written bits at once,
or the like. The has-been-written module 1908 may clear or
reset has-been-written metadata from a has-been-written data
structure in response to the auto-commit buffers 1013 com
mitting, destaging, flushing, or otherwise copying the data to
the non-volatile memory media 1110. The has-been-written
module 1908, in one embodiment, may use a has-been-writ
ten data structure stored in Volatile memory to locate data to
commit, destage, or flush to the non-volatile memory media
1110 without accessing or reading the non-volatile memory
media 1112, preventing an extra read-modify-write operation
or the like.
The has-been-written module 1908, in one embodiment,

maintains the has-been-written data structure Such that it
parallels every byte of virtual memory with a corresponding
bit that automatically indicates which bytes have indeed had
data “stored to them, been written, been modified, been
updated, or the like.

In certain embodiments, the has-been-written module
1908 and/or the SML 1050 may provide one or more has
been-written data structures as part of a persistent storage
namespace itself. Such as a filesystem namespace, a logical
unit number (LUN) namespace, or the like. For example, the
has-been-written module 1908 and/or the SML 1050 may
provide a has-been-written data structure as a “shadow file'
or the like that is designated to contain the bitmask of another
file. ACM users 1016 may perform MMIO writes or other
operations for both of these files or pages. In another embodi
ment, a has-been-written data structure may be interleaved
within the data it represents, such as a 512 byte bitmask
interleaved after each 4 kibibyte block within the same file, or
the like.

In one embodiment, the security module 1910 is config
ured to provide access controls, enforce permissions, protect
against attacks, or the like for data stored in the auto-commit
buffers 1013 and/or the non-volatile memory media 1110.
Because the ACM module 1317 may provide access to the
ACM buffers 1013 in user-space, the ACM buffers 1013 may
be susceptible to denial-of-service (DoS) or other attacks. For

US 9,208,071 B2
51

example, an ACM user 1016 may maliciously monopolize
bandwidth of the communications bus 1040, such as a PCIe
bus or the like. The security module 1910, in one embodi
ment, monitors or tracks traffic on the communications bus
1040, access to each page of the auto-commit buffers 1013, or
the like. The security module 1910, in a further embodiment,
may disable access to an ACM user 1016 by unmapping an
ACM page of data from the ACM user's virtual memory in
response to the monitored access to the ACM page in virtual
memory exceeding a traffic threshold, or the like.
As described above, a user-space library, process, or appli

cation may be an untrusted entity. In certain embodiments,
file system access permissions that are normally enforced by
the operating system or kernel in kernel-space, may be
bypassed by the bypass module 1906, which operates in
user-space as described above. To present this from happen
ing, in one embodiment, the security module 1910 is config
ured to use virtual memory access controls to enforce file
system access permissions associated with data files of the
auto-commit buffers 1013 mapped or copied into virtual
memory. For example, if the file access permission for a file
stored in an ACM page is read-only, the security module 1910
may cooperate with the mapping module 1904 to map the
ACM page into virtual memory as read-only. As described
above, in certain embodiments, the mapping module 1904
performs mappings in kernel-space, which may allow the
security module 1910 to maintain access controls, even if the
bypass module 1906 provides access in user-space.
As described above, once data has been stored in the auto

commit buffers 1013, the ACM 1011 preserves or persists the
data in non-volatile memory media 110, 1110 and provides
the data from the non-volatile memory media 110, 1110 to
clients, such as ACM users 1016, after recovery from the
reStart event.

The ACM module 1317 and its various sub-modules 1902,
1904, 1906, 1908, 1910, 1912, 1914 as described above, may
be disposed in a device driver for the ACM 1011 executing on
a processor 1012 of the host device 1014, such as the SML
1050, may be disposed in a storage controller 104, 1004,
1104,1304 for the ACM 1011, and/or may comprise portions
in each of a device driver and a storage controller 104, 1004,
1104, 1304, or the like

FIG. 11 depicts one embodiment of an address mapping
structure 2000, a logical address space 2120, and a sequential,
log-based, append-only writing structure 2140. The address
mapping structure 2000, in one embodiment, is maintained
by the storage controller 104, 1004, 1104, 1304, the storage
management layer 1050, a logical-to-physical translation
layer or address mapping structure, or the like to map LBAS or
other logical addresses to physical locations on the non-vola
tile storage media 1110. While the depicted embodiment is
described with regard to the non-volatile storage media 1110.
in other embodiments, the address mapping structure 2000
may map namespace identifiers for the auto-commit buffers
1013 or the like. The address mapping structure 2000, in the
depicted embodiment, is a B-tree with several entries. In the
depicted embodiment, the nodes of the address mapping
structure 2000 include direct references to physical locations
in the non-volatile storage device 1102. In other embodi
ments, the address mapping structure 2000 may include links
that map to entries in a reverse map, or the like. The address
mapping structure 2000, in various embodiments, may be
used either with or without a reverse map. In other embodi
ments, the references in the address mapping structure 2000
may include alpha-numerical characters, hexadecimal char
acters, pointers, links, and the like.

10

15

25

30

35

40

45

50

55

60

65

52
The address mapping structure 2000, in the depicted

embodiment, includes a plurality of nodes. Each node, in the
depicted embodiment, is capable of storing two entries. In
other embodiments, each node may be capable of storing a
greater number of entries, the number of entries at each level
may change as the address mapping structure 2000 grows or
shrinks through use, or the like.

Each entry, in the depicted embodiment, maps a variable
length range of LBAs of the non-volatile storage device 1102
to a physical location in the storage media 1110 for the non
volatile storage device 1102. Further, while variable length
ranges of LBAS, in the depicted embodiment, are represented
by a starting address and an ending address, in other embodi
ments, a variable length range of LBAS may be represented by
a starting address and a length, or the like. In one embodi
ment, the capital letters A through M represent a logical or
physical erase block in the physical storage media 1110 of the
non-volatile storage device 1102 that stores the data of the
corresponding range of LBAS. In other embodiments, the
capital letters may represent other physical addresses or loca
tions of the non-volatile storage device 1102. In the depicted
embodiment, the capital letters A through M are also
depicted in the log-based writing structure 2140 which rep
resents the physical storage media 1110 of the non-volatile
storage device 1102.

In the depicted embodiment, membership in the address
mapping structure 2000 denotes membership (or storage) in
the non-volatile storage device 1102. In another embodiment,
an entry may further include an indicator of whether the
non-volatile storage device 1102 stores data corresponding to
a logical block within the range of LBAs, data of a reverse
map, and/or other data.

In the depicted embodiment, the root node 2008 includes
entries 2102, 2104 with noncontiguous ranges of LBAs. A
“hole' exists at LBA “208” between the two entries 2102,
2104 of the root node. In one embodiment, a “hole' indicates
that the non-volatile storage device 1102 does not store data
corresponding to one or more LBAS corresponding to the
“hole.” In one embodiment, the non-volatile storage device
1102 supports block I/O requests (read, write, trim, etc.) with
multiple contiguous and/or noncontiguous ranges of LBAS
(e.g., ranges that include one or more "holes' in them). A
“hole.” in one embodiment, may be the result of a single block
I/O request with two or more noncontiguous ranges of LBAS.
In a further embodiment, a “hole' may be the result of several
different block I/O requests with LBA ranges bordering the
“hole.

In the depicted embodiment, similar “holes” or noncon
tiguous ranges of LBAs exist between the entries 2106,2108
of the node 2014, between the entries 2110, 2112 of the left
child node of the node 2014, between entries 2114, 2116 of
the node 2018, and between entries of the node 2118. In one
embodiment, similar “holes' may also exist between entries
in parent nodes and child nodes. For example, in the depicted
embodiment, a “hole' of LBAs “060-071 exists between the
left entry 2106 of the node 2014 and the right entry 2112 of the
left child node of the node 2014.
The “hole” at LBA “003, in the depicted embodiment, can

also be seen in the logical address space 2120 of the non
volatile storage device 1102 at logical address “003” 2130.
The hash marks at LBA “003” 2140 represent an empty
location, or a location for which the non-volatile storage
device 1102 does not store data. The “hole at LBA 2134 in
the logical address space 2120, is due to one or more block I/O
requests with noncontiguous ranges, a trim or other deallo
cation command to the non-volatile storage device 1102, or
the like. The address mapping structure 2000 supports

US 9,208,071 B2
53

"holes, noncontiguous ranges of LBAS, and the like due to
the sparse and/or thinly provisioned nature of the logical
address space 2120.
The logical address space 2120 of the non-volatile storage

device 1102, in the depicted embodiment, is sparse and/or
thinly provisioned, and is larger than the physical storage
capacity and corresponding storage device address space of
the non-volatile storage device 1102. In the depicted embodi
ment, the non-volatile storage device 1102 has a 64-bit logical
address space 2120 beginning at logical address “O'” 2122 and
extending to logical address “264-12126. Because the stor
age device address space corresponds to only a Subset of the
logical address space 2120 of the non-volatile storage device
1102, the rest of the logical address space 2120 may be
allocated, mapped, and used for other functions of the non
volatile storage device 1102.
The sequential, log-based, append-only writing structure

2140, in the depicted embodiment, is a logical representation
of the physical storage media 1110 of the non-volatile storage
device 1102. In certain embodiments, the non-volatile storage
device 1102 stores data sequentially, appending data to the
log-based writing structure 2140 at an append point 2144.
The non-volatile storage device 1102, in a further embodi
ment, uses a storage space recovery process. Such as a gar
bage collection module or other storage space recovery mod
ule that re-uses non-volatile storage media 1110 storing
deallocated/unused logical blocks. Non-volatile storage
media 1110 storing deallocated/unused logical blocks, in the
depicted embodiment, is added to an available storage pool
2146 for the non-volatile storage device 1102. By clearing
invalid data from the non-volatile storage device 1102, as
described above, and adding the physical storage capacity
corresponding to the cleared databack to the available storage
pool 2146, in one embodiment, the log-based writing struc
ture 2140 is cyclic, ring-like, and has a theoretically infinite
capacity.

In the depicted embodiment, the append point 2144
progresses around the log-based, append-only writing struc
ture 2140 in a circular pattern 2142. In one embodiment, the
circular pattern 2142 wear balances the non-volatile storage
media 122, increasing a usable life of the non-volatile storage
media 1110. In the depicted embodiment, a garbage collec
tion module or other storage capacity recovery process has
marked several blocks 2148, 2150, 2152, 2154 as invalid,
represented by an “X” marking on the blocks 2148, 2150,
2152. 2154. The garbage collection module, in one embodi
ment, will recover the physical storage capacity of the invalid
blocks 2148, 2150,2152. 2154 and add the recovered capac
ity to the available storage pool 2146. In the depicted embodi
ment, modified versions of the blocks 2148, 2150,2152,2154
have been appended to the log-based writing structure 2140
as new blocks 2156,2158,2160,2162 in a read, modify, write
operation or the like, allowing the original blocks 2148, 2150,
2152, 2154 to be recovered.

FIG. 12 depicts one embodiment of a method 2200 for
providing access to auto-commit memory 1011. The method
2200 begins, and the request module 1902 receives 2202 a
request for data. The request may include a namespace iden
tifier for the data. The mapping module 1904 identifies 2204
a relationship between the namespace identifier and an auto
commit buffer 1013. The bypass module 1906 satisfies 2206
or services the received 2202 request using the auto-commit
buffer 1013 in response to the identified 2204 relationship
associating the namespace identifier with the auto-commit
buffer 1013 and the method 2200 ends.

FIG. 13 depicts another embodiment of a method 2300 for
providing access to auto-commit memory 1011. The method

5

10

15

25

30

35

40

45

50

55

60

65

54
2100 begins, and the request module 1902 determines 2302
whether a request for data of the non-volatile memory device
1102 has been received. Once the request module 1902 deter
mines 2302 that a request has been received, the mapping
module 1904 determines 2304 whether the data, a namespace
identifier or other logical identifier, or the like of the request
is associated with the auto-commit memory 1011.

If the mapping module 1904 determines 2304 that the data
of the request is not associated with the auto-commit memory
1011, the mapping module 1904 determines 2306 whether to
associate the data with the auto-commit memory 1011. If the
mapping module 1904 determines 2306 to associate the data
with the auto-commit memory 1011, the mapping module
1904 maps 2308 or associates the data of the request with the
auto-commit memory 1011, otherwise the storage controller
1104 satisfies 2312 or services the received 2302 request from
the non-volatile memory media 1110. The mapping module
1904 may map 2308 the data or cause the data to be mapped
2308 to the auto-commit memory 1011 from kernel-space.

If the mapping module 2304 determines 2304 that the data
of the received 2302 request is associated with the auto
commit memory 1011 or if the mapping module 2304 deter
mines 2306 to map 2308 the data to the auto-commit memory
1011, the bypass module 1906 satisfies 2310 or services the
received 2302 request directly from the auto-commit memory
1011, bypassing an operations system or kernel storage stack
or the like to satisfy 2310 the request from user-space. The
request module 1902 continues to monitor 2302 or otherwise
receive or intercept requests for data of the non-volatile
memory device 1102.
A means for associating a logical identifier or other

namespace identifier with a page of auto-commit memory
1011, in various embodiments, may include a storage man
agement layer 1050, a device driver, a storage controller 104,
1004. 1104,1304, a mapping module 1904, other logic hard
ware, and/or other executable code stored on a computer
readable storage medium. Other embodiments may include
similar or equivalent means for associating a namespace iden
tifier with a page of auto-commit memory 1011.
A means for bypassing an operating system storage stack

to satisfy a storage request for data of a page of auto-commit
memory 1011, in various embodiments, may include a stor
age management layer 1050, a device driver, a storage con
troller 104,1004, 1104,1304, a mapping module 1904, other
logic hardware, and/or other executable code stored on a
computer readable storage medium. Other embodiments may
include similar or equivalent means for bypassing an operat
ing system storage Stack to satisfy a storage request for data of
a page of auto-commit memory 1011.
A means for preserving data of a page of auto-commit

memory 1011 in response to a failure condition or restart
event, in various embodiments, may include a secondary
power supply 124, 1024, 1324, an auto-commit memory
1011, 1111, an auto-commit buffer 1013, a commit agent
1020, a commit management module 1122, a commit module
1320, an ACM module 1317, other logic hardware, and/or
other executable code stored on a computer readable storage
medium. Other embodiments may include similar or equiva
lent means for preserving data of a page of auto-commit
memory 1011 in response to a failure condition.
A means for providing access to preserved data after a

failure condition or restart event, in various embodiments,
may include a non-volatile storage device 102, a non-volatile
memory media 110, 1110, 1310, 1502, a storage management
layer 1050, a commit agent 1020, an auto-commit memory
1011, 1111, an auto-commit buffer 1013, logic hardware,
and/or other executable code stored on a computer readable

US 9,208,071 B2
55

storage medium. Other embodiments may include similar or
equivalent means for providing access to preserved data after
a failure condition or restart event.
The present disclosure may be embodied in other specific

forms without departing from its spirit or essential character
istics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the disclosure is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:
1. A method comprising:
receiving a write request for data, the write request com

prising a namespace identifier;
identifying a relationship between the namespace identifier

and one or more of a memory and a non-volatile memory
medium;

servicing the write request using the memory in response to
the identified relationship associating the namespace
identifier with the memory; and

servicing the write request using the non-volatile medium
in response to the identified relationship associating the
namespace identifier with the non-volatile medium.

2. The method of claim 1, wherein a user space device
driver services the write request using the memory directly by
bypassing an operating system storage Stack.

3. The method of claim 1, wherein identifying the relation
ship between the namespace identifier and one or more of the
memory and the non-volatile memory medium comprises
determining whether the write request comprises an auto
commit flag associating the namespace identifier with the
memory.

4. The method of claim 1, wherein servicing the write
request using the memory comprises mapping the data into
virtual memory of a requesting client.

5. The method of claim 4, further comprising unmapping
the data from virtual memory in response to access to the
virtual memory exceeding a traffic threshold for the virtual
memory.

6. The method of claim 1, further comprising,
arming the memory with metadata specifying a logical

block address of a non-volatile medium to which the
data of the memory is to be committed in response to a
predefined trigger, wherein the namespace identifier is
persistently mapped to the logical block address; and

committing the data of the memory to the logical block
address of the non-volatile medium in response to
detecting the trigger.

7. The method of claim 1, further comprising,
tracking which portions of data of the memory have been

updated; and
committing the updated portions of data of the memory to

a non-volatile medium separately from non-updated
portions in response to detecting a predefined trigger.

8. The method of claim 1, wherein the namespace identifier
is a member of a persistent namespace, the persistent
namespace is configured to Survive a restart event, and the
persistent namespace configured to grant a client access to
data of the namespace identifier Subsequent to the restart
event.

9. The method of claim 8, wherein the persistent
namespace comprises a logical unit number (LUN)
namespace for a storage device and the namespace identifier
comprises a LUN address within the LUN namespace.

10

15

25

30

35

40

45

50

55

60

65

56
10. The method of claim 8, wherein the persistent

namespace comprises a file system namespace and the
namespace identifier comprises a file identifier of the file
system namespace.

11. The method of claim 1, wherein identifying the rela
tionship between the namespace identifier and the memory
comprises one of identifying an existing relationship between
the namespace identifier and the memory, and creating a
relationship between the namespace identifier and the
memory.

12. The method of claim 1, wherein the relationship asso
ciates the namespace identifier with the memory in response
to one or more of detecting an existing relationship between
the namespace identifier and the memory; detecting an auto
commit flag for the write request; and dynamically assigning
the namespace identifier for association with the memory.

13. The method of claim 1, wherein the memory is within
an isolation Zone of a non-volatile device comprising a non
Volatile medium and the isolation Zone is configured to
receive power from a secondary power Source.

14. The method of claim 13, wherein a storage capacity of
a plurality of memory buffers, including the memory, within
the isolation Zone is selected Such that a power hold-up time
provided by the secondary power source allows the plurality
of memory buffers to commit data to a non-volatile medium
during the power hold-up time in response to a restart event.

15. An apparatus comprising:
an auto-commit memory module configured to cause a

volatile memory buffer to commit data from the volatile
memory buffer to a non-volatile memory medium in
response to the data filling at least a threshold amount of
the volatile memory buffer;

a mapping module configured to determine whether to
associate a range of addresses for data with the Volatile
memory buffer or the non-volatile memory medium; and

a bypass module configured to service a request for the
range of addresses directly using the Volatile memory
bufferin response to the mapping module determining to
associate the range of addresses with the Volatile
memory buffer and further configured to service the
request for the range of addresses using the non-volatile
memory medium in response to the mapping module
determining to associate the range of addresses with the
non-volatile memory medium, the request comprising a
write request.

16. The apparatus of claim 15, further comprising a request
module configured to receive the request for the range of
addresses for data, the mapping module configured to deter
mine to associate the range of addresses for data with the
Volatile memory buffer in response to an auto-commit flag of
the request.

17. The apparatus of claim 15, further comprising a request
module configured to intercept requests for the non-volatile
memory medium, the mapping module configured to
dynamically determine to associate the range of addresses for
data with the volatile memory buffer in response to the
request module intercepting the request for the range of
addresses.

18. The apparatus of claim 15, wherein the bypass module
is configured to service the request for the range of addresses
for data directly from the volatile memory buffer by bypass
ing a kernel storage stack and servicing the request from
user-space.

19. The apparatus of claim 15, wherein the request for the
range of addresses for data comprises a write request and the
bypass module is configured to service the write request by
copying data of the write request into a virtual memory loca

US 9,208,071 B2
57

tion of a requesting client in response to the mapping module
determining to associate the range of addresses for data with
the volatile memory buffer, the virtual memory location
backed by the volatile memory buffer.

20. A system comprising:
a storage device comprising one or more auto-commit

pages configured to preserve data of the auto-commit
pages in a non-volatile memory medium in response to a
restart event; and

a device driver for the storage device, the device driver
configured to cause data of the storage device to be
mapped, from kernel-space, into virtual memory and to
Service a write request, from user-space, the device
driver using the one or more auto-commit pages to ser
Vice the write request in response to determining an
association of the write request with the one or more
auto-commit pages and using the non-volatile memory
medium to service the write request in response to deter
mining an association of the write request with the non
volatile memory medium.

21. The system of claim 20, further comprising a host
associated with the virtual memory, the host comprising a
processor in communication with the storage device, the
device driver executing on the processor.

22. A computer program product comprising a non-transi
tory computer readable storage medium storing computer
usable program code executable to cause a computer to per
form operations, the operations comprising:

intercepting, in user-space, a storage request for a memory
device, the storage request comprising a file identifier
and an offset for a write operation;

determining whether the offset and the file identifier are
mapped to the volatile memory;

10

15

25

30

58
servicing the storage request in user-space directly using a

Volatile memory of the memory device in response to
determining that the offset and the file identifier are
mapped to the volatile memory;

determining whether the offset and the file identifier are
mapped to a non-volatile memory of the memory device:
and

servicing the storage request in user-space using the non
Volatile memory of the memory device in response to
determining that the offset and the file identifier are
mapped to the non-volatile memory.

23. The computer program product of claim 22, wherein
the operations further comprise enforcing file system access
permissions for data of the offset and the file identifier using
virtual memory access controls.

24. An apparatus comprising:
means for associating a logical identifier with one of a

Volatile memory and a non-volatile memory medium;
means for bypassing an operating system storage stack to

service a storage request for data associated with the
logical identifier using the volatile memory in response
to the logical identifier being associated with the volatile
memory and using the non-volatile memory medium in
response to the logical identifier being associated with
the non-volatile memory medium; and

means for preserving the data of the volatile memory in the
non-volatile memory medium in response to a failure
condition.

25. The apparatus of claim 24, further comprising means
for providing access to the preserved data after the failure
condition.

