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APPARATUS, SYSTEM, AND METHOD FOR 
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of which are incorporated herein by reference. 

TECHNICAL FIELD 

This disclosure relates to auto-commit memory and more 
particularly to an interface for accessing auto-commit 
memory. 

BACKGROUND 

Volatile memory Such as random access memory (RAM) 
typically has faster access times than non-volatile storage, 
such as NAND flash, magnetic hard disk drives, or the like. 
While the capacities of volatile memory continue to increase 
as the price of Volatile memory decreases, volatile memory 
remains more expensive per unit of capacity than most non 
Volatile storage. 

This often leads to design tradeoffs between the speed and 
performance of volatile memory and the lower price of non 
Volatile storage at larger capacities. Further, to achieve the 
speed and performance benefits of volatile memory, a system 
typically sacrifices the persistence of non-volatile memory, 
causing data to be irretrievably lost without power. 
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2 
SUMMARY 

Methods for providing access to auto-commit memory are 
presented. In one embodiment, a method includes receiving a 
request for data. A request, in certain embodiments, includes 
a namespace identifier. A method, in one embodiment, 
includes identifying a relationship between a namespace 
identifier and a memory. In one embodiment, a method 
includes satisfying a request using a memory without passing 
the request through an operating system storage Stack in 
response to an identified relationship associating a 
namespace identifier with the memory. 

Apparatuses for providing access to auto-commit memory 
are presented. In one embodiment, an auto-commit memory 
module is configured to cause a volatile memory buffer to 
commit data from the volatile memory buffer to a non-volatile 
memory medium in response to the data filling the Volatile 
memory buffer. A mapping module, in a further embodiment, 
is configured to determine whether to associate a range of 
addresses for data with a volatile memory buffer. In certain 
embodiments, a bypass module is configured to service a 
request for a range of addresses for data directly from a 
Volatile memory buffer in response to an auto-commit map 
ping module determining to associate a range of addresses for 
data with the volatile memory buffer. 
An apparatus, in one embodiment, includes means for 

associating a logical identifier with a page of Volatile 
memory. In a further embodiment, an apparatus includes 
means for bypassing an operating system storage stack to 
satisfy a storage request for data of a page of volatile memory 
directly. In certain embodiments, an apparatus includes 
means for preserving data of a page of volatile memory in 
response to a failure condition. 

Systems for providing access to auto-commit memory are 
presented. In one embodiment, a system includes a recording 
device comprising one or more auto-commit pages config 
ured to preserve data of the auto-commit pages in response to 
a restart event. A system, in a further embodiment, includes a 
device driver for a recording device. A device driver, in cer 
tain embodiments, is configured to cause data of auto-commit 
pages to be mapped, from kernel-space, into virtual memory. 
A device driver, in one embodiment, is configured to service 
requests, from user-space, for data of auto-commit pages. 
Computer program products comprising a computer read 

able storage medium storing computer usable program code 
executable to perform operations for providing access to 
auto-commit memory is also presented. In one embodiment, 
an operation includes intercepting, in user-space, a storage 
request for a memory device. A storage request, in certain 
embodiments, comprises a file identifier and an offset. An 
operation, in a further embodiment, includes servicing a stor 
age request in user-space directly from a volatile memory of 
a memory device in response to determining that an offset and 
a file identifier are mapped to the Volatile memory. An opera 
tion, in one embodiment, includes mapping an offset and a file 
identifier to a Volatile memory in response to determining that 
a file identifier is not mapped to the volatile memory. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In order that the advantages of this disclosure will be 
readily understood, a more particular description of the dis 
closure briefly described above will be rendered by reference 
to specific embodiments that are illustrated in the appended 
drawings. Understanding that these drawings depict only 
typical embodiments of the disclosure and are not therefore to 
be considered to be limiting of its scope, the disclosure will be 
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described and explained with additional specificity and detail 
through the use of the accompanying drawings, in which: 

FIG. 1 is a schematic block diagram illustrating one 
embodiment of a system for auto-commit memory; 

FIG. 2 is a block diagram of one embodiment of an auto 
commit memory; 

FIG. 3 is a block diagram of another embodiment of an 
auto-commit memory; 

FIG. 4 is a block diagram of a system comprising a plural 
ity of auto-commit memories; 

FIG. 5 is a block diagram of an auto-commit memory 
implemented with a commit management apparatus; 

FIG. 6 is a block diagram of another embodiment of a 
system comprising an auto-commit memory; 

FIG. 7 is a flow diagram of one embodiment of a method 
for providing an auto-commit memory; 

FIG. 8 is a flow diagram of another embodiment of a 
method for providing an auto-commit memory; 

FIG. 9 is a flow diagram of another embodiment of a 
method for providing an auto-commit memory; 

FIG. 10A is a schematic block diagram illustrating one 
embodiment of an auto-commit memory module: 

FIG. 10B is a schematic block diagram illustrating another 
embodiment of an auto-commit memory module: 

FIG. 11 is a schematic block diagram illustrating one 
embodiment of a mapping structure, a sparse logical address 
space, and a log-based writing structure; 

FIG. 12 is a schematic flow chart diagram illustrating one 
embodiment of a method for providing access to auto-commit 
memory; and 

FIG. 13 is a schematic flow chart diagram illustrating 
another embodiment of a method for providing access to 
auto-commit memory. 

DETAILED DESCRIPTION 

Reference throughout this specification to features, advan 
tages, or similar language does not imply that all of the 
features and advantages that may be realized with the present 
disclosure should be or are in any single embodiment of the 
disclosure. Rather, language referring to the features and 
advantages is understood to mean that a specific feature, 
advantage, or characteristic described in connection with an 
embodiment is included in at least one embodiment of the 
present disclosure. Thus, discussion of the features and 
advantages, and similar language, throughout this specifica 
tion may, but do not necessarily, refer to the same embodi 
ment. 

Furthermore, the described features, advantages, and char 
acteristics of the disclosure may be combined in any suitable 
manner in one or more embodiments. One skilled in the 
relevant art will recognize that the disclosure may be prac 
ticed without one or more of the specific features or advan 
tages of a particular embodiment. In other instances, addi 
tional features and advantages may be recognized in certain 
embodiments that may not be present in all embodiments of 
the disclosure. These features and advantages of the present 
invention will become more fully apparent from the following 
description and appended claims, or may be learned by the 
practice of the disclosure as set forth hereinafter. 
Many of the functional units described in this specification 

have been labeled as modules, in order to more particularly 
emphasize their implementation independence. For example, 
a module may be implemented as a hardware circuit compris 
ing custom VLSI circuits or gate arrays, off-the-shelf semi 
conductors such as logic chips, transistors, or other discrete 
components. A module may also be implemented in program 
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4 
mable hardware devices such as field programmable gate 
arrays, programmable array logic, programmable logic 
devices or the like. 
Modules may also be implemented in software for execu 

tion by various types of processors. An identified module of 
executable code may, for instance, comprise one or more 
physical or logical blocks of computer instructions which 
may, for instance, be organized as an object, procedure, or 
function. Nevertheless, the executables of an identified mod 
ule need not be physically located together, but may comprise 
disparate instructions stored in different locations which, 
when joined logically together, comprise the module and 
achieve the stated purpose for the module. 

Indeed, a module of executable code may be a single 
instruction, or many instructions, and may even be distributed 
over several different code segments, among different pro 
grams, and across several memory devices. Similarly, opera 
tional data may be identified and illustrated herein within 
modules, and may be embodied in any suitable form and 
organized within any Suitable type of data structure. The 
operational data may be collected as a single data set, or may 
be distributed over different locations including over different 
storage devices, and may exist, at least partially, merely as 
electronic signals on a system or network. Where a module or 
portions of a module are implemented in Software, the Soft 
ware portions are stored on one or more computer readable 
media. 

Reference throughout this specification to “one embodi 
ment.” “an embodiment, or similar language means that a 
particular feature, structure, or characteristic described in 
connection with the embodiment is included in at least one 
embodiment of the present disclosure. Thus, appearances of 
the phrases “in one embodiment,” “in an embodiment, and 
similar language throughout this specification may, but do not 
necessarily, all refer to the same embodiment. 

Reference to a computer readable medium may take any 
form capable of storing machine-readable instructions on a 
digital processing apparatus. A computer readable medium 
may be embodied by a compact disk, digital-Video disk, a 
magnetic tape, a Bernoulli drive, a magnetic disk, a punch 
card, flash memory, integrated circuits, or other digital pro 
cessing apparatus memory device. 

Furthermore, the described features, structures, or charac 
teristics of the disclosure may be combined in any suitable 
manner in one or more embodiments. In the following 
description, numerous specific details are provided. Such as 
examples of programming, Software modules, user selec 
tions, network transactions, database queries, database struc 
tures, hardware modules, hardware circuits, hardware chips, 
etc., to provide a thorough understanding of embodiments of 
the disclosure. One skilled in the relevant art will recognize, 
however, that the disclosure may be practiced without one or 
more of the specific details, or with other methods, compo 
nents, materials, and so forth. In other instances, well-known 
structures, materials, or operations are not shown or described 
in detail to avoid obscuring aspects of the disclosure. 
The schematic flow chart diagrams included herein are 

generally set forth as logical flow chart diagrams. As such, the 
depicted order and labeled steps are indicative of one embodi 
ment of the presented method. Other steps and methods may 
be conceived that are equivalent in function, logic, or effect to 
one or more steps, or portions thereof, of the illustrated 
method. Additionally, the format and symbols employed are 
provided to explain the logical steps of the method and are 
understood not to limit the scope of the method. Although 
various arrow types and line types may be employed in the 
flow chart diagrams, they are understood not to limit the scope 
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of the corresponding method. Indeed, some arrows or other 
connectors may be used to indicate only the logical flow of the 
method. For instance, an arrow may indicate a waiting or 
monitoring period of unspecified duration between enumer 
ated steps of the depicted method. Additionally, the order in 
which a particular method occurs may or may not strictly 
adhere to the order of the corresponding steps shown. 

FIG. 1 depicts one embodiment of a system 100 for data 
and/or power management in the event of a power failure, 
power reduction, or other power loss. In the depicted embodi 
ment, the system 100 includes a host computing device 114 
and a storage device 102. The host 114 may be a computer 
Such as a server, laptop, desktop, or other computing device 
known in the art. The host 114 typically includes components 
Such as memory, processors, buses, and other components as 
known to those of skill in the art. 
The host 114 stores data in the storage device 102 and 

communicates data with the storage device 102 via a com 
munications connection (not shown). The storage device 102 
may be internal to the host 114 or external to the host 114. The 
communications connection may be abus, a network, or other 
manner of connection allowing the transfer of data between 
the host 114 and the storage device 102. In one embodiment, 
the storage device 102 is connected to the host 114 by a PCI 
connection such as PCI express (PCI-e). The storage device 
102 may be a card that plugs into a PCI-e connection on the 
host 114. 

The storage device 102 also has a primary power connec 
tion 130 that connects the storage device 102 with a primary 
power source that provides the storage device 102 with the 
power that it needs to perform data storage operations such as 
reads, writes, erases, etc. The storage device 102, under nor 
mal operating conditions, receives the necessary power from 
the primary power source over the primary power connection 
130. In certain embodiments, such as the embodiment shown 
in FIG. 1, the primary power connection 130 connects the 
storage device 102 to the host 114, and the host 114 acts as the 
primary power source that Supplies the storage device 102 
with power. In certain embodiments, the primary power con 
nection 130 and the communications connection discussed 
above are part of the same physical connection between the 
host 114 and the storage device 102. For example, the storage 
device 102 may receive power over a PCI connection. 

In other embodiments, the storage device 102 may connect 
to an external power Supply via the primary power connection 
130. For example, the primary power connection 130 may 
connect the storage device 102 with a primary power Source 
that is a power converter (often called a power brick). Those 
in the art will appreciate that there are various ways by which 
a storage device 102 may receive power, and the variety of 
devices that can act as the primary power source for the 
storage device 102. 
The storage device 102 provides nonvolatile storage, 

memory, and/or recording media 110 for the host 114. FIG. 1 
shows the storage device 102 comprising a write data pipeline 
106, a read data pipeline 108, nonvolatile memory 110, a 
storage controller 104, an auto-commit memory 1011, and a 
secondary power Supply 124. The storage device 102 may 
contain additional components that are not shown in order to 
provide a simpler view of the storage device 102. 
The nonvolatile memory 110 stores data such that the data 

is retained even when the storage device 102 is not powered. 
Examples of nonvolatile memory 110 include flash memory, 
nano random access memory (nano RAM or NRAM), nanoc 
rystal wire-based memory, silicon-oxide based sub-10 
nanometer process memory, graphene memory, Silicon-OX 
ide-Nitride-Oxide-Silicon (SONOS), Resistive random-ac 
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6 
cess memory (RRAM), programmable metallization cell 
(PMC), conductive-bridging RAM (CBRAM), magneto-re 
sistive RAM (MRAM), dynamic RAM (DRAM), phase 
change RAM (PRAM), or other non-volatile solid-state stor 
age media. In other embodiments, the non-volatile memory 
110 may comprise magnetic media, optical media, or other 
types of non-volatile storage media. For example, in those 
embodiments, the non-volatile storage device 102 may com 
prise a hard disk drive, an optical storage drive, or the like. 

While the non-volatile memory 110 is referred to herein as 
“memory media, in various embodiments, the non-volatile 
memory 110 may more generally comprise a non-volatile 
recording media capable of recording data, the non-volatile 
recording media may be referred to as a non-volatile memory 
media, a non-volatile storage media, or the like. Further, the 
non-volatile storage device 102, in various embodiments, 
may comprise a non-volatile recording device, a non-volatile 
memory device, a non-volatile storage device, or the like. 
The storage device 102 also includes a storage controller 

104 that coordinates the storage and retrieval of data in the 
nonvolatile memory 110. The storage controller 104 may use 
one or more indexes to locate and retrieve data, and perform 
other operations on data stored in the storage device 102. For 
example, the storage controller 104 may include a groomer 
for performing data grooming operations such as garbage 
collection. 
As shown, the storage device 102, in certain embodiments, 

implements a write data pipeline 106 and a read data pipeline 
108, an example of which is described in greater detail below 
with regard to FIG. 3. The write data pipeline 106 may per 
form certain operations on data as the data is transferred from 
the host 114 into the nonvolatile memory 110. These opera 
tions may include, for example, error correction code (ECC) 
generation, encryption, compression, and others. The read 
data pipeline 108 may perform similar and potentially inverse 
operations on data that is being read out of nonvolatile 
memory 110 and sent to the host 114. 
The storage device 102 also includes a secondary power 

supply 124 that provides power in the event of a complete or 
partial power disruption resulting in the storage device 102 
not receiving enough electrical power over the primary power 
connection 130. A power disruption is any event that unex 
pectedly causes the storage device 102 to stop receiving 
power over the primary power connection 130, or causes a 
significant reduction in the power received by the storage 
device 102 over the primary power connection 130. A signifi 
cant reduction in power, in one embodiment, includes the 
power falling below a predefined threshold. The predefined 
threshold, in a further embodiment, is selected to allow for 
normal fluctuations in the level of power from the primary 
power connection 130. For example, the power to a building 
where the host 114 and the storage device 102 may go out. A 
user action (such as improperly shutting down the host 114 
providing power to the storage device 102), a failure in the 
primary power connection 130, or a failure in the primary 
power Supply may cause the storage device 102 to stop receiv 
ing power. Numerous, varied power disruptions may cause 
unexpected power loss for the storage device 102. 
The secondary power Supply 124 may include one or more 

batteries, one or more capacitors, a bank of capacitors, a 
separate connection to a power Supply, or the like. In one 
embodiment, the secondary power Supply 124 provides 
power to the storage device 102 for at least a power hold-up 
time during a power disruption or other reduction in power 
from the primary power connection 130. The secondary 
power Supply 124, in a further embodiment, provides a power 
hold-up time long enough to enable the storage device 102 to 
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flush data that is not in nonvolatile memory 110 into the 
nonvolatile memory 110. As a result, the storage device 102 
can preserve the data that is not permanently stored in the 
storage device 102 before the lack of power causes the storage 
device 102 to stop functioning. In certain implementations, 
the secondary power Supply 124 may comprise the Smallest 
capacitors possible that are capable of providing a predefined 
power hold-up time to preserve space, reduce cost, and sim 
plify the storage device 102. In one embodiment, one or more 
banks of capacitors are used to implement the secondary 
power Supply 124 as capacitors are generally more reliable, 
require less maintenance, and have a longer life than other 
options for providing secondary power. 

In one embodiment, the secondary power Supply 124 is 
part of an electrical circuit that automatically provides power 
to the storage device 102 upon a partial or complete loss of 
power from the primary power connection 130. Similarly, the 
system 100 may be configured to automatically accept or 
receive electric power from the secondary power supply 124 
during a partial or complete power loss. For example, in one 
embodiment, the secondary power Supply 124 may be elec 
trically coupled to the storage device 102 in parallel with the 
primary power connection 130, so that the primary power 
connection 130 charges the secondary power Supply 124 dur 
ing normal operation and the secondary power Supply 124 
automatically provides power to the storage device 102 in 
response to a power loss. In one embodiment, the system 100 
further includes a diode or other reverse current protection 
between the secondary power Supply 124 and the primary 
power connection 130, to prevent current from the secondary 
power Supply 124 from reaching the primary power connec 
tion 130. In another embodiment, the auto-commit memory 
1011 may enable or connect the secondary power supply 124 
to the storage device 102 using a Switch or the like in response 
to reduced power from the primary power connection 130. 
An example of data that is not yet in the nonvolatile 

memory 110 may include data that may be held in volatile 
memory as the data moves through the write data pipeline 
106. If data in the write data pipeline 106 is lost during a 
power outage (i.e., not written to nonvolatile memory 110 or 
otherwise permanently stored), corruption and data loss may 
result. 

In certain embodiments, the storage device 102 sends an 
acknowledgement to the host 114 at some point after the 
storage device 102 receives data to be stored in the nonvolatile 
memory 110. The write data pipeline 106, or a sub-compo 
nent thereof, may generate the acknowledgement. It is advan 
tageous for the storage device 102 to send the acknowledge 
ment as soon as possible after receiving the data. 

In certain embodiments, the write data pipeline 106 sends 
the acknowledgement before data is actually stored in the 
nonvolatile memory 110. For example, the write data pipeline 
106 may send the acknowledgement while the data is still in 
transit through the write data pipeline 106 to the nonvolatile 
memory 110. In such embodiments, it is highly desirable that 
the storage device 102 flush all data for which the storage 
controller 104 has sent an acknowledgement to the nonvola 
tile memory 110 before the secondary power supply 124 loses 
Sufficient power in order to prevent data corruption and main 
tain the integrity of the acknowledgement sent. 

In addition, in certain embodiments, some data within the 
write data pipeline 106 may be corrupted as a result of the 
power disruption. A power disruption may include a power 
failure as well as unexpected changes in power levels Sup 
plied. The unexpected changes in power levels may place data 
that is in the storage device 102, but not yet in nonvolatile 
memory 110, at risk. Data corruption may begin to occur 
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8 
before the auto-commit memory 1011 is even aware (or noti 
fied) that there has been a disruption in power. 

For example, the PCI-e specification indicates that, in the 
event that a power disruption is signaled, data should be 
assumed corrupted and not stored in certain circumstances. 
Similar potential corruption may occur for storage devices 
102 connected to hosts 114 using other connection types, 
Such as PCI, serial advanced technology attachment (serial 
ATA or SATA), parallel ATA (PATA), small computer system 
interface (SCSI), IEEE 1394 (FireWire), Fiber Channel, uni 
versal serial bus (USB), PCIe-AS, or the like. A complication 
may arise when a power disruption occurs (meaning that data 
received from that point to the present time may be presumed 
corrupt), a period of time passes, the disruption is sensed and 
signaled, and the auto-commit memory 1011 receives the 
signal and becomes aware of the power disruption. The lag 
between the power disruption occurring and the auto-commit 
memory 1011 discovering the power disruption can allow 
corrupt data to enter the write data pipeline 106. In certain 
embodiments, this corrupt data should be identified and not 
stored to the nonvolatile memory 110. Alternately, this cor 
rupt data can be stored in the nonvolatile memory 110 and 
marked as corrupt as described below. For simplicity of 
description, identifying corrupt data and not storing the data 
to the nonvolatile memory 110 will be primarily used to 
describe the functions and features herein. Furthermore, the 
host 114 should be aware that this data was not stored, or 
alternatively data for which integrity is a question is not 
acknowledged until data integrity can be verified. As a result, 
corrupt data should not be acknowledged. 
The storage device 102 also includes the auto-commit 

memory 1011. In certain embodiments, the auto-commit 
memory 1011 is in communication with, managed by, or at 
least partially integrated with the storage controller 104. The 
auto-commit memory 1011 may, for instance, cooperate with 
a software driver and/or firmware for the storage device 102. 
In one embodiment, at least a portion of the auto-commit 
memory 1011 is implemented on the storage device 102, so 
that the auto-commit memory 1011 continues to function 
during a partial or complete power loss using power from the 
secondary power Supply 124, even if the host 114 is no longer 
functioning. 

In one embodiment, the auto-commit memory 1011 ini 
tiates a power loss mode in the storage device 102 in response 
to a reduction in power from the primary power connection 
130. During the power loss mode, the auto-commit memory 
1011, in one embodiment flushes data that is in the storage 
device 102 that is not yet stored in nonvolatile memory 110 
into the nonvolatile memory 110. In particular embodiments, 
the auto-commit memory 1011 flushes the data that has been 
acknowledged and is in the storage device 102 that is not yet 
stored in nonvolatile memory 110 into the nonvolatile 
memory 110. In certain embodiments, described below, the 
auto-commit memory 1011 may adjust execution of data 
operations on the storage device 102 to ensure that essential 
operations complete before the secondary power Supply 124 
loses sufficient power to complete the essential operations, 
i.e. during the power hold-up time that the secondary power 
Supply 124 provides. 

In certain embodiments, the essential operations comprise 
those operations for data that has been acknowledged as 
having been stored. Such as acknowledged write operations. 
In other embodiments, the essential operations comprise 
those operations for data that has been acknowledged as 
having been stored and erased. In other embodiments, the 
essential operations comprise those operations for data that 
have been acknowledged as having been stored, read, and 
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erased. The auto-commit memory 1011 may also terminate 
non-essential operations to ensure that those non-essential 
operations do not consume powerunnecessarily and/or do not 
block essential operations from executing; for example, the 
auto-commit memory 1011 may terminate erase operations, 
read operations, unacknowledged write operations, and the 
like. 

In one embodiment, terminating non-essential operations 
preserves power from the secondary power Supply 124. 
allowing the secondary power Supply 124 to provide the 
power hold-up time. In a further embodiment, the auto-com 
mit memory 1011 quiesces or otherwise shuts down operation 
of one or more subcomponents of the storage device 102 
during the power loss mode to conserve power from the 
secondary power Supply 124. For example, in various 
embodiments, the auto-commit memory 1011 may quiesce 
operation of the read data pipeline 108, a read direct memory 
access (DMA) engine, and/or other Subcomponents of the 
storage device 102 that are associated with non-essential 
operations. 
The auto-commit memory 1011 may also be responsible 

for determining what data was corrupted by the power dis 
ruption, preventing the corrupt data from being Stored in 
nonvolatile memory 110, and ensuring that the host 114 is 
aware that the corrupted data was never actually stored on the 
storage device 102. This prevents corruption of data in the 
storage device 102 resulting from the power disruption. 

In one embodiment, the system 100 includes a plurality of 
storage devices 102. The auto-commit memory 1011, in one 
embodiment, manages power loss modes for each storage 
device 102 in the plurality of storage devices 102, providing 
a system-wide power loss mode for the plurality of storage 
devices 102. In a further embodiment, each storage device 
102 in the plurality of storage devices 102 includes a separate 
auto-commit memory 1011 that manages a separate power 
loss mode for each individual storage device 102. The auto 
commit memory 1011, in one embodiment, may quiesce or 
otherwise shut down one or more storage devices 102 of the 
plurality of storage devices 102 to conserve power from the 
secondary power Supply 124 for executing essential opera 
tions on one or more other storage devices 102. 

In one embodiment, the system 100 includes one or more 
adapters for providing electrical connections between the 
host 114 and the plurality of storage devices 102. An adapter, 
in various embodiments, may include a slot or port that 
receives a single storage device 102, an expansion card or 
daughter card that receives two or more storage devices 102. 
or the like. For example, in one embodiment, the plurality of 
storage devices 102 may each be coupled to separate ports or 
slots of the host 114. In another example embodiment, one or 
more adapters, such as daughter cards or the like, may be 
electrically coupled to the host 114 (i.e. connected to one or 
more slots or ports of the host 114) and the one or more 
adapters may each provide connections for two or more Stor 
age devices 102. 

In one embodiment, the system 100 includes a circuit 
board, such as a motherboard or the like, that receives two or 
more adapters, such as daughter cards or the like, and each 
adapter receives two or more storage devices 102. In a further 
embodiment, the adapters are coupled to the circuit board 
using PCI-e slots of the circuit board and the storage devices 
102 are coupled to the adapters using PCI-e slots of the 
adapters. In another embodiment, the storage devices 102 
each comprise a dual in-line memory module (DIMM) of 
non-volatile solid-state storage. Such as Flash memory, or the 
like. In one embodiment, the circuit board, the adapters, and 
the storage devices 102 may be external to the host 114, and 
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may include a separate primary power connection 130. For 
example, the circuit board, the adapters, and the storage 
devices 102 may be housed in an external enclosure with a 
power supply unit (PSU) and may be in communication with 
the host 114 using an external bus such as eSATA, eSATAp, 
SCSI, FireWire, Fiber Channel, USB, PCIe-AS, or the like. In 
another embodiment, the circuit board may be a motherboard 
of the host 114, and the adapters and the storage devices 102 
may be internal storage of the host 114. 

In view of this disclosure, one of skill in the art will rec 
ognize many configurations of adapters and storage devices 
102 for use in the system 100. For example, each adapter may 
receive two storage devices 102, four storage devices 102, or 
any number of storage devices. Similarly, the system 100 may 
include one adapter, two adapters, three adapters, four adapt 
ers, or any supported number of adapters. In one example 
embodiment, the system 100 includes two adapters and each 
adapter receives four storage devices 102, for a total of eight 
storage devices 102. 

In one embodiment, the secondary power Supply 124 pro 
vides electric power to each of a plurality of storage devices 
102. For example, the secondary power supply 124 may be 
disposed in a circuit on a main circuit board or motherboard 
and may provide power to several adapters. In a further 
embodiment, the system 100 includes a plurality of secondary 
power supplies that each provide electric power to a subset of 
a plurality of storage devices 102. For example, in one 
embodiment, each adapter may include a secondary power 
supply 124 for storage devices 102 of the adapter. In a further 
embodiment, each storage device 102 may include a second 
ary power supply 124 for the storage device 102. In view of 
this disclosure, one of skill in the art will recognize different 
arrangements of secondary power Supplies 124 for providing 
power to a plurality of storage devices 102. 
The systems, methods, and apparatus described above may 

be leveraged to implement an auto-commit memory capable 
of implementing memory semantic write operations (e.g., 
persistent writes) at CPU memory write granularity and 
speed. By guaranteeing that certain commit actions for the 
write operations will occur, even in the case of a power failure 
or other restart event, in certain embodiments, volatile 
memory such as DRAM, SRAM, BRAM, or the like, may be 
used as, considered, or represented as non-volatile. 
A restart event, as used herein, comprises an intentional or 

unintentional loss of power to at least a portion of the host 
computing device and/or a non-volatile storage device. A 
restart event may comprise a system reboot, reset, or shut 
down event; a power fault, power loss, or power failure event; 
or another interruption or reduction of power. By guarantee 
ing certain commit actions, the auto-commit memory may 
allow storage clients to resume execution states, even after a 
restart event, may allow the storage clients to persist different 
independent data sets, or the like. 
As used herein, the term “memory semantic operations, or 

more generally, “memory operations.” refers to operations 
having a granularity, Synchronicity, and access semantics of 
Volatile memory accesses, using manipulatable memory 
pointers, or the like. Memory semantic operations may 
include, but are not limited to: load, store, peek, poke, write, 
read, set, clear, and so on. Memory semantic operations may 
operate at a CPU-level of granularity (e.g., single bytes, 
words, cachelines, or the like), and may be synchronous (e.g., 
the CPU waits for the operation to complete). In certain 
embodiments, providing access at a larger sized granularity, 
Such as cache lines, may increase access rates, provide more 
efficient write combining, or the like than smaller sized 
granularity access. 
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The ACM may be available to computing devices and/or 
applications (both local and remote) using one or more of a 
variety of memory mapping technologies, including, but not 
limited to, memory mapped I/O (MMIO), port I/O, port 
mapped IO (PMIO). Memory mapped file I/O, and the like. 
For example, the ACM may be available to computing 
devices and/or applications (both local and remote) using a 
PCI-e BaseAddress Register (BAR), or other suitable mecha 
nism. ACM may also be directly accessible via a memory bus 
of a CPU, using an interface such as a double data rate (DDR) 
memory interface, HyperTransport, QuickPath Interconnect 
(QPI), or the like. Accordingly, the ACM may be accessible 
using memory access semantics, such as CPU load/store, 
direct memory access (DMA), 3" party DMA, remote DMA 
(RDMA), atomic test and set, and so on. The direct, memory 
semantic access to the ACM disclosed herein allows many of 
the system and/or virtualization layer calls typically required 
to implement committed operations to be bypassed, (e.g., call 
backs via asynchronous Input/Output interfaces may be 
bypassed). In some embodiments, an ACM may be mapped to 
one or more virtual ranges (e.g., virtual BAR ranges, virtual 
memory addresses, or the like). The virtual mapping may 
allow multiple computing devices and/or applications to 
share a single ACM address range 1021 (e.g., access the same 
ACM simultaneously, within different virtual address 
ranges). An ACM may be mapped into an address range of a 
physical memory address space addressable by a CPU so that 
the CPU may use load/store instructions to read and write data 
directly to the ACM using memory semantic accesses. A 
CPU, in a further embodiment, may map the physically 
mapped ACM into a virtual memory address space, making 
the ACM available to user-space processes or the like as 
virtual memory. 
The ACM may be pre-configured to commit its contents 

upon detection of a restart condition (or other pre-determined 
triggering event) and, as Such, operations performed on the 
ACM may be viewed as being “instantly committed. For 
example, an application may perform a “write-commit” 
operation on the ACM using memory semantic writes that 
operate at CPU memory granularity and speed, without the 
need for separate corresponding "commit” commands, which 
may significantly increase the performance of applications 
affected by write-commit latencies. As used herein, a write 
commit operation is an operation in which an application 
writes data to a memory location (e.g., using a memory 
semantic access), and then issues a Subsequent commit com 
mand to commit the operation (e.g., to persistent storage or 
other commit mechanism). 

Applications whose performance is based on write-commit 
latency, the time delay between the initial memory write and 
the Subsequent persistent commit operation, typically attempt 
to reduce this latency by leveraging a virtual memory system 
(e.g., using a memory backed file). In this case, the applica 
tion performs high-performance memory semantic write 
operations in System RAM, but, in order to commit the opera 
tions, must perform Subsequent “commit” commands to per 
sist each write operation to the backing file (or other persistent 
storage). Accordingly, each write-commit operation may 
comprise its own separate commit command. For example, in 
a database logging application, each log transaction must be 
written and committed before a next transaction is logged. 
Similarly, messaging systems (e.g., store and forward sys 
tems) must write and commit each incoming message, before 
receipt of the message can be acknowledged. The write 
commit latency, therefore, comprises a relatively fast 
memory semantic write followed by a much slower operation 
to commit the data to persistent storage. Write-commit 
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latency may include several factors including, access times to 
persistent storage, system call overhead (e.g., translations 
between RAM addresses, backing store LBA, etc.), and so on. 
Examples of applications that may benefit from reduced 
write-commit latency include, but are not limited to: database 
logging applications, filesystem logging, messaging applica 
tions (e.g., Store and forward), semaphore primitives, and so 
O. 

The systems, apparatus, and methods for auto-commit 
memory disclosed herein may be used to significantly 
increase the performance of write-commit latency bound 
applications by providing direct access to a memory region at 
any suitable level of addressing granularity including byte 
level, page level, cache-line level, or other memory region 
level, that is guaranteed to be committed in the event of a 
system failure or other restart event, without the application 
issuing a commit command. Accordingly, the write-commit 
latency of an application may be reduced to the latency of a 
memory semantic access (a single write over a system bus). 

FIG. 2 is a block diagram of a system 1000 comprising one 
embodiment of an auto-commit memory (ACM) 1011. As 
used herein, an auto-commit memory comprises low-latency, 
high reliability memory media, exposed to ACM users for 
direct memory semantic access, at a memory semantic access 
and address granularity level of at least byte level, combined 
with logic and components together configured to restore the 
same state of data stored in the ACM 1011 that existed prior 
to the restart event and the same level of memory semantic 
access to data stored in the auto-commit memory after a 
restart event. In certain embodiments, the ACM 1011 guar 
antees that data stored in the ACM 1011 will be accessible 
after a restart event. The ACM 1011, in one embodiment, 
comprises a volatile memory media coupled to a controller, 
logic, and other components that commit data to a non-vola 
tile storage medium when necessary or when directed by an 
ACM user. In a further embodiment, the ACM 1011 may 
include a natively non-volatile storage medium such as phase 
change memory (PCM or PRAM), and a triggered commit 
action may process data on the non-volatile storage medium 
in response to a restart event Such that the data remains 
available to an owner of the data after the restart event. 

Accordingly, when data is written to the ACM 1011, it may 
not initially be “committed perse (is not necessarily stored 
on a persistent memory media and/or state); rather, a pre 
configured process is setup to preserve the ACM data and its 
state, if a restart event occurs while the ACM data is stored in 
the ACM 1011. The pre-configuring of this restart survival 
process is referred to herein as “arming.” The ACM 1011 may 
be capable of performing the pre-configured commit action 
autonomously and with a high degree of assurance, despite 
the system 1000 experiencing failure conditions or another 
restart event. As such, an entity that stores data on the ACM 
1011 may consider the data to be “instantaneously commit 
ted' or safe from loss or corruption, at least as safe as if the 
data were stored in a non-volatile storage device Such as a 
hard disk drive, tape storage media, or the like. 

In embodiments where the ACM 1011 comprises a volatile 
memory media, the ACM 1011 may make the volatile 
memory media appear as a non-volatile memory, may present 
the Volatile memory as a non-volatile medium, or the like, 
because the ACM 1011 preserves data, such as ACM data 
and/or ACM metadata 1015, across system restart events. The 
ACM 1011 may allow a volatile memory media to be used as 
a non-volatile memory media by determining that a trigger 
event, such as a restart or failure condition, has occurred, 
copying the contents of the Volatile memory media to a non 
Volatile memory media during a hold-up time after the trigger 
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event, and copying the contents back into the Volatile memory 
media from the non-volatile memory media after the trigger 
event is over, power has been restored, the restart event has 
completed, or the like. 

In one embodiment, the ACM 1011 is at least byte addres 
sable. A memory media of the ACM 1011, in certain embodi 
ments, may be natively byte addressable, directly providing 
the ACM 1011 with byte addressability. In another embodi 
ment, a memory media of the ACM 1011 is not natively byte 
addressable, but a volatile memory media of the ACM 1011 is 
natively byte addressable, and the ACM 1011 writes or com 
mits the contents of the byte addressable volatile memory 
media to the non-byte addressable memory media of the 
ACM 1011 in response to a trigger event, so that the volatile 
memory media renders the ACM 1011 byte addressable. 
The ACM 1011 may be accessible to one or more comput 

ing devices, such as the host 1014. As used herein a comput 
ing device (such as the host 1014) refers to a computing 
device capable of accessing an ACM. The host 1014 may be 
a computing device that houses the ACM 1011 as a periph 
eral; the ACM 1011 may be attached to a system bus 1040 of 
the host 1014; the ACM 1011 may be in communication with 
the host 1014 over a data network; and/or the ACM 1011 may 
otherwise be in communication with the host 1014. The host 
1014, in certain embodiments, may access the ACM 1011 
hosted by another computing device. The access may be 
implemented using any Suitable communication mechanism, 
including, but not limited to: CPU programmed IO (CPIO), 
port-mapped IO (PMIO), memory-mapped IO (MMIO), a 
Block interface, a PCI-e bus, Infiniband, RDMA, or the like. 
The host 1014 may comprise one or more ACM users 1016. 
As used herein, an ACM user 1016 refers to any operating 
system (OS), virtual operating platform (e.g., an OS with a 
hypervisor), a guest OS, application, process, thread, entity, 
utility, user, or the like, that is configured to access the ACM 
1011. 
The ACM 1011 may be physically located at one or more 

levels of the host 1014. In one embodiment, the ACM 1011 
may be connected to a PCI-e bus and may be accessible to the 
host 1014 with MMIO. In another embodiment, the ACM 
1011 may be directly accessible to a CPU of the host 1014 via 
a memory controller. For example, the ACM 1011 may be 
directly attached to and/or directly (e.g., Quick Path Intercon 
nect (QPI)) in communication with a CPU of the host 1014 or 
the like. Volatile media of the ACM 1011 and non-volatile 
backing media of the ACM 1011, in certain embodiments, 
may not be physically co-located within the same apparatus, 
but may be in communication over a communications bus, a 
data network, or the like. In other embodiments, as described 
below, hardware components of the ACM 1011 may be 
tightly coupled, and integrated in a single physical hardware 
apparatus. Volatile memory media and/or non-volatile 
memory media of the ACM 1011, in one embodiment, may be 
integrated with, or may otherwise cooperate with, a CPU 
cache hierarchy of the host 1014, to take advantage of CPU 
caching technologies such as write combining or the like. 
One or more ACM buffers 1013, in certain embodiments, 

may be mapped into an address range of a physical memory 
address space addressable by a CPU, a kernel, or the like of 
the host device 1014, such as the memory system 1018 
described below. For example, one or more ACM buffers 
1013 may be mapped as directly attached physical memory, 
as MMIO addressable physical memory over a PCI-e bus, or 
otherwise mapped as one or more pages of physical memory. 
At least a portion of the physically mapped ACM buffers 
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1013, in a further embodiment, may be mapped into a virtual 
memory address space, accessible to user-space processes or 
the like as virtual memory. 

Allowing ACM users 1016 to directly address the ACM 
buffers 1013, in certain embodiments, bypasses one or more 
layers of the traditional operating system memory stack of the 
host device 1014, providing direct load/store operation access 
to kernel-space and/or user-space applications. An operating 
system, using a kernel module, an application programming 
interface, the storage management layer (SML) 1050 
described below, or the like, in one embodiment, maps and 
unmaps ACM buffers 1013 to and from the memory system 
1018 for one or more ACM users 1016, and the ACM users 
1016 may directly access an ACM buffer 1013 once the 
operating system maps the ACM buffer 1013 into the memory 
system 1018. In a further embodiment, the operating system 
may also service system flush calls for the ACM buffers 1013, 
or the like. 
The SML 1050 and/or the SML API 1019 described below, 

in certain embodiments, provide an interface for ACM users 
1016, an operating system, and/or other entities to request 
certain ACM functions, such as a map function, an unmap 
function, a flush function, and/or other ACM functions. To 
perform a flush operation in response to a flush request, the 
ACM 1011 may perform a commit action for each ACM 
buffer 1013 associated with the flush request. Each ACM 
buffer 1013 is committed as indicated by the ACM metadata 
1015 of the associated ACM buffer 1013. A flush function, in 
various embodiments, may be specific to one or more ACM 
buffers 1013, system-wide for all ACM buffers 1013, or the 
like. In one embodiment, a CPU, an operating system, or the 
like for the host 1014 may request an ACM flush operation in 
response to, or as part of a CPU cache flush, a system-wide 
data flush for the host 1014, or another general flush opera 
tion. 
An ACM user 1016, an operating system, or the like may 

request a flush operation to maintain data consistency prior to 
performing a maintenance operation, Such as a data Snapshot 
or a backup, to commit ACM data prior to reallocating an 
ACM buffer 1013, to prepare for a scheduled restart event, or 
for other circumstances where flushing data from an ACM 
buffer 1013 may be beneficial. An ACM user 1016, an oper 
ating system, or the like, in certain embodiments, may request 
that the ACM 1011 map and/or unmap one or more ACM 
buffers 1013 to perform memory management for the ACM 
buffers 1013; to reallocate the ACM buffers 1013 between 
applications or processes; to allocate ACM buffers 1013 for 
new data, applications, or processes; to transfer use of the 
ACM buffers 1013 to a different host 1014 (in shared ACM 
1011 embodiments); or to otherwise manipulate the memory 
mapping of the ACM buffers 1013. In another embodiment, 
the SML 1050 may dynamically allocate, map, and/or unmap 
ACM buffers 1013 using a resource management agent as 
described below. 

Since the ACM 1011 is guaranteed to auto-commit the data 
stored thereon in the event of a trigger event, the host 1014 (or 
ACM user 1016) may view data written to the ACM 1011 as 
being instantaneously “committed' or non-volatile, as the 
host 1014 or ACM user 1016 may access the data both before 
and after the trigger event. Advantageously, while the restart 
event may cause the ACM user 1016 to be re-started or re 
initialized the data stored in the ACM 1011 is in the same 
state/condition after the restart event as it was before the 
restart event. The host 1014 may, therefore, write to the ACM 
1011 using memory write semantics (and at CPU speeds and 
granularity), without the need for explicit commit commands 
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by relying on the pre-configured trigger of the ACM 1011 to 
commit the data in the event of a restart (or other trigger 
event). 
The ACM 1011 may comprise a plurality of auto-commit 

buffers 1013, each comprising respective ACM metadata 
1015. As discussed below, the ACM metadata 1015 may 
include data to facilitate committing of ACM data in response 
to a triggering event for the auto-commit buffer 1013, such as 
a logical identifier for data in the ACM buffer 1013, an iden 
tifier of a commit agent 1020, instructions for a commit 
process or other processing procedure, security data, or the 
like. The auto-commit buffers 1013 may be of any suitable 
size, from a single sector, page, byte, or the like, to a virtual or 
logical page size (e.g., 80 to 400 kb). The size of the auto 
commit buffers 1013 may be adapted according to the storage 
capacity of the underlying non-volatile storage media, and or 
hold-up time available from the secondary power Supply 
1024. 

In one embodiment, the ACM 1011 may advertise or 
present to the host 1014, to ACM users 1016, or the like, a 
storage capacity of the ACM buffers 1013 that is larger than 
an actual storage capacity of memory of the ACM buffers 
1013. To provide the larger storage capacity, the ACM 1011 
may dynamically map and unmap ACM buffers 1013 to the 
memory system 1018 and to the non-volatile backing 
memory of the ACM 1011, such as the non-volatile memory 
110 described above. For example, the ACM 1011 may pro 
vide virtual address ranges for the ACM buffers 1013, and 
demand page data and/or ACM buffers 1013 to the non 
volatile memory 110 as ACM buffer 1013 accesses necessi 
tate. In another embodiment, for ACM buffers 1013 that are 
armed to commit to one or more predefined LBAs of the 
non-volatile memory 110, the ACM 1011 may dynamically 
move the ACM data and ACM metadata 1015 from the ACM 
buffers 1013 to the associated LBAs of the non-volatile 
memory 110, freeing storage capacity of the ACM buffers 
1013 to provide a larger storage capacity. The ACM 1011 may 
further return the ACM data and ACM metadata 1015 back to 
one or more ACM buffers 1013 as ACM buffers become 
available, certain addresses outside the data of currently 
loaded ACM buffers 1013 is requested, or the like, managing 
storage capacity of the ACM buffers 1013. 
The ACM 1011 is pre-configured or “armed to implement 

one or more “triggered commit actions' in response to a 
restart condition (or other, pre-determined condition). As 
used herein, a restart condition or event may include, but is 
not limited to a software or hardware shutdown/restart of a 
host 1014, a failure in a host 1014 computing device, a failure 
of a component of the host 1014 (e.g., failure of the bus 1040), 
a Software fault (e.g., an fault in Software running on the host 
1014 or other computing device), a loss of the primary power 
connection 1030, an invalid shutdown, or another event that 
may cause the loss of data stored in a volatile memory. 

In one embodiment, a restart event comprises the act of the 
host 1014 commencing processing after an event that can 
cause the loss of data stored within a volatile memory of the 
host 1014 or a component in the host 1014. The host 1014 
may commence/resume processing once the restart condition 
or eventhas finished, a primary power source is available, and 
the like. 

The ACM 1011 is configured to detect that a restart event/ 
condition has occurred and/or respond to a restart event by 
initiating a recovery stage. During a recovery stage, the ACM 
1011 may restore the data of the ACM 1011 to the state prior 
to the restart event. Alternatively, or in addition, during the 
recovery stage, the ACM 1011 may complete processing of 
ACM data or ACM metadata 1015 needed to satisfy a guar 
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antee that data in the ACM 1011 is available to ACM users 
after the restart event. Alternatively, or in addition, during the 
recovery stage, the ACM 1011 may complete processing of 
ACM data or ACM metadata 1015 needed to satisfy a guar 
antee that data in the ACM 1011 is committed after the restart 
event. As used herein, "commit” means data in the ACM 1011 
is protected from loss or corruption even after the restart event 
and is persisted as required per the arming information asso 
ciated with the data. In certain embodiments, the recovery 
stage includes processing ACM data and ACM metadata 1015 
such that the ACM data is persisted, even though the restart 
event occurred. 
As used herein, a triggered commit action is a pre-config 

ured commit action that is armed to be performed by the ACM 
1011 in response to a triggering event (e.g., a restart event, a 
flush command, or other pre-determined event). In certain 
embodiments, the triggered commit action persists at least 
enough ACM data and/or ACM metadata 1015 to make data 
of the ACM 1011 available after a system restart, to satisfy a 
guarantee of the ACM 1011 that the data will be accessible to 
an ACM user after a restart event, in certain embodiments, 
this guarantee is satisfied, at least in part, by committing 
and/or persisting data of the ACM 1011 to non-volatile 
memory media. A triggered commit action may be completed 
before, during, and/or after a restart event. For example, the 
ACM 1011 may write ACM data and ACM metadata 1015 to 
a predefined temporary location in the nonvolatile memory 
110 during a hold-up time after a restart event, and may copy 
the ACM databack into the ACM buffers 1013, to an intended 
location in the nonvolatile memory 110, or perform other 
processing once the restart event is complete. 
A triggered commit action may be 'armed” when the ACM 

1011 is requested and/or a particular ACM buffer 1013 is 
allocated for use by a host 1014. In some embodiments, an 
ACM 1011 may be configured to implement a triggered com 
mit action in response to other, non-restart conditions. For 
example, an operation directed to a particular logical address 
(e.g., a poke), may trigger the ACM 1011, a flush operation 
may trigger the ACM 1011, or the like. This type of triggering 
may be used to commit the data of the ACM 1011 during 
normal operation (e.g., non-restart or non-failure conditions). 
The arming may occur when an auto-commit buffer 1013 is 

mapped into the memory system 1018 of the host 1014. 
Alternatively, arming may occur as a separate operation. As 
used herein, arming an auto-commit buffer 1013 comprises 
performing the necessary configuration steps needed to com 
plete the triggered action when the action is triggered. Arming 
may include, for example, providing the ACM metadata 1015 
to the ACM 1011 or the like. In certain embodiments, arming 
further includes performing the necessary configuration steps 
needed to complete a minimal set of steps for the triggered 
action, Such that the triggered action is capable of completing 
after a trigger event. In certain embodiments, arming further 
includes verifying the arming data (e.g., Verifying that the 
contents of the auto-commit buffer 1013, or portion thereof, 
can be committed as specified in the ACM metadata 1015) 
and verifying that the ACM 1011 is capable and configured to 
properly perform the triggered action without error or inter 
ruption. 
The verification may ensure that once armed, the ACM 

1011 can implement the triggered commit action when 
required. If the ACM metadata 1015 cannot be verified (e.g., 
the logical identifier or other ACM metadata 1015 is invalid, 
corrupt, unavailable, or the like), the arming operation may 
fail; memory semantic operations on the auto-commit buffer 
1013 may not be allowed unit the auto-commit buffer 1013 is 
successfully armed with valid ACM metadata 1015. For 
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example, an auto-commit buffer 1013 that is backed by a hard 
disk having a one-to-one mapping between LBA and physical 
address, may fail to arm if the LBA provided for the arming 
operation does not map to a valid (and operational) physical 
address on the disk. Verification in this case may comprise 
querying the disk to determine whether the LBA has a valid, 
corresponding physical address and/or using the physical 
address as the ACM metadata 1015 of the auto-commit buffer 
1013. 
The armed triggered commit actions are implemented in 

response to the ACM 1011 (or other entity) detecting and/or 
receiving notification of a triggering event. Such as a restart 
condition. In some embodiments, an armed commit action is 
a commit action that can be performed by the ACM 1011, and 
that requires no further communication with the host 1014 or 
other devices external to the "isolation Zone' of the ACM 
1011 (discussed below). Accordingly, the ACM 1011 may be 
configured to implement triggered commit actions autono 
mously of the host 1014 and/or other components thereof. 
The ACM 1011 may guarantee that triggered commit actions 
can be committed without errors and/or despite external error 
conditions. Accordingly, in some embodiments, the triggered 
commit actions of the ACM 1011 do not comprise and/or 
require potentially error-introducing logic, computations, 
and/or calculations. In some embodiments, a triggered com 
mit action comprises committing data stored on the Volatile 
ACM 1011 to a persistent storage location. In other embodi 
ments, a triggered commit action may comprise additional 
processing of committed data, before, during, and/or after a 
triggering event, as described below. The ACM 1011 may 
implement pre-configured triggered commit actions autono 
mously; the ACM 1011 may be capable of implementing 
triggered commit actions despite failure or restart conditions 
in the host 1014, loss of primary power, or the like. The ACM 
1011 can implement triggered commit actions independently 
due to arming the ACM 1011 as described above. 
The ACM metadata 1015 for an ACM buffer 1013, in 

certain embodiments, identifies the data of the ACM buffer 
1013. For example, the ACM metadata 1015 may identify an 
owner of the data, may describe the data itself, or the like. In 
one embodiment, an ACM buffer 1013 may have multiple 
levels of ACM metadata 1015, for processing by multiple 
entities or the like. The ACM metadata 1015 may include 
multiple nested headers that may be unpackaged upon restart, 
and used by various entities or commit agents 1020 to deter 
mine how to process the associated ACM data to fulfill the 
triggered commit action as described above. For example, the 
ACM metadata 1015 may include block metadata, file meta 
data, application level metadata, process execution point or 
callback metadata, and/or other levels of metadata. Each level 
of metadata may be associated with a different commit agent 
1020, or the like. In certain embodiments, the ACM metadata 
1015 may include security data, Such as a signature for an 
owner of the associated ACM data, a pre-shared key, a nonce, 
or the like, which the ACM 1011 may use during recovery to 
verify that a commit agent 1020, an ACM user 1016, or the 
like is authorized to access committed ACM metadata 1015 
and/or associated ACM data. In this manner, the ACM 1011 
may prevent ownership spoofing or other unauthorized 
access. In one embodiment, the ACM 1011 does not release 
ACM metadata 1015 and/or associated ACM data until a 
requesting commit agent 1020, ACM user 1016, or the like 
provides valid authentication, Such as a matching signature or 
the like. 
One or more commit agents 1020, such as the commit 

management apparatus 1122 described below with regard to 
FIG. 3, in certain embodiments, process ACM databased on 
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the associated ACM metadata 1015 to execute a triggered 
commit action. A commit agent 1020, in various embodi 
ments, may comprise Software. Such as a device driver, a 
kernel module, the SML 1050, a thread, a user space appli 
cation, or the like, and/or hardware, such as the controller 
1004 described below, that is configured to interpret ACM 
metadata 1015 and to process the associated ACM data 
according to the ACM metadata 1015. In embodiments with 
multiple commit agents 1020, the ACM metadata 1015 may 
identify one or more commit agents 1020 to process the 
associated ACM data. The ACM metadata 1015 may identify 
a commit agent 1020, in various embodiments, by identifying 
a program/function of the commit agent 1020 to invoke (e.g., 
a file path of the program), by including computer executable 
code of the commit agent 1020 (e.g., binary code or Scripts), 
by including a unique identifier indicating which of a set of 
registered commit agents 1020 to use, and/or by otherwise 
indicating a commit agent 1020 associated with committed 
ACM metadata 1015. The ACM metadata 1015, in certain 
embodiments, may be a functor or envelope which contains 
the information, such as function pointer and bound param 
eters for a commit agent 1020, to commit the ACM data upon 
restart recovery. 

In one embodiment, a primary commit agent 1020 pro 
cesses ACM metadata 1015, and hands-offortransfers ACM 
metadata 1015 and/or ACM data to one or more secondary 
commit agents 1020 identified by the ACM metadata 1015. A 
primary commit agent 1020, in one embodiment, may be 
integrated with the ACM 1011, the controller 1004, or the 
like. An ACM user 1016 or other third party, in certain 
embodiments, may provide a secondary commit agent 1020 
for ACM data that the ACM user 1016 or other third party 
owns, and the primary commit agent 1020 may cooperate 
with the provided secondary commit agent 1020 to process 
the ACM data. The one or more commit agents 1020 for ACM 
data, in one embodiment, ensure and/or guarantee that the 
ACM data remains accessible to an owner of the ACM data 
after a restart event. As described above with regard to trig 
gered commit actions, a commit agent 1020 may process 
ACM metadata 1015 and associated ACM data to perform 
one or more triggered commit actions before, during, and/or 
after a trigger event, such as a failure or other restart event. 

In one embodiment, a commit agent 1020, in cooperation 
with the ACM 1011 or the like, may store the ACM metadata 
1015 in a persistent or non-volatile location in response to a 
restart or other trigger event. The commit agent 1020 may 
store the ACM metadata 1015 at a known location, may store 
pointers to the ACM metadata 1015 at a known location, may 
provide the ACM metadata 1015 to an external agent or data 
store, or the like so that the commit agent 1020 may process 
the ACM metadata 1015 and associated ACM data once the 
restart or other trigger event has completed. The known loca 
tion may include one or more predefined logical block 
addresses or physical addresses of the non-volatile memory 
110, a predefined file, or the like. In certain embodiments, 
hardware of the ACM 1011 is configured to cooperate to write 
the ACM metadata 1015 and/or pointers to the ACM metadata 
1015 at a known location. In one embodiment, the known 
location may be a temporary location that stores the ACM 
data and ACM metadata 1015 until the host 1014 has recov 
ered from a restart event and the commit agent 1020 may 
continue to process the ACM data and ACM metadata 1015. 
In another embodiment, the location may be a persistent 
location associated with the ACM metadata 1015. 

In response to completion of a restart event or other trigger 
event, during recovery, in one embodiment, a commit agent 
1020 may locate and retrieve the ACM metadata 1015 from 
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the non-volatile memory 110, from a predefined location or 
the like. The commit agent 1020, in response to locating and 
retrieving the ACM metadata 1015, locates the ACM data 
associated with the retrieved ACM metadata 1015. The com 
mitagent 1020, in certain embodiments, may locate the ACM 
data in a Substantially similar manner as the commit agent 
1020 locates the ACM metadata 1015, retrieving ACM data 
from a predefined location, retrieving pointers to the ACM 
data from a predefined location, receiving the ACM data from 
an external agent or data store, or the like. In one embodiment, 
the ACM metadata 1015 identifies the associated ACM data 
and the commit agent 1020 uses the ACM metadata 1015 to 
locate and retrieve the associated ACM data. For example, the 
commit agent 1020 may use a predefined mapping to associ 
ate ACM data with ACM metadata 1015 (e.g. the Nth piece of 
ACM data may be associated with the Nth piece of ACM 
metadata 1015 or the like), the ACM metadata 1015 may 
include a pointer or index for the associated ACM data, or 
another predefined relationship may exist between commit 
ted ACM metadata 1015 and associated ACM data. In another 
embodiment, an external agent may indicate to the commit 
agent 1020 where associated ACM data is located. 

In response to locating and retrieving the ACM metadata 
1015 and associated ACM data, the commit agent 1020 inter 
prets the ACM metadata 1015 and processes the associated 
ACM databased on the ACM metadata 1015. For example, in 
one embodiment, the ACM metadata 1015 may identify a 
block storage Volume and LBA(s) where the commit agent 
1020 is to write the ACM data upon recovery. In another 
embodiment, the ACM metadata 1015 may identify an offset 
within a file within a file system where the commit agent 1020 
is to write the ACM data upon recovery. In a further embodi 
ment, the ACM metadata 1015 may identify an application 
specific persistent object where the commit agent 1020 is to 
place the ACM data upon recovery, Such as a database record 
or the like. The ACM metadata 1015, in an additional embodi 
ment, may indicate a procedure for the commit agent 1020 to 
call to process the ACM data, such as a delayed procedure call 
or the like. In an embodiment where the ACM 1011 advertises 
or presents volatile ACM buffers 1013 as nonvolatile 
memory, the ACM metadata 1013 may identify an ACM 
buffer 1013 where the commit agent 1020 is to write the ACM 
data upon recovery. 

In certain embodiments, the ACM metadata 1015 may 
identify one or more secondary commit agents 1020 to further 
process the ACM metadata 1015 and/or associated ACM data. 
A secondary commit agent 1020 may process ACM metadata 
1015 and associated ACM data in a substantially similar 
manner to the commit agent 1020 described above. Each 
commit agent 1020 may process ACM data in accordance 
with a different level or subset of the ACM metadata 1015, or 
the like. The ACM metadata 1015 may identify a secondary 
commit agent 1020, in various embodiments, by identifying a 
program/function of the secondary commit agent 1020 to 
invoke (e.g., a file path of the program), by including com 
puter executable code of the secondary commit agent 1020, 
by including a unique identifier indicating which of a set of 
registered secondary commit agents 1020 to use, and/or by 
otherwise indicating a secondary commit agent 1020 associ 
ated with committed ACM metadata 1015. 

In one embodiment, a secondary commit agent 1020 pro 
cesses a remaining portion of the ACM metadata 1015 and/or 
of the ACM data after a previous commit agent 1020 has 
processed the ACM metadata 1015 and/or the ACM data. In a 
further embodiment, the ACM metadata 1015 may identify 
another non-volatile medium separate from the ACM 1011 
for the secondary commit agent 1020 to persist the ACM data 
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even after a host experiences a restart event. By committing 
the ACM metadata 1015 and the associated ACM data from 
the ACM buffers 1013 in response to a trigger event, such as 
a failure or other restart condition, and processing the ACM 
metadata 1015 and the associated ACM data once the trigger 
event has completed or recovered, the ACM 1011 may guar 
antee persistence of the ACM data and/or performance of the 
triggered commit action(s) defined by the ACM metadata 
1015. 
The ACM 1011 is communicatively coupled to a host 1014, 

which, like the host 114 described above, may comprise oper 
ating systems, virtual machines, applications, a processor 
complex 1012, a central processing unit 1012 (CPU), and the 
like. In the FIG. 2 example, these entities are referred to 
generally as ACM users 1016. Accordingly, as used herein, an 
ACM user may refer to an operating system, a virtual machine 
operating system (e.g., hypervisor), an application, a library, 
a CPU fetch-execute algorithm, or other program or process. 
The ACM 1011 may be communicatively coupled to the host 
1014 (as well as the ACM users 1016) via a bus 1040, such as 
a system bus, a processor's memory exchange bus, or the like 
(e.g., HyperTransport, QuickPath Interconnect (QPI), PCI 
bus, PCI-e bus, or the like). In some embodiments, the bus 
1040 comprises the primary power connection 1030(e.g., the 
non-volatile storage device 1102 may be powered through the 
bus 1040). Although some embodiments described herein 
comprise Solid-state storage devices, such as certain embodi 
ments of the non-volatile storage device 1102, the disclosure 
is not limited in this regard, and could be adapted to use any 
suitable recording/memory/storage device 1102 and/or 
recording/memory/storage media 1110. 
The ACM 1011 may be tightly coupled to the device used 

to perform the triggered commit actions. For example, the 
ACM 1011 may be implemented on the same device, periph 
eral, card, or within the same "isolation Zone' as the control 
ler 1004 and/or secondary power source 1024. The tight cou 
pling of the ACM 1011 to the components used to implement 
the triggered commit actions defines an "isolation Zone.” 
which may provide an acceptable level of assurance (based on 
industry standards or other metric) that the ACM 1011 is 
capable of implementing the triggered auto-commit actions 
in the event of a restart condition. In the FIG. 2 example, the 
isolation Zone of the ACM 1011 is provided by the tight 
coupling of the ACM 1011 with the autonomous controller 
1004 and secondary power supply 1024 (discussed below). 
The controller 1004 may comprise an I/O controller, such 

as a network controller (e.g., a network interface controller), 
storage controller, dedicated restart condition controller, or 
the like. The controller 1004 may comprise firmware, hard 
ware, a combination offirmware and hardware, or the like. In 
the FIG. 2 example, the controller 1004 comprises a storage 
controller, Such as the storage controller 104 and/or non 
volatile storage device controller described above. The con 
troller 1004 may be configured to operate independently of 
the host 1014. As such, the controller 1004 may be used to 
implement the triggered commit action(s) of the ACM 1011 
despite the restart conditions discussed above. Such as fail 
ures in the host 1014 (and/or ACM users 1016) and/or loss of 
the primary power connection 1030. 
The ACM 1011 is powered by a primary power connection 

1030, which, like the primary power connection 130 
described above, may be provided by a system bus (bus 
1040), external power supply, the host 1014, or the like. In 
certain embodiments, the ACM 1011 also includes and/or is 
coupled to a secondary power source 1024. The secondary 
power source 1024 may power the ACM 1011 in the event of 
a failure to the primary power connection 1030. The second 
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ary power source 1024 may be capable of providing at least 
enough power to enable the ACM 1011 and/or controller 1004 
to autonomously implement at least a portion of a pre-con 
figured triggered commit action(s) when the primary power 
connection 1030 has failed. The ACM 1011, in one embodi 
ment, commits or persists at least enough data (e.g., ACM 
data and ACM metadata 1015) while receiving power from 
the secondary power source 1024, to allow access to the data 
once the primary power connection 1030 has been restored. 
In certain embodiments, as described above, the ACM 1011 
may perform at least a portion of the pre-configured triggered 
commit action(s) after the primary power connection 1030 
has been restored, using one or more commit agents 1020 or 
the like. 

The ACM 1011 may comprise volatile memory storage. In 
the FIG. 2 example, the ACM 1011 includes one or more 
auto-commit buffers 1013. The auto-commit buffers 1013 
may be implemented using a volatile Random Access 
Memory (RAM). In some embodiments, the auto-commit 
buffers 1013 may be embodied as independent components of 
the ACM 1011 (e.g., in separate RAM modules). Alterna 
tively, the auto-commit buffers 1013 may be implemented on 
embedded volatile memory (e.g., BRAM) available within 
the controller 1004, a processor complex 1012, an FPGA, or 
other component of the ACM 1011. 

Each of the auto-commit buffers 1013 may be pre-config 
ured (armed) with a respective triggered commit action. In 
some embodiments, each auto-commit buffer 1013 may com 
prise its own, respective ACM metadata 1015. The ACM 
metadata 1015, in some embodiments, identifies how and/or 
where the data stored on the auto-commit buffer 1013 is to be 
committed. In some examples, the ACM metadata 1015 may 
comprise a logical identifier (e.g., an object identifier, logical 
block address (LBA), file name, or the like) associated with 
the data in the auto-commit buffer 1013. The logical identifier 
may be predefined. In one embodiment, when an auto-com 
mit buffer 1013 is committed, the data therein may be com 
mitted with the ACM metadata 1015 (e.g., the data may be 
stored at a physical storage location corresponding to the 
logical identifier and/or in association with the logical iden 
tifier). To facilitate committing of ACM data during a hold-up 
time after a restart event, the ACM 1011 may write ACM data 
and ACM metadata 1015 in a single atomic operation, such as 
a single page write or the like. To permit writing of ACM and 
ACM metadata 1015 in a single atomic operation, the ACM 
buffers 1013 may be sized to correspond to a single write unit 
for a non-volatile storage media that is used by the ACM 
1011. In some embodiments, the ACM metadata 1015 may 
comprise a network address, an LBA, or another identifier of 
a commit location for the data. 

In a further embodiment, a logical identifier may associate 
data of an auto-commit buffer 1013 with an owner of the data, 
so that the data and the owner maintain the ownership rela 
tionship after a restart event. For example, the logical identi 
fier may identify an application, an application type, a process 
ID, an ACM user 1016, or another entity of a host device 
1014, so that the ACM data is persistently associated with the 
identified entity. In one embodiment, a logical identifier may 
be a member of an existing namespace. Such as a file system 
namespace, a user namespace, a process namespace, or the 
like. In other embodiments, a logical identifier may be a 
member of a new or separate namespace. Such as an ACM 
namespace. For example, a globally unique identifier 
namespace, as is typically used in distributed systems for 
identifying communicating entities, may be used as an ACM 
namespace for logical identifiers. The ACM 1011 may pro 
cess committed ACM data according to a logical identifier for 
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the data once a restart event has completed. For example, the 
ACM 1011 may commit the ACM data to a logical identifier 
associated with a temporary location in response to a restart 
event, and may write the ACM data to a persistent location 
identified by another logical identifier during recovery after 
the restart event. 
As described above, the ACM 1011 may be tightly coupled 

with the components used to implement the triggered commit 
actions (e.g., the ACM 1011 is implemented within an “iso 
lation Zone'), which ensures that the data on the ACM 1011 
will be committed in the event of a restart condition. As used 
herein, a “tight coupling refers to a configuration wherein 
the components used to implement the triggered commit 
actions of the ACM 1011 are within the same "isolation 
Zone or two or more distinct trusted "isolation Zones, and 
are configured to operate despite external failure or restart 
conditions, such as the loss of power, invalid shutdown, host 
1014 failures, or the like. FIG. 2 illustrates a tight coupling 
between the ACM 1011, the auto-commit buffers 1013, the 
controller 1004, which is configured to operate independently 
of the host 1014, and the secondary power source 1024, which 
is configured to power the controller 1004 and the ACM 1011 
(including the auto-commit buffers 1013) while the triggered 
commit actions are completed. Examples of a tight coupling 
include but are not limited to including the controller 1004, 
the secondary power source 1024, and the auto-commit buff 
ers 1013 on a single printed circuit board (PCB), within a 
separate peripheral in electronic communication with the host 
1014, and the like. In other embodiments, the ACM 1011 may 
be tightly coupled to other a different set of components (e.g., 
redundant host devices, redundant communication buses, 
redundant controllers, alternative power Supplies, and so on). 
The ACM 1011 may be accessible by the host 1014 and/or 

ACM users 1016 running thereon. Access to the ACM 1011 
may be provided using memory access semantics, such as 
CPU load/store commands, DMA commands, 3rd party 
DMA commands, RDMA commands, atomic test and set 
commands, manipulatable memory pointers, and so on. In 
Some embodiments, memory semantic access to the ACM 
1011 is implemented over the bus 1040 (e.g., using a PCI-e 
BAR as described below). 

In a memory semantic paradigm, ACM users 1016 running 
on the host 1014 may access the ACM 1011 via a memory 
system 1018 of the host 1014. The memory system 1018 may 
comprise a memory management unit, virtual memory sys 
tem, virtual memory manager, virtual memory Subsystem (or 
similar memory address space) implemented by an operating 
system, a virtualization system (e.g., hypervisor), an applica 
tion, or the like. A portion of the ACM 1011 (e.g., one or more 
auto-commit buffers 1013) may be mapped into the memory 
system 1018, Such that memory semantic operations imple 
mented within the mapped memory address range (ACM 
address range 1021) are performed on the ACM 1011. 
The SML 1050, in certain embodiments, allocates and/or 

arbitrates the storage capacity of the ACM 1011 between 
multiple ACM users 1016, using a resource management 
agent or the like. The resource management agent of the SML 
1050 may comprise a kernel module provided to an operating 
system of the host device 1014, a device driver, a thread, a 
user space application, or the like. In one embodiment, the 
resource management agent determines how much storage 
capacity of the ACM buffers 1013 to allocate to an ACM user 
1016 and how long the allocation is to last. Because, in certain 
embodiments, the ACM 1011 commits or persists data across 
restart events, the resource management agent may allocate 
storage capacity of ACM buffers 1013 across restart events. 
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The resource management agent may assign different 
ACM buffers 1013 to different ACM users 1016, such as 
different kernel and/or user space applications. The resource 
management agent may allocate ACM buffers 1013 to differ 
ent usage types, may map ACM buffers 1013 to different 
non-volatile memory 110 locations for destaging, or the like. 
In one embodiment, the resource management agent may 
allocate the ACM buffers 1013 based on commit agents 1020 
associated with the ACM buffers 1013 by the ACM metadata 
1015 or the like. For example, a master commit agent 1020 
may maintain an allocation map in ACM metadata 1015 iden 
tifying allocation information for ACM buffers 1013 of the 
ACM 1011 and identifying, in one embodiment, one or more 
secondary commit agents 1020, and the master commit agent 
1020 may allocate a portion of the ACM buffers 1013 to each 
of the secondary commit agents 1020. In another embodi 
ment, commit agents 1020 may register with the resource 
managementagent, may request resources such as ACM buff 
erS 1013 from the resource management agent, or the like. 
The resource management agent may use a predefined 
memory management policy, Such as a memory pressure 
policy or the like, to allocate and arbitrate ACM buffer 1013 
storage capacity between ACM users 1016. 

In some embodiments, establishing an association between 
an ACM address range 1021 within the memory system 1018 
and the ACM 1011 may comprise pre-configuring (arming) 
the corresponding auto-commit buffer(s) 1013 with a trig 
gered commit action. As described above, this pre-configu 
ration may comprise associating the auto-commit buffer 1013 
with a logical identifier or other metadata, which may be 
Stored in the ACM metadata 1015 of the buffer 1013. As 
described above, the ACM 1011 may be configured to commit 
the buffer data to the specified logical identifier in the event of 
a restart condition, or to perform other processing in accor 
dance with the ACM metadata 1015. 
Memory semantic access to the ACM 1011 may be imple 

mented using any suitable address and/or device association 
mechanism. In some embodiments, memory semantic access 
is implemented by mapping one or more auto-commit buffers 
1013 of the ACM 1011 into the memory system 1018 of the 
host 1014. In some embodiments, this mapping may be 
implemented using the bus 1040. For example, the bus 1040 
may comprise a PCI-e (or similar) communication bus, and 
the mapping may comprise associating a Base Address Reg 
ister (BAR) of an auto-commit buffer 1013 of the ACM 1011 
on the bus 1040 with the ACM address range 1021 in the 
memory system 1018 (e.g., the host 1014 mapping a BAR 
into the memory system 1018). 
The association may be implemented by an ACM user 

1016 (e.g., by a virtual memory system of an operating sys 
tem or the like), through an API of a storage layer, such as the 
storage management layer (SML) 1050. The SML 1050 may 
be configured to provide access to the auto-commit memory 
1011 to ACM users 1016. The storage management layer 
1050 may comprise a driver, kernel-level application, user 
level application, library, or the like. One example of an SML 
is the Virtual Storage Layer(R) of Fusion-io, Inc. of Salt Lake 
City, Utah. The SML 1050 may provide a SML API 1019 
comprising, inter alia, an API for mapping portions of the 
auto-commit memory 1011 into the memory system 1018 of 
the host 1014, for unmapping portions of the auto-commit 
memory 1011 from the memory system 1018 of the host 
1014, for flushing the ACM buffers 1013, and the like. The 
SML 1050 may be configured to maintain metadata 1051, 
which may include a forward index 1053 comprising asso 
ciations between logical identifiers of a logical address space 
and physical storage locations on the auto-commit memory 
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1011 and/or persistent storage media. In some embodiments, 
ACM 1011 may be associated with one or more virtual ranges 
that map to different address ranges of a BAR (or other 
addressing mechanism). The virtual ranges may be accessed 
(e.g., mapped) by different ACM users 1016. Mapping or 
exposing a PCI-e ACMBAR to the host memory 1018 may be 
enabled on demand by way of a SML API 1019 call. 
The SML API 1019 may comprise interfaces for mapping 

an auto-commit buffer 1013 into the memory system 1018. In 
some embodiments, the SML API 1019 may extend existing 
memory management interfaces, such as malloc, calloc, or 
the like, to map auto-commit buffers 1013 into the virtual 
memory range of ACM user applications 1016 (e.g., a malloc 
call through the SML API 1019 may map one or more auto 
commit buffers 1013 into the memory system 1018). Alter 
natively, or in addition, the SML API 1019 may comprise one 
or more explicit auto-commit mapping functions, such as 
ACM alloc.” ACM free or the like. Mapping an auto 
commit buffer 1013 may further comprise configuring a 
memory system 1018 of the host to ensure that memory 
operations are implemented directly on the auto-commit 
buffer 1013 (e.g., prevent caching memory operations within 
a mapped ACM address range 1021). 
The association between the ACM address range 1021 

within the host memory system 1018 and the ACM 1011 may 
be such that memory semantic operations performed within a 
mapped ACM address range 1021 are implemented directly 
on the ACM 1011 (without intervening system RAM, or other 
intermediate memory, in a typical write commit operation, 
additional layers of system calls, or the like). For example, a 
memory semantic write operation implemented within the 
ACM address range 1021 may cause data to be written to the 
ACM 1011 (on one or more of the auto-commit buffers 1013). 
Accordingly, in some embodiments, mapping the ACM 
address range 1021 may comprise disabling caching of 
memory operations within the ACM address range 1021, such 
that memory operations are performed on an ACM 1011 and 
are not cached by the host (e.g., cached in a CPU cache, in 
host volatile memory, or the like). Disabling caching within 
the ACM address range 1021 may comprise setting a “non 
cacheable’ flag attribute associated with the ACM range 
1021, when the ACM range 1021 is defined. 
As discussed above, establishing an association between 

the host memory system 1018 and the ACM 1011 may com 
prise “arming the ACM 1011 to implement a pre-determined 
triggered commit action. The arming may comprise provid 
ing the ACM 1011 with a logical identifier (e.g., a logical 
block address, a file name, a network address, a stripe or 
mirroring pattern, or the like). The ACM 1011 may use the 
logical identifier to arm the triggered commit action. For 
example, the ACM 1011 may be triggered to commit data to 
a persistent storage medium using the logical identifier (e.g., 
the data may be stored at a physical address corresponding to 
the logical identifier and/or the logical identifier may be 
stored with the data in a log-based data structure). Arming the 
ACM 1011 allows the host 1014 to view subsequent opera 
tions performed within the ACM address range 1021 (and on 
the ACM 1011) as being “instantly committed, enabling 
memory semantic write granularity (e.g., byte level opera 
tions) and speed with instant commit semantics. 
Memory semantic writes such as a “store' operation for a 

CPU are typically synchronous operations such that the CPU 
completes the operation before handling a Subsequent opera 
tion. Accordingly, memory semantic write operations per 
formed in the ACM memory range 1021 can be viewed as 
“instantly committed,” obviating the need for a correspond 
ing "commit” operation in the write-commit operation, which 
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may significantly increase the performance of ACM users 
1016 affected by write-commit latency. The memory seman 
tic operations performed within the ACM memory range 
1021 may be synchronous. Accordingly, ACM 1011 may be 
configured to prevent the memory semantic operations from 
blocking (e.g., waiting for an acknowledgement from other 
layers, such as the bus 1040, or the like). Moreover, the 
association between ACM address range 1021 and the ACM 
1011 allow memory semantic operations to bypass system 
calls (e.g., separate write and commit commands and their 
corresponding system calls) that are typically included in 
write-commit operations. 

Data transfer between the host 1014 and the ACM 1011 
may be implemented using any Suitable data transfer mecha 
nism including, but not limited to: the host 1014 performing 
processor IO operations (PIO) with the ACM 1011 via the bus 
1040; the ACM 1011 (or other device) providing one or more 
DMA engines or agents (data movers) to transfer data 
between the host 1014 and the ACM 1011; the host 1014 
performing processor cache write/flush operations; or the 
like. 
As discussed above, an ACM may be configured to auto 

matically perform a pre-configured triggered commit action 
in response to detecting certain conditions (e.g., restart or 
failure conditions). In some embodiments, the triggered com 
mit action may comprise committing data stored on the ACM 
1014 to a persistent storage media. Accordingly, in some 
embodiments, an ACM, such as the ACM 1011 described 
above, may be comprise persistent storage media. FIG. 3 is a 
block diagram of a system 1100 depicting an embodiment of 
an ACM configured to implement triggered commit actions, 
which may include committing data to a persistent, solid 
state, and/or non-volatile storage. 
The ACM 1111 of the FIG. 3 example may be tightly 

coupled to the non-volatile storage device 1102, which com 
prises a controller 1104. The controller 1104 may comprise a 
write data pipeline 1106 and a read data pipeline 1108, which 
may operate as described above. The non-volatile storage 
device 1102 may be capable of persisting data on a non 
Volatile memory 1110. Such as Solid-state storage media. 
A commit management apparatus 1122 is used to commit 

data to the non-volatile memory 1110 in response to a trigger 
event, such as loss of primary power connection, or other 
pre-determined trigger event. Accordingly, the commit man 
agement apparatus 1122 may comprise and/or be configured 
to perform the functions of the auto-commit memory 1011 
described above. The commit management apparatus 1122 
may be further configured to commit data on the ACM 1111 
(e.g., the contents of the auto-commit buffers 1013) to the 
non-volatile memory 1110 in response to a restart condition 
(or on request from the host 1014 and/or ACM users 1016) 
and in accordance with the ACM metadata 1015. The commit 
management apparatus 1122 is one embodiment of a commit 
agent 1020. 
The data on the ACM 1111 may be committed to the 

persistent storage 1110 in accordance with the ACM metadata 
1015, such as a logical identifier or the like. The ACM 1111 
may commit the data to a temporary location for further 
processing after a restart event, may commit the data to a final 
intended location, or the like as, described above. If the non 
Volatile memory 1110 is sequential storage device, commit 
ting the data may comprise storing the logical identifier or 
other ACM metadata 1015 with the contents of the auto 
commit buffer 1013 (e.g., in a packet or container header). If 
the non-volatile memory 1110 comprises a hard disk having 
a 1:1 mapping between logical identifier and physical 
address, the contents of the auto-commit buffer 1013 may be 
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committed to the storage location to which the logical iden 
tifier maps. Since the logical identifier or other ACM meta 
data 1015 associated with the data is pre-configured (e.g., 
armed), the ACM 1111 implements the triggered commit 
action independently of the host 1014. The secondary power 
supply 1024 supplies power to the volatile auto-commit buff 
ers 1013 of the ACM 1111 until the triggered commit actions 
are completed (and/or confirmed to be completed), or until 
the triggered commit actions are performed to a point at 
which the ACM 1111 may complete the triggered commit 
actions during recovery after a restart event. 

In some embodiments, the ACM 1111 commits data in a 
way that maintains an association between the data and its 
corresponding logical identifier (per the ACM metadata 
1015). If the non-volatile memory 1110 comprises a hard 
disk, the data may be committed to a storage location corre 
sponding to the logical identifier, which may be outside of the 
isolation Zone 1301 (e.g., using a logical identifier to physical 
address conversion). In other embodiments in which the non 
Volatile memory 1110 comprises a sequential media, such as 
Solid-state storage media, the data may be stored sequentially 
and/or in a log-based format as described in above and/or in 
U.S. Provisional Patent Application Publication No. 61/373, 
271, entitled “APPARATUS, SYSTEM, AND METHOD 
FOR CACHING DATA.” and filed 12 Aug. 2010, which is 
hereby incorporated by reference in its entirety. The sequen 
tial storage operation may comprise storing the contents of an 
auto-commit buffer 1013 with a corresponding logical iden 
tifier (as indicated by the ACM metadata 1015). In one 
embodiment, the data of the auto-commit buffer 1013 and the 
corresponding logical identifier are stored together on the 
media according to a predetermined pattern. In certain 
embodiments, the logical identifier is stored before the con 
tents of the auto-commit buffer 1013. The logical identifier 
may be included in a header of a packet comprising the data, 
or in another sequential and/or log-based format. The asso 
ciation between the data and logical identifier may allow a 
data index to be reconstructed as described above. 
As described above, the auto-commit buffers 1013 of the 

ACM 1011 may be mapped into the memory system 1018 of 
the host 1014, enabling the ACM users 1016 of access these 
buffers 1013 using memory access semantics. In some 
embodiments, the mappings between logical identifiers and 
auto-commit buffers 1013 may leverage a virtual memory 
system of the host 1014. 

For example, an address range within the memory system 
1018 may be associated with a “memory mapped file.” As 
discussed above, a memory mapped file is a virtual memory 
abstraction in which a file, portion of a file, or block device is 
mapped into the memory system 1018 address space for more 
efficient memory semantic operations on data of the non 
volatile storage device 1102. An auto-commit buffer 1013 
may be mapped into the host memory system 1018 using a 
similar abstraction. The ACM memory range 1021 may, 
therefore, be represented by a memory mapped file. The 
backing file must be stored on the non-volatile memory 1110 
within the isolation zone 1301 (See FIG. 5 below) or another 
network attached non-volatile storage device 1102 also pro 
tected by an isolation Zone 1301. The auto-commit buffers 
1013 may correspond to only a portion of the file (the file 
itself may be very large, exceeding the capacity of the auto 
commit buffers 1013 and/or the non-volatile memory 1110). 
When a portion of a file is mapped to an auto-commit buffer 
1013, the ACM user 1016 (or other entity) may identify a 
desired offset within the file and the range of blocks in the file 
that will operate with ACM characteristics (e.g., have ACM 
semantics). This offset will have a predefined logical identi 
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fier and the logical identifier and range may be used to trigger 
committing the auto-commit buffer(s) 1013 mapped within 
the file. Alternatively, a separate offset for a block (or range of 
blocks) into the file may serve as a trigger for committing the 
auto-commit buffer(s) 1013 mapped to the file. For example, 
anytime a memory operation (load, store, poke, etc.) is per 
formed on data in the separate offset or range of blocks may 
result in a trigger event that causes the auto-commit buffer(s) 
1013 mapped to the file to be committed. 
The underlying logical identifier may change, however 

(e.g., due to changes to other portions of the file, file size 
changes, etc.). When a change occurs, the SML 1050 (via the 
SML API 1019, an ACM user 1016, or other entity) may 
update the ACM metadata 1015 of the corresponding auto 
commit buffers 1013. In some embodiments, the SML 1050 
may be configured to query the host 1014 (operating system, 
hypervisor, or other application) for updates to the logical 
identifier of files associated with auto-commit buffers 1013. 
The queries may be initiated by the SML API 1019 and/or 
may be provided as a hook (callback mechanism) into the host 
1014. When the ACM user 1016 no longer needs the auto 
commit buffer 1013, the SML 1050 may de-allocate the 
buffer 1013 as described above. De-allocation may further 
comprise informing the host 1014 that updates to the logical 
identifier are no longer needed. 

In some embodiments, a file may be mapped across mul 
tiple storage devices (e.g., the storage devices may beformed 
into a RAID group, may comprise a virtual storage device, or 
the like). Associations between auto-commit buffers 1013 
and the file may be updated to reflect the file mapping. This 
allows the auto-commit buffers 1013 to commit the data to the 
proper storage device. The ACM metadata 1015 of the auto 
commit buffers 1013 may be updated in response to changes 
to the underlying file mapping and/or partitioning as 
described above. Alternatively, the file may be “locked to a 
particular mapping or partition while the auto-commitbuffers 
1013 are in use. For example, ifa remapping/repartitioning of 
a file is required, the corresponding auto-commit buffers 
1013 may commit data to the file, and then be re-associated 
with the file under the new mapping/partitioning scheme. The 
SML API 1019 may comprise interfaces and/or commands 
for using the SML 1050 to lock a file, release a file, and/or 
update ACM metadata 1015 in accordance with changes to a 
file. 

Committing the data to Solid-state, non-volatile storage 
1110 may comprise the storage controller 1104 accessing 
data from the ACM 1111 auto-commit buffers 1013, associ 
ating the data with the corresponding logical identifier (e.g., 
labeling the data), and injecting the labeled data into the write 
data pipeline 1106 as described above. In some embodiments, 
to ensure there is a page program command capable of per 
sisting the ACM data, the storage controller 1104 maintains 
two or more pending page programs during operation. The 
ACM data may be committed to the non-volatile memory 
1110 before writing the power loss identifier (power-cut fill 
pattern) described above. 

FIG. 4 depicts one embodiment of a system 1200 compris 
ing a plurality of auto-commit memories. In the FIG. 4 
example, memory semantic accesses implemented by the 
host 1014 may be stored on a plurality of ACMs, including 
1011A and 1011B. In some embodiments, host data may be 
mirrored between the ACMs 1011A and 1011B. The mirror 
ing may be implemented using a multi-cast bus 1040. Alter 
natively, or in addition, one of the ACMs (AM 1011A) may be 
configured to rebroadcast data to the ACM 1011B. The ACMs 
1011A and 1011 B may be local to one another (e.g., on the 
same local bus). Alternatively, the ACMs 1011A and 1011B 
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may located on different systems, and may be communica 
tively coupled via a bus that Supports remove data access, 
such as Infiniband, a remote PCI bus, RDMA, or the like. 

In some embodiments, the ACMs 1011A and 1011 B may 
implement a striping scheme (e.g., a RAID Scheme). In this 
case, different portions of the host data may be sent to differ 
ent ACMs 1011A and/or 1011B. Driver level software, such 
as a volume manager implemented by the SML 1050 and/or 
operating system 1018 may map host data to the proper ACM 
per the striping pattern. 

In some configurations, the memory access semantics pro 
vided by the ACMs may be adapted according to a particular 
storage Striping pattern. For example, if host data is mirrored 
from the ACM 1011A to the ACM 1011B, a memory semantic 
write may not complete (and/oranacknowledgement may not 
be returned) until the ACM 1011 A verifies that the data was 
sent to the ACM 1011B (under the “instant commit seman 
tic). Similar adaptations may be implemented when ACMs 
are used in a striping pattern (e.g., a memory semantic write 
may be not return and/or be acknowledged, until the striping 
pattern for a particular operation is complete). For example, 
in a copy on write operation, the ACM 1011 A may store the 
data of an auto-commit buffer, and then cause the data to be 
copied to the ACM 1011B. The ACM 1011A may not return 
an acknowledgment for the write operation (or allow the data 
to be read) until the data is copied to the ACM 1011B. 
The use of mirrored ACM devices 1011A and 1011B may 

be used in a high-availability configuration. For example, the 
ACM devices 1011A and 1011B may be implemented in 
separate host computing devices. Memory semantic accesses 
to the devices 1011A and 1011B are mirrored between the 
devices as described above (e.g., using PCI-e access). The 
devices may be configured to operate in high-availability 
mode. Such that device proxying may not be required. 
Accordingly, trigger operations (as well as other memory 
semantic accesses) may be mirrored across both devices 
1011A and 1011B, but the devices 1011A and 1011B may not 
have to wait for a “acknowledge' from the other before pro 
ceeding, which removes the other device from the write 
commit latency path. 

FIG. 5 is a block diagram of a one embodiment 1300 of a 
commit management apparatus 1122. The commit manage 
ment apparatus 1122 may be tightly coupled (e.g., within an 
isolation Zone 1301) to the auto-commit memory 1011, the 
non-volatile storage controller 1304, the non-volatile storage 
media 1310, and/or the secondary power supply 1324. The 
tight coupling may comprise implementing these compo 
nents 132, 1011, 1304, 1310, and/or 1324 on the same die, the 
same peripheral device, on the same card (e.g., the same 
PCB), within a pre-defined isolation Zone, or the like. The 
tight coupling may ensure that the triggered commit actions 
of the ACM buffers 1013 are committed in the event of a 
restart condition. 
The commit management apparatus 1122 includes a moni 

tor module 1310, which may be configured to detect restart 
conditions, such as power loss or the like. The monitor mod 
ule 1310 may be configured to sense triggering events, such as 
restart conditions (e.g., shutdown, restart, power failures, 
communication failures, host or application failures, and so 
on) and, in response, to initiate the commit module 1320 to 
initiate the commit loss mode of the apparatus 1122 (failure 
loss mode) and/or to trigger the operations of other modules, 
such as modules 1312, 1314, 1316, 1317, and/or 1318. The 
commit module 1320 includes an identification module 1312, 
terminate module 1314, corruption module 1316, and 
completion module 1318, which may operate as described 
above. 
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The identification module 1312 may be further configured 
to identify triggered commit actions to be performed for each 
ACM buffer 1013 of the ACM 1011. As discussed above, the 
identification module 1312 may prioritize operations based 
on relative importance, with acknowledged operations being 
given a higher priority than non-acknowledged operations. 
The contents of auto-commit buffers 1013 that are armed to 
be committed may be assigned a high priority due to the 
“instant commit semantics Supported thereby. In some 
embodiments, the ACM triggered commit actions may be 
given a higher priority than the acknowledged contents of the 
write data pipeline 1306. Alternatively, the contents of armed 
auto-commit buffers 1013 may be assigned the “next-highest 
priority. The priority assignment may be user configurable 
(via an API, IO control (IOCTL), or the like). 
The termination module 1314 terminates non-essential 

operations to allow “essential’ to continue as described 
above. The termination module 1314 may be configured to 
hold up portions of the ACM 1011 that are “armed” to be 
committed (e.g., armed auto-commit buffers), and may ter 
minate power to non-armed (unused) portions of the auto 
commit memory 1011. The termination module 1314 may be 
further configured to terminate power to portions of the ACM 
1011 (individual auto-commit buffers 1013) as the contents 
of those buffers are committed. 
The corruption module 1316 identifies corrupt (or poten 

tially corrupt) data in the write data pipeline 1306 as 
described above. The module 1316 may be further configured 
to identify corrupt ACM data 1011 (data that was written to 
the ACM 1011 during a power disturbance or other restart 
condition). The corruption module 1316 may be configured to 
prevent corrupt data on the ACM 1011 from being committed 
in a triggered commit action. 
An ACM module 1317 is configured to access armed auto 

commit buffers in the auto-commit memory 1011, identify 
the ACM metadata 1015 associated therewith (e.g., label the 
data with the corresponding logical identifier per the ACM 
metadata 1015), and inject the data (and metadata) into the 
write data pipeline of the non-volatile storage controller 
1304. In some embodiments, the logical identifier (or other 
ACM metadata 1015) of the auto-commit buffer 1013 may be 
stored in the buffer 1013 itself. In this case, the contents of the 
auto-commit buffer 1013 may be streamed directly into a 
sequential and/or log-based storage device without first iden 
tifying and/or labeling the data. The ACM module 1317 may 
inject data before or after data currently in the write data 
pipeline 1306. In some embodiments, data committed from 
the ACM 1011 is used to “fill out the remainder of a write 
buffer of the write data pipeline 1306 (after removing poten 
tially corrupt data). If the remaining capacity of the write 
buffer is insufficient, the write buffer is written to the non 
volatile storage 1310, and a next write buffer is filled with the 
remaining ACM data. 
As discussed above, in some embodiments, the non-vola 

tile storage controller 1304 may maintain an armed write 
operation(logical page write) to store the contents of the write 
data pipeline 1306 in the event of power loss. When used with 
an ACM 1011, two (or more) armed write operations (logical 
page writes) may be maintained to ensure the contents of both 
the write data pipeline 1306, and all the armed buffers 1013 of 
the ACM 1011 can be committed in the event of a restart 
condition. Because a logical page in a write buffer may be 
partially filled when a trigger event occurs, the write buffer is 
sized to hold at least one more logical page of data than the 
total of all the data Stored in all ACM buffers 1013 of the ACM 
1011 and the capacity of data in the write data pipeline that 
has been acknowledged as persisted. In this manner, there will 
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be sufficient capacity in the write buffer to complete the 
persistence of the ACM 1011 in response to a trigger event. 
Accordingly, the auto-commit buffers 1013 may be sized 
according to the amount of data the ACM 1011 is capable of 
committing. Once this threshold is met, the SML 1050 may 
reject requests to use ACM buffers 1013 until more become 
available. 
The completion module 1318 is configured to flush the 

write data pipeline regardless of whether the certain buffers, 
packets, and/or pages are completely filled. The completion 
module 1318 is configured to perform the flush (and insert the 
related padding data) after data on the ACM 1011 (if any) has 
been injected into the write data pipeline 1306. The comple 
tion module 1318 may be further configured to inject comple 
tion indicator into the write data pipeline, which may be used 
to indicate that a restart condition occurred (e.g., a restart 
condition fill pattern). This fill pattern may be included in the 
write data pipeline 1306 after injecting the triggered data 
from the ACM 1011. 
As discussed above, the secondary power Supply 1324 may 

be configured to provide sufficient power to store the contents 
of the ACM 1011 as well as data in the write data pipeline 
1306. Storing this data may comprise one or more write 
operations (e.g., page program operations), in which data is 
persistently stored on the non-volatile storage media 1310. In 
the event a write operation fails, another write operation, on a 
different storage location, may be attempted. The attempts 
may continue until the data is successfully persisted on the 
non-volatile storage media 1310. The secondary power sup 
ply 1324 may be configured to provide sufficient power for 
each of a plurality of such page program operations to com 
plete. Accordingly, the secondary power Supply 1324 may be 
configured to provide sufficient power to complete double (or 
more) page program write operations as required to store the 
data of the ACM 1011 and/or write data pipeline 1306. 

FIG. 6 is a block diagram 1500 depicting a host computing 
device 1014 accessing an ACM using memory access seman 
tics. The host computing device 1014 may comprise a pro 
cessor complex/CPU 1012, which may include, but is not 
limited to, one or more of a general purpose processor, an 
application-specific processor, a reconfigurable processor 
(FPGA), a processor core, a combination of processors, a 
processor cache, a processor cache hierarchy, or the like. In 
one embodiment, the processor complex 1012 comprises a 
processor cache, and the processor cache may include one or 
more of a write combine buffer, an L1 processor cache, an L2 
processor cache, an L3 processor cache, a processor cache 
hierarchy, and other types of processor cache. One or more 
ACM users 1016 (e.g., operating systems, applications, and 
so on) operate on the host 1014. 
The host 1014 may be communicatively coupled to the 

ACM 1011 via a bus 1040, which may comprise a PCI-e bus, 
or the like. Portions of the ACM 1011 are made accessible to 
the host 1014 may mapping in auto-commit buffers 1013 into 
the host 1014. In some embodiments, mapping comprises 
associating an address range within the host memory system 
1018 with an auto-commit buffer 1013 of the ACM 1011. 
These associations may be enabled using the SML API 1019 
and/or SML 1050 available on the host 1014. 
The SML 1050 may comprise libraries and/or provide 

interfaces (e.g., SML API 1019) to implement the memory 
access semantics described above. The API 1019 may be used 
to access the ACM 1011 using memory access semantics via 
a memory semantic access module 1522. Other types of 
access, such as access to the non-volatile storage 1502, may 
be provided via a block device interface 1520. 
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The SML 1050 may be configured to memory map auto 
commit buffers 1013 of the ACM 1011 into the memory 
system 1018 (via the SML API 1019). The memory map may 
use a virtual memory abstraction of the memory system 1018. 
For example, a memory map may be implemented using a 
memory mapped file abstraction. In this example, the operat 
ing system (or application) 1016 designates a file to be 
mapped into the memory system 1018. The file is associated 
with a logical identifier (LID) 1025 (e.g., logical block 
address), which may be maintained by a file system, an oper 
ating system 1016, or the like. 
The memory mapped file may be associated with an auto 

commit buffer 1013 of the ACM 1013. The association may 
be implemented by the SML 1050 using the bus 1040. The 
SML 1050 associates the address range of the memory 
mapped file (in the memory system 1018) with a device 
address of an auto-commit buffer 1013 on the ACM 1011. The 
association may comprise mapping a PCI-e BAR into the 
memory system 1018. In the FIG. 6 example, the ACM 
address range 1021 in the memory system 1018 is associated 
with the auto-commit buffer 1013. 
As discussed above, providing memory access semantics 

to the ACM 1011 may comprise “arming the ACM 1011 to 
commit data stored thereon in the event of failure or other 
restart. The pre-configured arming ensures that, in the event 
of a restart, data stored on the ACM 1011 will be committed 
to the proper logical identifier. The pre-configuration of the 
trigger condition enables applications 1016 to access the 
auto-commit buffer 1013 using “instant-commit’ memory 
access semantics. The logical identifier used to arm the auto 
commit buffer may be obtained from an operating system, the 
memory system 1018 (e.g., virtual memory system), or the 
like. 
The SML 1050 may be configured to arm the auto-commit 

buffers 1013 with a logical identifier (e.g., automatically, by 
callback, and/or via the SML API 1019). Each auto-commit 
buffer 1013 may be armed to commit data to a different 
logical identifier (different LBA, persistent identifier, or the 
like), which may allow the ACM 1011 to provide memory 
semantic access to a number of different, concurrent ACM 
users 1016. In some embodiments, arming an auto-commit 
buffer 1013 comprises setting the ACM metadata 1015 with a 
logical identifier. In the FIG. 6 example, the ACM address 
range 1021 is associated with the logical identifier 1025, and 
the ACM metadata 1015 of the associated auto-commit buffer 
is armed with the corresponding logical identifier 1025. 
The SML 1050 may arm an auto-commit buffer using an 

I/O control (IOCTL) command comprising the ACM address 
range 1021, the logical identifier 1025, and/or an indicator of 
which auto-commit buffer 1013 is to be armed. The SML 
1050 (through the SML API 1019) may provide an interface 
to disarm or “detach' the auto-commit buffer 1013. The dis 
arm command may cause the contents of the auto-commit 
buffer 1013 to be committed as described above (e.g., com 
mitted to the non-volatile storage device 1502). The detach 
may further comprise “disarming the auto-commit buffer 
1013 (e.g., clearing the ACM metadata 1015). The SML 1050 
may be configured to track mappings between address ranges 
in the memory system 1018 and auto-commit buffers 1013 so 
that a detach command is performed automatically. 

Alternatively, or in addition, the SML 1050 may be inte 
grated into the operating system (or virtual operating system, 
e.g., hypervisor) of the host 1014. This may allow the auto 
commit buffers 1013 to be used by a virtual memory demand 
paging system. The operating system may (through the SML 
API 1019 or other integration technique) map/arm auto-com 
mit buffers for use by ACMusers 1016. The operating system 
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may issue commit commands when requested by an ACM 
user 1016 and/or its internal demand paging system. Accord 
ingly, the operating system may use the ACM 1011 as 
another, generally available virtual memory resource. 
Once an ACM user 1016 has mapped the ACM address 

range 1021 to an auto-commit buffer 1013 and has armed the 
buffer 1013, the ACM user 1016 may access the resource 
using memory access semantics, and may consider the 
memory accesses to be “logically committed as soon as the 
memory access has completed. The ACM user 1016 may 
view the memory semantic accesses to the ACM address 
range 1021 to be “instantly committed” because the ACM 
1011 is configured to commit the contents of the auto-commit 
buffer (to the logical identifier 1025) regardless of experienc 
ing restart conditions. Accordingly, the ACM user 1016 may 
not be required to perform separate write and commit com 
mands (e.g., a single memory semantic write is Sufficient to 
implement a write-commit). Moreover, the mapping between 
the auto-commit buffer 1013 and the ACM 1011 disclosed 
herein removes overhead due to function calls, system calls, 
and even a hypervisor (if the ACM user 1016 is running in a 
virtual machine) that typically introduce latency into the 
write-commit path. The write-commit latency time of the 
ACMuser 1016 may therefore be reduced to the time required 
to access the ACM 1011 itself. 
As described above, in certain embodiments, the host 1014 

may map one or more ACM buffers 1013 into an address 
range of a physical memory address space addressable by a 
CPU, a kernel, or the like of the host device 1014, such as the 
memory system 1018, as directly attached physical memory, 
as MMIO addressable physical memory over a PCI-e bus, or 
otherwise mapped as one or more pages of physical memory. 
The host 1014 may further map at least a portion of the 
physically mapped ACM buffers 1013 into a virtual memory 
address space, accessible to user-space processes or the like 
as virtual memory. The host 1014 may map the entire capacity 
of the physically mapped ACM buffers 1013 into a virtual 
memory address space, a portion of the physically mapped 
ACM buffers 1013 into a virtual memory address space, or the 
like. 

In a similar manner, the host 1014 may include a virtual 
machine hypervisor, host operating system, or the like that 
maps the physically mapped ACM buffers 1013 into an 
address space for a virtual machine or guest operating system. 
The physically mapped ACM buffers 1013 may appear to the 
virtual machine or guest operating system as physically 
mapped memory pages, with the virtual machine hypervisor 
or host operating system spoofing physical memory using the 
ACM buffers 1013. A resource management agent, as 
described above, may allocate/arbitrate storage capacity of 
the ACM buffers 1013 among multiple virtual machines, 
guest operating systems, or the like. 

Because, in certain embodiments, virtual machines, guest 
operating systems, or the like detect the physically mapped 
ACM buffers 1013 as if they were simply physically mapped 
memory, the virtual machines can Sub-allocate/arbitrate the 
ACM buffers 1013 into one or more virtual address spaces for 
guest processes, or the like. This allows processes within 
guest operating systems, in one embodiment, to change ACM 
data and/or ACM metadata 1015 directly, without making 
guest operating system calls, without making requests to the 
hypervisor or host operating system, or the like. 

In another embodiment, instead of spoofing physical 
memory for a virtual machine and/or guest operating system, 
a virtual machine hypervisor, a host operating system, or the 
like of the host device 1014 may use para-virtualization tech 
niques. For example, a virtual machine and/or guest operating 
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system may be aware of the virtual machine hypervisor or 
host operating system and may work directly with it to allo 
cate/arbitrate the ACM buffers 1013, or the like. When the 
ACM 1011 is used in a virtual machine environment, in which 
one or more ACM users 1016 operate within a virtual 
machine maintained by a hypervisor, the hypervisor may be 
configured to provide ACM users 1016 operating within the 
virtual machine with access to the SML API 1019 and/or 
SML 1050. 
The hypervisor may access the SML API 1019 to associate 

logical identifiers with auto-commit buffers 1013 of the ACM 
1011, as described above. The hypervisor may then provide 
one or more armed auto-commit buffers 1013 to the ACM 
users 1016 (e.g., by mapping an ACM address range 1021 
within the virtual machine memory system to the one or more 
auto-commit buffers 1013). The ACM user 1016 may then 
access the ACM 1011 using memory access semantics (e.g., 
efficient write-commit operations), without incurring over 
heads due to, interalia, hypervisor and other system calls. The 
hypervisor may be further configured to maintain the ACM 
address range 1021 in association with the auto-commit buff 
ers 1013 until explicitly released by the ACM user 1016 (e.g., 
the keep the mapping from changing during use). Para-virtu 
alization and cooperation, in certain embodiments, may 
increase the efficiency of the ACM 1011 in a virtual machine 
environment. 

In some embodiments, the ACM user 1016 may be adapted 
to operate with the “instant commit’ memory access seman 
tics provided by the ACM 1013. For example, since the armed 
auto-commit buffers 1013 are triggered to commit in the 
event of a restart (without an explicit commit command), the 
order in which the ACM user 1016 performs memory access 
to the ACM 1011 may become a consideration. The ACMuser 
1016 may employ memory barriers, complier flags, and the 
like to ensure the proper ordering of memory access opera 
tions. 

For example, read before write hazards may occur where 
an ACM user 1016 attempts to read data through the block 
device interface 1520 that is stored on the ACM 1011 (via the 
memory semantic interface 1522). In some embodiments, the 
SML 1050 may maintain metadata tracking the associations 
between logical identifiers and/or address ranges in the 
memory system 1018 and auto-commit buffers 1013. When 
an ACM user 1016 (or other entity) attempts to access a 
logical identifier that is mapped to an auto-commit buffer 
1013 (e.g., through the block device interface 1520), the SML 
1050 directs the request to the ACM 1011 (via the memory 
semantic interface 1522), preventing a read before write haz 
ard. 
The SML 1050 may be configured to provide a “consis 

tency' mechanism for obtaining a consistent state of the ACM 
1011 (e.g., a barrier, Snapshot, or logical copy). The consis 
tency mechanism may be implemented using metadata main 
tained by the SML 1050, which, as described above, may 
track the triggered auto-commit buffers 1013 in the ACM 
1011. A consistency mechanism may comprise the SML 1050 
committing the contents of all triggered auto-commit buffers 
1013, such that the state of the persistent storage is main 
tained (e.g., Store the contents of the auto-commit buffers 
1013 on the non-volatile storage 1502, or other persistent 
storage). 
As described above, ACM users 1016 may access the ACM 

1011 using memory access semantics, at RAM granularity, 
with the assurance that the operations will be committed if 
necessary (in the event of restart, failure, power loss, or the 
like). This is enabled by, inter alia, a mapping between the 
memory system 1018 of the host 1014 and corresponding 
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auto-commit buffers 1013; memory semantic operations 
implemented within an ACM memory range 1021 mapped to 
an auto-commit buffer 1013 are implemented directly on the 
buffer 1013. As discussed above, data transfer between the 
host 1041 and the ACM 1011 may be implemented using any 
Suitable data transfer mechanism including, but not limited 
to: the host 1014 performing processor IO operations (PIO) 
with the ACM 1011 via the bus 1040 (e.g., MMIO, PMIO, and 
the like); the ACM 1011 (or other device) providing one or 
more DMA engines or agents (data movers) to transfer data 
between the host 1014 and the ACM 1011; the host 1014 
performing processor cache write/flush operations; or the 
like. Transferring data on the bus 1040 may comprise issuing 
a bus “write' operation followed by a “read.” The subsequent 
“read may be required where the bus 1040 (e.g., PCI bus) 
does not provide an explicit write acknowledgement. 

In some embodiments, an ACM user may wish to transfer 
data to the ACM 1011 in bulk as opposed to a plurality of 
Small transactions. Bulk transfers may be implemented using 
any suitable bulk transfer mechanism. The bulk transfer 
mechanism may be predicated on the features of the bus 1040. 
For example, in embodiments comprising a PCI-e bus 1040. 
bulk transfer operations may be implemented using bulk reg 
ister store CPU instructions. 

Similarly, certain data intended for the ACM 1011 may be 
cached in processor cache of the processor complex 1012. 
Data that is cached in a processor cache may be explicitly 
flushed to the ACM 1011 (to particular auto-commit buffers 
1013) using a CPU cache flush instruction, or the like, such as 
the serializing instruction described below. 
The DMA engines described above may also be used to 

perform bulk data transfers between an ACM user 1016 and 
the ACM 1011. In some embodiments, the ACM 1011 may 
implement one or more of the DMA engines, which may be 
allocated and/or accessed by ACMusers 1016 using the SML 
1050 (through the SML API 1019). The DMA engines may 
comprise local DMA transfer engines for transferring data on 
a local, system bus as well as RDMA transfer engines for 
transferring data using a network bus, network interface, or 
the like. 

In some embodiments, the ACM 1011 may be used in 
caching applications. For example, the non-volatile storage 
device 1502 may be used as cache for other backing store, 
Such as a hard disk, network-attached storage, or the like (not 
shown). One or more of the ACM 1011 auto-commit buffers 
1013 may be used as a front-end to the non-volatile storage 
1502 cache (a write-back cache) by configuring one or more 
of the auto-commit buffers 1013 of the ACM 1011 to commit 
data to the appropriate logical identifiers in the non-volatile 
storage 1502. The triggered buffers 1013 are accessible to 
ACM users 1016 as described above (e.g., by mapping the 
buffers 1013 into the memory system 1018 of the host 1014). 
A restart condition causes the contents of the buffers 1013 to 
be committed to the non-volatile storage 1502 cache. When 
the restart condition is cleared, the cached data in the non 
volatile storage 1502 (committed by the auto-commit buffers 
1013 on the restart condition) will be viewed as “dirty' in the 
write cache and available for use and/or migration to the 
backing store. The use of the ACM 1011 as a cache front-end 
may increase performance and/or reduce wear on the cache 
device. 

In some embodiments, auto-commit buffers 1013 of the 
ACM 1011 may be leveraged as a memory write-back cache 
by an operating system, virtual memory system, and/or one or 
more CPUs of the host 1014. Data cached in the auto-commit 
buffers 1013 as part of a CPU write-back cache may be armed 
to commit as a group. When committed, the auto-commit 
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buffers 1013 may commit both data and the associated cache 
tags. In some embodiments, the write-back cache auto-com 
mit buffers 1013 may be armed with an ACM address (or 
armed with a predetermined write-back cache address). 
When the data is restored, logical identifier information, such 
as LBA and the like, may be determined from a log or other 
data. 

In some embodiments, the SML 1050 may comprise librar 
ies and/or publish APIs adapted to a particular set of ACM 
users 1016. For example, the SML 1050 may provide an 
Instant Committed Log Library (ICL) 1552 adapted for appli 
cations whose performance is tied to write-commit latency, 
Such as transaction logs (database, file system, and other 
transaction logs), store and forward messaging systems, per 
sistent object caching, storage device metadata, and the like. 
The ICL 1552 provides mechanisms for mapping auto 

commit buffers 1013 of the ACM 1011 into the memory 
system 1018 of an ACM user 1016 as described above. ACM 
users 1016 (or the ICL 1552 itself) may implement an effi 
cient “Supplier/consumer paradigm for auto-commit buffer 
1013 allocation, arming, and access. For example, a “Sup 
plier thread or process (in the application space of the ACM 
users 1016) may be used to allocate and/or arm auto-commit 
buffers 1013 for the ACM user 1016 (e.g., map auto-commit 
buffers 1013 to address ranges within the memory system 
1018 of the host 1014, arm the auto-commit buffers 1013 with 
a logical identifier, and so on). A "consumer thread or pro 
cess of the ACM user 1016 may then accesses the pre-allo 
cated auto-commit buffers 1013. In this approach, allocation 
and/or arming steps are taken out of the write-commit latency 
path of the consumer thread. The consumer thread of the 
ACM user 1016 may consider memory semantic accesses to 
the memory range mapped to the triggered auto-commit buff 
ers (the ACM memory range 1021) as being “instantly com 
mitted as described above. 

Performance of the consumer thread(s) of the ACM user 
1016 may be enhanced by configuring the supplier threads of 
an Instant Committed Log Library (ICL) 1552 (or ACM user 
1016) to allocate and/or arm auto-commit buffers 1013 in 
advance. When a next auto-commit buffer 1013 is needed, the 
ACM user 1016 have access a pre-allocated/armed buffer 
from a pool maintained by the Supplier. The Supplier may also 
perform cleanup and/or commit operations when needed. For 
example, if data written to an auto-commit buffer is to be 
committed to persistent storage, a Supplier thread (or another 
thread outside of the write-commit path) may cause the data 
to be committed (using the SML API 1019). Committing the 
data may comprise re-allocating and/or re-arming the auto 
commit buffer 1013 for a consumer thread of the ACM user 
1016 as described above. 
The “supplier/consumer approach described above may 

be used to implement a “rolling buffer.” An ACM user 1016 
may implement an application that uses a pre-determined 
amount of “rolling data. For example, an ACM user 1016 
may implement a message queue that stores the “last 20 
inbound messages” and/or the ACM user 1016 may manage 
directives for a non-volatile storage device (e.g., persistent 
trim directives or the like). A supplier thread may allocate 
auto-commit buffers 1013 having at least enough capacity to 
hold the “rolling data' needed by the ACM user 1016 (e.g., 
enough capacity to hold the last 20 inbound messages). A 
consumer thread may access the buffers using memory access 
semantics (load and store calls) as described above. The SML 
API 1019 (or supplier thread of the ACM user 1016) may 
monitor the use of the auto-commit buffers 1013. When the 
consumer thread nears the end of its auto-commit buffers 
1013, the supplier thread may re-initialize the “head of the 
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buffers 1013, by causing the data to be committed (if neces 
sary), mapping the data to another range within the memory 
system 1018, and arming the auto-commit buffer 1013 with a 
corresponding logical identifier. As the consumer continues 
to access the buffers 1013, the consumer stores new data at a 
new location that “rolls over to the auto-commit buffer 1013 
that was re-initialized by the Supplier thread, and continues to 
operate. In some cases, data written to the rolling buffers 
described above may never be committed to persistent stor 
age (unless a restart condition or other triggering condition 
occurs). Moreover, if the capacity of the auto-commit buffers 
1013 is sufficient to hold the rolling data of the ACM user, the 
Supplier threads may not have to perform re-initialize/re 
arming described above. Instead, the Supplier threads may 
simply re-map auto-commit buffers 1013 that comprise data 
that has “rolled over (and/or discard the “rolled over data 
therein). 

In its simplest form, a rolling buffer may comprise two 
ACM buffers 1013, and the SML 1050 may write to one ACM 
buffer 1013 for an ACMuser 1016 while destaging previously 
written data from the other ACM buffer 1013 to a storage 
location, such as the non-volatile memory 1110 or the like. In 
response to filling one ACM buffer 1013 and completing a 
destaging process of the other ACM buffer 1013, the SML 
1050 may transparently switch the two ACM buffers such that 
the ACM user 1016 writes to the other ACM buffer 1013 
during destaging of the one ACM buffer 1013, in a ping-pong 
fashion. The SML 1050 may implement a similar rolling 
process with more than two ACM buffers 1013. The ICL 
1552, in certain embodiments, includes and/or supports one 
or more transactional log API functions. An ACM user 1016 
may use the ICL 1552, in these embodiments, to declare or 
initialize a transactional log data structure. 
As a parameter to a transactional log API command to 

create a transactional log data structure, in one embodiment, 
the ICL 1552 receives a storage location, such as a location in 
a namespace and/or address space of the non-volatile storage 
1502 or the like, to which the SML 1050 may commit, empty, 
and/or destage data of the transactional log from two or more 
ACM buffers 1013 in a rolling or circular manner as described 
above. Once an ACM user 1016 has initialized or declared a 
transactional log data structure, in one embodiment, the use 
of two or more ACM buffers 1013 to implement the transac 
tional log data structure is Substantially transparent to the 
ACM user 1016, with the performance and benefits of the 
ACM 1011. The use of two or more ACM buffers 1013, in 
certain embodiments, is transparent when the destage rate for 
the two or more ACM buffers 1013 is greater than or equal to 
the rate at which the ACMuser 1016 writes to the two or more 
ACM buffers 1013. The ICL 1552, in one embodiment, pro 
vides byte-level writes to a transactional log data structure 
using two or more ACM buffers 1013. 

In another example, a Supplier thread may maintain four 
(4) or more ACM buffers 1013. A first ACM buffer 1013 may 
be armed and ready to accept data from the consumer, as 
described above. A second ACM buffer 1013 may be actively 
accessed (e.g., filled) by a consumer thread, as described 
above. A third ACM buffer 1013 may be in a pre-arming 
process (e.g., re-initializing, as described above), and a fourth 
ACM buffer 1013 may be “emptying or “destaging” (e.g., 
committing to persistent storage, as described above). 

In some embodiments, the ICL 1552 and/or rolling log 
mechanisms described above may be used to implement an 
Intent Log for Synchronous Writes for a filesystem (e.g., the 
ZFS file system). The log data (ZIL) may be fairly small (1 to 
4 gigabytes) and is typically “write only.” Reads may only be 
performed for file system recovery. One or more auto-commit 
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buffers 1013 may be used to store filesystem data using a 
rolling log and/or demand paging mechanism as described 
above. 
The ICL library 1552 may be configured to operate in a 

high-availability mode as described above in conjunction 
with FIG. 4. In a high-availability mode, the SML 1050 
and/or bus 1040 sends commands pertaining to memory 
semantic accesses to two or more ACM 1011, each of which 
may implement the requested operations and/or be triggered 
to commit data in the event of a restart condition. 

The ACM 1011 disclosed herein may be used to enable 
other types of applications, such as durable synchronization 
primitives. A synchronization primitive may include, but is 
not limited to: a semaphore, mutex, atomic counter, test and 
set, or the like. 
A synchronization primitive may be implemented on an 

auto-commit buffer 1013. ACMusers 1016 (or other entities) 
that wish to access the synchronization primitive may map the 
auto-commit buffer 1013 into the memory system 1018. In 
some embodiments, each ACM user 1016 may map the syn 
chronization primitive auto-commit buffer 1013 into its own, 
respective address range in the memory system 1018. Since 
the different address ranges are all mapped to the same auto 
commit buffer 1013, all will show the same state of the 
synchronization primitive. ACM users 1016 on remote com 
puting devices may map the synchronization primitive auto 
commit buffer 1013 into their memory system using an 
RDMA network or other remote access mechanism (e.g., 
Infiniband, remote PCI, etc.). 

In some embodiments, the SML 1050 may comprise a 
Durable Synchronization Primitive Library (DSL) 1554 to 
facilitate the creation of and/or access to synchronization 
primitives on the ACM 1011. The DSL 1554 may be config 
ured to facilitate one-to-many mappings as described above 
(one auto-commit buffer 1030-to-many address ranges in the 
memory system 1018). 
The ACM users 1016 accessing the semaphore primitive 

may consider their accesses to be “durable.” since if a restart 
condition occurs while the Synchronization primitive is in 
use, the state of the synchronization primitive will be per 
sisted as described above (the auto-commit buffer 1013 of the 
synchronization primitive will be committed to the non-vola 
tile storage 1502, or other persistent storage). 
As described above, the SML 1050 may be used to map a 

file into the memory system 1018 (virtual address space) of 
the host 1014. The file may be mapped in an “Instant Com 
mitted Memory” (ICM) mode. In this mode, all changes made 
to the memory mapped file are guaranteed to be reflected in 
the file, even if a restart condition occurs. This guarantee may 
be made by configuring the demand paging system to use an 
auto-commit buffer 1013 of the ACM 1011 for all “dirty” 
pages of the ICM file. Accordingly, when a restart condition 
occurs, the dirty page will be committed to the file, and no 
data will be lost. 

In some embodiments, the SML 1050 may comprise an 
ICM Library (ICML) 1556 to implement these features. The 
ICML 1556 may be integrated with an operating system 
and/or virtual memory system of the host 1014. When a page 
of an ICM memory mapped file is to become dirty, the ICML 
1556 prepares an auto-commit buffer 1013 to hold the dirty 
page. The auto-commit buffer 1013 is mapped into the 
memory system 1018 of the host 1014, and is triggered to 
commit to a logical identifier associated with the memory 
mapped file. As described above, changes to the pages in the 
memory system 1018 are implemented on the auto-commit 
buffer 1013 (via the memory semantic access module 1522). 
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The ICML 1556 may be configured to commit the auto 

commit buffers 1013 of the memory mapped file when restart 
conditions occur and/or when the demand paging system of 
the host 1014 needs to use the auto-commit buffer 1013 for 
another purpose. The determination of whether to “detach' 
the auto-commit buffer 1013 from a dirty page may be made 
by the demand paging system, by the SML 1050 (e.g., using 
a least recently used (LRU) metric, or the like), or by some 
other entity (e.g., an ACM user 1016). When the auto-commit 
buffer is detached, the SML 1050 may cause its contents to be 
committed. Alternatively, the contents of the auto-commit 
buffer 1013 may be transferred to system RAM at which point 
the virtual memory mapping of the file may transition to use 
a RAM mapping mechanisms. 

In some embodiments, the SML 1050 (or ICML 1556) may 
be configured to provide a mechanism to notify the operating 
system (virtual memory system or the like) that a page of a 
memory mapped file is about to become dirty in advance of an 
ACM user 1016 writing the data. This notification may allow 
the operating system to prepare an auto-commit buffer 1013 
for the dirty page in advance, and prevent stalling when the 
write actually occurs (while the auto-commit buffer is 
mapped and armed). The notification and preparation of the 
auto-commit buffer 1013 may implemented in a separate 
thread (e.g., a Supplier thread as described above). 
The SML 1050 and/or ICML 1556 may provide an API to 

notify the operating system that a particular page that is about 
to be written has no useful contents and should be zero filled. 
This notification may help the operating system to avoid 
unnecessary read operations. 
The mechanisms for memory mapping a file to the ACM 

1011 may be used in log-type applications. For example, the 
ICL library 1552 may be implemented to memory map a log 
file to one or more auto-commit buffers 1013 as described 
above. A supplier thread may provide notifications to the 
operating system regarding which pages are about to become 
dirty and/or to identify pages that do not comprise valid data. 

Alternatively, or in addition, the ICML 1556 may be imple 
mented without integration into an operating system of the 
host 1014. In these embodiments, the ICML 1556 may be 
configured to monitor and/or trap system signals, such as 
improtect, mmap, and manual segmentation fault signals to 
emulate the demand paging operations typically performed 
by an operating system. 

FIG. 7 is a flow diagram of one embodiment of a method 
1600 for providing an auto-commit memory. At step 1610 the 
method 1600 may start and be initialized. Step 1610 may 
comprise the method 1600 initiating communication with an 
ACM over a bus (e.g., initiating communication with ACM 
1011 via bus 1040). 
At step 1620, an auto-commit buffer of the ACM may be 

mapped into the memory system of a computing device (e.g., 
the host 1014). The mapping may comprise associating a 
BAR address of the auto-commit buffer with an address range 
in the memory system. 
At step 1630, the auto-commit buffer may be armed with 

ACM metadata configured to cause the auto-commit buffer to 
be committed to a particular persistent storage and/or at a 
particular location in the persistent storage in the event of a 
restart condition. In some embodiments, the ACM metadata 
may comprise a logical identifier Such as a LBA, object iden 
tifier, or the like. Step 1630 may comprise verifying that the 
ACM metadata is valid and/or can be used to commit the 
contents of the auto-commit buffer. 
At step 1640, an ACM user, Such as an operating system, 

application, or the like, may access the armed auto-commit 
buffer using memory access semantics. The ACM user may 
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consider the accesses to be “instantly committed' due to the 
arming of step 1630. Accordingly, the ACM user may imple 
ment “instant committed writes that omit a separate and/or 
explicit commit command. Moreover, since the memory 
semantic accesses are directly mapped to the auto-commit 
buffer (via the mapping of step 1620), the memory semantic 
accesses may bypass systems calls typically required in Vir 
tual memory systems. 

At step 1650 the method 1600 ends until a next auto 
commit buffer is mapped and/or armed. 

FIG. 8 is a flow diagram of another embodiment of a 
method 1700 for providing an auto-commit memory. At step 
1710 the method 1700 starts and is initialized as described 
above. 
At step 1720, an auto-commit buffer of an ACM is mapped 

into the memory system of a computing device (e.g., the host 
1014), and is armed as described above. 
At step 1730, an ACM user accesses the auto-commit 

buffer using memory access semantics (e.g., by implement 
ing memory semantic operations within the memory range 
mapped to the auto-commit buffer at step 1720). 

At step 1740, a restart condition is detected. As described 
above, the restart condition may be a system shutdown, a 
system restart, a loss of power, a loss of communication 
between the ACM and the host computing device, a software 
fault, or any other restart condition that precludes continued 
operation of the ACM and/or the host computing device. 

At step 1750, the ACM implements the armed triggered 
commit actions on the auto-commit buffer. The triggered 
commit action may comprise committing the contents of the 
auto-commit buffer to persistent storage, such as a solid-state 
or other non-volatile storage or the like. 

At step 1760, the method 1700 ends until a next auto 
commit buffer is mapped and/or armed or a restart condition 
is detected. 

FIG. 9 is a flow diagram of another embodiment for pro 
viding an auto-commit memory. At step 1810, the method 
1800 starts and is initialized as described above. At step 1820, 
a restart condition is detected. 
At step 1830, the method 1800 accesses armed auto-com 

mit buffers on the ACM (if any). Accessing the armed auto 
commit buffer may comprise the method 1800 determining 
whetheran auto-commit buffer has been armed by inspecting 
the triggered ACM metadata thereof. If no triggered ACM 
metadata exists, or the ACM metadata is invalid, the method 
1800 may determine that the auto-commit buffer is not armed. 
If valid triggered ACM metadata does exist for a particular 
auto-commit buffer, the method 1800 identifies the auto 
commit buffer as an armed buffer and continues to step 1840. 

At step 1840, the triggered commit action for the armed 
auto-commit buffers is performed. Performing the triggered 
commit action may comprise persisting the contents of the 
auto-commit buffer to a sequential and/or log-based storage 
media, such as a Solid-state or other non-volatile storage 
media. Accordingly, the triggered commit action may com 
prise accessing a logical identifier of the auto-commit buffer, 
labeling the data with the logical identifier, and injecting the 
labeled data into a write data pipeline. Alternatively, the trig 
gered commit action may comprise storing the data on a 
persistent storagehaving a one-to-one mapping between logi 
cal identifier and physical storage address (e.g., a hard disk). 
The triggered commit action may comprise storing the con 
tents of the armed auto-commit buffer to the specified physi 
cal address. 

Performing the triggered commit action at step 1840 may 
comprise using a secondary power Supply to power the ACM, 
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Solid-state storage medium, and/or other persistent, non-vola 
tile storage medium, until the triggered commit actions are 
completed. 

In certain embodiments, instead of or in addition to using a 
Volatile memory namespace, such as a physical memory 
namespace, a virtual memory namespace, or the like and/or 
instead oforin addition to using a storage namespace, such as 
a file system namespace, a logical unit number (LUN) 
namespace, or the like, one or more commit agents 1020, as 
described above, may implement an independent persistent 
memory namespace for the ACM 1011. For example, a vola 
tile memory namespace, which is typically accessed using an 
offset in physical and/or virtual memory, is not persistent or 
available after a restart event such as a reboot, failure event, or 
the like and a process that owned the data in physical and/or 
virtual memory prior to the restart event typically no longer 
exists after the restart event. Alternatively, a storage 
namespace is typically accessed using a file name and an 
offset, a LUN ID and an offset, or the like. While a storage 
namespace may be available after a restart event, a storage 
namespace may have too much overhead for use with the 
ACM 1011. For example, saving a state for each executing 
process using a file system storage namespace may result in a 
separate file for each executing process, which may not be an 
efficient use of the ACM 1011. 
The one or more commit agents 1020 and/or the controller 

1004, in certain embodiments, provide ACMusers 1016 with 
a new type of persistent memory namespace for the ACM 
1011 that is persistent through restart events without the over 
head of a storage namespace. One or more processes, such as 
the ACM user 1016, in one embodiment, may access the 
persistent memory namespace using a unique identifier, such 
as a globally unique identifier (GUID), universal unique iden 
tifier (UUID), or the like so that data stored by a first process 
for an ACM user 1016 prior to a restart event is accessible to 
a second process for the ACMuser 1016 after the restart event 
using a unique identifier, without the overhead of a storage 
namespace, a file system, or the like. 
The unique identifier, in one embodiment, may be assigned 

to an ACM user 1016 by a commit agent 1020, the controller 
1004, or the like. In another embodiment, an ACM user 1016 
may determine its own unique identifier. In certain embodi 
ments, the persistent memory namespace is sufficiently large 
and/or ACM users 1016 determine a unique identifier in a 
predefined, known manner (e.g., based on a Sufficiently 
unique seed value, nonce, or the like) to reduce, limit, and/or 
eliminate collisions between unique identifiers. In one 
embodiment, the ACM metadata 1015 includes a persistent 
memory namespace unique identifier associated with an 
owner of an ACM buffer 1013, an owner of one or more pages 
of an ACM buffer 1013, or the like. 

In one embodiment, the one or more commit agents 1020 
and/or the controller 1004 provide a persistent memory 
namespace API to ACM users 1016, over which the ACM 
users 1016 may access the ACM 1011 using the persistent 
memory namespace. In various embodiments, the one or 
more commit agents 1020 and/or the controller 1004 may 
provide a persistent memory namespace API function to tran 
sition, convert, map, and/or copy data from an existing 
namespace. Such as a volatile memory namespace or a storage 
namespace, to a persistent memory namespace; a persistent 
memory namespace API function to transition, convert, map. 
and/or copy data from a persistent memory namespace to an 
existing namespace, such as a volatile memory namespace or 
a storage namespace; a persistent memory namespace API 
function to assign a unique identifier Such as a GUID, a 
UUID, or the like; a persistent memory namespace API func 
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tion to list or enumerate ACM buffers 1013 associated with a 
unique identifier, a persistent memory namespace API func 
tion to export or migrate data associated with a unique iden 
tifier so that an ACM user 1016 such as an application and/or 
process may take its ACM data to a different host 1014, to a 
different ACM 1011, or the like; and/or other persistent 
memory namespace API functions for the ACM 1011. 

For example, an ACM user 1016, in one embodiment, may 
use a persistent memory namespace API function to map one 
or more ACM buffers 1013 of a persistent memory 
namespace into virtual memory of an operating system of the 
host 1014, or the like, and the mapping into the virtual 
memory may end in response to a restart event while the ACM 
user 1016 may continue to access the one or more ACM 
buffers 1013 after the restart event using the persistent 
memory namespace. In certain embodiments, the SML 1050 
may provide the persistent memory namespace API in coop 
eration with the one or more commit agents 1020 and/or the 
controller 1004. 
The persistent memory namespace, in certain embodi 

ments, is a flat non-hierarchical namespace of ACM buffers 
1013 (and/or associated ACM pages), indexed by the ACM 
metadata 1015. The one or more commit agents 1020 and/or 
the controller 1004, in one embodiment, allow the ACM 
buffers 1013 to be queried by ACM metadata 1015. In 
embodiments where the ACM metadata 1015 includes a 
unique identifier, in certain embodiments, an ACM user 1016 
may query or search the ACM buffers 1013 by unique iden 
tifier to locate ACM buffers 1013 (and/or stored data) asso 
ciated with a unique identifier. In a further embodiment, the 
one or more commit agents 1020 and/or the controller 1004 
may provide one or more generic metadata fields in the ACM 
metadata 1015 such that an ACM user 1016 may define its 
own ACM metadata 1015 in the generic metadata field, or the 
like. The one or more commit agents 1020 and/or the control 
ler 1004, in one embodiment, may provide access control for 
the ACM 1011, based on unique identifier, or the like. 

In one embodiment, an ACM buffer 1013 may be a member 
of a persistent memory namespace and one or more additional 
namespaces, such as a volatile namespace, a storage 
namespace or the like. In a further embodiment, the one or 
more commit agents 1020 and/or the controller 1004 may 
provide multiple ACM users 1016 with simultaneous access 
to the same ACM buffers 103. For example, multiple ACM 
users 1016 of the same type and/or with the same unique 
identifier, multiple instances of a single type of ACM user 
1016, multiple processes of a single ACM user 1016, or the 
like may share one or more ACM buffers 1013. Multiple 
ACM users 1016 accessing the same ACM buffers 1013, in 
one embodiment, may provide their own access control for 
the shared ACM buffers 1013, such as a locking control, 
turn-based control, moderator-based control, or the like. In a 
further embodiment, using a unique identifier, a new ACM 
user 1016, an updated ACM user 1016, or the like on the host 
1014 may access 

In certain embodiments, the ACM 1011 may comprise a 
plurality of independent access channels, buses, and/orports, 
and may be at least dual ported (e.g., dual ported, triple 
ported, quadruple ported). In embodiments where the ACM 
1011 is at least dual ported, the ACM 1011 is accessible over 
a plurality of independent buses 1040. For example, the ACM 
1011 may be accessible over redundant bus 1040 connections 
with a single host 1014, may be accessible to a plurality of 
hosts 1014 over separate buses 104 with the different hosts 
1014, or the like. In embodiments where the ACM 1011 is at 
least dual ported, if one node and/or access channel fails (e.g., 
a host 1014, a bus 1040), one or more additional nodes and/or 
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access channels to the ACM 1011 remain functional, obviat 
ing the need for redundancy, replication, or the like between 
multiple hosts 1014. 

In one embodiment, the ACM 1011 comprises a PCI-e 
attached dual port device, and the ACM 1011 may be con 
nected to and in communication with two hosts 1014 over 
independent PCI-e buses 1040. For example, the ACM 1011 
may comprise a plurality of PCI-e edge connectors for con 
necting to a plurality of PCI-e slot connectors, or the like. In 
a further embodiment, the power connection 1030 may also 
be redundant, with one power connection 1030 per bus 1040 
or the like. At least one of the plurality of connections, in 
certain embodiments, may comprise a data network connec 
tion such as a NIC or the like. For example, the ACM 1011 
may comprise one or more PCI-e connections and one or 
more data network connections. 

In one embodiment, the controller 1004 may arbitrate 
between a plurality of hosts 1014 to which the ACM 1011 is 
coupled, such that one host 1014 may access the ACM buffers 
1013 at a time. The controller 1004, in another embodiment, 
may accept a reservation request from a host 1014 and may 
provide the requesting host 1014 with access to the ACM 
buffers 1013 in response to receiving the reservation request. 
The ACM 1011 may natively support a reservation request as 
an atomic operation of the ACM 1011. In other embodiments, 
the ACM 1011 may divide ACM buffers 1013 between hosts 
1014, may divide ACM buffers 1013 between hosts but share 
backing non-volatile memory 1110 between hosts, or may 
otherwise divide the ACM buffers 1013, the non-volatile 
memory 1110, and/or associated address spaces between 
hosts 1014. 

In one embodiment, the controller 1004, the one or more 
commit agents 1020, and/or other elements of the ACM 1011 
may be dual-headed, split-brained, or the like, each head or 
brain being configured to communicate with a host 1014 and 
with each other to provide redundant functions for the ACM 
1011. By being at least dual ported, in certain embodiments, 
the ACM 1011 may be redundantly accessible, without the 
overhead of replication, duplication, or the like which would 
otherwise reduce I/O speeds of the ACM 1011, especially if 
Such replication, duplication, were performed over a data 
network or the like. 

FIG. 10A depicts one embodiment of an ACM module 
1317. The ACM module 1317, in certain embodiments, may 
be substantially similar to the ACM module 1317 described 
above with regard to FIG. 5. In other embodiments, the ACM 
module 1317 may include, may be integrated with, and/or 
may be in communication with the SML 1050, the storage 
controller 1004, 1104, 1304, and/or the commit agent 1020. 

In general, the ACM module 1317 services auto-commit 
requests from an ACM user 1016 or other client for the ACM 
1011. As described above with regard to the ACM users 1016, 
as used herein, a client may comprise one or more of an 
operating system (OS), virtual operating platform (e.g., an 
OS with a hypervisor), guest OS, application, process, thread, 
entity, utility, user, or the like, that is configured to access or 
use the ACM 1011. In the depicted embodiment, the ACM 
module 1317 includes a request module 1902, a mapping 
module 1904, and a bypass module 1906. The ACM module 
1317, in certain embodiments, provides an interface whereby 
an ACM user 1016 or other client may access data stored in 
the byte addressable ACM buffers 1013, whether the ACM 
buffers 1013 are natively volatile or non-volatile, regardless 
of the type of media used for the ACM buffers 1013. 

Instead of or in addition to the above methods of accessing 
the ACM 1011. Such as using a memory map (e.g., mmap) 
interface, in certain embodiments, the ACM module 1317 
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may expose the auto-commit buffers 1013 directly to ACM 
users 1016 or other clients, bypassing one or more operating 
system and/or kernel layers, which may otherwise reduce 
performance of the ACM 1011, increasing access times, 
introducing delays, or the like. The ACM module 1317 may 
provide access to the ACM 1011 using an existing I/O inter 
face, such as a standard read/write API or the like, so that 
ACM users 1016 or other clients may access the ACM 1011 
and receive its benefits with little or no modification or cus 
tomization. In another embodiment, the ACM module 1317 
may provide a custom or modified ACM interface, which may 
provide ACM users 1016 and other clients more control over 
operation of the ACM 1011 than may be provided by existing 
interfaces. 
As described above, in certain embodiments, the ACM 

module 1317 and/or the ACM 1011 enable clients such as the 
ACM users 1016 to access fast, byte-addressable, persistent 
memory, combining benefits of Volatile memory and non 
Volatile storage. Auto-commit logic inside the hardware of 
the storage device 102. Such as the auto-commit memory 
1011 described above with regard to FIG. 1, in certain 
embodiments, provides power-cut protection for data written 
to the auto-commit buffers 1013 of the ACM 1011. The ACM 
module 1317 and/or its sub-modules, in various embodi 
ments, may at least partially be integrated with a device driver 
executing on the processor 1012 of the host computing device 
1014 such as the SML 1050, may at least partially be inte 
grated with a hardware controller 1004, 1104 of the ACM 
1011 and/or non-volatile storage device 1102, as microcode, 
firmware, logic circuits, or the like, or may be divided 
between a device driver and a hardware controller 1004, 
1104, or the like. 

In one embodiment, the request module 1902 is configured 
to monitor, detect, intercept, or otherwise receive requests for 
data of the non-volatile memory device 1102 from clients, 
such as the ACM users 1016 described above, another mod 
ule, a host computing device 1014, or the like. The request 
module 1902 may receive data requests over an API, a shared 
library, a communications bus, or another interface. As used 
herein, a data request may comprise a storage request, a 
memory request, an auto-commit request, or the like to access 
data, Such as the open, read, write, trim, load, and/or store 
requests described above. 
The request module 1902 may receive data requests using 

an existing or standard I/O interface. Such as read and write 
requests over the block device interface 1520, load and store 
commands over the memory semantic interface 1522, or the 
like. By using the auto-commit buffers 1013 to support stan 
dard requests or commands, in certain embodiments, the 
request module 1902 may allow the ACM users 1016 or other 
clients to access the ACM 1011 transparently, with little or no 
modification or customization using the standard requests or 
commands. For example, an ACM user 1016 may send data 
requests to the request module 1902 over the block device 
interface 1520, the memory semantic interface 1522, or the 
like using standard requests or commands, with no knowl 
edge of whether the ACM module 1317 services or satisfies 
the request using the auto-commit buffers 1013 or the non 
Volatile memory media 1110, allowing the mapping module 
1904 described below to dynamically determine how to allo 
cate data between the non-volatile memory media 1110 and 
the auto-commit buffers 1013. The request module 1902 may 
intercept data requests using an existing or standard interface 
using a filter driver, overloading an interface, using LD PRE 
LOAD, intercepting or trapping a segmentation fault, or the 
like. 
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In certain embodiments, the request module 1902 may 

receive data requests using a custom or modified ACM inter 
face, such as an ACM API, the SML API 1019, or the like. 
Data requests received over a custom or modified interface, in 
certain embodiments, may indicate whether a requesting 
ACM user 1016 or other client intends the data request to be 
serviced using the auto-commit buffers 1013 or the non 
volatile memory medium 1102 (e.g., whether data of the 
request is to be associated with the auto-commit buffers 1013 
or the non-volatile memory medium 1102). For example, the 
request module 1902 may receive data requests including an 
auto-commit flag indicating whether data of the request is 
associated with or is to be associated with an auto-commit 
buffer 1013 of the ACM 1011. An auto-commit flag may 
comprise a bit, a field, a variable, a parameter, a namespace 
identifier or other logical identifier, or another indicator. 

In certain embodiments, instead of a separate auto-commit 
flag, a data request may indicate whether the data is associ 
ated with an auto-commit buffer 1013 or with the non-volatile 
memory media 1110 based on a namespace identifier or other 
logical indicator of the data request. As used herein, a 
namespace comprises a container or range of logical or physi 
cal identifiers that index or identify data, data locations, or the 
like. As described above, examples of namespaces may 
include a file system namespace, a LUN namespace, a logical 
address space, a storage namespace, a virtual memory 
namespace, a persistent ACM namespace, a Volatile memory 
namespace, an object namespace, a network namespace, a 
global or universal namespace, a BAR namespace, or the like. 
A namespace identifier, as used herein, comprises an indi 

cation of a namespace to which data belongs. In one embodi 
ment, a namespace identifier may comprise a logical identi 
fier, as described above. For example, a namespace identifier 
may include a file identifier and/or an offset from a file system 
namespace, a LUNID and an offset from a LUN namespace, 
an LBA or LBA range from a storage namespace, one or more 
virtual memory addresses from a virtual memory namespace, 
an ACM address from a persistent ACM namespace, a volatile 
memory address from a volatile memory namespace of the 
host device 1014, an object identifier, a network address, a 
GUID, UUID, or the like, a BAR address or address range 
from a BAR namespace, or another logical identifier. In a 
further embodiment, a namespace identifier may comprise a 
label or a name for a namespace. Such as a directory, a file 
path, a device identifier, or the like. In another embodiment, a 
namespace identifier may comprise a physical address or 
location for data. As described above, certain namespaces, 
and therefore namespace identifiers, may be temporary or 
volatile, and may not be available to an ACM user 1016 after 
a restart event. Other namespaces, and therefore namespace 
identifiers, may be persistent, Such as a file system 
namespace, a LUN namespace, a persistent ACM namespace, 
or the like, and data associated with the persistent namespace 
may be accessible to an ACMuser 1016 or other client after a 
restart event using the persistent namespace identifier. 
An address or range of addresses may be associated with a 

namespace if the address or range of addresses comprises an 
identifier from the namespace, if the address or range of 
addresses is mapped into the namespace, or the like. Data or 
a range of data may be associated with a namespace if the data 
is stored in a storage medium of the namespace. Such as the 
auto-commit buffers 1013 or the non-volatile memory media 
1102, if the data is mapped to the namespace in a logical-to 
physical mapping structure, if the data is associated with a 
namespace identifier for the namespace, or the like. 
A logical namespace may be associated with both the auto 

commit buffers 1013 and the non-volatile memory media 
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1110, with different logical identifiers from the logical 
namespace mapped to different physical identifiers or loca 
tions for the auto-commit buffers 1013 and/or the non-vola 
tile memory media 1110. For example, certain data associated 
with file identifiers of a file system may be stored in the 5 
auto-commit buffers 1013 while other data associated with 
file identifiers of the file system may be stored in the non 
volatile memory media 1110, even data at different offsets 
within the same file. 

The request module 1902 may receive an open request to 10 
initialize a namespace identifier or other logical identifier, 
such as opening a file or the like. The request module 1902 
may receive a write request, a store request, or the like to store 
data in the auto-commit buffers 1013 and/or the non-volatile 
memory medium 1110 of the non-volatile memory device 15 
1102. The request module 1902 may receive a read request, a 
load request, or the like to read data from the auto-commit 
buffers 1013 and/or the non-volatile memory medium 1110 
of the non-volatile memory device 1102. In one embodiment, 
a namespace identifier of a data request identifies both a 20 
namespace for and data of the data request, Such as the logical 
identifiers described above. In another embodiment, a data 
request may comprise both a namespace identifier and a sepa 
rate logical identifier for the data. 
The request module 1902, in certain embodiments, may 25 

receive data requests in user-space. As used herein, kernel 
space may comprise an area of memory (e.g., volatile 
memory, virtual memory, main memory) of the host comput 
ing device 1014; a set of privileges, libraries, or functions; a 
level of execution; or the like reserved for a kernel, operating 30 
system, or other privileged or trusted processes or applica 
tions. User-space, as used herein, may comprise an area of 
memory (e.g., volatile memory, virtual memory, main 
memory) of the host computing device 1014; a set of privi 
leges, libraries, or functions; a level of execution; or the like 35 
available to untrusted, unprivileged processes or applications. 
Due to access control restrictions, privilege requirements, 

or the like for kernel-space, providing a device driver, library, 
API, or the like for the ACM 1011 in kernel-space may have 
greater delays than in user-space. Further, use of a storage 40 
stack of a kernel or operating system, in certain embodiments, 
may introduce additional delays. An operating system or 
kernel storage stack, as used herein, may comprise one or 
more layers of device drivers, translation layers, file systems, 
caches, and/or interfaces provided in kernel-space, for 45 
accessing a data storage device. As described in greater detail 
below, with regard to the bypass module 1906, the ACM 
module 1317 may provide direct access to the ACM 1011 by 
bypassing and/or replacing one or more layers of an operating 
system or kernel storage stack, reading and writing data 50 
directly between the ACM buffers 1013 and user-space or the 
like. 

In one embodiment, the mapping module 1904 is config 
ured to map or associate namespace identifiers, logical iden 
tifiers, or the like to the ACM buffers 1013 and/or the non- 55 
volatile memory media 1110. In certain embodiments, the 
mapping module 1904 may maintain a logical-to-physical 
mapping structure, as described below with regard to FIG. 11, 
mapping logical identifiers or other namespace identifiers to 
physical locations in the non-volatile memory media 1110 60 
and/or the ACM buffers 1013. In one embodiment, the map 
ping module 1904 may access and/or maintain separate logi 
cal-to-physical mapping structures, one for the non-volatile 
memory media 1110 and one for the ACM buffers 1013. As 
described above, in certain embodiments, the ACM buffers 65 
1013 and the non-volatile memory media 1110 may be acces 
sible and/or addressable at different granularities. For 

46 
example, the ACM buffers 1013 may be byte-addressable, 
while the non-volatile memory media 1110 may be block 
addressable (e.g., 512 byte blocks, 4KiB blocks, or the like). 

In response to the request module 1902 receiving a data 
request for a range of data, for a logical identifier or other 
namespace identifier, or the like. Such as an open request, a 
write request, a read request, a load request, a store request, or 
the like, the mapping module 1904 may determine whether 
there is a relationship between the data and/or namespace 
identifier and one or more auto-commit buffers 1013. Data 
and/or a logical identifier or other namespace identifier for the 
data may have a relationship with an auto-commit buffer 1013 
if the data is stored in the auto-commit buffer 1013, if the data 
is targeted for or intended to be stored in the auto-commit 
buffer 1013, if the data is identified in a data request for an 
auto-commit buffer 1013, or the like. The mapping module 
1904, in one embodiment, may determine whether an existing 
association or mapping exists between requested data and/or 
a namespace identifier and the auto-commit buffers 1013. In 
a further embodiment, the mapping module 1904 may deter 
mine whether or not to map or create an association between 
requested data and an auto-commit buffer 1013. 

In one embodiment, the mapping module 1904 maps or 
associates data with an auto-commit buffer 1013 in response 
to an auto-commit flag of a data request for the data, as 
described above. For example, as described above, in 
embodiments where the request module 1902 receives data 
requests over a custom or extended interface, an ACM user 
1016 or other client may indicate which data is to be stored in 
and associated with the auto-commit buffers 1013, using 
auto-commit flags or other indicators. 

In a further embodiment, where the request module 1902 
receives data requests transparently, using an existing, stan 
dard interface or the like, the mapping module 1904 may 
dynamically determine which data is stored in and associated 
with the auto-commit buffers 1013 and which data is stored in 
the non-volatile memory media 1110. The mapping module 
1904 may be configured to optimally distribute data between 
the auto-commit buffers 1013 and the non-volatile memory 
media 1110, based on one or more efficiency factors for 
namespace identifiers, for data, or the like. An efficiency 
factor, as used herein, may comprise an indicator or represen 
tation of an effect or impact of storing or associating data 
within the auto-commit buffers 1013. 
The mapping module 1904 may monitor or track efficiency 

factors for different data, different ACM users 1016, different 
namespace identifiers, or the like. In one embodiment, an 
efficiency factor may include an access frequency for data. 
For example, the mapping module 1904 may be more likely to 
store data in the auto-commit buffers 1013 that is more fre 
quently accessed. In various embodiments, efficiency factors 
may include a size of data, a type of data, a quality of service 
(QoS) for data or for an ACM user 1016, a service level 
agreement with an ACM user 1016, an age of data, an amount 
of available storage capacity in the auto-commit buffers 1013 
and/or in the non-volatile memory medium 1110, or the like. 
The mapping module 1904 may balance or weigh multiple 
efficiency factors to determine whether to associate or store 
data of a certain namespace identifier or range of namespace 
identifiers with the auto-commit buffers 1013. 

In one embodiment, the mapping module 1904 cooperates 
with the SML 1050 to determine mappings for data in a 
logical address space or other namespace of the non-volatile 
memory media 1110 and to preserve the mappings as meta 
data 1051 or a forward index 1053, such as the logical-to 
physical mapping structure described below with regard to 
FIG. 11. In other embodiments, the mapping module 1904 
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may cooperate with an operating system, a file manager, a 
storage stack, a memory system 1018, or the like to create 
mappings, to assign namespace identifiers, or the like. 

In certain embodiments, mapping a namespace identifier, 
such as a filename and an offset, to an ACM buffer 1013, or 
otherwise initializing or creating a mapping may be a privi 
leged operation, performed in kernel-space or the like. The 
mapping module 1904 may use an IOCTL call, a shared 
memory queue between user-space and kernel-space, or the 
like so that data requests for the auto-commit buffers 1013 can 
be serviced or satisfied from user-space, while mappings may 
be performed, at least partially, in kernel-space. In one 
embodiment, the mapping module 1904, as part of or in 
addition to mapping namespace identifiers such as filenames 
and offsets to the auto-commit buffers 1013, maps the asso 
ciated page of an ACM buffer 1013 into a virtual address 
space of the requesting ACM user 1016, as described above, 
so that the data is accessible to the ACM user 1016 as virtual 
memory of the host computing device 1014. 
The mapping module 1904 may map and/or store an entire 

data object, such as a file or the like, to an ACM buffer 1013. 
In certain embodiments, the mapping module 1904 may map 
and/or store a portion of a data object, Such as a particular 
offset or range of data within a file, to an ACM buffer 1013. 
The mapping module 1904 may map and/or store the remain 
der of a file mapped partially to an ACM buffer 1013 to the 
non-volatile memory media 1110. 
The mapping module 1904, in certain embodiments, coop 

erates with the ACM module 1317 and/or a commit agent 
1020 to arm ACM buffers 1013 with ACM metadata 1015 
including mappings of namespace identifiers, or the like, so 
that the ACM buffers 1013 are configured to perform appro 
priate commit actions for the data in the ACM buffers 1013 to 
remain persistently associated with the namespace identifi 
ers, even after a restart event. In this manner, the ACM users 
1016 may continue to access the data using the same 
namespace identifiers even after the restart event. As 
described above, the ACM metadata 1015 may include mul 
tiple sections, or parts. In one embodiment, the ACM meta 
data 1015 includes a logical identifier to which the ACM 
buffer 1013 is to commit the data in the non-volatile memory 
media 1110 (e.g., an LBA or the like) and a namespace 
identifier (e.g., a filename, a filename and an offset, an inode 
number, a LUN address, or the like) for the data, which the 
commit agent 1020 may use to recover the data after a restart 
event, allowing the ACM users 1016 to continue to access the 
data using the namespace identifier. 

In one embodiment, the bypass module 1906 is configured 
to service and/or satisfy requests that the request module 
1902 receives, using the ACM buffers 1013 and/or the non 
Volatile memory media 1110. In response to the mapping 
module 1904 determining that a namespace identifier of a 
data request is associated with the ACM buffers 1013, the 
bypass module 1906 may service or satisfy the data request 
using the ACM buffers 1013 (e.g., storing the data in the ACM 
buffers 1013 in response to a write or store request, reading 
the data from the ACM buffers 1013 in response to a read or 
load request, or the like). 

In certain embodiments, the bypass module 1906 services 
or satisfies data requests directly from the ACM buffers 1013, 
accessing hardware of the ACM buffers 1013 directly from 
user-space without using an operating system or kernel Stor 
age stack, writing data directly to the ACM buffers 1013, 
reading data directly from the ACM buffers 1013, or the like. 
The bypass module 1906, in embodiments where one or more 
pages of the ACM buffers 1013 are mapped into virtual 
memory of an ACM user 1016 on the host device 1014, may 
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access the hardware of the ACM buffers 1013 directly and 
copy data from the ACM buffers 1013 directly into or from the 
virtual memory at an offset indicated by a namespace identi 
fier of the data request from user-space, without any kernel 
space libraries, calls, memory accesses, or the like. 

For example, the bypass module 1906 may be integrated 
with and/or cooperate with a user-space device driver for the 
non-volatile memory device 1102, executing on the processor 
1012 of the host device 1014, and may service or satisfy data 
requests by mapping or copying data to and from hardware of 
the auto-commit buffers 1013 and a virtual memory of a 
requesting client, Such as a shared virtual memory for a plu 
rality of ACM users 1016, separate virtual memory spaces of 
different ACM users 1016, or the like, all from user-space. By 
servicing data requests in user-space, directly from an auto 
commit buffer 1013 without passing through an operating 
system or kernel storage stack, in certain embodiments, the 
bypass module 1906 may reduce operating system or kernel 
overhead associated with accessing the non-volatile memory 
device 1102, decrease access times, or the like. 

For data requests that the mapping module 1904 deter 
mines are not associated with an auto-commit buffer 1013, 
the bypass module 1906 may service or satisfy the requests 
using the non-volatile memory medium 1110 (e.g., storing 
the data in the non-volatile memory medium 1110 in response 
to a write request, reading the data from the non-volatile 
memory medium 1110 in response to a read request, or the 
like). For certain data requests, the mapping module 1904 
may determine that a range of data and/or range of namespace 
identifiers is partially associated with the auto-commit buff 
ers 1013 and partially associated with the non-volatile 
memory medium 1110, and the bypass module 1906 may 
split the data request, satisfying it partially from the auto 
commit buffers 1013 and partially from the non-volatile 
memory medium 1110, may consolidate the data in either the 
auto-commit buffers 1013 or the non-volatile memory 
medium 1110, or the like. 

FIG. 10B depicts another embodiment of an ACM module 
1317. In one embodiment, the ACM module 1317 may be 
substantially similar to one or more of the ACM modules 
1317 described above with regard to FIGS. 5 and 10A. In the 
depicted embodiment, the ACM module 1317 of FIG. 10B 
includes a request module 1902, a mapping module 1904, and 
a bypass module 1906 and further includes a has-been-writ 
ten module 1908 and a security module 1910. The bypass 
module 1906 in FIG. 10B includes a read module 1912 and a 
write module 1914. In one embodiment, the request module 
1902 and the mapping module 1904 are substantially similar 
to the request module 1902 and the mapping module 1904 
described above with regard to FIG. 10A. 

In one embodiment, the bypass module 1906 uses the read 
module 1912 to service or satisfy read requests for data. The 
read module 1912, in response to the mapping module 1904 
determining that the namespace identifier of a read request is 
mapped to the auto-commit buffers 1013, reads the data 
specified in the read request (e.g., data at a specified offset 
within a file, or the like) directly from the mapped location in 
the auto-commit buffers 1013 from user-space, bypassing or 
skipping an operating system or kernel storage stack. If the 
mapping module 1904 determines that the namespace iden 
tifier of the read request is not mapped to or associated with 
the auto-commit buffers 1013, the read module 1912 may 
read the data from the non-volatile memory media 1110. The 
bypass module 1906 may use the read module 1912 to return 
the read data to a requesting client such as an ACM user 1016, 
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mapping or copying the read data into virtual memory for the 
requesting client, sending the data to the requesting client, or 
the like. 

In one embodiment, the bypass module 1906 uses the write 
module 1914 to service or satisfy write requests for data. In 
response to the mapping module 1904 determining that the 
namespace identifier of a write request is mapped to the 
auto-commit buffers 1013, the write module 1914 may write 
the data specified in the write request directly to the mapped 
location in the auto-commit buffers 1013 from user-space, 
bypassing or skipping an operating system or kernel storage 
stack. If the mapping module 1904 determines that the 
namespace identifier of the write request is not mapped to or 
associated with the auto-commit buffers 1013, the write mod 
ule 1914 may write the data to the non-volatile memory media 
1110. The write module 1914 may read or copy the write data 
from virtual memory for the requesting client, sending the 
data to the auto-commit buffers 1013 and/or the non-volatile 
memory media 1110, or the like. 

In one embodiment, the has-been-written module 1908 
may track which portions of data of the auto-commit buffers 
1013 have been updated, are not yet stored in the non-volatile 
memory media 1110, or the like. In certain embodiments, 
portions of the data of the auto-commit buffers 1013 may 
already be stored in and/or committed to the non-volatile 
memory media 1110. In response to a restart event or another 
commit trigger, it may be more efficient for the auto-commit 
buffers 1013 to commit, flush, or destage just data that is not 
already stored in the non-volatile memory media 1110. 
instead of committing all of the data. Further, the commit 
agent 1020 may need to know which portions of a page or 
other storage region have been updated in order to recover the 
page or other storage region after a restart event. 

Similarly, reading an entire page's contents back into the 
auto-commit buffers 1013 from the backing non-volatile 
memory media 1110 may also be an expensive or time con 
Suming operation. For example, if the cost of reading the page 
contents in from the non-volatile memory media 1110 is 50 
us, and each write to the auto-commit buffers 1013 takes 500 
ns or less, even if the page is written 100 times after the initial 
read the cost of the initial read will still represent 50% of the 
latency associated with accessing the page. 
The has-been-written module 1908 may track which data 

in the auto-commit buffers 1013 has been updated and is not 
stored by the non-volatile memory media 1110, which data is 
already stored in the non-volatile memory media 1110, or the 
like. For example, the has-been-written module 1908 may 
maintain a bitmap or other data structure such as a bitmap. 
bitmask, bit field, table, vector, or the like, populated with 
indicators of which data has been updated since the data was 
loaded, since a previous commit operation, or the like. The 
has-been-written module 1908, periodically or in response to 
a restart event, may persista has-been-written bitmap or other 
data structure to the non-volatile memory media 1110, and 
the has-been-written module 1908 may cooperate with the 
commit agent 1020 to merge updates to data and/or different 
versions of data. In one embodiment, the has-been-written 
module 1908 allows the auto-commit buffers 1908 to commit 
or copy just data that has been updated, in response to a 
commit trigger or restart event, and the commit agent 1020 
may merge the updates with a previous version of the data 
preserved in a sequential log of the non-volatile memory 
media 1110 after recovery from the restart event or the like. 

In one embodiment, the has-been-written module 1908 
associates a has-been-written bitmap or other has-been-writ 
ten metadata with each ACM page of the auto-commit buffers 
1013. The has-been-written module 1908 may track updates 
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or changes to data in the auto-commit buffers 1013 at a 
byte-level, with a bit in a has-been-written bitmap for each 
byte or the like, indicating whether or not the corresponding 
byte has been written or updated. Upon destaging, instead of 
using a read modify write, the controller 1104 may cooperate 
with the has-been-written module 1908 to identify updated 
regions of the page, allowing Sub-block writes or the like. 

In one embodiment, the has-been-written module 1908 
may provide ACM users 1016 with access to has-been-writ 
ten bitmaps. For example, an ACM page of the ACM buffers 
1013 may store a last page/block of a log file. Each update to 
the ACM page may increase the size of the file. Instead of 
noting and storing each change to the file length, to reduce the 
overhead of system calls, a has-been-written bitmap from the 
has-been-written module 1908 may be used to derive a new 
file length while maintaining the ACM 1011 efficiency. 

In a further embodiment, the has-been-written module 
1908 may maintain one or more has-been-written data struc 
tures at a Sub-page granularity, Such as a byte granularity, an 
error correcting code (ECC) chunk or block granularity, or the 
like. A has-been-written data structure, in certain embodi 
ments, may allow the commit agent 1020 or the like to deter 
mine what data within a page is dirty and not stored by the 
non-volatile memory media 1110, if there are holes in a range 
of data due to out-of-order delivery, or the like. 
The has-been-written module 1908, in certain embodi 

ments, provides access to a has-been-written data structure 
using memory access (e.g., load/store semantics), provides a 
“clear-all” byte to clear a set of has-been-written bits at once, 
or the like. The has-been-written module 1908 may clear or 
reset has-been-written metadata from a has-been-written data 
structure in response to the auto-commit buffers 1013 com 
mitting, destaging, flushing, or otherwise copying the data to 
the non-volatile memory media 1110. The has-been-written 
module 1908, in one embodiment, may use a has-been-writ 
ten data structure stored in Volatile memory to locate data to 
commit, destage, or flush to the non-volatile memory media 
1110 without accessing or reading the non-volatile memory 
media 1112, preventing an extra read-modify-write operation 
or the like. 
The has-been-written module 1908, in one embodiment, 

maintains the has-been-written data structure Such that it 
parallels every byte of virtual memory with a corresponding 
bit that automatically indicates which bytes have indeed had 
data “stored to them, been written, been modified, been 
updated, or the like. 

In certain embodiments, the has-been-written module 
1908 and/or the SML 1050 may provide one or more has 
been-written data structures as part of a persistent storage 
namespace itself. Such as a filesystem namespace, a logical 
unit number (LUN) namespace, or the like. For example, the 
has-been-written module 1908 and/or the SML 1050 may 
provide a has-been-written data structure as a “shadow file' 
or the like that is designated to contain the bitmask of another 
file. ACM users 1016 may perform MMIO writes or other 
operations for both of these files or pages. In another embodi 
ment, a has-been-written data structure may be interleaved 
within the data it represents, such as a 512 byte bitmask 
interleaved after each 4 kibibyte block within the same file, or 
the like. 

In one embodiment, the security module 1910 is config 
ured to provide access controls, enforce permissions, protect 
against attacks, or the like for data stored in the auto-commit 
buffers 1013 and/or the non-volatile memory media 1110. 
Because the ACM module 1317 may provide access to the 
ACM buffers 1013 in user-space, the ACM buffers 1013 may 
be susceptible to denial-of-service (DoS) or other attacks. For 
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example, an ACM user 1016 may maliciously monopolize 
bandwidth of the communications bus 1040, such as a PCIe 
bus or the like. The security module 1910, in one embodi 
ment, monitors or tracks traffic on the communications bus 
1040, access to each page of the auto-commit buffers 1013, or 
the like. The security module 1910, in a further embodiment, 
may disable access to an ACM user 1016 by unmapping an 
ACM page of data from the ACM user's virtual memory in 
response to the monitored access to the ACM page in virtual 
memory exceeding a traffic threshold, or the like. 
As described above, a user-space library, process, or appli 

cation may be an untrusted entity. In certain embodiments, 
file system access permissions that are normally enforced by 
the operating system or kernel in kernel-space, may be 
bypassed by the bypass module 1906, which operates in 
user-space as described above. To present this from happen 
ing, in one embodiment, the security module 1910 is config 
ured to use virtual memory access controls to enforce file 
system access permissions associated with data files of the 
auto-commit buffers 1013 mapped or copied into virtual 
memory. For example, if the file access permission for a file 
stored in an ACM page is read-only, the security module 1910 
may cooperate with the mapping module 1904 to map the 
ACM page into virtual memory as read-only. As described 
above, in certain embodiments, the mapping module 1904 
performs mappings in kernel-space, which may allow the 
security module 1910 to maintain access controls, even if the 
bypass module 1906 provides access in user-space. 
As described above, once data has been stored in the auto 

commit buffers 1013, the ACM 1011 preserves or persists the 
data in non-volatile memory media 110, 1110 and provides 
the data from the non-volatile memory media 110, 1110 to 
clients, such as ACM users 1016, after recovery from the 
reStart event. 

The ACM module 1317 and its various sub-modules 1902, 
1904, 1906, 1908, 1910, 1912, 1914 as described above, may 
be disposed in a device driver for the ACM 1011 executing on 
a processor 1012 of the host device 1014, such as the SML 
1050, may be disposed in a storage controller 104, 1004, 
1104,1304 for the ACM 1011, and/or may comprise portions 
in each of a device driver and a storage controller 104, 1004, 
1104, 1304, or the like 

FIG. 11 depicts one embodiment of an address mapping 
structure 2000, a logical address space 2120, and a sequential, 
log-based, append-only writing structure 2140. The address 
mapping structure 2000, in one embodiment, is maintained 
by the storage controller 104, 1004, 1104, 1304, the storage 
management layer 1050, a logical-to-physical translation 
layer or address mapping structure, or the like to map LBAS or 
other logical addresses to physical locations on the non-vola 
tile storage media 1110. While the depicted embodiment is 
described with regard to the non-volatile storage media 1110. 
in other embodiments, the address mapping structure 2000 
may map namespace identifiers for the auto-commit buffers 
1013 or the like. The address mapping structure 2000, in the 
depicted embodiment, is a B-tree with several entries. In the 
depicted embodiment, the nodes of the address mapping 
structure 2000 include direct references to physical locations 
in the non-volatile storage device 1102. In other embodi 
ments, the address mapping structure 2000 may include links 
that map to entries in a reverse map, or the like. The address 
mapping structure 2000, in various embodiments, may be 
used either with or without a reverse map. In other embodi 
ments, the references in the address mapping structure 2000 
may include alpha-numerical characters, hexadecimal char 
acters, pointers, links, and the like. 
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The address mapping structure 2000, in the depicted 

embodiment, includes a plurality of nodes. Each node, in the 
depicted embodiment, is capable of storing two entries. In 
other embodiments, each node may be capable of storing a 
greater number of entries, the number of entries at each level 
may change as the address mapping structure 2000 grows or 
shrinks through use, or the like. 

Each entry, in the depicted embodiment, maps a variable 
length range of LBAs of the non-volatile storage device 1102 
to a physical location in the storage media 1110 for the non 
volatile storage device 1102. Further, while variable length 
ranges of LBAS, in the depicted embodiment, are represented 
by a starting address and an ending address, in other embodi 
ments, a variable length range of LBAS may be represented by 
a starting address and a length, or the like. In one embodi 
ment, the capital letters A through M represent a logical or 
physical erase block in the physical storage media 1110 of the 
non-volatile storage device 1102 that stores the data of the 
corresponding range of LBAS. In other embodiments, the 
capital letters may represent other physical addresses or loca 
tions of the non-volatile storage device 1102. In the depicted 
embodiment, the capital letters A through M are also 
depicted in the log-based writing structure 2140 which rep 
resents the physical storage media 1110 of the non-volatile 
storage device 1102. 

In the depicted embodiment, membership in the address 
mapping structure 2000 denotes membership (or storage) in 
the non-volatile storage device 1102. In another embodiment, 
an entry may further include an indicator of whether the 
non-volatile storage device 1102 stores data corresponding to 
a logical block within the range of LBAs, data of a reverse 
map, and/or other data. 

In the depicted embodiment, the root node 2008 includes 
entries 2102, 2104 with noncontiguous ranges of LBAs. A 
“hole' exists at LBA “208” between the two entries 2102, 
2104 of the root node. In one embodiment, a “hole' indicates 
that the non-volatile storage device 1102 does not store data 
corresponding to one or more LBAS corresponding to the 
“hole.” In one embodiment, the non-volatile storage device 
1102 supports block I/O requests (read, write, trim, etc.) with 
multiple contiguous and/or noncontiguous ranges of LBAS 
(e.g., ranges that include one or more "holes' in them). A 
“hole.” in one embodiment, may be the result of a single block 
I/O request with two or more noncontiguous ranges of LBAS. 
In a further embodiment, a “hole' may be the result of several 
different block I/O requests with LBA ranges bordering the 
“hole. 

In the depicted embodiment, similar “holes” or noncon 
tiguous ranges of LBAs exist between the entries 2106,2108 
of the node 2014, between the entries 2110, 2112 of the left 
child node of the node 2014, between entries 2114, 2116 of 
the node 2018, and between entries of the node 2118. In one 
embodiment, similar “holes' may also exist between entries 
in parent nodes and child nodes. For example, in the depicted 
embodiment, a “hole' of LBAs “060-071 exists between the 
left entry 2106 of the node 2014 and the right entry 2112 of the 
left child node of the node 2014. 
The “hole” at LBA “003, in the depicted embodiment, can 

also be seen in the logical address space 2120 of the non 
volatile storage device 1102 at logical address “003” 2130. 
The hash marks at LBA “003” 2140 represent an empty 
location, or a location for which the non-volatile storage 
device 1102 does not store data. The “hole at LBA 2134 in 
the logical address space 2120, is due to one or more block I/O 
requests with noncontiguous ranges, a trim or other deallo 
cation command to the non-volatile storage device 1102, or 
the like. The address mapping structure 2000 supports 
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"holes, noncontiguous ranges of LBAS, and the like due to 
the sparse and/or thinly provisioned nature of the logical 
address space 2120. 
The logical address space 2120 of the non-volatile storage 

device 1102, in the depicted embodiment, is sparse and/or 
thinly provisioned, and is larger than the physical storage 
capacity and corresponding storage device address space of 
the non-volatile storage device 1102. In the depicted embodi 
ment, the non-volatile storage device 1102 has a 64-bit logical 
address space 2120 beginning at logical address “O'” 2122 and 
extending to logical address “264-12126. Because the stor 
age device address space corresponds to only a Subset of the 
logical address space 2120 of the non-volatile storage device 
1102, the rest of the logical address space 2120 may be 
allocated, mapped, and used for other functions of the non 
volatile storage device 1102. 
The sequential, log-based, append-only writing structure 

2140, in the depicted embodiment, is a logical representation 
of the physical storage media 1110 of the non-volatile storage 
device 1102. In certain embodiments, the non-volatile storage 
device 1102 stores data sequentially, appending data to the 
log-based writing structure 2140 at an append point 2144. 
The non-volatile storage device 1102, in a further embodi 
ment, uses a storage space recovery process. Such as a gar 
bage collection module or other storage space recovery mod 
ule that re-uses non-volatile storage media 1110 storing 
deallocated/unused logical blocks. Non-volatile storage 
media 1110 storing deallocated/unused logical blocks, in the 
depicted embodiment, is added to an available storage pool 
2146 for the non-volatile storage device 1102. By clearing 
invalid data from the non-volatile storage device 1102, as 
described above, and adding the physical storage capacity 
corresponding to the cleared databack to the available storage 
pool 2146, in one embodiment, the log-based writing struc 
ture 2140 is cyclic, ring-like, and has a theoretically infinite 
capacity. 

In the depicted embodiment, the append point 2144 
progresses around the log-based, append-only writing struc 
ture 2140 in a circular pattern 2142. In one embodiment, the 
circular pattern 2142 wear balances the non-volatile storage 
media 122, increasing a usable life of the non-volatile storage 
media 1110. In the depicted embodiment, a garbage collec 
tion module or other storage capacity recovery process has 
marked several blocks 2148, 2150, 2152, 2154 as invalid, 
represented by an “X” marking on the blocks 2148, 2150, 
2152. 2154. The garbage collection module, in one embodi 
ment, will recover the physical storage capacity of the invalid 
blocks 2148, 2150,2152. 2154 and add the recovered capac 
ity to the available storage pool 2146. In the depicted embodi 
ment, modified versions of the blocks 2148, 2150,2152,2154 
have been appended to the log-based writing structure 2140 
as new blocks 2156,2158,2160,2162 in a read, modify, write 
operation or the like, allowing the original blocks 2148, 2150, 
2152, 2154 to be recovered. 

FIG. 12 depicts one embodiment of a method 2200 for 
providing access to auto-commit memory 1011. The method 
2200 begins, and the request module 1902 receives 2202 a 
request for data. The request may include a namespace iden 
tifier for the data. The mapping module 1904 identifies 2204 
a relationship between the namespace identifier and an auto 
commit buffer 1013. The bypass module 1906 satisfies 2206 
or services the received 2202 request using the auto-commit 
buffer 1013 in response to the identified 2204 relationship 
associating the namespace identifier with the auto-commit 
buffer 1013 and the method 2200 ends. 

FIG. 13 depicts another embodiment of a method 2300 for 
providing access to auto-commit memory 1011. The method 
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2100 begins, and the request module 1902 determines 2302 
whether a request for data of the non-volatile memory device 
1102 has been received. Once the request module 1902 deter 
mines 2302 that a request has been received, the mapping 
module 1904 determines 2304 whether the data, a namespace 
identifier or other logical identifier, or the like of the request 
is associated with the auto-commit memory 1011. 

If the mapping module 1904 determines 2304 that the data 
of the request is not associated with the auto-commit memory 
1011, the mapping module 1904 determines 2306 whether to 
associate the data with the auto-commit memory 1011. If the 
mapping module 1904 determines 2306 to associate the data 
with the auto-commit memory 1011, the mapping module 
1904 maps 2308 or associates the data of the request with the 
auto-commit memory 1011, otherwise the storage controller 
1104 satisfies 2312 or services the received 2302 request from 
the non-volatile memory media 1110. The mapping module 
1904 may map 2308 the data or cause the data to be mapped 
2308 to the auto-commit memory 1011 from kernel-space. 

If the mapping module 2304 determines 2304 that the data 
of the received 2302 request is associated with the auto 
commit memory 1011 or if the mapping module 2304 deter 
mines 2306 to map 2308 the data to the auto-commit memory 
1011, the bypass module 1906 satisfies 2310 or services the 
received 2302 request directly from the auto-commit memory 
1011, bypassing an operations system or kernel storage stack 
or the like to satisfy 2310 the request from user-space. The 
request module 1902 continues to monitor 2302 or otherwise 
receive or intercept requests for data of the non-volatile 
memory device 1102. 
A means for associating a logical identifier or other 

namespace identifier with a page of auto-commit memory 
1011, in various embodiments, may include a storage man 
agement layer 1050, a device driver, a storage controller 104, 
1004. 1104,1304, a mapping module 1904, other logic hard 
ware, and/or other executable code stored on a computer 
readable storage medium. Other embodiments may include 
similar or equivalent means for associating a namespace iden 
tifier with a page of auto-commit memory 1011. 
A means for bypassing an operating system storage stack 

to satisfy a storage request for data of a page of auto-commit 
memory 1011, in various embodiments, may include a stor 
age management layer 1050, a device driver, a storage con 
troller 104,1004, 1104,1304, a mapping module 1904, other 
logic hardware, and/or other executable code stored on a 
computer readable storage medium. Other embodiments may 
include similar or equivalent means for bypassing an operat 
ing system storage Stack to satisfy a storage request for data of 
a page of auto-commit memory 1011. 
A means for preserving data of a page of auto-commit 

memory 1011 in response to a failure condition or restart 
event, in various embodiments, may include a secondary 
power supply 124, 1024, 1324, an auto-commit memory 
1011, 1111, an auto-commit buffer 1013, a commit agent 
1020, a commit management module 1122, a commit module 
1320, an ACM module 1317, other logic hardware, and/or 
other executable code stored on a computer readable storage 
medium. Other embodiments may include similar or equiva 
lent means for preserving data of a page of auto-commit 
memory 1011 in response to a failure condition. 
A means for providing access to preserved data after a 

failure condition or restart event, in various embodiments, 
may include a non-volatile storage device 102, a non-volatile 
memory media 110, 1110, 1310, 1502, a storage management 
layer 1050, a commit agent 1020, an auto-commit memory 
1011, 1111, an auto-commit buffer 1013, logic hardware, 
and/or other executable code stored on a computer readable 
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storage medium. Other embodiments may include similar or 
equivalent means for providing access to preserved data after 
a failure condition or restart event. 
The present disclosure may be embodied in other specific 

forms without departing from its spirit or essential character 
istics. The described embodiments are to be considered in all 
respects only as illustrative and not restrictive. The scope of 
the disclosure is, therefore, indicated by the appended claims 
rather than by the foregoing description. All changes which 
come within the meaning and range of equivalency of the 
claims are to be embraced within their scope. 

What is claimed is: 
1. A method comprising: 
receiving a write request for data, the write request com 

prising a namespace identifier; 
identifying a relationship between the namespace identifier 

and one or more of a memory and a non-volatile memory 
medium; 

servicing the write request using the memory in response to 
the identified relationship associating the namespace 
identifier with the memory; and 

servicing the write request using the non-volatile medium 
in response to the identified relationship associating the 
namespace identifier with the non-volatile medium. 

2. The method of claim 1, wherein a user space device 
driver services the write request using the memory directly by 
bypassing an operating system storage Stack. 

3. The method of claim 1, wherein identifying the relation 
ship between the namespace identifier and one or more of the 
memory and the non-volatile memory medium comprises 
determining whether the write request comprises an auto 
commit flag associating the namespace identifier with the 
memory. 

4. The method of claim 1, wherein servicing the write 
request using the memory comprises mapping the data into 
virtual memory of a requesting client. 

5. The method of claim 4, further comprising unmapping 
the data from virtual memory in response to access to the 
virtual memory exceeding a traffic threshold for the virtual 
memory. 

6. The method of claim 1, further comprising, 
arming the memory with metadata specifying a logical 

block address of a non-volatile medium to which the 
data of the memory is to be committed in response to a 
predefined trigger, wherein the namespace identifier is 
persistently mapped to the logical block address; and 

committing the data of the memory to the logical block 
address of the non-volatile medium in response to 
detecting the trigger. 

7. The method of claim 1, further comprising, 
tracking which portions of data of the memory have been 

updated; and 
committing the updated portions of data of the memory to 

a non-volatile medium separately from non-updated 
portions in response to detecting a predefined trigger. 

8. The method of claim 1, wherein the namespace identifier 
is a member of a persistent namespace, the persistent 
namespace is configured to Survive a restart event, and the 
persistent namespace configured to grant a client access to 
data of the namespace identifier Subsequent to the restart 
event. 

9. The method of claim 8, wherein the persistent 
namespace comprises a logical unit number (LUN) 
namespace for a storage device and the namespace identifier 
comprises a LUN address within the LUN namespace. 
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10. The method of claim 8, wherein the persistent 

namespace comprises a file system namespace and the 
namespace identifier comprises a file identifier of the file 
system namespace. 

11. The method of claim 1, wherein identifying the rela 
tionship between the namespace identifier and the memory 
comprises one of identifying an existing relationship between 
the namespace identifier and the memory, and creating a 
relationship between the namespace identifier and the 
memory. 

12. The method of claim 1, wherein the relationship asso 
ciates the namespace identifier with the memory in response 
to one or more of detecting an existing relationship between 
the namespace identifier and the memory; detecting an auto 
commit flag for the write request; and dynamically assigning 
the namespace identifier for association with the memory. 

13. The method of claim 1, wherein the memory is within 
an isolation Zone of a non-volatile device comprising a non 
Volatile medium and the isolation Zone is configured to 
receive power from a secondary power Source. 

14. The method of claim 13, wherein a storage capacity of 
a plurality of memory buffers, including the memory, within 
the isolation Zone is selected Such that a power hold-up time 
provided by the secondary power source allows the plurality 
of memory buffers to commit data to a non-volatile medium 
during the power hold-up time in response to a restart event. 

15. An apparatus comprising: 
an auto-commit memory module configured to cause a 

volatile memory buffer to commit data from the volatile 
memory buffer to a non-volatile memory medium in 
response to the data filling at least a threshold amount of 
the volatile memory buffer; 

a mapping module configured to determine whether to 
associate a range of addresses for data with the Volatile 
memory buffer or the non-volatile memory medium; and 

a bypass module configured to service a request for the 
range of addresses directly using the Volatile memory 
bufferin response to the mapping module determining to 
associate the range of addresses with the Volatile 
memory buffer and further configured to service the 
request for the range of addresses using the non-volatile 
memory medium in response to the mapping module 
determining to associate the range of addresses with the 
non-volatile memory medium, the request comprising a 
write request. 

16. The apparatus of claim 15, further comprising a request 
module configured to receive the request for the range of 
addresses for data, the mapping module configured to deter 
mine to associate the range of addresses for data with the 
Volatile memory buffer in response to an auto-commit flag of 
the request. 

17. The apparatus of claim 15, further comprising a request 
module configured to intercept requests for the non-volatile 
memory medium, the mapping module configured to 
dynamically determine to associate the range of addresses for 
data with the volatile memory buffer in response to the 
request module intercepting the request for the range of 
addresses. 

18. The apparatus of claim 15, wherein the bypass module 
is configured to service the request for the range of addresses 
for data directly from the volatile memory buffer by bypass 
ing a kernel storage stack and servicing the request from 
user-space. 

19. The apparatus of claim 15, wherein the request for the 
range of addresses for data comprises a write request and the 
bypass module is configured to service the write request by 
copying data of the write request into a virtual memory loca 
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tion of a requesting client in response to the mapping module 
determining to associate the range of addresses for data with 
the volatile memory buffer, the virtual memory location 
backed by the volatile memory buffer. 

20. A system comprising: 
a storage device comprising one or more auto-commit 

pages configured to preserve data of the auto-commit 
pages in a non-volatile memory medium in response to a 
restart event; and 

a device driver for the storage device, the device driver 
configured to cause data of the storage device to be 
mapped, from kernel-space, into virtual memory and to 
Service a write request, from user-space, the device 
driver using the one or more auto-commit pages to ser 
Vice the write request in response to determining an 
association of the write request with the one or more 
auto-commit pages and using the non-volatile memory 
medium to service the write request in response to deter 
mining an association of the write request with the non 
volatile memory medium. 

21. The system of claim 20, further comprising a host 
associated with the virtual memory, the host comprising a 
processor in communication with the storage device, the 
device driver executing on the processor. 

22. A computer program product comprising a non-transi 
tory computer readable storage medium storing computer 
usable program code executable to cause a computer to per 
form operations, the operations comprising: 

intercepting, in user-space, a storage request for a memory 
device, the storage request comprising a file identifier 
and an offset for a write operation; 

determining whether the offset and the file identifier are 
mapped to the volatile memory; 
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servicing the storage request in user-space directly using a 

Volatile memory of the memory device in response to 
determining that the offset and the file identifier are 
mapped to the volatile memory; 

determining whether the offset and the file identifier are 
mapped to a non-volatile memory of the memory device: 
and 

servicing the storage request in user-space using the non 
Volatile memory of the memory device in response to 
determining that the offset and the file identifier are 
mapped to the non-volatile memory. 

23. The computer program product of claim 22, wherein 
the operations further comprise enforcing file system access 
permissions for data of the offset and the file identifier using 
virtual memory access controls. 

24. An apparatus comprising: 
means for associating a logical identifier with one of a 

Volatile memory and a non-volatile memory medium; 
means for bypassing an operating system storage stack to 

service a storage request for data associated with the 
logical identifier using the volatile memory in response 
to the logical identifier being associated with the volatile 
memory and using the non-volatile memory medium in 
response to the logical identifier being associated with 
the non-volatile memory medium; and 

means for preserving the data of the volatile memory in the 
non-volatile memory medium in response to a failure 
condition. 

25. The apparatus of claim 24, further comprising means 
for providing access to the preserved data after the failure 
condition. 


