(12) # Oversættelse af europæisk patentskrift ## Patent- og Varemærkestyrelsen (51) Int.Cl.: **C 07 K 16/00 (2006.01)** (45) Oversættelsen bekendtgjort den: 2020-03-16 (80) Dato for Den Europæiske Patentmyndigheds bekendtgørelse om meddelelse af patentet: **2020-01-08** (86) Europæisk ansøgning nr.: 13707824.2 (86) Europæisk indleveringsdag: 2013-02-22 (87) Den europæiske ansøgnings publiceringsdag: 2014-12-31 (86) International ansøgning nr.: EP2013053615 (87) Internationalt publikationsnr.: WO2013124451 (30) Prioritet: 2012-02-22 GB 201203071 - (84) Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR - (73) Patenthaver: UCB Biopharma SRL, Allée de la Recherche 60, 1070 Brussels, Belgien - (72) Opfinder: HUMPHREYS, David Paul, IPD UCB Celltech, 208 Bath Road, Slough Berkshire SL1 3WE, Storbritannien PETERS, Shirley Jane, IPD, UCB Celltech, 208 Bath Road, Slough, Berkshire SL1 3WE, Storbritannien - (74) Fuldmægtig i Danmark: AWA Denmark A/S, Strandgade 56, 1401 København K, Danmark - (54) Benævnelse: BISPECIFIKKE, ASYMMETRISKE IGG4-ANTISTOFFER - (56) Fremdragne publikationer: EP-A1- 2 409 990 US-A- 5 677 425 SCHUURMAN J ET AL: "The inter-heavy chain disulfide bonds of IgG4 are in equilibrium with intra-chain disulfide bonds", MOLECULAR IMMUNOLOGY, PERGAMON, GB, vol. 38, no. 1, 1 January 2001 (2001-01-01), pages 1-8, XP002329378, ISSN: 0161-5890, DOI: 10.1016/S0161-5890(01)00050-5 BLOOM J W ET AL: "Intrachain disulfide bond in the core hinge region of human IgG4", PROTEIN SCIENCE, CAMBRIDGE UNIVERSITY PRESS, vol. 6, no. 2, 1 January 1997 (1997-01-01), pages 407-415, XP002329379, ISSN: 0961-8368 AALBERSE R C ET AL: "IgG4 breaking the rules", IMMUNOLOGY, BLACKWELL PUBLISHING, OXFORD, GB, vol. 105, no. 1, 1 January 2002 (2002-01-01), pages 9-19, XP002987706, ISSN: 0019-2805, DOI: 10.1046/J.0019-2805.2001.01341.X KOLFSCHOTEN MARIJN VAN DER NEUT ET AL: "Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, WASHINGTON, DC; US, vol. 317, no. 5844, 1 September 2007 (2007-09-01), pages 1554-1557, XP009104480, ISSN: 0036-8075, DOI: 10.1126/SCIENCE.1144603 # **DESCRIPTION** **[0001]** The present disclosure relates to asymmetric antibodies comprising an IgG4 heavy chain or fragment which is mutated and a second heavy chain or fragment which is distinct from said IgG4 chain. The disclosure also extends to compositions comprising said asymmetric antibodies and use of the antibodies and compositions comprising same for treatment. In a further aspect the disclosure extends to methods of preparing the antibodies and formulations, and vectors encoding the antibodies and hosts expressing same. [0002] The biopharmaceutical industry encompassing recombinant proteins, monoclonal antibodies (mAbs) and nucleic acid-based drugs is growing rapidly. Antibody engineering has resulted in the design and production of antibody fragments or alternative formats. Preferred molecular format along with other aspects such as production yield, protein quality and storage stability are taken into consideration when selecting an antibody-based protein as a therapeutic agent. [0003] The basic structure of all immunoglobulin (lg) molecules comprises two identical heavy chains (HCs) and two identical light chains (LCs) which are coupled by disulphide bonds. Each LC consists of a variable (V_L) and constant domain (C_L). Based on the HC, five main lg classes are recognized: lgG, lgA, lgD, lgE and lgM. For lgG, the HC consists of one variable domain (V_H) and three constant domains (C_H 1-3). The C_H 2 and C_H 3 domains form the Fc part of the molecule that is responsible for stimulating effector function and is linked to the Fab fragment (V_HV_L and C_HC_L) by a hinge region which confers flexibility to the lgG molecule. Two antigen recognition sites are located at the ends of the V_L and V_H domains. lgG is further subdivided into 4 different isotypes: lgG1, lgG2, lgG3 and lgG4. [0004] Fc-mediated effector functions i.e. antibody dependent cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC) are isotype dependent. Each isotype has evolved to perform a specific function within the body. The IgG1 isotype is currently the most widely used as a therapeutic due to its extended half-life, enhanced ADCC activation and complement activation. Other isotypes are employed as therapeutic agents depending on the target and desired effect. For instance, when target antigens are simply to be neutralized and effector functions are less important, alternative isotypes such as IgG2 and IgG4 can be used. Alternatively, IgG with re-engineered Fc/effector function may be considered. [0005] IgG2 also has minimal associated effector function but is prone to dimerisation which is not fully understood. [0006] IgG4 remains a useful isotype because of its relative lack of effector function induction. However, use of IgG4 also has some inherent practical difficulties namely its shorter serum half-life and its ability to undergo "Fab-arm exchange" (also referred to as dynamic heavy chain exchange or heavy chain exchange), wherein the heavy chain and its attached light chain of one antibody is exchanged with the heavy chain and its attached light chain of another antibody to form a whole antibody composed of two heavy chains and two attached light chains (van der Neut Kolfschoten et al., 2007 Science 317, 1554-1557). [0007] In vivo, Fab-arm exchange results in bispecific antibodies that, due to their different variable domains, can coengage distinct target antigens. This produces a large percentage of circulating IgG4 which have been observed to be bispecific, but functionally monovalent. (Schuurman,J., Van Ree,R., Perdok,G.J., Van Doorn,H.R., Tan,K.Y., Aalberse,R.C., 1999. Normal human immunoglobulin G4 can be bispecific: it has two different antigen-combining sites. Immunology 97, 693-698). [0008] In vitro, when IgG4 antibodies are analysed by non-reducing SDS-PAGE, they have been observed to form so called 'half-molecules' each comprising a single covalently associated heavy-light chain pair caused by the absence of inter heavy chain disulphide bonds typically due to the formation of intra heavy chain disulphide bonds within the hinge region of one heavy chain. The heavy chain of a "half-molecule" may non-covalently associate with its heavy chain paired partner, the association being maintained by C_H3:C_H3 domain interactions. In solution such 'half-molecules' are actually observed using methods such as size exclusion chromatography to be full sized, that is approximately 150kDa but on non-reducing SDS-PAGE are comprised of 75kDa LC:HC pairings (so-called "half-molecule"). [0009] A Ser to Pro mutation at position 241 (numbered according to the Kabat numbering system) in the hinge reduces the appearance of these 'half molecules' by non-reducing, SDS-PAGE (Angal,S. et al., 1993. A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody as observed during SDS-PAGE analysis Mol Immunol 30, 105-108). In addition, this point mutation does not influence the compact structure of IgG4 thereby allowing IgG4 to retain its reduced ability to activate complement. [0010] Following the discovery of the S241P mutation, further mutations to IgG4 have been investigated in order to understand the inter-heavy chain interaction in IgG4 antibodies, reduce IgG4 effector function and enhance structural stability. In Schuurman et al. (Schuurman,J et al., 2001. The inter-heavy chain disulphide bonds of IgG4 are in equilibrium with intra-heavy chain disulphide bonds. Molecular Immunology 38, 1-8), the observed instability of inter-heavy chain disulphide bonds of IgG4 was investigated using IgG4 mutants. In mutant M1 Cys 131 (numbered according to EU numbering system or Cys 127 according to Kabat numbering system), which is involved in the inter-heavy-light chain (C_L-C_{H1}) disulphide bond, was replaced by serine and it was found that this mutant resulted in the formation of dimers of light chains and dimers of heavy chains. In mutant M2 cysteine 226 (226 numbered according to EU numbering system or 239 according to Kabat numbering system), which is involved in an inter-heavy chain disulphide bond in the hinge, was replaced by serine and it was found that this mutant had a more stable inter-heavy chain linkage compared to IgG4 and prevents the formation of an intra-heavy chain disulphide bond. [0011] The alteration of the number of cysteine residues present in the hinge region of antibodies has been previously investigated. US 5677425 Bodmer et al. discloses that the number of cysteine residues in the hinge region may be increased in order to facilitate the use of the cysteine thiol groups for attaching effector or reporter molecules. US 5677425 also teaches that the number of cysteine residues in the hinge region may be reduced to one in order to facilitate the assembly of the antibody molecules, since it will only be necessary to form a single disulphide bond, which will provide a specific target for attaching the hinge region either to another hinge region or to an effector or reporter molecule. **[0012]** Given that IgG4 antibodies administered to a subject are susceptible to dynamic heavy chain exchange to form "mixed antibodies" this process can be exploited to prepare *in vitro* the antibodies of the present disclosure. Advantageously, this allows the characteristics of the antibodies to be manipulated. [0013] There is still a need to provide new antibodies for use as a therapeutic. The present invention provides new mutated antibodies which may have advantageous properties including improved biophysical properties, for example compared to wild-type antibodies. ## Summary of the Invention **[0014]** The present disclosure provides a bi-specific
asymmetric antibody which *in vivo* has less susceptibility to undergo exchange than wild type IgG4 antibodies, said antibody comprising: - 1. i. two light chains, and - 2. ii. two heavy chains or heavy chain fragments each comprising at least a variable region, a hinge region and a C_H1 domain, wherein a first heavy chain or fragment thereof is a class IgG4 and has: - 1. a. the inter-chain cysteine at position 127, numbered according to the Kabat numbering system, in the C_H1 domain is substituted with a non-thiol containing amino acid; and - 2. b. one of the amino acids positioned in the upper hinge region selected from S227, K228, Y229 and G230 is substituted with cysteine, and wherein the second heavy chain or fragment thereof is IgG4 wild type or IgG4 wild type with a S241G or S241A mutation, and wherein each heavy chain has a different variable region. [0015] In one embodiment the hinge sequence of the two heavy chains is similar or identical. [0016] The present disclosure is advantageous because it allows manipulation and control of the antibody properties by methods that are convenient and readily accessible. [0017] The antibodies of the present invention may demonstrate reduced heavy chain exchange compared to wild-type IgG4, which provides an asymmetric (such as a bispecific antibody) which demonstrates little or no exchange with wild-type IgG4 *in vivo* due to its reduced propensity to exchange compared to IgG4 and also due to the relatively low concentration of an asymmetric mixed antibody *in vivo* compared to natural circulating IgG4 antibodies. [0018] The antibodies of the present invention may demonstrate reduced heavy change exchange at concentrations greater than *in vivo* concentrations, for example concentrations of 0.5mM or greater compared to IgG4 wild type. Whilst the antibodies of the invention demonstrate reduced heavy chain exchange compared to wild type IgG4, they do demonstrate a degree of heavy chain exchange, compared to IgG1 wt and IgG4 S241P, which is sufficient to create an asymmetric mixed (such as a bispecific antibody) from two different antibodies (such as two antibodies having different antigen specificities) *in vitro*. [0019] Thus, in one embodiment antibodies of the present disclosure can be exchange *in vitro* with 5mM GSH but not with 0.5mM GSH. The latter more closely mimics *in vivo* exchange barrier. Fig20 illustrates this in that Ab28 (C127S Y229C) does exchange with WT, S241G S241A or S241T at 5mM GSH, but not at 0.5mM. **[0020]** Accordingly, the present invention also provides a method of generating an asymmetric mixed antibody, comprising the steps of taking a symmetrical antibody comprising a first heavy chain sequence or a fragment thereof as defined herein and mixing the said antibody *in vitro* with a second symmetrical antibody comprising a second heavy chain sequence or a fragment thereof which is different to said first heavy chain sequence, under conditions conducive to heavy chain exchange between the two antibodies, and optionally isolation of the asymmetric mixed antibody obtained therefrom. The method also provides a bispecific antibody, said method comprises mixing two antibodies, wherein the antigen specificity of variable regions in the first antibody is different to the antigen specificity of the variable regions in the second antibody. **[0021]** The method of the present disclosure allows the properties of the antibody to be completely manipulated to provide a final therapeutic molecule that is customized and optimized for the intended therapeutic use. [0022] In addition the antibodies according the present disclosure may be advantageous in that they have low levels of effector function. ## **Brief Description of the Figures** ## [0023] ## Figure 1a shows the human C_H1 and hinge sequences of IgG1 wild type and IgG4 wild type, wherein the hinge residues are underlined, and the kappa light chain constant sequence. ## Figure 1b shows: the human kappa light chain constant sequence indicating the cysteine (underlined) that forms the inter-chain C_{L} - C_{H} 1 disulphide bond; the human $\lg G$ 1, 2, 3 and 4 heavy chain N-terminal $C_{H}1$ residues and hinge region sequences wherein the cysteine position (in upper hinge for $\lg G1$ and in N-terminal $C_{H}1$ for $\lg G$ 2, 3 and 4) is indicated (underlined) which forms the inter-chain C_{I} - $C_{H}1$ disulphide bond; the human IgD heavy chain N-terminal C_H1 residues and part of the hinge region sequences wherein the cysteine position in the N-terminal C_H1 sequence is indicated (underlined) which forms the inter-chain C_L-C_H1 disulphide bond: the human IgM heavy chain N-terminal C_H1 , C-terminal C_H1 residues and selected N-terminal C_H2 residues wherein the cysteine position in the N-terminal C_H1 is indicated (underlined) which forms the inter-chain C_L-C_H1 disulphide bond; and the residues in the upper hinge of IgG3 and IgG4, the hinge of IgD and in the C-terminal C_H1 and the C_H2 of IgM where underlined residues indicate positions where one or more residues may be substituted with cysteine in the antibodies of the present invention. #### Figure 2a shows the C_H1 cysteine residue (C127) which forms the inter-chain disulphide bond with a cysteine in the light chain and the upper and core hinge residues of IgG1 wild type, IgG4 wild type and the positions where mutations have been introduced in the IgG4 antibodies of the present invention. #### Figure 2b shows the $C_{H}1$ cysteine residue (C127) which forms the inter-chain disulphide bond with a cysteine in the light chain and the hinge residues of IgG3 wild type and the positions where one or more residues are substituted with cysteine in the IgG3 antibodies of the present invention. #### Figure 2c shows the C_H1 cysteine residue (C127) which forms the inter-chain disulphide bond with a cysteine in the light chain and selected C_H1 and C_H2 residues of IgM wild type and the positions where one or more residues are substituted with cysteine in the IgM antibodies of the present invention. #### Figure 2d shows the $C_{H}1$ cysteine residue (C128) which forms the inter-chain disulphide bond with a cysteine in the light chain and the hinge residues of IgD wild type and the positions where one or more residues are substituted with cysteine in the IgD antibodies of the present invention. #### Figure 3a shows the mutations introduced in IgG4 antibodies according to the present invention. #### Figure 3b shows the positions of the residues in the mutated heavy chain of the IgG4 antibodies shown in Figure 3a and the predicted disulphide bond that can form with a cysteine in either the light chain (LC) or with another mutated heavy chain (HC). Where the cysteine may bond with a cysteine in the LC or HC, the underlined chain is the predicted predominant disulphide bond arrangement. ## Figure 4a shows the mutations introduced in IgG4 antibodies according to the present invention. #### Figure 4b shows the positions of the cysteine residues in the IgG4 antibodies shown in Figure 4a and predicted disulphide bond that can form with a cysteine in either the light chain (LC) or heavy chain (HC). Where the cysteine may bond with a cysteine in the LC or HC, the underlined chain is the predicted predominant disulphide bond arrangement. ## Figure 5 shows various sequences #### Figure 6 shows various sequences ### Figure 7 shows the Western Blot analysis of antibodies according to the present invention with the top gel showing the results using an Anti-human Fc Antibody and the bottom gel showing the results using an Anti-Kappa Antibody. #### Figure 8 shows the Western Blot analysis of antibodies according to the present invention with the top gel showing the results using an Anti-human Fc Antibody and the bottom gel showing the results using an Anti-human Kappa Antibody. ## Figure 9 shows the Western Blot analysis of antibodies according to the present invention with the top gel showing the results using an Anti-human Fc Antibody and the bottom gel showing the results using an Anti-human Kappa Antibody. ## Figure 10 shows the Western Blot analysis of an antibody according to the present invention with the top gel showing the results using an Anti-human Fc Antibody and the bottom gel showing the results using an Anti-human Kappa Antibody. ## Figure 11 shows the results of a Thermofluor analysis of antibodies of the present invention which shows the Fab and C_{H2} domain thermostabilties. ## Figure 12 shows the results of a Thermofluor analysis of antibodies of the present invention which shows the Fab and C_{H2} domain thermostabilties. #### Figure 13 shows the results of a Thermofluor analysis of antibodies of the present invention which shows the Fab and C_H2 domain thermostabilties. #### Figure 14 shows the results of a Thermofluor analysis of antibodies of the present invention which shows the Fab and C_H2 domain thermostabilties #### Figure 15 shows the ranking of the Thermostabilities of selected antibodies of the present invention. #### Figure 16 shows heavy chain exchange at 16 hours wherein the first antibody is selected from IgG1 wild-type, IgG4 wild-type and various mutant antibodies and the second antibody is IgG4 wild-type at two concentrations of GSH. The figures show that the mutants have a little less exchange than the wild-type IgG4 antibodies and significantly greater exchange than the IgG1 wild-type antibody and the IgG4 P antibody. This is advantageous in that the exchange can be used to prepare the asymmetric antibodies of the present disclosure, which *in vivo* have less susceptibility to undergo exchange than wild type IgG4 antibodies. In some instances increasing the concentration of the reducing agent, such as GSH increases the amount of exchange observed. #### Figure 17 Asymmetric exchange analysis of mutants comprising type 1 variable regions with alternative residues at position 241 with type 2
variable regions. #### Figure 18 Asymmetric exchange analysis of IgG4 WT with type 1 variable regions incubated with different S241 and core hinge cysteine mutants with type 2 variable regions. #### Figure 19 Asymmetric exchange analysis of IgG4 S241P with type 1 variable regions incubated with different S241 mutants, IgG4 C127S Y229C (Ab 28) with type 2 variable regions ## Figure 20 Asymmetric exchange analysis of IgG4 C127S Y229C (number 28) with type 1 variable regions incubated with different S241 mutants and IgG4 WT with type 2 variable regions #### Figure 21 Asymmetric exchange analysis of a double hinge mutants with type 1 variable regions incubated with multiple mutants with type 2 variable regions. ## **Brief Description of the Sequences** ## [0024] SEQ ID NO: 1 shows the C_H1 and hinge region sequence of an IgG1 wild-type antibody. SEQ ID NO: 2 shows the C_H1 and hinge region sequence of an IgG4 wild-type antibody. SEQ ID NO: 3 shows a part of the constant region of a human wild-type kappa light chain. SEQ ID NO: 4 shows a part of the N-terminal sequence of the C_H1 domain of a human IgG1 antibody. SEQ ID NO: 5 shows the hinge region of a human IgG1 antibody. SEQ ID NO: 6 shows a part of the N-terminal sequence of the CH1 domain of a human IgG2 antibody. SEQ ID NO: 7 shows the hinge region of a human IgG2 antibody. SEQ ID NO: 8 shows a part of the N-terminal sequence of the CH1 domain of a human IgG3 antibody. SEQ ID NO: 9 shows the hinge region of a human IgG3 antibody. SEQ ID NO: 10 shows a part of the N-terminal sequence of the C_H1 domain of a human IgG4 antibody. SEQ ID NO: 11 shows the hinge region of a human IgG4 antibody. SEQ ID NOs: 12 to 37 show the CH1 domain and hinge region sequences of antibodies 6, 7, 8, 15, 16, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 2, 3, 48, 28P and 44P respectively. SEQ ID NOs: 38 to 63 show the C_{H1} domain, hinge region, C_{H2} domain and C_{H3} domain sequences of antibodies 6, 7, 8, 15, 16, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 2, 3, 48, 28P and 44P respectively. SEQ ID NO: 64 show the wild type IgG4 C_H2 and C_H3 domain sequences. SEQ ID NO: 65 shows the wild type IgG4 C_H2 and wild type IgG1 C_H3 domain sequences. SEQ ID NO: 66 shows the constant region sequence of a human wild-type kappa light chain. SEQ ID NO: 67 shows a part of the N-terminal sequence of the C_H1 domain of a human IgD antibody. SEQ ID NO: 68 shows a part of the hinge region of a human IgGD antibody. SEQ ID NO: 69 shows a part of the N-terminal sequence of the C_H1 domain of a human IgM antibody. SEQ ID NO: 70 shows a part of the C-terminal sequence of the C_H1 domain of a human IgM antibody. SEQ ID NO: 71 shows a part of the C_H2 domain of a human IgM antibody. SEQ ID NO: 72 to 295 shows various hinge regions. SEQ ID NOs: 296 to 305 show the C_{H1} domain and hinge region sequences of antibodies 1, 4, 5, 5P, 9, 10, 11, 12, 13 and 14 respectively. SEQ ID NOs: 306 to 315 show the C_{H1} domain, hinge region, C_{H2} domain and C_{H3} domain sequences of antibodies 1, 4, 5, 5P, 9, 10, 11, 12, 13 and 14 respectively. SEQ ID NO: 316-322 show various hinge sequences and parts thereof. #### **Detailed Description** [0025] An asymmetric antibody as employed herein is an antibody where the two heavy chains or fragments thereof have amino acid sequences which are partially or completely different in the regions outside the variable regions, for example having a similarity less than 98% over the relevant portion, such less than 97, 96 95% over the relevant portion. In one embodiment there are 1, 2, 3, 4, 5 amino acids different or added in a region of 10 consecutive amino acids. The amino acid sequences may also be different lengths which by necessity will result in a difference in the amino acid sequence. Parts of the heavy chains may have similar or identical sequences. **[0026]** In one embodiment the heavy chain sequences in the antibodies of the present disclosure are covalently linked, for example through an inter-chain disulfide bond, for example a bond that is present naturally in the corresponding wild-type fragment or a bond that has been genetically engineered to be present in the desired location in the chains. [0027] Wild-type IgG1 upper and core hinge has the sequence EPKSCDKTHTCPPCP SEQ ID NO: 316. [0028] The wild-type IqG4 upper and core hinge has the sequence ESKYGPPCPSCP SEQ ID NO: 317. [0029] IgG1 type hinge as employed herein is intended to refer to wherein one or more, for example 1 to 5, such as 1, 2 or 3 amino acids are inserted into the IgG4 hinge, in particular between EPKYGPP SEQ ID NO: 318 and CPSC and/or one or more of the amino acids YGPP in the IgG4 hinge are replaced, for example to correspond to an amino acid in the IgG1 hinge, in particular G (from YGPP in the IgG4 hinge) is replaced with C or where Y (from YGPP in the IgG4 hinge) is replaced with C or S. [0030] Thus, the present invention also provides an asymmetric mixed antibody comprising a first IgG4 heavy chain with an upper hinge, core and lower hinge, and said upper hinge and core in the heavy chain or each heavy chain therein is 13 to 17, such as 15 amino acids in length. [0031] In one embodiment the asymmetric mixed antibody with a first IgG4 heavy chain has an upper hinge and core of 15 amino acids in length. [0032] In one embodiment the upper hinge and core of at least the first heavy chain comprises the natural 12 amino acids found in an IgG4 hinge and a further three amino acids, for example 3 alanine residues, or 3 glycine residues or a combination thereof. [0033] In one embodiment the hinge has the one of the following sequences: | ESKYGPPAAACPSCP | SEQ ID No: 72 ; | ESKYGPPGGGCPSCP | SEQ ID No: 73 ; | |------------------|------------------------|------------------|------------------------| | ESKYGPPTHTCPSCP | SEQ ID No: 74 ; | ESKYGDKTHTCPSCP | SEQ ID No: 75 ; | | EPSKYGPPAAACPSCP | SEQ ID No: 76 ; | EPSKYGPPGGGCPSCP | SEQ ID No: 77; | | EPSKYGPPTHTCPSCP | SEQ ID No: 78 ; | EPSKYGDKTHTCPSCP | SEQ ID No: 79 ; | | ESKSYGPPAAACPSCP | SEQ ID No: 80 ; | ESKSYGPPGGGCPSCP | SEQ ID No: 81 ; | | ESKSYGPPTHTCPSCP | SEQ ID No: 82 ; | ESKSYGDKTHTCPSCP | SEQ ID No: 83 ; | | ESKYGPPAAACPPCP | SEQ ID No: 84 ; | ESKYGPPGGGCPPCP | SEQ ID No: 85 ; | | ESKYGPPTHTCPPCP | SEQ ID No: 86 ; | ESKYGDKTHTCPPCP | SEQ ID No: 87 ; | | EPSKYGPPAAACPPCP | SEQ ID No: 88 ; | EPSKYGPPGGGCPPCP | SEQ ID No: 89 ; | | EPSKYGPPTHTCPPCP | SEQ ID No: 90 ; | EPSKYGDKTHTCPPCP | SEQ ID No: 91 ; | | ESKSYGPPAAACPPCP | SEQ ID No: 92 ; | ESKSYGPPGGGCPPCP | SEQ ID No: 93 ; | | ESKSYGPPTHTCPPCP | SEQ ID No: 94 ; | ESKSYGDKTHTCPPCP | SEQ ID No: 95. | [0034] Molecules may be made with an upper hinge and core in at least the first IgG4 heavy chain of the disclosure consists a natural IgG1 hinge i.e. EPKSCDKTHTCPPC SEQ ID No: 96 or a derivative thereof such as: | EPKSCDKAAACPPCP | SEQ ID No: 97 ; | EPKSCDKGGGCPPCP | SEQ ID No: 98; | |-----------------|-------------------------|-----------------|-------------------------| | EPKSCDKTHTSPPCP | SEQ ID No: 99 ; | EPKSCDKTHTCPPSP | SEQ ID No: 100 ; | | EPKSCDKTHTSPPSP | SEQ ID No: 101 ; | EPKSCDKAAASPPCP | SEQ ID No: 102 ; | | EPKSCDKAAACPPSP | SEQ ID No: 103 ; | EPKSCDKAAASPPSP | SEQ ID No: 104 ; | | EPKSCDKGGGSPPCP | SEQ ID No: 105 ; | EPKSCDKGGGCPPSP | SEQ ID No: 106 ; | | EPKSCDKGGGSPPSP | SEQ ID No: 107. | | | [0035] Generally the hinge region in each of the heavy chains of the asymmetric mixed antibody will at least be compatible. That is to say when heavy chains are paired the arrangement will not be unstable, for example due to internal strain in the hinge region. [0036] In one embodiment the hinge region of each heavy chain comprises a sequence independently selected from a hinge sequence disclosed herein. [0037] In one embodiment the hinge in each of the heavy chains is similar or identical. This may be advantageous in that it may minimize incompatibility of the hinge regions of the two chains. [0038] The disclosure provides an asymmetric mixed antibody comprising two IgG4 heavy chains which each comprises a variable region, a C_H1 domain and a hinge region, wherein in the first heavy chain: - 1. a. the inter-chain cysteine at position 127, numbered according to the Kabat numbering system, in the C_H1 domain is substituted with another amino acid; and - 2. b. the hinge in the heavy chain or each heavy chain therein is in the range 12 to 17, such as 15 amino acids in length wherein part or all of the second heavy chain has a different amino acid sequence to said first heavy chain in at least the region outside the variable region. [0039] Suitable hinges are described above. [0040] The present disclosure also provides an asymmetric antibody comprising two IgG4 heavy chains which each comprises a C_{H1} domain and a hinge region, wherein in the first heavy chain: - a. the cysteine at position 127, numbered according to the Kabat numbering system, is substituted with another amino acid; and - 2. b. the cysteine at position 239 or the cysteine at position 242, numbered according to the Kabat numbering system, are substituted with another amino acid wherein part or all of the second heavy chain has a different amino acid sequence to said first heavy chain in at least the region outside the variable region. [0041] In one embodiment according to the latter aspect of the disclosure at least the IgG4 heavy chain contains 22 amino acids in the hinge, for example as described above. **[0042]** The present disclosure also provides an asymmetric mixed antibody comprising two IgG3 heavy chains which each comprises a C_{H1} domain and a hinge region, for example wherein in the first heavy chain: - 1. a. the cysteine in
the C_H1 domain which forms an inter-chain disulphide bond with a cysteine in a light chain is substituted with another amino acid; and - 2. b. one or more of the amino acids positioned in the upper hinge region is substituted with cysteine. wherein part or all of the second heavy chain has a different amino acid sequence to said first heavy chain in at least the region outside the variable region. [0043] The present disclosure provides an asymmetric mixed antibody further comprising two IgM heavy chains which each comprises a C_{H1} domain and a C_{H2} domain, for example wherein in the first heavy chain: - 1. a. the cysteine in the C_H1 domain which forms an inter-chain disulphide bond with a cysteine in a light chain is substituted with another amino acid; and - 2. b. one or more of the amino acids positioned in the C_H1 domain or C_H2 domain is substituted with cysteine; wherein part or all of the second heavy chain has a different amino acid sequence to said first heavy chain in at least the region outside the variable region. **[0044]** The present disclosure provides an asymmetric mixed antibody further comprising two IgD heavy chain, for example which each comprise a C_H1 domain and a hinge region, wherein in the first heavy chain: - 1. a. the cysteine in the C_H1 domain which forms an inter-chain disulphide bond with a cysteine in a light chain is substituted with another amino acid; and - 2. b. one or more of the amino acids positioned in the hinge region is substituted with cysteine wherein part or all of the second heavy chain has a different amino acid sequence to said first heavy chain in at least the region outside the variable region. **[0045]** Whilst not wishing to be bound by theory it is suspected that the C_H3 region of the IgG4 antibodies has a function to play in the dynamic exchange process. Therefore, replacement of C_H3 region of a non-IgG4 class antibody with a C_H3 domain from an IgG4 antibody may render the mutated antibody more conducive to exchange. [0046] In one embodiment the one or more cysteine(s) which would naturally be involved in the formation of an interchain disulphide bond between the light chain and heavy chain is replaced by a non-cysteine amino acid, as described in WO2005/003170 and WO2005/003171. [0047] In one embodiment the human kappa light chain in an antibody or fragment according to the present disclosure has one or more of residues 171, 156, 202 or 203 replaced as described in WO2008/038024. [0048] The skilled person will appreciate that the mutations made to the IgG4 antibody may also be applied to other antibody isotypes or classes which have the same disulphide bond arrangement as an IgG4 antibody in order to provide an improved antibody. Specific examples of antibodies which have the same disulphide bond arrangement as an IgG4 antibody are IgG3 antibodies, IgM antibodies and IgD antibodies. As shown in Figure 1b, IgG3 and IgM have a cysteine at position 127 in the C_H1 domain and IgD has a cysteine at position 128 in the C_H1 domain which is equivalent to the C127 in the C_H1 domain of IgG4 which forms an inter-chain disulphide bond with a cysteine in the light chain. Further, it can also be seen from Figure 1b that upper hinge regions of IgG3 and IgD and the C-terminal region of the C_H1 domain and the N-terminal region of the C_H2 domain in IgM do not contain a cysteine residue which is equivalent to the residues of the upper hinge region of IgG1. [0049] The antibody according to the disclosure comprises two IgG4 class heavy chains. [0050] The antibody according to the present disclosure further comprises two light chains. [0051] The antibody according to the present disclosure comprises two variable regions. **[0052]** The present disclosure provides an asymmetric mixed antibody wherein the variable regions are have a different specificity, i.e. a bi-specific antibody. That is to say where the antibody comprises two heavy chain variable regions each variable region is specific for a different antigen. [0053] In one embodiment each variable region can independently bind the target antigen. [0054] The present antibody format is advantageous in that is readily accessible from routine antibody production methods and utilizing naturally occurring mechanisms. [0055] In one embodiment the one or both heavy chain C-terminus is/are fused to a domain antibody, for example with specificity for a distinct antigen, that is an antigen that the variable regions of the heavy chains are not specific to. [0056] Single variable domains also known as single domain antibodies or dAbs for use in the present invention can be generated using methods known in the art and include those disclosed in WO2005/118642, Ward et al., 1989, Nature, 341, 544-546 and Holt et al., 2003, Trends in Biotechnology, 21, 484-490. In one embodiment a single domain antibody for use in present invention is a heavy chain variable domain (VH) or a light chain domain (VL). Each light chain domain may be either of the kappa or lambda subgroup. Methods for isolating VH and VL domains have been described in the art, see for example EP0368684 and Ward et al., *supra*. Such domains may be derived from any suitable species or antibody starting material. In one embodiment the single domain antibody may be derived from a rodent, a human or other species. In one embodiment the single domain antibody is humanised. [0057] In one embodiment the single domain antibody is derived from a phage display library, using the methods described in for example, WO2005/118642, Jespers et al., 2004, Nature Biotechnology, 22, 1161-1165 and Holt et al., 2003, Trends in Biotechnology, 21, 484-490. Preferably such single domain antibodies are fully human but may also be derived from other species. It will be appreciated that the sequence of the single domain antibody once isolated may be modified to improve the characteristics of the single domain antibody, for example solubility, as described in Holt et al., supra. [0058] In one embodiment the or each domain antibody is a VH or VHH. [0059] In one embodiment there are two domain antibodies, one fused to each heavy chain, wherein the two domain antibodies form a VH/VL pairing which bind to the antigen to which they are specific co-operatively. [0060] In one embodiment the antibody of the disclosure is isolated, that is to say not located in a human or an animal body. [0061] The terms "protein" and "polypeptide" are used interchangeably herein, unless the context indicates otherwise. "Peptide" is intended to refer to 10 or less amino acids. [0062] The terms "polynucleotide" includes a gene, DNA, cDNA, RNA, mRNA etc unless the context indicates otherwise. [0063] As used herein, the term "comprising" in context of the present specification should be interpreted as "including". [0064] The term "wild-type" in the context of the present invention means an antibody as it may occur in nature or may be isolated from the environment, which does not comprise any genetically engineered mutations. **[0065]** The designation for a substitution mutant herein consists of a letter followed by a number followed by a letter. The first letter designates the amino acid in the wild-type protein. The number refers to the amino acid position where the amino acid substitution is being made, and the second letter designates the amino acid that is used to replace the wild-type amino acid. **[0066]** The residues in antibody variable and constant domains are conventionally numbered according to a system devised by Kabat *et al.* This system is set forth in Kabat et al., 1987, in Sequences of Proteins of Immunological Interest, US Department of Health and Human Services, NIH, USA (hereafter "Kabat *et al.* (*supra*)"). [0067] The Kabat residue designations do not always correspond directly with the linear numbering of the amino acid residues. The actual linear amino acid sequence may contain fewer or additional amino acids than in the strict Kabat numbering corresponding to a shortening of, or insertion into, a structural component, whether framework or complementarity determining region (CDR), of the basic variable domain structure. The correct Kabat numbering of residues may be determined for a given antibody by alignment of residues of homology in the sequence of the antibody with a "standard" Kabat numbered sequence. [0068] Alternatively, the numbering of amino acid residues may be performed by the EU-index or EU numbering system (also described in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). [0069] A further numbering system of amino acid residues in antibodies is the IMGT numbering system (Lefranc, M.-P. et al., Dev. Comp. Immunol., 29, 185-203 (2005)). [0070] The Kabat numbering system is used in the present specification except where otherwise indicated that the EU numbering system or IMGT numbering system is used. [0071] Between the four IgG isotypes, the intrachain disulphide bonding arrangements in the heavy and light chain are similar whereas the interchain disulphide bonding arrangements are unique for each isotype [Reviewed by (Wypych,J., Li,M., Guo,A., Zhang,Z., Martinez,T., Allen,M.J., Fodor,S., Kelner,D.N., Flynn,G.C., Liu,Y.D., Bondarenko,P.V., Ricci,M.S., Dillon,T.M., Balland,A., 2008. Human IgG2 antibodies display disulphide-mediated structural isoforms. J Biol Chem. 283, 16194-16205)]. [0072] As shown in Figure 1b, the hinge region sequences of the four IgG isotypes differ. The complete or genetic hinge region typically consists of residues 226 to 251 (numbering based on Kabat numbering system). Figure 1b shows the upper, core and lower sections of the hinge regions of the four IgG isotypes. For the IgG1 isotype, the upper hinge region is residues 226 to 238, the core hinge region is residues 239 to 243 and the lower hinge region is residues 239 to 243 and the lower hinge
region is residues 239 to 243 and the lower hinge region is residues 244 to 251. [0073] Thus, the hinge comprising the upper hinge, core and lower hinge in an IgG1 is 23 amino acids in length as shown in Figure 1a. The upper hinge is 10 amino acids. The core is 5 amino acids and the lower hinge is 8, see for example Figure 1b. [0074] The hinge comprising the upper hinge, core and lower hinge in an IgG4 is 20 amino acids in length as shown in Figure 1a. The upper hinge is 7 amino acids. The core is 5 amino acids and the lower hinge is 8, see for example Figure 1b **[0075]** The new mutant IgG4 antibodies according to the present invention have been developed by modifying the interchain disulphide bond arrangements within IgG4, specifically the C_L-C_H1 interchain disulphide bond arrangement between the light chain (LC) and heavy chain (HC) has been modified. **[0076]** Figure 1b shows sections of the human lgG heavy and light chain sequences for the lgG 1-4 isotypes indicating the cysteine positions (underlined) that form the C_L - C_H 1 interchain disulphide bonds. The inter C_L - C_H 1 disulphide bond of lgG1 is formed between the LC C214 (Kabat numbering system) and C233 (Kabat numbering system) of the HC just before the hinge region. In contrast, the C_H 1- C_L disulphide bond for lgG2, 3 and 4 is formed between the LC C214 and C127 N-terminal to the intrachain disulphide bond of the HC. The LC and HC sequences surrounding the cysteine residues involved in the C_L - C_H 1 disulphide bond formation are shown and aligned in Figure 1b. [0077] The present invention has investigated how the C_L - C_H 1 disulphide bond affects the properties of an IgG4 antibody including the thermostability, structural stability, disulphide isoform heterogeneity, affinity and half-molecule exchange of the antibody. [0078] Mutants of lgG4 may be generated by substitution of the cysteine residue in C_H1 at position 127 with another amino acid as well as substituting one or more of the amino acids in the upper hinge region, preferably amino acids at positions selected from 227, 228, 229 and 230, numbered according to the Kabat numbering system of lgG4, with cysteine. Positions 227, 228, 229 or 230 are at or near to the equivalent structural position that the lgG1 cysteine 233 is situated. **[0079]** Each heavy chain may comprise further mutations including the substitution of one or both cysteine residues 239 and 242 in the IgG4 hinge region with another amino acid. A mutation to lengthen the IgG4 upper hinge region by three amino acids between positions 238 and 239 to be the same length as the IgG1 hinge may also be included in some antibodies. The S241P mutation was also introduced in some antibodies. [0080] An IgG4 antibody is provided in which the cysteine 127 is substituted for another amino acid and the cysteine of the light chain is linked via a disulphide bond to an engineered cysteine at position 227, 228, 229 or 230. [0081] In one embodiment the upper hinge and core region is selected from one of the following sequences 108 to 295. [0082] In one embodiment the core hinge region in one or both heavy chain sequences or fragments thereof has the sequence CPPCP SEQ ID NO: 322. **[0083]** Whilst not wishing to be bound by theory it is thought that this sequence is likely to block dynamic exchange of the antibody arms at "in vivo" type concentrations for example concentration of less than 0.5mM reductant, in particular concentrations of reductant in the order of 5uM are thought to be physiologically relevant (Zilmer et al., 2005 Drug Design Reviews vol. 2, no. 2, pp. 121-127, 2005). **[0084]** The mutations to the antibodies of the present invention will now be described in further detail. The methods for replacing amino acids are well known in the art of molecular biology. Such methods include for example site directed mutagenesis using methods such as PCR to delete and/or substitute amino acids or *de novo* design of synthetic sequences. [0085] Figure 2a shows the hinge residues of IgG1 wild type, IgG4 wild type and the positions where mutations have been introduced in the antibodies of the present invention. Numbering based on Kabat numbering system. [0086] The antibodies according to the present invention comprise a mutation at position 127 (C127), wherein the cysteine residue is replaced by another amino acid, preferably an amino acid that does not contain a thiol group. By replace or substitute we mean that where the interchain cysteine 127 would normally be found in the antibody heavy chain another amino acid is in its place. The mutation at C127 may be any suitable mutation to one, two or three of the nucleotides encoding the amino acid at position 127 which changes the amino acid residue from cysteine to another suitable amino acid. Examples of suitable amino acids include serine, threonine, alanine, glycine or any polar amino acid. A particularly preferred amino acid is serine. **[0087]** The substitution of the cysteine at position 127 with another amino acid removes the cysteine in the C_H1 domain which normally forms a disulphide bond with a cysteine in the light chain in the wild-type IgG4. Therefore, in order to form a light chain and heavy chain pairing via an inter-chain disulphide bond the light chain must form a disulphide bond with a cysteine which is positioned in the hinge region of the heavy chain. **[0088]** Antibodies according to the present invention comprise a heavy chain wherein one or more of the amino acids at positions selected from 227, 228, 229 and 230, numbered according to the Kabat numbering system, is substituted with cysteine. Accordingly, antibodies according to the present invention may carry one or more of the following mutations: S227C; K228C; Y229C; G230C. [0089] Preferably only one residue selected from 227, 228, 229 and 230 is substituted with a cysteine residue. [0090] Particularly preferred antibodies of the present invention carry the mutation Y229C or G230C. [0091] The inclusion of a cysteine residue at a position selected from 227, 228, 229 and 230, in the hinge region of the heavy chain provides a new position for an inter-chain disulphide bond to form between the heavy chain and the light chain. [0092] Further mutations may be introduced to the antibodies of this aspect of the present invention. In one embodiment the cysteine at position 239 (C239) and/or the cysteine at position 242 (C242), numbered according to the Kabat numbering system, in the heavy chain are substituted with another amino acid, preferably an amino acid that does not contain a thiol group. By replace or substitute we mean that where the cysteine 239 and/or the cysteine 242 would normally be found in the antibody heavy chain another amino acid is in its place. The mutation at C239 and/or C242 may be any suitable mutation to one, two or three of the nucleotides encoding the amino acid which changes the amino acid residue from cysteine to another suitable amino acid. Examples of suitable amino acids include serine, threonine, alanine, glycine or any polar amino acid. A particularly preferred amino acid is serine. [0093] In one embodiment the cysteine at position 239 in the heavy chain is substituted with another amino acid and the cysteine at position 242 in the heavy chain is substituted with another amino acid. In this embodiment, the substitution of both C239 and C242 removes both cysteine residues in the hinge region of the heavy chain which normally form interheavy chain disulphide bonds with the corresponding cysteines in another heavy chain. The resulting half-molecules may form whole antibody molecules through non-covalent bonding between two heavy chains. [0094] In an alternative embodiment the cysteine at position 239 in the heavy chain is substituted with another amino acid. In this embodiment the cysteine at position 242 is not substituted with another amino acid. [0095] In a further alternative embodiment the cysteine at position 242 in the heavy chain is substituted with another amino acid. In this embodiment the cysteine at position 239 is not substituted with another amino acid. [0096] The substitution of either C239 or C242, leaves one cysteine in the heavy chain which is capable of forming an inter-heavy chain disulphide bond with a cysteine in another heavy chain. Without being bound by theory it is thought that the substitution of one cysteine in the hinge region, particularly substitution of C239, reduces the formation of an intrachain disulphide bond in the hinge region and therefore may reduce the formation of half antibody molecules. [0097] In one embodiment of the present invention the proline at position 240 may be substituted with another amino acid. [0098] In one embodiment of the present invention the serine at position 241 may be substituted with another amino acid. [0099] In one embodiment of the present invention, wherein the serine at position 227 is substituted with a cysteine, the antibody preferably does not comprise mutations at positions C239 and C242. In another embodiment, wherein the serine at position 227 is substituted with a cysteine, the cysteine at position 239 in the heavy chain is preferably substituted with another amino acid but the cysteine at position 242 is not substituted with another amino acid. **[0100]** In one embodiment the antibodies of the present invention comprise an IgG4 heavy chain which is mutated to insert one or more amino acids between amino acids 226-243. The number of amino acids inserted may be 1 to 10, 1 to 5, 1 to 3, preferably 1, 2, 3 or 4 amino acids are inserted. The amino acids are preferably inserted between amino acids 238 and 239. Any suitable amino acids may be inserted in the hinge region, such as alanines, glycines, serines or threonines and combinations thereof. Preferably three alanines (AAA), three glycines (GGG), three serines (SSS) or three threonines (TTT) are inserted or a threonine, histidine
and another threonine (THT). It is believed that antibodies of the present invention comprising an IgG4 heavy chain which has been mutated to insert three amino acids in the hinge region show improved stability, for example thermostability. **[0101]** A further mutation which may be introduced in the antibodies according to the present invention is the mutation S241P. This mutation has been previously shown to reduce the formation of half molecules at biologically relevant concentrations (Angal,S. et al., 1993. A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody. Mol Immunol 30, 105-108). It has been surprisingly found that mutant antibodies of the present invention which comprise the S241P mutation demonstrate some heavy chain exchange *in vitro* under strong reducing conditions compared to IgG4 P (IgG4 with S241P). This allows the creation of bispecific antibodies *in vitro* from mutant IgG4 antibodies of the present invention. [0102] The antibodies according to the present invention may comprise one or more further mutations in the hinge region. For example the antibodies may further comprise one or more of the following mutations S227P, Y229S, P237D and P238K. **[0103]** In one embodiment the antibody according to the present invention effectively comprises an IgG1 hinge region from residue 226 to 243 (upper hinge and core hinge). Accordingly, the antibody of the present invention comprises a hinge region wherein the glycine at position 230 is substituted with cysteine, the serine at position 227 is substituted with proline, the tyrosine at position 229 is substituted with serine, the proline at position 237 is substituted with aspartic acid, the proline at position 238 is substituted with lysine, the amino acid sequence threonine-histidine-threonine is inserted between positions 238 and 239 and the serine at position 241 is substituted with proline. These mutations may also be written as S227P, Y229S, G230C, P237D, P238KTHT and S241P, as shown in Figure 2a. [0104] The antibody according to the present invention preferably has an IgG4 lower hinge from residue 244 to 251 (APEFLGGP SEQ ID NO: 321). Without being bound by theory it is believed that the IgG4 lower hinge region contributes to the lack of effector function of an IgG4 antibody. [0105] In a one embodiment, the present invention provides an asymmetric mixed antibody comprising two heavy chains which each comprise a variable region, a C_H1 domain and hinge (such as two heavy chains independently), each heavy chain independently comprising a sequence selected from one of the following sequences: SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO:18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36 and SEQ ID NO: 37. [0106] In a one embodiment the asymmetric mixed antibody of the present invention comprises two heavy chains which each comprise a variable region, a C_H1 domain and hinge (such as two heavy chains independently), each heavy chain independently comprises a sequence selected from one of the following sequences: SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 35, SEQ ID NO: 36 and SEQ ID NO: 37. More specifically, the asymmetric mixed antibody of the present invention comprises two heavy chains which each comprise a variable region, a C_H1 domain and hinge (such as two heavy chains independently), each heavy chain independently comprises a sequence selected from one of the following sequences: SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 35, SEQ ID NO: 36 and SEQ ID NO: 37. [0107] Accordingly, the present invention provides an asymmetric mixed antibody two heavy chains, each comprising, a variable domain, a C_H1 domain and hinge, a C_H2 domain and a C_H3 domain (such as two heavy chains independently) each comprising a sequence independently selected from one of the following sequences: SEQ ID NO: 38, SEQ ID NO: 39, SEQ ID NO: 40, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 46, SEQ ID NO: 47, SEQ ID NO: 48, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51, SEQ ID NO: 52, SEQ ID NO: 53, SEQ ID NO: 54, SEQ ID NO: 55, SEQ ID NO: 56, SEQ ID NO: 57, SEQ ID NO: 58, SEQ ID NO: 59, SEQ ID NO: 60, SEQ ID NO: 61, SEQ ID NO: 62 and SEQ ID NO: 63. **[0108]** In one embodiment asymmetric mixed antibody of the present invention comprises two heavy chains which each comprise a variable region, a C_H1 domain and a hinge region, wherein each heavy chain independently comprises SEQ ID NO: **36** (antibody 28P), SEQ ID NO: **37** (antibody 44P) or SEQ ID NO: **35** (antibody 48). **[0109]** In one embodiment an asymmetric mixed antibody of the present invention comprises two heavy chains which each comprise a variable region, a C_H1 domain, a hinge region, a C_H2 domain and a C_H3 domain wherein each heavy chain independently comprises SEQ ID NO: **62** (antibody 28P), SEQ ID NO: **63** (antibody 44P) or SEQ ID NO: **61** (antibody 48). [0110] In any of the embodiments above the second heavy chain of the antibody may be selected from any heavy chain sequence disclosed herein. **[0111]** Table 1 below lists example antibodies with mutations which have been introduced compared to the IgG4 wild-type sequence. Table 1 also includes wild-type IgG1 and IgG4 antibodies and control antibodies. Table 1: | Antibody
Number | Heavy Chain Mutations (Kabat
Numbering) | C _H 1 domain &
Hinge SEQ ID NO: | C _H 1,Hinge, C _H 2 & C _H 3
SEQ ID NO: | |--------------------|--|---|---| | 1 | C127S | 296 | 306 | | 2 | C127S, C239S | 33 | 59 | | 3 | C127S, C242S | 34 | 60 | | 4 | C127S, C242S, C239S | 297 | 307 | | 5 | G230C | 298 | 308 | | 5P | G230C, S241P | 299 | 309 | | 6 | C127S, G230C, C239S | 12 | 38 | | 7 | C127S, G230C, C242S | 13 | 39 | | 8 | C127S, G230C, C239S, C242S | 14 | 40 | | 9 | G230C, C239S | 300 | 310 | | 10 | G230C, C242S | 301 | 311 | | 11 | G230C, C239S, C242S | 302 | 312 | | 12 | C239S | 303 | 313 | | 13 | C242S | 304 | 314 | | 14 | C239S, C242S | 305 | 315 | | 15 | C127S, G230C | 15 | 41 | | 16 | C127S, G230C, S241P | 16 | 42 | | 17 | Human IgG4 wild type | 2 | - | | 18 | S241P | - | - | | 19 | Human IgG1 wild type | 1 | - | | 28 | C127S Y229C | 17 | 43 | | 28P | C127S Y229C, S241P | 36 | 62 | | 29 | C127S Y229C C239S | 18 | 44 | | 30 | C127S Y229C C242S | 19 | 45 | | 31 | C127S Y229C C239S C242S | 20 | 46 | | Antibody
Number | Heavy Chain Mutations (Kabat
Numbering) | C _H 1 domain &
Hinge SEQ ID NO: | C _H 1,Hinge, C _H 2 & C _H 3
SEQ ID NO: | |--------------------|---|---|---| | 32 | C127S K228C | 21 | 47 | | 33 | C127S K228C C239S | 22 | 48 | | 34 | C127S K228C C242S | 23 | 49 | | 35 | C127S K228C C239S C242S | 24 | 50 | | 36 | C127S S227C | 25 | 51 | | 37 | C127S S227C C239S | 26 | 52 | | 38 | C127S S227C C242S | 27 | 53 | | 39 | C127S S227C C239S C242S | 28 | 54 | | 44 | C127S G230C P238PAAA | 29 | 55 | | 44P | C127S G230C P238PAAA, S241P | 37 | 63 | | 45 | C127S G230C P238PAAA C239S | 30 | 56 | | 46 | C127S G230C P238PAAA C242S | 31 | 57 | | 47 | C127S G230C P238PAAA C239S
C242S | 32 | 58 | | 48 | C127S, S227P, Y229S, G230C,
P237D, P238KTHT, S241P | 35 | 61 | | 49 | C127S G230C P238PA | | | | 50 | C127S G230C P238PAA S241P | | | | 51 | C127S, G230C, P238PAAAA | | | | 52 | C127S, G230C, P238PAAAAA | | *************************************** | | 55 | C127S, G230C, P238PTHT | | | | 56 | C127S, G230C, P237D, P238KTHT | | | | 57 | C127S, G230C, P238PGGG | | | | 60 | C127S, S227P, G230C | | | | 62 | C127S, Y229S, G230C | | | | 64 | C127S, S227P, Y229S, G230C | | | | 65 | C127S, S227P, Y229S, G230C,
P237D, P238KTHT | | | | 66 | C127S, G230C, P237D, P238KTH | | *************************************** | | 67 | C127S, G230C, P237D, P238KT | | | | 68 | C127S, G230C, P237D, P238K | | *************************************** | | 69 | C127S, G230C P237D, P238KAAA | | | | 71 | C127S, S227P, G230C, P237D,
P238KTHT | | | | 73 | C127S, Y229S, G230C, P237D,
P238KTHT | | | | 74 | C127S Y229C core hinge SPPCP | | | | 75 | C127S G230C core hinge CPPSP | | ······ | | 76 | C127S Y229C core hinge CPPSP | | | | 77 | C127S G230C core hinge SPPCP | | | [0112] In one embodiment a first lgG4 heavy chain sequence is combined with a second lgG4 heavy chain sequence each comprising the C_{H1} and upper hinge mutations and core hinge sequences as described in Table 2: Table 2 | FIRST HEAVY CHAIN | SECOND HEAVY CHAIN | |---|--| | C127S Y229C (Ab 28) | C127S Y229C S241P (Ab 28P) | | C127S Y229C S241P (Ab 28P) | lgG4 WT | | C127S Y229C (Ab 28) | lgG4 WT | | C127S G230C (Ab 15) | C127S G230C S241P (Ab 16) | | C127S G230C S241P (Ab 15P) | lgG4 WT | | C127S G230C (Ab 15) | lgG4 WT | | C127S + lgG1 hinge (Ab 48) | C127S G230C (Ab 15) | | C127S + lgG1 hinge (Ab 48) | C127S G230C S241P (Ab 15P) | | C127S +
lgG1 hinge (Ab 48) | C127S Y229C (Ab 28) | | C127S + lgG1 hinge (Ab 48) | C127S Y229C S241P (Ab 28P) | | C127S + lgG1 hinge (Ab 48) | C127S, S227P, Y229S, G230C, P237D, P238KTHT (Ab 65) | | C127S Y229C core hinge SPPCP (Ab 74) | C127S Y229C core hinge CPPCP or core hinge CPSCP (Ab 28P or 28) | | C127S Y229C core hinge SPSCP (Ab 29) | C127S Y229C core hinge CPPCP or core hinge CPSCP (Ab 28P or 28) | | C127S G230C core hinge SPSCP (Ab 6) | C127S G230C core hinge CPPCP or core hinge CPSCP (Ab 16 or 15) | | C127S G230C core hinge CPPSP (Ab 75) | C127S G230C core hinge CPPCP or core hinge CPSCP (Ab 16 or 15) | | C127S G230C core hinge CPPSP (Ab75) | C127S Y229C core hinge CPPCP or core hinge CPSCP (Ab 28P or 28) | | C127S Y229C core hinge CPPSP (Ab 76) | C127S Y229C core hinge CPPCP or core hinge CPSCP
(Ab 28P or 28) | | C127S Y229C core hinge CPPSP (Ab 76) | C127S G230C core hinge CPPCP or core hinge CPSCP (Ab 16 or 15) | | C127S G230C P238PAAA (Ab 44) | C127S G230C P238PAAA S241P (Ab 44P) | | C127S G230C P238PAAA (Ab 44) | IgG4 WT P238PAAA | | C127S G230C P238PAAA (Ab 44) | lgG4 WT | | C127S G230C P238PAAA S241P (Ab 44P) | lgG4 WT | | C127S + lgG1 hinge (Ab 48) | lgG4 WT | | C127S, S227P, Y229S, G230C, P237D,
P238KTHT (Ab 65) | lgG4 WT | | lgG4 wild type (S241) | S241G | | | S241A | | | S241D | | | S241E | | | S241K | | | S241T | | | S241P | | | C127C and Y229C | | lgG4 S241G | S241A | | | S241T | | | S241D | | | S241E | | | S241K | | lgG4 S241T | S241A | | FIRST HEAVY CHAIN | SECOND HEAVY CHAIN | | |-----------------------|--------------------|-----------| | lgG4 wild type (S241) | C239S | | | | C242S | | | | C239C and C242C | | | | C127C and Y229C | ***** | | IgG4 S241P | C127C and Y229C | ******* | | | S241G | XXXXXXX | | | S241A | ****** | | | S241T | ******** | | | S241D | | | | S241E | | | | S241K | | | | C239C and C242C | | | lgG4 C127S and Y229C | S241G | | | | S241A | ***** | | | S241T | AAAAAA | | | S241D | ****** | | | S241E | ****** | | | S241K | ******* | | | C239C and C242C | | | lgG4 C239C and C242C | S241G | ********* | | | S241A | | | | S241T | | | | S241D | ***** | | | S241K | ANAXANA | | | S241E | ARRARAS | | | C239C and C242C | | | | C239S | 10000000 | | | C242S | | **[0113]** Accordingly the present disclosure provides an asymmetric mixed antibody comprising two heavy chains each comprising at least a variable region, a hinge region and a C_H1 domain, wherein a first heavy chain and second heavy chain sequences are IgG4 heavy chain sequences selected from the combinations of first and second heavy chain sequence mutations listed in Table 2. **[0114]** The asymmetric mixed antibody may comprise a first and second heavy chain, wherein each heavy chain constant sequence comprises mutations to the C_{H1} domain and hinge region as described above, and wherein the mutations to the C_{H1} domain and hinge region in each heavy chain are different. Alternatively, the first heavy chain constant sequences may comprise mutations to the C_{H1} domain and hinge region as described above and the second heavy chain constant sequence is I_{H1} sequence is I_{H1} wild type or I_{H1} wild type with S241P mutation. [0115] The present invention provides an asymmetric mixed bispecific antibody, wherein each heavy chain has different variable regions. The antibody preferably also comprises two light chains, wherein each heavy-light chain pair (Fab) has different variable regions. **[0116]** "Different variable regions" as employed herein is intended to refer to wherein the said variable regions have specificity for different antigens. That is to say that the antigen to which each variable region is specific is a different antigen or a different part of an antigen, eg a different epitope. **[0117]** "Specific" as employed herein refers to the fact the binding domains recognized a target antigen with greater affinity and/avidity than other antigens to which it is not specific (for example 10, 20, 50, 10 or 1000 greater). It does not necessarily imply that the specific binding region does not bind any non-target antigens but rather the interaction with the target is such that it can be used to purify the target antigen (to which it is specific) from a complex mixture of antigens, including antigens in the same family of proteins. [0118] In one embodiment the antibody according to the present disclosure is isolated. [0119] Isolated as employed herein is intended to refer to an antibody that is isolated from the human body, for example: prepared by recombinant techniques, purified using a technique such as chromatography, and/or in a pharmaceutical formulation. **[0120]** The term 'antibody' as used herein includes intact (whole) antibodies and functionally active fragments which comprise two heavy chains which each comprise a V_H domain, a C_H 1 domain and a hinge region. Accordingly, the term "antibody" in the present invention covers bi, tri or tetra-valent antibodies, a dimer of Fab' and $F(ab')_2$ fragments and whole antibody molecules comprising two light chain and heavy chain pairings. **[0121]** As is well known in the art, a typical Fab' molecule comprises a heavy and a light chain pair in which the heavy chain comprises a variable region V_H , a constant domain $C_H 1$ and a hinge region and the light chain comprises a variable region V_L and a constant domain $C_L 1$. [0122] In one embodiment the heavy chain comprises a $C_{H}2$ domain and a $C_{H}3$ domain and optionally a $C_{H}4$ domain. In one embodiment the antibody comprises two heavy chains each of which is as defined above in the first or second aspect of the present invention. The antibodies according to the present invention also preferably comprise two light chains, which may be the same or different. In the embodiment of the present invention which provides a bispecific antibody which comprises two heavy chains, as defined above, and two light chains, the two light chains have different variable regions and may have the same or different constant regions. [0123] In one embodiment the C_H2 and C_H3 domains employed may be mutated, for example in order to reduce the formation of aggregates of IgG4 antibodies. US2008/0063635 Takahashi et al. has investigated a mutant of IgG4 in which arginine at position 409 (409 numbered according to EU numbering system or 440 numbered according to the Kabat numbering system) in the C_H3 domain is substituted with lysine, threonine, methionine or leucine in order to inhibit aggregate formation at low pH. Further mutations at L235, D265, D270, K322, P329 and P331 (L235, D265, D270, K322, P329 and P331 numbered according to EU numbering system or L248, D278, D283, K341, P348 and P350 numbered according to the Kabat numbering system) are also taught in order to attenuate CDC activity. WO2008/145142 Van de Winkel et al. discloses stable IgG4 antibodies that have a reduced ability to undergo "Fab-arm exchange" (referred to herein as dynamic heavy chain exchange) by substitution of the arginine residue at position 409, the Phe residue at position 405 or the Lys at position 370 (R409, F405 and K370 numbered according to EU numbering system or R440, F436 and K393 numbered according to the Kabat numbering system) even in the absence of the S228P (S228 numbered according to EU numbering system or S241 according to the Kabat numbering system) mutation in the hinge region. **[0124]** In one embodiment the antibody of the present invention is a whole asymmetric mixed antibody comprising two light chains and two heavy chains, wherein each heavy chain comprises an $IgG4\ C_H1$ wherein the cysteine at position 127, numbered according to the Kabat numbering system is substituted with another amino acid, an IgG1 upper and middle hinge region, an IgG4 lower hinge region, a C_H2 domain and a C_H3 domain. [0125] The complete hinge region of an IgG4 antibody typically consists of residues 226 to 251 (numbering based on Kabat numbering system. However the hinge region may be shortened or lengthened as required. For example, antibodies according to the first aspect of the present invention, the wild type amino acid is substituted with a cysteine residue at position 227, 228, 229 or 230, the hinge region may end after the new cysteine residue at position 227, 228, 229 or 230. Antibodies according to the present invention may also comprise one or more further amino acids positioned N-terminal and/or C-terminal of the hinge region. In addition other characteristics of the hinge can be controlled, such as the distance of the hinge cysteine(s) from the light chain interchain cysteine, the distance between the cysteines of the hinge and the composition of other amino acids in the hinge that may affect properties of the hinge such as flexibility e.g. glycines may be incorporated into the hinge to increase rotational flexibility or prolines may be incorporated to reduce flexibility. Alternatively combinations of charged or hydrophobic residues may be incorporated into the hinge to confer multimerisation or purification properties. Other modified hinge regions may be entirely synthetic and may be designed to possess desired properties such as length, composition and flexibility. [0126] Each heavy chain preferably comprises an IgG4 C_H2 domain and a C_H3 domain, as shown in SEQ ID NO: 64. [0127] It will be appreciated that sequence variants of the Fc constant region domains may also be used. **[0128]** In one embodiment each heavy chain comprises $IgG4 C_{H}2$ and $C_{H}3$ domains wherein the arginine at position 409 (EU numbering) is substituted with lysine, threonine, methionine or leucine in order to inhibit aggregate formation at low pH (US2008/0063635 Takahashi et al.) Mutations at L235, D265, D270, K322, P331 and P329 (numbered according to EU numbering system) are also taught in order to attenuate CDC activity
(US2008/0063635 Takahashi et al.). **[0129]** Each heavy chain may comprise the mutations as taught in WO2008/145142 Van de Winkel et al. which discloses stable IgG4 antibodies that have a reduced ability to undergo Fab-arm exchange by substitution of the arginine residue at position 409, the Phe residue at position 405 or the Lys at position 370 (numbered according to EU numbering system). [0130] In one embodiment each heavy chain comprises an $IgG4\ C_{H2}$ domain and an $IgG1\ C_{H3}$ domain, as shown in SEQ ID NO: 65. [0131] In one embodiment, the antibody is a monoclonal, fully human, humanized or chimeric antibody fragment. In one embodiment the antibody is fully human or humanized. **[0132]** Monoclonal antibodies may be prepared by any method known in the art such as the hybridoma technique (Kohler & Milstein, Nature, 1975, 256, 495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today, 1983, 4, 72) and the EBV-hybridoma technique (Cole et al., "Monoclonal Antibodies and Cancer Therapy", pp. 77-96, Alan R. Liss, Inc., 1985). **[0133]** Antibodies for use in the invention may also be generated using single lymphocyte antibody methods by cloning and expressing immunoglobulin variable region cDNAs generated from single lymphocytes selected for the production of specific antibodies by, for example, the methods described by Babcook, J. et al., Proc. Natl. Acad. Sci. USA, 1996, 93(15), 7843-7848, WO92/02551, WO2004/051268 and WO2004/106377. **[0134]** Humanized antibodies are antibody molecules from non-human species having one or more complementarity determining regions (CDRs) from the non-human species and a framework region from a human immunoglobulin molecule which optionally comprise one or more donor residues from the non-human species (see, for example, US 5,585,089). **[0135]** The antibodies for use in the present invention can also be generated using various phage display methods known in the art and include those disclosed by Brinkman et al., J. Immunol. Methods, 1995, 182, 41-50; Ames et al., J. Immunol. Methods, 1995, 184, 177-186; Kettleborough et al. Eur. J. Immunol., 1994, 24, 952-958; Persic et al., Gene, 1997 187, 9-18; and Burton et al., Advances in Immunology, 1994, 57, 191-280; WO90/02809; WO91/10737; WO92/01047; WO92/18619; WO93/11236; WO95/15982; and WO95/20401; and US5,698,426; 5,223,409; 5,403,484; 5,580,717; 5,427,908; 5,750,753; 5,821,047; 5,571,698; 5,427,908; 5,516,637; 5,780,225; 5,658,727; 5,733,743; and 5,969,108. Also, transgenic mice, or other organisms, including other mammals, may be used to generate humanized antibodies. **[0136]** Fully human antibodies are those antibodies in which the variable regions and the constant regions (where present) of both the heavy and the light chains are all of human origin, or substantially identical to sequences of human origin, not necessarily from the same antibody. Examples of fully human antibodies may include antibodies produced for example by the phage display methods described above and antibodies produced by mice in which the murine immunoglobulin variable and/or constant region genes have been replaced by their human counterparts eg. as described in general terms in EP0546073B1, US5,545,806, US5,569,825, US5,625,126, US5,633,425, US5,661,016, US5,770,429, EP0438474B1 and EP0463151B1. [0137] The antibody starting material for use in the present invention may be prepared by the use of recombinant DNA techniques involving the manipulation and re-expression of DNA encoding the antibody variable and constant region(s). Standard molecular biology techniques may be used to modify, add or delete amino acids or domains as desired. Any alterations to the variable or constant regions are still encompassed by the terms 'variable' and 'constant' regions as used herein. [0138] The antibody starting material may be obtained from any species including for example mouse, rat, rabbit, hamster, camel, llama, goat or human. Parts of the antibody may be obtained from more than one species, for example the antibody may be chimeric. In one example, the constant regions are from one species and the variable regions from another. The antibody starting material may also be modified. In another example, the variable region of the antibody has been created using recombinant DNA engineering techniques. Such engineered versions include those created for example from natural antibody variable regions by insertions, deletions or changes in or to the amino acid sequences of the natural antibodies. Particular examples of this type include those engineered variable region domains containing at least one CDR and, optionally, one or more framework amino acids from one antibody and the remainder of the variable region domain from a second antibody. The methods for creating and manufacturing these antibodies are well known in the art (see for example, Boss et al., US4,816,397; Cabilly et al., US6,331,415; Shrader et al., WO92/02551; Ward et al., 1989, Nature, 341, 544; Orlandi et al., 1989, Proc.Natl.Acad.Sci. USA, 86, 3833; Riechmann et al., 1988, Nature, 322, 323; Bird et al, 1988, Science, 242, 423; Queen et al., US 5,585,089; Adair, WO91/09967; Mountain and Adair, 1992, Biotechnol. Genet. Eng. Rev, 10, 1-142; Verma et al., 1998, Journal of Immunological Methods, 216, 165-181). [0139] In one embodiment the antibody comprises a variable domain pair forming a binding domain that is a cognate pair. Cognate pair as employed herein is intended to refer to a natural pair of variable domains, that is to say isolated from a single antibody or antibody expressing cell. [0140] Variable domains may have been optimized and/or humanized. [0141] Optimised/humanized variable domains derived from a cognate pair will still be considered a cognate pair after optimization/humanization. [0142] Thus the invention extends to human, humanized or chimeric molecules. [0143] In one embodiment the molecule specifically binds a target antigen. Specifically binds as employed herein is intended to refer to molecules having high affinity for a target antigen (to which it is specific) and which binds antigens to which it is not specific with a low or much lower affinity (or not at all). [0144] The antibody molecules of the present invention suitably have a high binding affinity, in particular, nanomolar or picomolar. Affinity may be measured using any suitable method known in the art, including BIAcore™. In one embodiment the molecule of the present invention has a binding affinity of about 100 pM or better. In one embodiment the molecule of the present invention has a binding affinity of about 50pM or better. In one embodiment the molecule of the present invention has a binding affinity of about 40pM or better. In one embodiment the molecule of the present invention has a binding affinity of about 30pM or better. In one embodiment the molecule of the present invention is fully human or humanized and has a binding affinity of about 100pM or better. [0145] A derivative of a naturally occurring domain as employed herein is intended to refer to where one, two, three, four or five amino acids in a naturally occurring sequence have been replaced or deleted, for example to optimize the properties of the domain such as by eliminating undesirable properties but wherein the characterizing feature(s) of the domain is/are retained. **[0146]** In one embodiment the antibody molecules of the present invention comprise one or more albumin binding peptides. *In vivo* the peptide binds albumin, which increases the half-life of the molecule. [0147] The albumin binding peptide may be appended from one or more variable regions, a hinge or C-terminal of the molecule or any location that does not interfere with the molecules antigen binding properties. [0148] Examples of albumin binding peptides are provided in WO2007/106120. **[0149]** It will also be understood by one skilled in the art that the antibody may undergo a variety of posttranslational modifications. The type and extent of these modifications often depends on the host cell line used to express the molecule as well as the culture conditions. Such modifications may include variations in glycosylation, methionine oxidation, diketopiperazine formation, aspartate isomerization and asparagine deamidation. A frequent modification is the loss of a carboxy-terminal basic residue (such as lysine or arginine) due to the action of carboxypeptidases (as described in Harris, RJ. Journal of Chromatography 705:129-134, 1995). **[0150]** If desired a molecule for use in the present invention may be conjugated to one or more effector molecule(s). It will be appreciated that the effector molecule may comprise a single effector molecule or two or more such molecules so linked as to form a single moiety that can be attached to the antibody molecule of the present invention. Where it is desired to obtain an antibody according to the invention linked to an effector molecule, this may be prepared by standard chemical or recombinant DNA procedures in which the antibody is linked either directly or via a coupling agent to the effector molecule. Techniques for conjugating such effector molecules to an antibody are well known in the art (see, Hellstrom et al., Controlled Drug Delivery, 2nd Ed., Robinson et al., eds., 1987, pp. 623-53; Thorpe et al., 1982, Immunol. Rev., 62:119-58 and Dubowchik et al., 1999, Pharmacology and Therapeutics, 83, 67-123). Particular chemical procedures include, for example, those described in WO93/06231, WO92/22583, WO89/00195, WO89/01476 and WO03/031581. Alternatively, where the effector molecule is a protein or polypeptide the linkage may be achieved using recombinant DNA procedures, for example as described in WO86/01533 and EP0392745. **[0151]** The term effector molecule as used herein includes, for example, antineoplastic agents, drugs, toxins, biologically active proteins, for example enzymes, other
antibody or antibody fragments, synthetic or naturally occurring polymers, nucleic acids and fragments thereof e.g. DNA, RNA and fragments thereof, radionuclides, particularly radioiodide, radioisotopes, chelated metals, nanoparticles and reporter groups such as fluorescent compounds or compounds which may be detected by NMR or ESR spectroscopy. **[0152]** Examples of effector molecules may include cytotoxins or cytotoxic agents including any agent that is detrimental to (e.g. kills) cells. Examples include combrestatins, dolastatins, epothilones, staurosporin, maytansinoids, spongistatins, rhizoxin, halichondrins, roridins, hemiasterlins, taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. **[0153]** Effector molecules also include, but are not limited to, antimetabolites (e.g. methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g. mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g. daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g. dactinomycin (formerly actinomycin), bleomycin, mithramycin, anthramycin (AMC), calicheamicins or duocarmycins), and anti-mitotic agents (e.g. vincristine and vinblastine). **[0154]** Other effector molecules may include chelated radionuclides such as ¹¹¹In and ⁹⁰Y, Lu¹⁷⁷, Bismuth²¹³, Californium²⁵², Iridium¹⁹² and Tungsten¹⁸⁸/Rhenium¹⁸⁸; or drugs such as but not limited to, alkylphosphocholines, topoisomerase I inhibitors, taxoids and suramin. **[0155]** Other effector molecules include proteins, peptides and enzymes. Enzymes of interest include, but are not limited to, proteolytic enzymes, hydrolases, lyases, isomerases, transferases. Proteins, polypeptides and peptides of interest include, but are not limited to, immunoglobulins, toxins such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin, a protein such as insulin, tumour necrosis factor, α-interferon, β-interferon, nerve growth factor, platelet derived growth factor or tissue plasminogen activator, a thrombotic agent or an anti-angiogenic agent, *e.g.* angiostatin or endostatin, or, a biological response modifier such as a lymphokine, interleukin-1 (IL-1), interleukin-2 (IL-2), granulocyte macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), nerve growth factor (NGF) or other growth factor and immunoglobulins. **[0156]** Other effector molecules may include detectable substances useful, for example, in diagnosis. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive nuclides, positron emitting metals (for use in positron emission tomography), and nonradioactive paramagnetic metal ions. See generally US4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics. Suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; suitable prosthetic groups include streptavidin, avidin and biotin; suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride and phycoerythrin; suitable luminescent materials include luminol; suitable bioluminescent materials include luciferase, luciferin, and aequorin; and suitable radioactive nuclides include ¹²⁵I, ¹³¹I, ¹¹¹In and ⁹⁹Tc. **[0157]** In another example the effector molecule may increase the half-life of the antibody *in vivo*, and/or reduce immunogenicity of the antibody and/or enhance the delivery of an antibody across an epithelial barrier to the immune system. Examples of suitable effector molecules of this type include polymers, albumin, albumin binding proteins or albumin binding compounds such as those described in WO05/117984. **[0158]** Where the effector molecule is a polymer it may, in general, be a synthetic or a naturally occurring polymer, for example an optionally substituted straight or branched chain polyalkylene, polyalkenylene or polyoxyalkylene polymer or a branched or unbranched polysaccharide, e.g. a homo- or hetero- polysaccharide. **[0159]** Specific optional substituents which may be present on the above-mentioned synthetic polymers include one or more hydroxy, methyl or methoxy groups. **[0160]** Specific examples of synthetic polymers include optionally substituted straight or branched chain poly(ethyleneglycol), poly(propyleneglycol) poly(vinylalcohol) or derivatives thereof, especially optionally substituted poly(ethyleneglycol), such as methoxypoly(ethyleneglycol) or derivatives thereof. [0161] Specific naturally occurring polymers include lactose, amylose, dextran, glycogen or derivatives thereof. **[0162]** "Derivatives" as used herein is intended to include reactive derivatives, for example thiol-selective reactive groups such as maleimides and the like. The reactive group may be linked directly or through a linker segment to the polymer. It will be appreciated that the residue of such a group will in some instances form part of the product as the linking group between the antibody of the disclosure and the polymer. [0163] The size of the polymer may be varied as desired but will generally be in an average molecular weight range from 500Da to 50000Da, for example from 5000 to 40000Da such as from 20000 to 40000Da. The polymer size may in particular be selected on the basis of the intended use of the product for example ability to localize to certain tissues such as tumors or extend circulating half-life (for review see Chapman, 2002, Advanced Drug Delivery Reviews, 54, 531-545). Thus, for example, where the product is intended to leave the circulation and penetrate tissue, for example for use in the treatment of a tumour, it may be advantageous to use a small molecular weight polymer, for example with a molecular weight of around 5000Da. For applications where the product remains in the circulation, it may be advantageous to use a higher molecular weight polymer, for example having a molecular weight in the range from 20000Da to 40000Da. **[0164]** Suitable polymers include a polyalkylene polymer, such as a poly(ethyleneglycol) or, especially, a methoxypoly(ethyleneglycol) or a derivative thereof, and especially with a molecular weight in the range from about 15000Da to about 40000Da. [0165] In one example an antibody for use in the present invention is attached to poly(ethyleneglycol) (PEG) moieties. In one particular example the PEG molecules may be attached through any available amino acid side-chain or terminal amino acid functional group located in the antibody, for example any free amino, imino, thiol, hydroxyl or carboxyl group. Such amino acids may occur naturally in the antibody or may be engineered into the antibody using recombinant DNA methods (see for example US5,219,996; US5,667,425; WO98/25971). In one example the molecule of the present invention is a modified antibody wherein the modification is the addition (to the C-terminal end of its heavy chain) of one or more amino acids to allow the attachment of an effector molecule. Multiple sites can be used to attach two or more PEG molecules [0166] In one embodiment a PEG molecule is linked to a cysteine 171 in the light chain, for example see WO2008/038024. [0167] Suitably PEG molecules are covalently linked through a thiol group of at least one cysteine residue located in the antibody. Each polymer molecule attached to the modified antibody may be covalently linked to the sulphur atom of a cysteine residue located in the antibody. The covalent linkage will generally be a disulphide bond or, in particular, a sulphur-carbon bond. Where a thiol group is used as the point of attachment appropriately activated effector molecules, for example thiol selective derivatives such as maleimides and cysteine derivatives may be used. An activated polymer may be used as the starting material in the preparation of polymer-modified antibody as described above. The activated polymer may be any polymer containing a thiol reactive group such as an α-halocarboxylic acid or ester, e.g. iodoacetamide, an imide, e.g. maleimide, a vinyl sulphone or a disulphide. Such starting materials may be obtained commercially (for example from Nektar, formerly Shearwater Polymers Inc., Huntsville, AL, USA) or may be prepared from commercially available starting materials using conventional chemical procedures. Particular PEG molecules include 20K methoxy-PEG-amine (obtainable from Nektar, formerly Shearwater; Rapp Polymere; and SunBio) and M-PEG-SPA (obtainable from Nektar, formerly Shearwater). [0168] The present disclosure also provides isolated DNA encoding an antibody molecule described herein. [0169] In a further aspect there is provided a vector comprising said DNA. [0170] General methods by which the vectors may be constructed, transfection methods and culture methods are well known to those skilled in the art. In this respect, reference is made to "Current Protocols in Molecular Biology", 1999, F. M. Ausubel (ed), Wiley Interscience, New York and the Maniatis Manual produced by Cold Spring Harbor Publishing. [0171] In a further aspect there is provided a host cell comprising said vector and/or DNA. **[0172]** Any suitable host cell/vector system may be used for expression of the DNA sequences encoding the molecule of the present invention. Bacterial, for example *E. coli*, and other microbial systems may be used or
eukaryotic, for example mammalian, host cell expression systems may also be used. Suitable mammalian host cells include CHO, myeloma or hybridoma cells. [0173] The present invention also provides a process for the production of an antibody molecule as described herein comprising culturing a host cell containing a vector (and/or DNA) of the present invention under conditions suitable for leading to expression of protein from DNA encoding an antibody molecule of the present invention, and isolating an antibody molecule. **[0174]** For production of products comprising both heavy and light chains, the cell line may be transfected with two vectors, a first vector encoding a light chain polypeptide and a second vector encoding a heavy chain polypeptide. Alternatively, a single vector may be used, the vector including sequences encoding light chain and heavy chain polypeptides. [0175] The antibody molecules according to the present disclosure are expressed at suitable levels from host cells making them conducive to commercial processing. [0176] The antibody may be specific for any target antigen. The antigen may be a cell-associated protein, for example a cell surface protein on cells such as bacterial cells, yeast cells, T-cells, endothelial cells or tumour cells, or it may be a soluble protein. Antigens of interest may also be any medically relevant protein such as those proteins upregulated during disease or infection, for example receptors and/or their corresponding ligands. Particular examples of cell surface proteins include adhesion molecules, for example integrins such as β1 integrins e.g. VLA-4, E-selectin, P selectin or L-selectin, CD2, CD3, CD4, CD5, CD7, CD8, CD11a, CD11b, CD18, CD19, CD20, CD23, CD25, CD33, CD38, CD40, CD40L, CD45, CDW52, CD69, CD134 (OX40), ICOS, BCMP7, CD137, CD27L, CDCP1, CSF1 or CSF1-Receptor, DPCR1, DPCR1, dudulin2, FLJ20584, FLJ40787, HEK2, KIAA0634, KIAA0659, KIAA1246, KIAA1455, LTBP2, LTK, MAL2, MRP2, nectin-like2, NKCC1, PTK7, RAIG1, TCAM1, SC6, BCMP101, BCMP84, BCMP11, DTD, carcinoembryonic antigen (CEA), human milk fat globulin (HMFG1 and 2), MHC Class I and MHC Class II antigens, KDR and VEGF, PD-1, DC-SIGN, TL1A, DR3, IL-7 receptor A and where appropriate, receptors thereof. [0177] Soluble antigens include interleukins such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-12, IL-13, IL-14, IL-16 or IL-17, such as IL17A and/or IL17F, viral antigens for example respiratory syncytial virus or cytomegalovirus antigens, immunoglobulins, such as IgE, interferons such as interferon α , interferon β or interferon γ , tumour necrosis factor TNF (formerly known as tumour necrosis factor-a and referred to herein as TNF or TNF α), tumor necrosis factor- β , colony stimulating factors such as G-CSF or GM-CSF, and platelet derived growth factors such as PDGF- α , and PDGF- β , MSP- 1 and where appropriate receptors thereof. Other antigens include bacterial cell surface antigens, bacterial toxins, viruses such as influenza, EBV, HepA, B and C, bioterrorism agents, radionuclides and heavy metals, and snake and spider venoms and toxins. [0178] In one embodiment, the antibody may be used to functionally alter the activity of the antigen of interest. For example, the antibody may neutralize, antagonize or agonise the activity of said antigen, directly or indirectly. **[0179]** In one embodiment the present disclosure extends to a method of generating an asymmetric mixed antibody according to the present disclosure comprising the steps of taking a symmetrical antibody (i.e. one where both the heavy chains are the same/identical) comprising a first heavy chain sequence or a fragment thereof as defined herein and mixing the said antibody *in vitro* with a second symmetrical antibody comprising a second heavy chain sequence or a fragment thereof which is different to said first heavy chain sequence, under conditions conducive to heavy chain exchange between the two antibodies, and optionally isolation of the asymmetric mixed antibody. **[0180]** *In vitro* conditions conducive to dynamic exchange include reducing conditions. Suitable reducing agents include GSH, 2-mercaptoethanol, 2-mercaptoethylamine, TBP, TCEP, cysteine-HCl and DTT. **[0181]** Suitable concentrations of the reducing agents are in the range 0.01 to 10mM such as 0.5 to 5mM. In addition, reduction may be achieved using redox buffers, that is to say different relative ratios of oxidised and reduced variants of reagents such as for example: GSH :GSSG and Cys:diCys [0182] Suitable conditions include ratios of antibodies in the range 0.5:5 to 5:05, such as 1:1 or 1:2. [0183] Suitable temperatures include 15 to 40°C, such as 37°C. [0184] The reducing conditions may be selected to be between the reductive stabilities of the homodimers and the heterodimers. [0185] In an alternative embodiment the antibodies of the disclosure are prepared employing a mixed cell culture, for example ~50% exchange occurs. This may yield in the region of 1-2g/l of the desired bispecific. **[0186]** Also provided is an asymmetric antibody obtained or obtainable from a method described herein and a formulation comprising same, in particular for use in treatment. [0187] The antibody molecules of the present invention are useful in the treatment and/or prophylaxis of a pathological condition. **[0188]** Thus, there is provided an antibody according to the present invention for use in treatment, by administering a therapeutically effective amount thereof, for example in a pharmaceutical formulation. In one embodiment the antibody according to the invention is administered topically to the lungs, for example by inhalation. [0189] The antibodies provided by the present invention are useful in the treatment of diseases or disorders including inflammatory diseases and disorders, immune disease and disorders, fibrotic disorders and cancers. [0190] The term "inflammatory disease" or "disorder" and "immune disease or disorder" includes rheumatoid arthritis, psoriatic arthritis, still's disease, Muckle Wells disease, psoriasis, Crohn's disease, ulcerative colitis, SLE (Systemic Lupus Erythematosus), asthma, allergic rhinitis, atopic dermatitis, multiple sclerosis, vasculitis, Type I diabetes mellitus, transplantation and graft-versus-host disease. **[0191]** The term "fibrotic disorder" includes idiopathic pulmonary fibrosis (IPF), systemic sclerosis (or scleroderma), kidney fibrosis, diabetic nephropathy, lgA nephropathy, hypertension, end-stage renal disease, peritoneal fibrosis (continuous ambulatory peritoneal dialysis), liver cirrhosis, age-related macular degeneration (ARMD), retinopathy, cardiac reactive fibrosis, scarring, keloids, burns, skin ulcers, angioplasty, coronary bypass surgery, arthroplasty and cataract surgery. [0192] The term "cancer" includes a malignant new growth that arises from epithelium, found in skin or, more commonly, the lining of body organs, for example: breast, ovary, prostate, lung, kidney, pancreas, stomach, bladder or bowel. Cancers tend to infiltrate into adjacent tissue and spread (metastasize) to distant organs, for example: to bone, liver, lung or the brain. [0193] The present disclosure also provides a pharmaceutical or diagnostic composition comprising an antibody of the present invention in combination with one or more of a pharmaceutically acceptable excipient, diluent or carrier. Accordingly, provided is the use of an antibody of the invention for the manufacture of a medicament. The composition will usually be supplied as part of a sterile, pharmaceutical composition that will normally include a pharmaceutically acceptable carrier. A pharmaceutical composition of the present invention may additionally comprise a pharmaceutically-acceptable adjuvant. **[0194]** The present invention also provides a process for preparation of a pharmaceutical or diagnostic composition comprising adding and mixing the antibody of the present invention together with one or more of a pharmaceutically acceptable excipient, diluent or carrier. **[0195]** The antibody of the disclosure may be the sole active ingredient in the pharmaceutical or diagnostic composition or may be accompanied by other active ingredients including other antibody ingredients, for example anti-TNF, anti-IL-1β, anti-T cell, anti-IFNy or anti-LPS antibodies, or non-antibody ingredients such as xanthines. Other suitable active ingredients include antibodies capable of inducing tolerance, for example, anti-CD3 or anti-CD4 antibodies. [0196] In a further embodiment the antibody or composition according to the disclosure is employed in combination with a further pharmaceutically active agent, for example a corticosteroid (such as fluticasone propionate) and/or a beta-2-agonist (such as salbutamol, salmeterol or formoterol) or inhibitors of cell growth and proliferation (such as rapamycin, cyclophosphmide, methotrexate) or alternative a CD28 and /or CD40 inhibitor. In one embodiment the inhibitor is a small molecule. In another embodiment the inhibitor is an antibody specific to the target. [0197] The pharmaceutical compositions suitably comprise a therapeutically effective amount of the antibody of the invention. The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent needed to treat, ameliorate or prevent a targeted disease or condition, or to exhibit a detectable therapeutic or preventative effect. The therapeutically effective amount can be estimated initially either in cell culture assays or in animal models, usually in rodents, rabbits, dogs, pigs or primates. The animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. [0198] The precise therapeutically effective amount for a human subject will depend upon the severity of the
disease state, the general health of the subject, the age, weight and gender of the subject, diet, time and frequency of administration, drug combination(s), reaction sensitivities and tolerance/response to therapy. This amount can be determined by routine experimentation and is within the judgment of the clinician. Generally, a therapeutically effective amount will be from 0.01 mg/kg to 50 mg/kg, for example 0.1 mg/kg to 20 mg/kg. Pharmaceutical compositions may be conveniently presented in unit dose forms containing a predetermined amount of an active agent of the invention per dose. **[0199]** Compositions may be administered individually to a patient or may be administered in combination (e.g. simultaneously, sequentially or separately) with other agents, drugs or hormones. [0200] The dose at which an antibody of the present invention is administered depends on the nature of the condition to be treated, for example the extent of the disease/inflammation present and on whether the molecule is being used prophylactically or to treat an existing condition. [0201] The frequency of dose will depend on the half-life of the antibody and the duration of its effect. If the antibody has a short half-life (e.g. 2 to 10 hours) it may be necessary to give one or more doses per day. Alternatively, if the antibody has a long half-life (e.g. 2 to 15 days) it may only be necessary to give a dosage once per day, once per week or even once every 1 or 2 months. [0202] The pharmaceutically acceptable carrier should not itself induce the production of antibodies harmful to the individual receiving the composition and should not be toxic. Suitable carriers may be large, slowly metabolised macromolecules such as proteins, polypeptides, liposomes, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers and inactive virus particles. **[0203]** Pharmaceutically acceptable salts can be used, for example mineral acid salts, such as hydrochlorides, hydrobromides, phosphates and sulphates, or salts of organic acids, such as acetates, propionates, malonates and benzoates. **[0204]** Pharmaceutically acceptable carriers in therapeutic compositions may additionally contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents or pH buffering substances, may be present in such compositions. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries and suspensions, for ingestion by the patient. **[0205]** Suitable forms for administration include forms suitable for parenteral administration, e.g. by injection or infusion, for example by bolus injection or continuous infusion. Where the product is for injection or infusion, it may take the form of a suspension, solution or emulsion in an oily or aqueous vehicle and it may contain formulatory agents, such as suspending, preservative, stabilising and/or dispersing agents. Alternatively, the molecule of the disclosure may be in dry form, for reconstitution before use with an appropriate sterile liquid. **[0206]** Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals. However, in one or more embodiments the compositions are adapted for administration to human subjects. **[0207]** Suitably in formulations according to the present disclosure, the pH of the final formulation is not similar to the value of the isoelectric point of the antibody, for example if the pH of the formulation is 7 then a pl of from 8-9 or above may be appropriate. Whilst not wishing to be bound by theory it is thought that this may ultimately provide a final formulation with improved stability, for example the antibody remains in solution. **[0208]** The pharmaceutical compositions of this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, transcutaneous (for example, see WO98/20734), subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, intravaginal or rectal routes. Hyposprays may also be used to administer the pharmaceutical compositions of the invention. Typically, the therapeutic compositions may be prepared as injectables, either as liquid solutions or suspensions. Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. **[0209]** Direct delivery of the compositions will generally be accomplished by injection, subcutaneously, intraperitoneally, intravenously or intramuscularly, or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Dosage treatment may be a single dose schedule or a multiple dose schedule. **[0210]** It will be appreciated that the active ingredient in the composition will be an antibody. As such, it will be susceptible to degradation in the gastrointestinal tract. Thus, if the composition is to be administered by a route using the gastrointestinal tract, the composition will need to contain agents which protect the antibody from degradation but which release the antibody once it has been absorbed from the gastrointestinal tract. **[0211]** A thorough discussion of pharmaceutically acceptable carriers is available in Remington's Pharmaceutical Sciences (Mack Publishing Company, N.J. 1991). [0212] In one embodiment the formulation is provided as a formulation for topical administrations including inhalation. **[0213]** Suitable inhalable preparations include inhalable powders, metering aerosols containing propellant gases or inhalable solutions free from propellant gases. Inhalable powders according to the disclosure containing the active substance may consist solely of the abovementioned active substances or of a mixture of the abovementioned active substances with physiologically acceptable excipient. **[0214]** These inhalable powders may include monosaccharides (e.g. glucose or arabinose), disaccharides (e.g. lactose, saccharose, maltose), oligo- and polysaccharides (e.g. dextranes), polyalcohols (e.g. sorbitol, mannitol, xylitol), salts (e.g. sodium chloride, calcium carbonate) or mixtures of these with one another. Mono- or disaccharides are suitably used, the use of lactose or glucose, particularly but not exclusively in the form of their hydrates. **[0215]** Particles for deposition in the lung require a particle size less than 10 microns, such as 1-9 microns for example from 0.1 to 5 μ m, in particular from 1 to 5 μ m. The particle size of the active ingredient (such as the antibody) is of primary importance. **[0216]** The propellent gases which can be used to prepare the inhalable aerosols are known in the art. Suitable propellent gases are selected from among hydrocarbons such as n-propane, n-butane or isobutane and halohydrocarbons such as chlorinated and/or fluorinated derivatives of methane, ethane, propane, butane, cyclopropane or cyclobutane. The abovementioned propellent gases may be used on their own or in mixtures thereof. **[0217]** Particularly suitable propellent gases are halogenated alkane derivatives selected from among TG 11, TG 12, TG 134a and TG227. Of the abovementioned halogenated hydrocarbons, TG134a (1,1,1,2-tetrafluoroethane) and TG227 (1,1,1,2,3,3,3-heptafluoropropane) and mixtures thereof are particularly suitable. **[0218]** The propellent-gas-containing inhalable aerosols may also contain other ingredients such as cosolvents, stabilisers, surface-active agents (surfactants), antioxidants, lubricants and means for adjusting the pH. All these ingredients are known in the art. **[0219]** The propellant-gas-containing inhalable aerosols according to the invention may contain up to 5 % by weight of active substance. Aerosols according to the invention contain, for example, 0.002 to 5 % by weight, 0.01 to 3 % by weight, 0.015 to 2 % by weight, 0.1 to 2 % by weight, 0.5 to 2 % by weight or 0.5 to 1 % by weight of active ingredient. **[0220]** Alternatively topical administrations to the lung may also be by administration of a liquid solution or suspension formulation, for example employing a device such as a nebulizer, for example, a nebulizer connected to a compressor (e.g., the Pari LC-Jet Plus(R) nebulizer connected to a Pari Master(R) compressor manufactured by Pari Respiratory Equipment, Inc., Richmond, Va.). **[0221]** The antibody of the invention can be delivered dispersed in a solvent, e.g., in the form of a solution or a suspension. It can be suspended in an appropriate physiological solution, e.g., saline or other pharmacologically acceptable solvent or a buffered solution. Buffered solutions known in the art may contain 0.05 mg to 0.15 mg disodium edetate, 8.0 mg to 9.0 mg NaCl, 0.15 mg to 0.25 mg polysorbate, 0.25 mg to 0.30 mg anhydrous citric acid, and 0.45 mg to 0.55 mg sodium citrate per 1 mL of water so as to achieve a pH of about 4.0 to 5.0. A suspension can employ, for example, lyophilised molecule. [0222] The therapeutic suspensions or solution formulations can also contain one or more excipients. Excipients are well known in the art and include buffers (e.g., citrate buffer, phosphate buffer, acetate buffer and bicarbonate buffer), amino acids, urea, alcohols, ascorbic acid, phospholipids, proteins (e.g., serum albumin), EDTA, sodium chloride, liposomes, mannitol, sorbitol, and glycerol. Solutions or suspensions can be encapsulated in liposomes or biodegradable microspheres. The formulation will generally be provided in a substantially sterile form employing sterile manufacture processes. **[0223]** This may include production and sterilization by filtration of the buffered solvent/solution used for the for the formulation, aseptic suspension of the molecule in the sterile buffered solvent
solution, and dispensing of the formulation into sterile receptacles by methods familiar to those of ordinary skill in the art. [0224] Nebulizable formulation according to the present disclosure may be provided, for example, as single dose units (e.g., sealed plastic containers or vials) packed in foil envelopes. Each vial contains a unit dose in a volume, e.g., 2 mL, of solvent/solution buffer. [0225] The antibody of the present disclosure are thought to be particularly suitable for delivery via nebulisation. [0226] Comprising in the context of the present specification is intended to meaning including. [0227] Where technically appropriate embodiments of the invention may be combined. [0228] "Asymmetric" and "asymmetric mixed" are employed interchangeably herein. [0229] The invention will now be described with reference to the following examples, which are merely illustrative and should not in any way be construed as limiting the scope of the present invention. #### **Examples** ## 1 Mutagenesis of IqG4 heavy chain and generation of mutated IqG4 heavy chain single gene vectors. [0230] Amino acid mutations were performed using the Quickchange® Lightening Multi Site Directed Mutagenesis (SDM) kit or the Quickchange® II DSM kit (obtained from Stratagene®) (catalogue numbers 210516 and 200521 respectively) and performed according to manufacturer's instructions. [0231] Mutations were verified by DNA sequencing. The IgG4 heavy chains of antibodies 1 to 47 in the following table were produced: | Antibody
Number | Heavy Chain Mutations (Kabat
Numbering) | C _H 1 domain &
Hinge SEQ ID NO: | C _H 1,Hinge, C _H 2 & C _H 3
SEQ ID NO: | |--------------------|--|---|---| | 1 | C127S | 296 | 306 | | 2 | C127S, C239S | 33 | 59 | | 3 | C127S, C242S | 34 | 60 | | 4 | C127S, C242S, C239S | 297 | 307 | | 5 | G230C | 298 | 308 | | 5P | G230C, S241P | 299 | 309 | | 6 | C127S, G230C, C239S | 12 | 38 | | 7 | C127S, G230C, C242S | 13 | 39 | | 8 | C127S, G230C, C239S, C242S | 14 | 40 | | 9 | G230C, C239S | 300 | 310 | | 10 | G230C, C242S | 301 | 311 | | 11 | G230C, C239S, C242S | 302 | 312 | | 12 | C239S | 303 | 313 | | 13 | C242S | 304 | 314 | | 15 | C127S, G230C | 15 | 41 | | 16 | C127S, G230C, S241P | 16 | 42 | | 17 | Human IgG4 wild type | 2 | - | | 18 | S241P | - | - | | 19 | Human IgG1 wild type | 1 | - | | 28 | C127S Y229C | 17 | 43 | | 28P | C127S Y229C, S241P | 36 | 62 | | 29 | C127S Y229C C239S | 18 | 44 | | 30 | C127S Y229C C242S | 19 | 45 | | 31 | C127S Y229C C239S C242S | 20 | 46 | | 32 | C127S K228C | 21 | 47 | | 33 | C127S K228C C239S | 22 | 48 | | 34 | C127S K228C C242S | 23 | 49 | | 35 | C127S K228C C239S C242S | 24 | 50 | | 36 | C127S S227C | 25 | 51 | | Heavy Chain Mutations (Kabat
Numbering) | C _H 1 domain &
Hinge SEQ ID NO: | C _H 1,Hinge, C _H 2 & C _H 3
SEQ ID NO: | |---|--|--| | C127S S227C C239S | 26 | 52 | | C127S S227C C242S | 27 | 53 | | C127S S227C C239S C242S | 28 | 54 | | C127S G230C P238PAAA | 29 | 55 | | C127S G230C P238PAAA, S241P | 37 | 63 | | C127S G230C P238PAAA C239S | 30 | 56 | | C127S G230C P238PAAA C242S | 31 | 57 | | C127S G230C P238PAAA C239S
C242S | 32 | 58 | | C127S, S227P, Y229S, G230C, P237D,
P238KTHT, S241P | 35 | 61 | | C127S G230C P238PA | | | | C127S G230C P238PAA S241P | | | | C127S, G230C, P238PAAAA | | | | C127S, G230C, P238PAAAAA | | | | C127S, G230C, P238PTHT | | | | C127S, G230C, P237D, P238KTHT | | | | C127S, G230C, P238PGGG | | | | C127S, S227P, G230C | | | | C127S, Y229S, G230C | | | | C127S, S227P, Y229S, G230C | | | | C127S, S227P, Y229S, G230C, P237D,
P238KTHT | | | | C127S, G230C, P237D, P238KTH | | | | C127S, G230C, P237D, P238KT | | | | C127S, G230C, P237D, P238K | | | | C127S, G230C P237D, P238KAAA | | | | C127S, S227P, G230C, P237D,
P238KTHT | | | | C127S, Y229S, G230C, P237D,
P238KTHT | | | | | Numbering) C127S S227C C239S C127S S227C C242S C127S S227C C239S C242S C127S G230C P238PAAA C127S G230C P238PAAA, S241P C127S G230C P238PAAA C239S C127S G230C P238PAAA C239S C127S G230C P238PAAA C242S C127S G230C P238PAAA C239S C127S G230C P238PAAA C239S C242S C127S, S227P, Y229S, G230C, P237D, P238KTHT, S241P C127S G230C P238PAA S241P C127S G230C P238PAA S241P C127S, G230C, P238PAAA C127S, G230C, P238PAAAA C127S, G230C, P238PAAAA C127S, G230C, P238PAAAA C127S, G230C, P238PAAAA C127S, G230C, P238PATT C127S, G230C, P238PGG C127S, S227P, G230C C127S, S227P, G230C C127S, S227P, Y229S, G230C C127S, S227P, Y229S, G230C C127S, G230C, P237D, P238KTH C127S, G230C, P237D, P238KTH C127S, G230C, P237D, P238KTH C127S, G230C, P237D, P238KT C127S, G230C, P237D, P238KAAA C127S, G230C, P237D, P238KAAA C127S, S227P, G230C, P237D, P238KTHT C127S, G230C, P237D, P238KAAA C127S, S227P, G230C, P237D, P238KAAA C127S, S227P, G230C, P237D, P238KAAA C127S, S227P, G230C, P237D, P238KAAA | Numbering) Hinge SEQ ID NO: C127S S227C C239S 26 C127S S227C C242S 27 C127S S227C C239S C242S 28 C127S G230C P238PAAA 29 C127S G230C P238PAAA, S241P 37 C127S G230C P238PAAA C239S 30 C127S G230C P238PAAA C239S 32 C242S 31 C127S G230C P238PAAA C239S 32 C242S 35 C127S, S227P, Y229S, G230C, P237D, P238KTHT, S241P 35 C127S G230C P238PAA 35 C127S, G230C P238PAAAAA 36 C127S, G230C, P238PAAAAA 37 C127S, G230C, P238PAAAAA 36 C127S, G230C, P238PAAAAA 37 C127S, S227P, G230C 38 C127S, S227P, Y229S, G230C 38 C127S, S227P, Y229S, G230C 39 C127S, G230C, P237D, P238KTH 39 C127S, G230C, P237D, P238KAAA 39 C127S, G230C, P237D, P238KAAAA | [0232] Other antibodies prepared are described in the table above. **[0233]** The heavy chain of antibody 48 (Sequence ID NO: **266**) was generated by PCR and restriction enzyme cloning. The PCR product was generated by a forward oligo encoding the IgG1 upper and core hinge region sequence and a restriction site BgIII and a reverse oligo encoding the restriction enzyme DraIII. The PCR fragment was then digested with above mentioned enzymes and ligated into the hG4 single gene vector containing the appropriate variable region. ## 2. Expression of the mutated IgG4 antibodies [0234] All mutant DNA was transfected into CHOK1 cells. Cells ($2x10^8$ cells/ml) were resuspended in 1 ml Earles Balance Salt Solution (Sigma) and mixed with 400 μ g of DNA (200 μ g heavy chain DNA and 200 μ g kappa light chain DNA). 800 μ l aliquots were transferred to 0.4 cm cuvettes (Biorad). For a 500 ml culture, six cuvettes were electroporated under the following parameters: 1 ms, 9.6 Amps; 10 ms, 0 Amps; 40 ms, 3.2 Amps. The transfected cells were incubated for 24 hrs, shaking at 140 rpm in a 5% CO₂ humidified environment at 37°C and continued from day 2 post transfection at 32°C for 10-13 days. On day 4 post transfection 1.6 mls 1 M sodium butyrate was added to the culture. Once the cells reached 40% viability or up to day 13, the supernatant was harvested. Cultures were centrifuged for 45 minutes at 4000 rpm. The supernatant was put through a 0.22 μ M Stericup filter (Millipore) to be purified. #### 3. Purification of mutated IgG4 antibodies **[0235]** Supernatants (200-500 ml) were purified using a Protein A 5 ml HiTrap MabSelect SuRe column (GE Healthcare, Amersham UK). Samples were prepared by adding 1/50th of the supernatant volume of 2 M Tris-HCl pH 8.5. Samples were loaded onto the column at 1 ml/min. The column was washed with PBS pH 7.4. To elute the samples, 0.1 M sodium citrate, pH 3.4 was run through the column at 1 ml/min and 0.5 ml fractions were collected. Peak fractions were neutralised by adding 0.125 ml of 2 M Tris-HCl pH8.5 to each. UV detection was set at 280 nm. #### 4. Characterization of purified mutated IgG4 antibodies #### SDS PAGE analysis: [0236] Crude supernatant was centrifuged at 1200 rpm for 5
mins and quantified on the OCTET. Antibody samples (25-30ng) were prepared by adding the appropriate amounts of antibody, 4x Loading Buffer (Invitrogen) and 2 μl 100mM NEM. A total volume of 20 μl was made up using dH₂O. The samples were then boiled for 3 mins at 100°C and loaded onto a 15 well 1.5 mm 4-20% Tris-Glycine gel. Gels were run at 150 V for 1.5 hrs in 1x Tank buffer. Antibodies were transferred to a nitrocellulose membrane using the iBlot dry transfer system set to transfer for 8 mins. The membrane was incubated for 1 hr at room temperature (RT) in PBS-TM on a shaking platform, followed by incubation with a rabbit anti-human IgG Fc HRP conjugated antibody (Jackson Immunoresearch) or goat anti-human Kappa light chain HRP conjugated antibody (Bethyl) for 1 hr, shaking at RT. This was followed by 3 washes of 5 mins each with PBS-T. The blots were revealed using a metal enhanced DAB substrate kit according to the manufacturer's instructions (Pierce). [0237] The results of the immuno-blot analysis is shown in Figures 7, 8, 9 and 10. In Figure 7-10, H stands for heavy chain and L for light chain, H2L2 is a whole antibody molecule comprising two heavy chains and two light chains and HL is a half molecule comprising one heavy chain and one light chain. [0238] Figure 7 shows the immuno-blot analysis for antibodies 15, 16, 6, 7, 8, 17, 18, 19, 5, 5P, 9, 10, 11, 1, 2, 3, 4, 12, 13 and 14. It can be seen from Figure 7 that the antibodies show a good level of H2L2 except for antibodies 4, 8 and 14 which show no or very little H2L2 due to the presence of both hinge mutations C239S and C242S. However, antibodies 4, 8 and 14 can form H2L2 by non-covalent bonding between the heavy chains. Mutant 3 also shows little H2L2, this mutant retains C239 but is unable to form inter heavy chain disulphides in the hinge, presumably due to efficient formation of a disulphide between the C-terminal light chain (LC) cysteine and the hinge C239. It can also be seen that antibodies which comprise the mutation C239S but not C242S (antibodies 2, 6, 9 and 12) show reduced formation of HL compared to antibodies which comprise neither C239S nor C242S or antibodies which comprise C242S but not C239S. Antibodies 5P and 16 which comprise the S241P mutation also show reduced formation of HL. A comparison of mutants 2 and 3 shows the extent of the 'reach' of the C-terminal cysteine of light chain to form a disulphide bond with the heavy chain, it appears that the light chain cysteine bonds more efficiently to C239 than to C242 in the heavy chain. **[0239]** Figure 8 shows the immuno-blot analysis for antibodies 15, 6, 7, 8, 28, 29, 30, 31, 17, 19, 32, 33, 33, 34, 35, 36, 37, 38 and 39. It can be seen from Figure 8 that the antibodies show a good level of H2L2 except for antibodies 8, 31, 35 and 39 which show no or very little H2L2 due to the presence of mutations C239S and C242S in the hinge region and therefore no disulphide bonds form between two heavy chains. However, antibodies 8, 31, 35 and 39 can form H2L2 by non-covalent bonding between the heavy chains. It can also be seen that antibodies which comprise the mutation C239S but not C242S (antibodies 6, 29, 33 and 37) show reduced formation of HL compared to antibodies which comprise neither C239S nor C242S or antibodies which comprise C242S but not C239S. Mutant 15 is able to form a disulphide bond between the light chain and G230C in the C_H1 and inter heavy chain disulphides hence resulting in a fully assembled and disulphide bonded protein. Furthermore, a comparison of mutants 15(C127S G230C), 28(C127S Y229C), 32(C127S K228C) and 36(C127S S227C) shows that the position of the introduced cysteine in the upper hinge improves inter LC-HC disulphide bond formation. G230 and Y229 are particularly preferred positions to introduce a cysteine. Mutant 28 (C127S Y229C) shows a low level of HL and H2 and therefore has low disulphide bond heterogeneity. **[0240]** Figure 9 shows the immuno-blot analysis for antibodies 15, 6, 7, 8, 44, 45, 46, 47, 17 and 19. It can be seen from Figure 9 that the antibodies show a good level of H2L2 except for antibodies 8 and 47 which show no or very little H2L2 due to the presence of mutations C239S and C242S in the hinge region and therefore no disulphide bonds form between two heavy chains. However, antibodies 8 and 47 can form H2L2 by non-covalent bonding between the heavy chains. It can also be seen that antibodies which comprise the mutation C239S but not C242S (antibodies 6 and 45) show reduced formation of HL compared to antibodies which comprise neither C239S nor C242S or antibodies which comprise C242S but not C239S. In particular, mutant 44 shows that insertion of three amino acids in the upper hinge can also reduce the formation of HL and H2 and hence has lower levels of disulphide heterogeneity than the comparable mutant 15. [0241] Figure 10, shows the immuno-blot analysis for antibodies 48, 17, 18 and 19. It can be seen from Figure 10, that antibody 48 shows a good level of H2L2 and very little HL. Mutant 48 contains the IgG1 upper hinge sequence EPKSCDKTHT SEQ ID NO: 319 in place of the IgG4 upper hinge sequence along with a core hinge S241P mutation. Hence mutant 48 has the upper and core hinge sequence EPKSCDKTHTCPPCP SEQ ID NO: 320. Mutant 48 shows lower levels of disulphide bond heterogeneity compared to the wild type IgG4 antibody 17 and approximately equivalent low levels of disulphide bond heterogeneity compared to the IgG4 S241P mutant 18 and wild type IgG1 antibody 19. ### Thermofluor assay: [0242] Thermostabilities of purified mAbs were analyzed in a thermofluor assay using SYPRO® Orange to monitor the thermal unfolding process of proteins. 5 μ l of mAb at 1 mg/ml, 5 μ l of 30xdye, and 40 μ l of PBS were added together. Ten μ l of the mix was dispensed in quadruplicate to a 384 PCR optical well plate and was run on the 7900HT Fast Real-Time PCR System (Agilent Technologies UK Ltd, Wokingham UK). This PCR System contains a heating device for accurate temperature control set at 20°C to 99°C; a charged coupled device simultaneously monitors the fluorescence changes in the wells. [0243] Figures 11, 12, 13, 14 and 15 show the results of the thermostability analysis of the IgG4 Antibody mutants compared to wild-type IgG1 and IgG4 antibodies. **[0244]** A comparison of mutant 15 with wild type IgG4 (mutant 17) shows and increase in the Fab Tm due to the altered disulphide arrangement. A comparison of mutant 15 and 28 shows further improvement in Fab Tm for mutant 28 comprising Y229C mutation compared to mutant 15 comprising G230C mutation. A comparison of mutant 15 and 44 shows that the Fab Tm of a G230C mutant can be further increased further by insertion of three amino acids in the upper hinge. Comparison of mutants 17 and 18 show that the S241P middle hinge mutation does not increase Fab Tm even though it significantly reduces HL formation. Mutant 48 also shows significantly improved Fab Tm when compared to both wild type IgG4 (mutant 17) and mutant 15. Figure 15 shows the overall ranking of the thermostabilites of selected IgG4 mutants according to the present invention. Mutants 48, 44, 44P, 46, 45, 6, 29, 30, 28, 28P, 31, 8, 47 and 15 all show significantly higher Fab Tm values compared to the wild type IgG4 (mutant 17) and wild type IgG4 S241P (mutant 18). ## 5. Fab arm exchange ## a) In vitro heavy chain exchange [0245] A first IgG4 antibody and a second IgG4 antibody, each having different antigen specifities, were mixed in a 1:2 molar ratio at a total concentration of 100 ug/ml in phosphate buffered saline (PBS) (in mM: 150 NaCl, 10 NaH $_2$ PO $_4$; pH 7.4). To allow disulphide bond reduction, samples were supplemented with reduced Glutathione (GSH; Sigma) to a final concentration of 0, 0.5 or 5 mM. At the start of the experiment (t = 0 hours) an aliquot of the mixture was taken, quenched with N-ethylmaleimide (NEM; Sigma) to a final concentration of 10 mM (to inactivate potentially reactive thiol groups) and incubated alongside the rest of the mixture for 16 hours at 37oC (t = 16 hours). After incubation, the t = 16 hours sample was quenched as above. [0246] The combinations of first and second antibodies tested are shown in the following table: | Antibody 1 | Antibody 1 (Mutations compared to wild type IgG4) | Antibody 2 | |---------------------
--|---------------------| | lgG1 wt (wild type) | - | lgG4 wt (wild type) | | lgG4 wt (wild type) | - | lgG4 wt (wild type) | | IgG4 P | S241P | lgG4 wt (wild type) | | lgG4 mutant 28 | C127S Y229C | lgG4 wt (wild type) | | IgG4 mutant 28 P | C127S Y229C S241P | lgG4 wt (wild type) | | lgG4 mutant 44 | C127S G230C P238PAAA | lgG4 wt (wild type) | | IgG4 mutant 44P | C127S G230C P238PAAA, S241P | lgG4 wt (wild type) | | lgG4 mutant 48 | C127S, S227P, Y229S, G230C, P237D, P238KTHT, S241P | lgG4 wt (wild type) | | lgG4 mutant 65 | C127S, S227P, Y229S, G230C, P237D, P238KTHT | lgG4 wt (wild type) | | lgG4 | lgG4 wild type (S241) | S241G | | lgG4 | | S241A | | lgG4 | | S241T | | lgG4 | | S241P | | lgG4 | | C127C and Y229C | | lgG4 | lgG4 S241G | S241A | | lgG4 | | S241T | | lgG4 | IgG4 S241T | S241A | | lgG4 | IgG4 wild type (S241) | C239S | | lgG4 | | C242S | | lgG4 | | C239C and C242C | | lgG4 | | C127C and Y229C | | lgG4 | IgG4 S241P | C127C and Y229C | | lgG4 | de la companya | S241G | | lgG4 | riversity of the second | S241A | | lgG4 | -ti | S241T | | lgG4 | -ti | C239C and C242C | | lgG4 | IgG4 C127S and Y229C | S241G | | lgG4 | X | S241A | | lgG4 | , | S241T | | lgG4 | | C239C and C242C | | lgG4 | IgG4 C239C and C242C | S241G | | lgG4 | | S241A | | lgG4 | | S241T | | lgG4 | | C239C and C242C | | lgG4 | and the second s | C239S | | lgG4 | | C242S | [0247] The exchange of heavy chains between antibody 1 and 2 in the table above provides asymmetric antibodies with a heavy chain from each of the relevant antibodies. b)Detection and quantification of heavy chain exchange in vitro [0248] The presence of functionally active bispecific antibodies was determined using a sandwich MSD assay in which quenched reaction samples provided in Example 5 a), serially diluted in 1 % BSA in PBS (PB), were pre-incubated with 1 ug/ml biotinylated-antigen 1 (antigen of first antibody) in PB for 1 h at RT with agitation (200 r.p.m) before being transferred to PB pre-blocked streptavidin coated MSD plates (Meso Scale Diagnostics). After 1 h incubation at RT with agitation, wells were washed three times with PBS/0.1 % Tween-20 before being incubated with 1 ug/ml of sulfo-tagged antigen 2 (antigen of second antibody) in PB. After incubation, plates were washed as above and signals revealed and measured using the manufactures *read* buffer and Image Sector 6000 instrument, respectively. Background values obtained from control parallel reactions in which biotinylated-antigen was substituted for a non-biotinylated alternative, were subtracted from all signals. Duplicate values from at least 3 independent experiments were used in all calculations. The higher the MSD signal the larger the amount of heavy chain exchange that has occurred. [0249] Figure 16 shows heavy chain exchange at 16 hours wherein the first antibody is selected from IgG1 wild-type, IgG4 wild-type and various mutant antibodies and the second antibody is IgG4 wild-type at two concentrations of GSH. The figures show that the mutants have less exchange than the wild-type IgG4 antibodies and significantly greater exchange than the IgG1 wild-type antibody. This is advantageous in that the exchange can be used to prepare the asymmetric antibodies of the present disclosure *in vitro*, which *in vivo* have less susceptibility to undergo exchange than wild type IgG4 antibodies. In some instances increasing the concentration of the reducing agent, such as GSH increases the amount of exchange observed. **[0250]** In good agreement with the literature (Labrijn 2011, Lewis 2009, Stubenrauch 2010, Labrijn 2009) we show that the S241P mutation in the IgG4 core-hinge represents a tool for preventing Fab-arm exchange (Figure 16). It can also be seen that mutant bispecific antibodies of the present invention would demonstrate less Fab arm exchange than has been shown at 0.5 mM GSH, which is 100 times higher than the 4-6 uM physiological GSH concentration of plasma (Zilmer. et al, 2005. Drug Design Reviews). Accordingly, bispecific antibodies may be created *in vitro* by Fab arm exchange under reducing conditions, which would then have significantly reduced Fab arm exchange *in vivo* compared to IgG4 wt. [0251] Figure 17 shows that a glycine at position 241 can readily exchange with IgG4 mutants with either an alanine or threonine at this position. An IgG4 with an alanine at position 241 will exchange somewhat more with a mutant with a threonine at this position than a mutant with a glycine at this position. Similarly, an IgG4 mutant with a Threonine at position 241 showed reduced exchanged activity if in a reaction with S241G compared to a symmetric assay. Exchange with IgG4 S241A was similar to the symmetric assay. In summary, this suggests that IgG4 S241T exchanges at similar levels to IgG4 WT and is more likely to exchange compared to mutants S241A and S241G. #### **Antibody Affinity:** **[0252]** The affinity of selected mutant IgG4 antibodies of the present invention to the target soluble cytokine may be measured by BlAiacore™. The assay format is capture of the IgG's on an anti-Fc surface followed by titration of soluble cytokine. **[0253]** The term " k_d " (s $^{-1}$), refers to the dissociation rate constant of the antibody-antigen interaction. Said value is also referred to as the k_{off} value. [0254] The term " k_a " (M $^{-1}$ s $^{-1}$), as used herein, refers to the association rate constant of the antibody-antigen interaction. [0255] The term " K_D " (M) or " K_D " (pM), as used herein, refers to the dissociation equilibrium constant of the antibody-antigen interaction. #### Size exclusion (SEC) HPLC Analysis: **[0256]** Approximately 50ug purified antibody was run on the HPLC using a S200 column. Abs 1 to 19 were used for the analysis. This result shows that non-covalently associated H2L2 is formed despite alterations to the DSB arrangements of a human IgG4 molecule. ## REFERENCES CITED IN THE DESCRIPTION This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard. #### Patent documents cited in the description - US5677425A [0011] [0011] - WO2005003170A [0046] - WO2005003171A [0046] - WO2008038024A [0047] [0166] - WO2005118642A [0056] [0057] - EP0368684A [0056] - US20080063635A [0123] [0128] [0128] - WO2008145142A [0123] [0129] - WO9202551A [0133] [0138] - WO2004051268A [0133] - WO2004106377A [0133] - US5585089A [0134] [0138] - WO9002609A [0135] - WO9110737A [0135] - WO9201047A [0135] - WO9218619A [0135] - WO9311236A [0135] - WO9515982A [0135] - WO9520401A [0135] - US5698426A [0135] - US5223409A [0135] - US5403484A [0135] - US5580717A [0135] - US5427908A [0135] [0135] - US5750753A [0135] - US5821047A [0135] - US5571698A [0135] - US5516637A [0135] - US5780225A [0135] - <u>US5658727A</u> [0135] - US5733743A [0135] - <u>US5969108A</u> [0135] - EP0546073B1 [0136] US5545806A [0136] - US5569825A [0136] - US5625126A [0136] - US5633425A [0136] - US5661016A [0136] - US5770429A [0136] - EP0438474B1 [0136] - EP0463151B1 [0136] - US4816397A [0138] - US6331415B [0136] WO9109967A [0136] - WO2007106120A [0148] - WO9306231A [0150] - WO9222583A [0150] - WO6900195A [0150] - WO8901476A [0150] - WO03031581A [0150] - WO8601533A [0150] - EP0392745A [0150] - US4741900A [0156] - WO05117984A [0157] - US5219996A [0165] - US5667425A [0165] - WO9825971A [0165] - WO9820734A [0208] #### Non-patent literature cited in the description - VAN DER NEUT KOLFSCHOTEN et al. Science, 2007, vol. 317, 1554-1557 [0006] - SCHUURMAN,J.VAN REE,R.PERDOK,G.J.VAN DOORN,H.R.TAN,K.Y.AALBERSE,R.C.Normal human immunoglobulin G4 can be bispecific: it has two different antigen-combining sitesImmunology, 1999, vol. 97, 693-698 [0007] - ANGAL,S. et al.A single
amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibody as observed during SDS-PAGE analysisMol Immunol, 1993, vol. 30, 105-108 [0909] - SCHUURMAN,J et al. The inter-heavy chain disulphide bonds of IgG4 are in equilibrium with intra-heavy chain disulphide bondsMolecular Immunology, 2001, vol. 38, 1-8 [8810] - Nature, vol. 341, 544-546 [0056] - HOLT et al. Trends in Biotechnology, 2003, vol. 21, 484-490 [0056] [0057] - JESPERS et al.Nature Biotechnology, 2004, vol. 22, 1161-1165 [9957] - KABAT et al.Sequences of Proteins of Immunological InterestUS Department of Health and Human Services19870000 [6066] - KABAT et al. Sequences of Proteins of Immunological InterestNational Institutes of Health19910000 [0068] - LEFRANC, M.-P. et al.Dev. Comp. Immunol., 2005, vol. 29, 185-203 [0069] - WYPYCH,J.LI,M.GUO,A.ZHANG,Z.MARTINEZ,T.ALLEN,M.J.FODOR,S.KELNER,D.N.FLYNN,G.C.LIU,Y.D.Human lgG2 antibodies display disulphide-mediated structural isoformsJ Biol Chem., 2008, vol. 283, 16194-16205 [60713] - ZILMER et al.Drug Design Reviews, 2005, vol. 2, 2121-127 [0083] - ANGAL,S. et al.A single amino acid substitution abolishes the heterogeneity of chimeric mouse/human (IgG4) antibodyMol Immunol, 1993, vol. 30, 105-108 [0101] - KOHLERMILSTEINNature, 1975, vol. 256, 495-497 [0132] - KOZBOR et al.mmunology Today, 1983, vol. 4, 72- [0132] - COLE et al.Monoclonal Antibodies and Cancer TherapyAlan R. Liss, Inc.1985000077-96 [0132] - BABCOOK, J. et al. Proc. Natl. Acad. Sci. USA, 1996, vol. 93, 157843-7848 [0133] - BRINKMAN et al.J. Immunol. Methods, 1995, vol. 182, 41-50 [0135] - AMES et al.J. Immunol. Methods, 1995, vol. 184, 177-186 [0135] - KETTLEBOROUGH et al.Eur. J. Immunol., 1994, vol. 24, 952-958 [0135] - PERSIC et al.Gene, 1997, vol. 187, 9-18 [0135] - BURTON et al. Advances in Immunology, 1994, vol. 57, 191-280 [0135] - WARD et al.Nature, 1989, vol. 341, 544- [0138] - ORLANDI et al. Proc. Natl. Acad. Sci. USA, 1989, vol. 86, 3833- [0138] - RIECHMANN et al. Nature, 1988, vol. 322, 323- [0138] - BIRD et al. Science, 1988, vol. 242, 423- [0138] - MOUNTAINADAIRBiotechnol. Genet. Eng. Rev, 1992, vol. 10, 1-142 [0136] - VERMA et al. Journal of Immunological Methods, 1998, vol. 216, 165-181 [0138] - HARRIS, RJJournal of Chromatography, 1995, vol. 705, 129-134 [0149] #### **DK/EP 2817333 T3** - HELLSTROM et al.Controlled Drug Delivery19870000623-53 [0150] - THORPE et al.Immunol. Rev., 1982, vol. 62, 119-58 [0150] - DUBOWCHIK et al. Pharmacology and Therapeutics, 1999, vol. 83, 67-123 [0150] - CHAPMANAdvanced Drug Delivery Reviews, 2002, vol. 54, 531-545 [0163] - Current Protocols in Molecular BiologyWiley Interscience19990000 [0170] - the Maniatis Manual producedCold Spring Harbor Publishing [9179] - Remington's Pharmaceutical SciencesMack Publishing Company19910000 [0211] - ZILMER et al.Drug Design Reviews, 2005, [0250] #### PATENTKRAV - **1.** Bispecifik asymmetrisk antistof som *in vivo* har mindre tilbøjelighed til at gennemgå udveksling end vildtype IgG4-antistoffer, hvor antistoffet omfatter: - i. to lette kæder, og 20 40 - 5 ii. to tunge kæder eller tung kæde-fragmenter, der hver omfatter mindst en variabel region, en hængselregion og et C_H1 -domæne, hvor en første tung kæde eller fragment deraf er en klasse IgG4 og har: - a. inter-kæde-cystein ved position 127, nummereret ifølge Kabat-nummeringssystemet, er substitueret med en ikke-thiol-indeholdende aminosyre i C_H1 -domænet; og - b. én af aminosyrerne placeret i den øvre hængselsregion valgt fra S227, K228, Y229 og G230 er substitueret med cystein, og hvor den anden tung kæde eller fragment deraf er IgG4-vildtype eller IgG4-vildtype med en S241G- eller S241A-mutation, og hvor hver tung kæde har en forskellig variabel region. - 2. Bispecifik asymmetrisk antistof ifølge krav 1, hvor cystein ved position 239 og cystein ved position 242, nummereret ifølge Kabat-nummeringssystemet, er substitueret med en ikke-thiol-indeholdende aminosyre i den første tung kæde. - **3.** Bispecifik asymmetrisk antistof ifølge krav 1, hvor cystein ved position 239, nummereret ifølge Kabat-nummeringssystemet, er substitueret med en ikke-thiol-indeholdende aminosyre i den første tung kæde. - **4.** Bispecifik asymmetrisk antistof ifølge krav 1, hvor cystein ved position 242, nummereret ifølge Kabat-nummeringssystemet, er substitueret med en ikke-thiol-indeholdende aminosyre i den første tung kæde. - **5.** Bispecifik asymmetrisk antistof ifølge et hvilket som helst af kravene 1 til 4, hvor den ikke-thiol-indeholdende aminosyre er serin. - **6.** Bispecifik asymmetrisk antistof ifølge et hvilket som helst af de foregående krav, hvor en aminosyre ved rest 240 og / eller 241 ifølge Kabatnummer er udskiftet med en anden aminosyre. - 7. Bispecifik asymmetrisk antistof ifølge et hvilket som helst af de foregående krav,hvor cystein ved position 127 er substitueret med serin. - **8.** Bispecifik asymmetrisk antistof ifølge et hvilket som helst af de foregående krav, hvor tung kæden er muteret for at indsætte tre aminosyrer mellem aminosyrer 226-243, nummereret ifølge Kabat-nummeringssystemet. - 9. Bispecifik asymmetrisk antistof ifølge krav 8, hvor den første tung kæde er muteret for at indsætte tre aminosyrer mellem positioner 238 og 239, nummereret ifølge Kabat-nummeringssystemet. - **10.** Bispecifik asymmetrisk antistof ifølge krav 9, hvor tre alanin er indsat mellem positioner 238 og 239 af den første tunge kæde nummereret ifølge Kabatnummeringssystemet. - **11.** Bispecifik asymmetrisk antistof ifølge krav 9, hvor en threonin, en histidin og en yderligere threonin er indsat mellem positioner 238 og 239 af den første tung kæde nummereret ifølge Kabat-nummeringssystemet. - **12.** Bispecifik asymmetrisk antistof ifølge et hvilket som helst af de foregående krav, hvor serin ved position 241 af den første tung kæde, nummereret ifølge Kabatnummeringssystemet, er substitueret med prolin. - 13. Bispecifik asymmetrisk antistof ifølge et hvilket som helst af de foregående krav, hvor, i den første tung kæde, er glycin ved position 230 substitueret med cystein, serin ved position 227 er substitueret med prolin, tyrosin ved position 229 er substitueret med serin, prolin ved position 237 er substitueret med aspartinsyre, prolin ved position 238 er substitueret med lysin, aminosyresekvensen threonin-histidin-threonin er indsat mellem positioner 238 og 239 og serin ved position 241 er substitueret med prolin. 10 15 20 30 - 14. Bispecifik asymmetrisk antistof ifølge et hvilket som helst af de foregående krav, hvor én eller flere tung kæder eller fragmenter deraf omfatter et C_H2 -domæne og/eller et C_H3 -domæne. - **15.** Bispecifik asymmetrisk antistof ifølge et hvilket som helst af de foregående krav, hvor hver let kæde omfatter en variabel region og de to variable regioner er de samme eller forskellige. - **16.** Bispecifik asymmetrisk antistof ifølge et hvilket som helst af kravene 1 til 15, hvor tung kæden eller hver tung kæde omfatter en øvre hængselsregion og kerneregioner på 12 til 17 aminosyre i længde, for eksempel 15 aminosyrer i længde. - **17.** Ekspressionsvektor som omfatter en sekvens som koder for et antistof som defineret i et hvilket som helst af kravene 1 til 16. - 18. Værtscelle som omfatter en vektor som defineret i krav 17. - **19.** Antistof som defineret i et hvilket som helst af kravene 1 til 16 til anvendelse ved behandlingen af en sygdomsforstyrrelse. - 20. Fremgangsmåde til frembringelse af et antistof som defineret i et hvilket som helst af kravene 1 til 16, der omfatter trinene at tage et symmetrisk antistof, som omfatter en første tung kæde-sekvens eller et fragment deraf som defineret heri, og at blande antistoffet *in vitro* med et andet symmetrisk antistof, som omfatter en anden tung kæde-sekvens eller et fragment deraf som er forskellig fra den første tung kæde-sekvens i mindst regionen udenfor den variable region, under forhold gavnlige for tung kæde-udveksling mellem de to antistoffer, og valgfrit at isolere det asymmetriske blandede antistof opnået derfra. #### **DRAWINGS** #### Figure 1a ## IgG1 wild type CH1 & hinge (A) STKGPSVFPLAPSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNH KPSNTKVDKKV (E) PKSCDKTHTCPPCPAPELGGP (SEQ ID NO:1) ## IgG4 wild type CH1 & hinge (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYGPPCPSCPAPEFIGGP (SEQ ID NO:2) # Ig wild type kappa constant light chain TVAAPSVEIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVT HQGLSSPVTKSFNRGEC (SEQ ID NO:66) igure 1b | Light chain | CL | | | | | |-------------|-----------------------------|---|--------------------------|---------------------------|----------| | Human κ | FNRGEC | | | | | | | (SEQ ID NO:3) | | | | | | Heavy chain | C _H 1 (N-term) | UPPER | CORE | | LOWER | | | LAPSSKSTS | EPKSCDKTHT | CPPCP | | APELLGGP | | Human IgGγ1 | (SEQ ID NO:4) | (SEQ ID NO:5) | | | | | | LAPCSRSTS | ERK | CCVECPPCP | | APPVA GP | | Human IgGy2 | (SEQ ID NO:6) | (SEQ ID NO:7) | | | | | | LAPCSRSTS | ELKTPLGDTTHT | CPRCP (EPKSCDTPPCPRCP) 3 | TPPPCPRCP) 3 | APELLGGP | | Human IgGy3 | (9:ON CEO) | (CEO ID NO:0) | | | | | | (SEQ ID INO.6) | (SEQ ID NO.9) | | | | | | LAPCSRSTS | ESKYGPP | CPSCP | | APEFIGGP | | Human IgGy4 | • | • | + | | | | | 1
C127 | | | | | | | (SEQ ID NO:10) | (0:11) | | | | | Heavy chain | C _H 1 (N-term) | Hinge | | | | | Human IgD | IISGCRHPK
(SEQ ID NO:67) | (E) SPKAQASSVPTAQPQAEGSLAKATTAPATTRNT
(SEQ ID NO:68) | raqpqaegslakat | TAPATTRNT | | | Heavy chain | C _H 1 (N-term) | C _H 1 (C-term) | | C _H 2 (N-term) | | | Human IgM | LVSCENSPS | EKNVPLP | | (V) IAELPPKVSV | D. | | | (SEQ ID NO:69) | (SEQ ID NO:70) |) | (SEQ ID NO:71) | | | 0 | СНІ | | | | | | | | HINGE | | | | | | | | |-----------------------|-----|-----|-----|-----|-----|--------|-----|----------|---------|--------
-------------|------------|-------|-----|-----|-----| | EU | 131 | 216 | 217 | 218 | 221 | | | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | | Numbering
for IgG1 | | | | | | | | | | | | ; | | | ì | | | Kabat | 127 | 226 | 227 | 228 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | | Numbering
for IgG1 | | _ | | | | | 1 | -
- | ·
· | -
: | | | ? | | 1 | £ | | IMGT | 10 | - | 2 | m | 4 | 5 | 9 | 7 | ∞ | 6 | 10 | = | 12 | 13 | 14 | 4 | | Numbering | | | | | | | ı | |) | | > | • | : | CT. | - | 3 | | for IgG1 | | | | | | | | | | | | | | | | | | lgG1 wt | S | П | P | K | S | C | Ω | X | L | H | H | ၁ | Ь | Ь | C | ۵ | | residues | | | | | | | | | | | | | | ı |) | | | EU | 131 | 216 | 217 | 218 | 219 | 220 | 224 | 225 | | | , | 226 | 227 | 228 | 229 | 230 | | Numbering | | , | | | | | | ı | | | |)

 | i | | ì | 3 | | for IgG4 | | | | | | | | | | | | | | | | | | Kabat | 127 | 226 | 727 | 228 | 229 | 230 | 237 | 238 | ı | | | 239 | 240 | 241 | 242 | 243 | | Numbering | | | | | | | | | | | | :
: |)
 | 1 | ! | Ì | | for IgG4 | | | | | | | | | | | | | | | | | | IMGT | 10 | 1 | 2 | m | 4 | vo | 9 | 7 | | | | ∞ | 6 | 10 | 1 | 12 | | Numbering | | | | | | | | | | | | | i | | 1 | 1 | | tor IgG4 | | | | | | | | | | | | | | , | | | | IgG4 wt
residues | C | ы | S | K | Ϋ́ | D
C | Д | <u>a</u> | | | , | C | _ | S | S | Ь | | Mutations to | S | | ၁ | ၁ | C | C | Q | M | A | A | A | S | | Ь | S | | | 1gC4 | | | or | | or | | or | or | or | or | or | | | | | | | | | | Ъ | | S | | A | Ą | Т | Н | F | | | | | | | | | | | _ | | _ | | | or | or | or | _ | | | | | | | | | | | | | | | <u></u> | ڻ | ٢ | | | | | | Figure 2a #### Figure 2b | | CH1 | | | | HING | E | | | |-------------------------------|-----|-----|-----|-----|------|-----|-----|-----| | Kabat
Numbering | 127 | 226 | 227 | 228 | 229 | 230 | 232 | 233 | | IMGT
Numbering for
IgG3 | 10 | 1 | 2 | [3 | 4 | 5 | 6 | 7 | | IgG3 wt
residues | С | Е | L | K | Т | P | L | G | | Mutations to
IgG3 | S | С | С | С | С | С | С | С | #### Figure 2c | | | | CH1 | | | | CH2 | | |-------------------------------|-----|-----|------|------|------|------|------|------| | Kabat
numbering
for IgM | 127 | 223 | 223A | 223B | 223C | 243G | 243Н | 2431 | | IMGT
Numbering
for IgM | 10 | 121 | 122 | 123 | 124 | 1.5 | 1.4 | 1,3 | | IgM wt
residues | С | V | Р | L | P | V | Ι | A | | Mutations
to IgM | S | С | С | C | С | С | С | С | #### Figure 2d | | СН1 | | | , | Hinge |) | | | |------------------------------|-----|-----|-----|-----|-------|-----|-----|-----| | Kabat numbering for IgD | 128 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | | IMGT
Numbering for
IgD | 11 | 1 | 2. | 3 | 4 | 5 | 6 | 7 | | IgD wt residues | С | Е | S | P | K | A | Q | A. | | Mutations to IgD | S | С | С | C | С | С | С | С | | | | 16 | | | | | | | | | | 2 | | | 2 | 2 | |-----------|------------|--------------|-------|-------|-------|-------|-------|-----------|------------|--------------------|-----|----------|----------|----------|-----------|----------| | | | 15 1 | • | • | | • | | | | 16 | | HC or LC | | | IIC or LC | HC or LC | | | | | • | • | | | | | | | | ı, LC | | | rrc | CIC | | | | 41 | | | •, | | • | | | 15 | | HC or LC | | | IIC or LC | HC or LC | | | | 13 | | | | | • | | | 41 | TC | | | | | | | | | 12 | | | • | | | | | 13 | TC | | | | IIC | | | | | 11 | | | • | | • | | | 12 | TC | | | | | нС | | | | 10 | | | | | | | | 11 | TC | нс | | | | | | | | 6 | | | • | | | | | 10 | CC | нс | | | IIC | | | | S | | | | | | _ | | SO. | 6 | 27 | HC | | | | НС | | | ANTIBODIES | ∞ | • | • | • | | • | | ANTIBODIES | ∞ | | ТС | | | | | | | NTIB | 7 | • | • | | | • | | TIB(| 7 | | CC | | | IIC | | | | A | 9 | • | • | • | | | | A | 9 | | CC | | | | HC. | | | | SP | | • | | • | | | | SP | 27 | ЭН | | | 211 | нс | | | | w | | • | | | | | | w | CC | нс | | | йс | ЭНС | | | | 4 | • | | • | | • | | | 4 | | | | | | | | | | د | | | | | • | | | m | | | | | 27 | | | | | 2 | | | | | | | | 7 | | | | | | DT. | | | | 1 | | | | | | | | | | | | | IIC | | | | | | | | | | | | | _ | | | | | LC or IIC | LC or HC | | | | 2 | | | | | | | | 5 | | | IC | | IIC | HC | | 3a | | 25 | | | | | | 3b | | 4 5 | TC | | | | IIC | НС | | Figure 3a | | Mutations | C127S | G230C | C239S | S241P | C242S | Figure 3b |) | HC Cys
position | 127 | 230 | 230 (G4) | 233 (G1) | 239 | 242 | | | | , | | | | | | | | | |------------|----------|-------|-------|-------|-------|-------|----------|-------|-------|-------| | | 47 | • | | | | • | • | • | | • | | | 94 | | | | | | •. | | | • | | | \$ | • | | | | | • | • | | | | | 4. | • | | | | | • | | | | | | 39 | | • | | | | | • | | • | | | 38 | • | | | | , | | | | • | | | 37 | • | | | | | | • | | | | | 9g | • | | | | | | | | | | DIES | \$£ | | - | | | | | | | _ | | ANTIBODIES | 34 | | | | | | | | | | | A | 33 | • | | • | | | | | | • | | | 32 | • | | • | | | | • | | | | | <u>د</u> | •. | | • | | | | | | | | | स | •. | | | • | | | • | | • | | | 30 | • | | | • | | | | | • | | | 29 | • | | | • | | | • | | | | | 28 | • | | | • | | | | | | | | 15 | | | | | | | | | | | | G4 G1 | | | | | | | | | | | | Suc | C127S | S227C | K228C | Y229C | G230C | P238PAAA | C239S | S241P | C242S | Figure 4a | | 74 | | | | | TC | | | |------------|---------------------|-----|----------|-------|------------|----------------------------|------------|----------| | | 46 | | | | | 27 | IIC | | | | 54 | | | | | S | | НС | | | 44 | | | | | LC or IIC | IIC or I.C | HC or LC | | | 33 | | 271 | | | | | | | | 38 | | J.I.C | | | | IIC | | | | 37 | | 77 | | | | | нс | | | 36 | | TC or HC | | | | IIC or LC | HC or LC | | OIES | 35 | | | TC | | | | | | ANTIBODIES | 34 | | | 27 | | | IIC | | | | 33 | | | TC | | | | нс | | | 32 | | | EC or | | | HC or | 11C or | | | 31 | | | | DT. | | | | | | 30 | | | | 27 | | IIC | | | | 29 | | | | TC | | | нс | | | 28 | | | | 1C or | | HC or | IIC or | | | 15 | | | | | TC | IIC | нс | | Figure 4b | G4 | TC | | | | | пс | HC | | Figu | HC
Cys
positi | 127 | 227 | 228 | 229
G4) | 230
(G4)
233
(G1) | 239 | 242 | #### Figure 5 #### (Ab 6) (SEQ ID NO:12) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKYCPPSPSCPAPEFLGGP #### (Ab 7) (SEQ ID NO:13) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYCPPCPSSPAPEFLGGP #### (Ab 8) (SEQ ID NO:14) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYCPPSPSSPAPEFLGGP ### (Ab 15) (SEQ ID NO:15) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNIKVDKRV(E)SKYCPPCPSCPAPEFLGGP #### (Ab 16) (SEQ ID NO:16) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNIKVDKRV (E) SKYCPPCPPCPAPEFLGGP #### (Ab 28) (SEQ ID NO:17) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKCGPPCPSCPAPEFLGGP #### (Ab 29) (SEQ ID NO:18) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKCGPPSPSCPAPEFLGGP #### (Ab 30) (SEQ ID NO:19) (A) STRGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKCGPPCPSSPAPEFLGGP ### (Ab 31) (SEO ID NO:20) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKCGPPSPSPSPAPEFLGGP ### (Ab 32) (SEQ ID NO:21) (A) STRGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SCYGPPCPSCPAPEFLGGP ### (Ab 33) (SEQ ID NO:22) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) S<u>C</u>YGPP<u>S</u>PSCPAPEFLGGP #### (Ab 34) (SEQ ID NO:23) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNIKVDKRV(E)SCYGPPCPSSPAPEFLGGP ### (Ab 35) (SEQ ID NO:24) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SCYGPPSPSSPAPEFLGGP ### (Ab 36) (SEQ ID NO:25) (A) STRGPSVFPLAP<u>S</u>SRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)<u>C</u>KYGPPCPSCP<u>APEFLGGP</u> #### (**Ab 37**) (SEQ ID NO:26) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) <u>C</u>KYGPP<u>S</u>PSCP<u>APEFLGGP</u> #### (**Ab 38**) (SEQ ID NÖ:27) (A) STRGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) CKYGPPCPSSPAPEFLGGP #### (Ab 39) (SEQ ID NO:28) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) <u>C</u>KYGPPSPSSP<u>APEFLGGP</u> #### (Ab 44) (SEQ ID NO:29) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYCPPAAACPSCPAPEFLGGP #### (Ab 45) (SEO ID NO:30) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNIKVDKRV(E)SKYCPPAAASPSCPAPEFLGGP ### (Ab 46) (SEQ ID NO:31) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYCPPAAACPSSPAPEFIGGP #### (Ab 47) (SEQ ID NO:32) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYCPPAAASPSSPAPEFLGGP #### (Ab 2) (SEQ ID NO:33) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKYGPPSPSCPAPEFLGGP #### (**Ab 3**) (SEQ ID NO:34) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYGPPCPSSPAPEFLGGP #### (Ab 48) (SEO ID NO:35) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)PKSCDKTHTCPPCPAPEFLGGP ### (Ab 28P) (SEQ ID NO:36) (A)
STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKCGPPCPPCPAPEFLGGP ## (Ab 44P) (SEQ ID NO:37) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEFVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKYCPPAAACPPCPAPEFLGGP ### (**Ab 1**) (SEQ ID NO:296) (A) STKGPSVFPLAPSSKSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKYGPPCPSCPAPEFLGGP ### (Ab 4) (SEQ ID NO:297) (A) STRGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYGPPSPSSPAPEFLGGP #### **Ab5** (SEO ID NO:298) (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKYCPPCPSCPAPEFLGGP #### **Ab5P** (SEQ ID NO:299) (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYCPPCPPCPAPEFIGGP #### Ab9 (SEQ ID NO:300) (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKYCPPSPSCPAPEFLGGP #### **Ab10** (SEQ ID NO:301) (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKYCPPCPSSPAPEFLGGP #### **Ab11** (SEQ ID NO:302) (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYCPPSPSSPAPEFLGGP #### **Ab12** (SEQ ID NO:303) (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKYGPPSPSCPAPEFLGGP #### Ab13 (SEQ ID NO:304) (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKYGPPCPSSPAPEFLGGP #### Ab14 (SEQ ID NO:305) (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E) SKYGPPSPSSPAPEFLGGP #### FIGURE 6 # IgG4 CH2 and CH3: (SEQ ID NO:64) SVFLFPPKPKDTLMISRTPEVICVVVDVSOEDPEVOFNWYVDGVEVHNAKTKPREEOFNSTYRVVSVLTVLHODMINGKEYKCKVSNKG LPSSIEKTISKAKGOPREPOVYTLPPSOEEMTKNOVSLTCLVKGFYPSDIAVEWESNGOPENNYKTTPPVLDSDGSFFLYSRLTVDKSR WOEGNVESCSVMHEALHNHYTOKSLSLSLGK # IgG4 CH2 IgG1 CH3: (SEQ ID NO:65) SVELFPPR PRDTLMISRTPEVICVVVDVSOEDPEVOFNWYVDGVEVHNAKTRPREEOFNSTYRVVSVLTVLHODMINGKEYKCKVSNKG LPSSIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSR WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK #### (Ab 6) (SEQ ID NO:38) KPSNTKVDKRV(E)SKYCPPSPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STRGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLOSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### (Ab 7) (SEQ ID NO:39) QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES KPSNTKVDKRV(E)SKYCPPCPSSPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLGK #### (Ab 8) (SEQ ID NO:40) KPSNTKVDKRV(E)SKYCPPSPSSPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLOSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSGK #### (Ab 15) (SEO ID NO:41) KPSNTKVDKRV(E)SKYCPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSK #### (Ab 16) (SEQ ID NO:42) KPSNTKVDKRV(E)SKYCPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QENSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLOSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### (Ab 28) (SEQ ID NO:43) KPSNTKVDKRV(E)SKCGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSKSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### (Ab 29) (SEQ ID NO:44) KPSNTKVDKRV(E)SKCGPPSPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSKSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSGK #### (Ab 30) (SEQ ID NO:45) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLOSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKCGPPCPSSPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSGK #### (Ab 31) (SEQ ID NO:46) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV (E.) SK<u>CGPPSPSPAPEFLGGP</u>SVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSGK #### (Ab 32) (SEQ ID NO:47) KPSNTKVDKRV (E) SCYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QENSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A)STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### (Ab 33) (SEQ ID NO:48) KPSNTKVDKRV(E)SCYGPPSPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE OFNSTYRVVSVLTVLHQDWLNGKEYRCKVSNKGLPSSIEKTISKAKGOPREPOVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLOSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGOPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWOEGNVFSCSVMHEALHNHYTOKSLSLSLSLGK #### (Ab 34) (SEQ ID NO:49) KPSNIKVDKRV(E)SCYGPPCPSSPAPEFLGGPSVFLFPPKPKDILMISRIPEVICVVVDVSQEDPEVQFNWYVDGVEVHNAKIKPREE QENSTYRVVSVLTVLHQDMLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGOPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWOEGNVFSCSVMHEALHNHYTOKSLSLSLGK #### (Ab 35) (SEQ ID NO:50) KPSNTKVDKRV(E)SCYGPPSPSSPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSGK #### (Ab 36) (SEQ ID NO:51) KPSNTKVDKRV (E) CKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QENSIYRVVSVLTVIHQDWINGKEYKCKVSNKGIPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLOSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### (Ab 37) (SEQ ID NO:52) KPSNTKVDKRV(E)CKYGPPSPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE OFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSKK #### (Ab 38) (SEO ID NO:53) KPSNIKVDKRV(E)CKYGPPCPSSPAPEFLGGPSVFLFPPKPKDILMISRIPEVICVVVDVSQEDPEVQFNWYVDGVEVHNAKIKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSKSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSCK #### (Ab 39) (SEQ ID NO:54) KPSNTKVDKRV(E)CKYGPPSPSSPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE (A) STKGBSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLOSSGLYSLSSVVTVPSSSLGTKTYTCNVDH QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSKK #### (Ab 44) (SEQ ID NO:55) KPSNTKVDKRV(E)SKYCPPAAACPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKP REEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### (Ab 45) (SEQ ID NO:56) KPSNTKVDKRV(E)SKYCPPAAASPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKP REEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH WESNGOPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### (Ab 46) (SEQ ID NO:57) KPSNTKVDKRV(E)SKYCPPAAACPSSPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKP REQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE (A) STRGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### (Ab 47) (SEO ID NO:58) KPSNTKVDKRV(E)SKYCPPAAASPSSPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKP REEQFNSTYRVVSVLTVLHQDMLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPE PVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH
WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLGK #### (Ab 2) (SEQ ID NO:59) KPSNTKVDKRV(E)SKYGPPSPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPE PVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSKK #### (Ab 3) (SEQ ID NO:60) KPSNTKVDKRV(E)SKYGPPCPSSPAPEFLGGPSVFLFPFKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### (Ab 48) (SEQ ID NO:61) KPSNTKVDKRV(E) <u>PKSCDKTHT</u>CP<u>PCPAPEFLGGP</u>SVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKP REEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH WESNGOPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK ### (Ab 28P) (SEO ID NO:62) KPSNTKVDKRV(E)SKCGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGOPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWOEGNVFSCSVMHEALHNHYTOKSLSLSLSGK #### (Ab 44P) (SEO ID NO:63) KPSNTKVDKRV(E)SKYCPPAAACPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKP REEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVE (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEFVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH WESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLGK ### (**Ab 1**) (SEQ ID NO:306) KPSNTKVDKRV(E)SKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEFVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSKK #### (Ab 4) (SEQ ID NO:307) (A) STKGPSVFPLAPSSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH KPSNTKVDKRV(E)SKYGPPSPSPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSGK #### **Ab5** (SEO ID NO:308) KPSNTKVDKRV(E)SKYCPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH QENSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### **Ab5P** (SEQ ID NO:309) KPSNIKVDKRV(E)SKYCPPCPPCPAPEFLGGPSVFLFPPKPKDILMISRIPEVICVVVDVSQEDPEVQFNWYVDGVEVHNAKIKPREE OFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSKK #### **Ab9** (SEQ ID NO:310) KPSNTKVDKRV(E)SKYCPPSPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STRGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### **Ab10** (SEQ ID NO:311) KPSNTKVDKRV(E)SKYCPPCPSSPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSOEDPEVOFNWYVDGVEVHNAKTKPREE (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLOSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSGK #### **Ab11** (SEQ ID NO:312) KPSNTKVDKRV (E) SKYCPPSPSPAPEFLGGPSVFLFPFKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYRCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSGK #### **Ab12** (SEQ ID NO:313) KPSNTKVDKRV (E) SKYGPPSPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSGK #### **Ab13** (SEO ID NO:314) KPSNIKVDKRV(E)SKYGPPCPSSPAPEFLGGPSVFLFPPKPKDILMISRIPEVICVVVDVSQEDPEVQFNWYVDGVEVHNAKIKPREE QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK #### Ab14 (SEQ ID NO:315) KPSNTKVDKRV(E)SKYGPPSPSPAPEFLGGPSVFLFPFKPTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE QFNSTYRVVSVLTVLHQDWLNGKEYRCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWES (A) STRGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDH NGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLSGK Figure 7 igure 8 Figure 9 Figure 10 | * | ä | C5458 | | |-------------------|----|-------------------------|---| | • | а | C539S | | | lel | ä | C127S C242S | | | | ы | C127S C239S | | | l⊕l | Ы | S1275 | _ | | * | ы | hG1 wt | | | * | В | PG4 8241P | | | lei | ä | 1w 4∂H | | | ** | ЮН | C127S G230C C239S C242S | | | • | Н | C127S G230C C242S | | | e H ol | ä | C127S G230C C239S | | | | В | C1275 G230C S241P | | | ♦ MI | н | C127S G230C | | igure 11 | .• | ₩. | н | IgG1 wt | 19 | |-----|------------------|---|-------------------------|----| | | ₩. | Ö | 1w 4∂gl | 17 | | | id | Ы | C1575 S227C C239S C242S | 36 | | | I♦I | Ы | C1276 S227C C242S | 38 | | | ₩ | 더 | C1518 8551C C5398 | 37 | | | * | ы | C127S S227C | 36 | | | • | ä | C1575 K228C C239S C242S | 35 | | | • | ы | C1575 K228C C242S | 34 | | | * | Ħ | C1575 K228C C239S | 33 | | | i el | Ħ | C1576 K228C | 32 | | | i o l | ㅂ | C127S Y229C C239S C242S | 31 | | | * | Н | C127S Y229C C242S | 30 | | | ₩. | Н | C127S Y229C C239S | 29 | | | ₩. | н | C1575 Y229C | 28 | | 7H2 | * | Ы | C1275 G230C C239S C242S | œ | | | I∳I | Ы | C1275 G230C C2425 | 7 | | Fab | i d | ㅂ | C1275 G230C C2395 | 9 | | | | Н | C1578 G230C | 15 | | | grees Celsic | | ** | | igure 12 | * bi | | IgG1 wt | 19 | |-------------|---|----------------------------|----| | a l | н | Ig G4 wt | 17 | | ist. | ы | C1275 G230C C239S C242S | 47 | | iol | Ю | C1275 G230C C2425 P238PAAA | 46 | | * | н | C1275 G230C C239S P238PAAA | 45 | | I⊕I | ы | AAA48629 C7275 | 44 | | • | Ö | C127S G230C C242S | 00 | | iol. | Ö | C1578 G230C C239S | 7 | | CH2 | Ö | C127S G230C S241P | 9 | | - Fab | Ö | C1275 G230C | 15 | igure 13 Figure 14 igure 15 Mutant 65 Mutant 48 G FIGURE 16 Heavy Chain Exchange at 16 hours for IgG1 Wild-Type, IgG4 Wild-Type and Various Mutants at Two Concentrations of GSH <u>8</u> **G.0** 0 S **6.0** 0 9 gG4 Mutant 44P **3.0** 0 lgG4 Mutant 44 9 9.0 0 S IgG4 Mutant 28P **3.0** 0 IgG4 Mutant 28 S **6.0** 0 9 gG4P **G**.0 0 9 lgG4 wt **3.0** 0 S lgG1 wt 3.0 0 400000 20000 350000 300000 250000 200002 150000 100000 lsngis **G2M** GSH conc Asymmetric exchange analysis of mutants comprising type 1 variable regions with alternative residues at position 241 with type 2 variable regions. FIGURE 17 lgG4 C239S ■ 16 hrs 5 mM GSH C242S Asymeteric exchange analysis of IgG4 S241P with type 1 variable regions incubated with different S241 mutants, IgG4 C127S Y229C (Ab 28) with type 2 variable regions. 1g64 T **lg**64 ■ 16 hrs 0.5 mM GSH 1gG4 P **l**g64 9 1gG4 Ab 28 ■ 16 hrs PBS lgG4 WT ■ 0 hrs PBS FIGURE 19 90009 langia **Q2M** 2000 2000 2000 50000 10000 0 Asymetric exchange analysis of a double hinge mutants with type 1 variable regions incubated with FIGURE 21