
USOO7743176B1

(12) United States Patent (10) Patent No.: US 7,743,176 B1
Turney et al. (45) Date of Patent: Jun. 22, 2010

(54) METHOD AND APPARATUS FOR 5,778,244 A 7/1998 Putnins et al.
COMMUNICATION BETWEENA 5.990,910 A 1 1/1999 Laksono et al.
PROCESSOR AND HARDWARE BLOCKS INA 6,055,373 A 4/2000 McElroy et al.
PROGRAMMABLE LOGIC DEVICE 6,340,644 B1 1/2002 Becker et al.

6,408,382 B1* 6/2002 Pechanek et al. 712/227
ck

(75) Inventors: Robert D. Turney, Watertown, WI (US); 6,631,433 B1 * 10/2003 Paluzzi 710,244
Paul R. Schumacher, Berthoud, CO (Continued)
(US) OTHER PUBLICATIONS

(73) Assignee: Xilinx, Inc., San Jose, CA (US) Yuichi Nakamura et al., “A Fast Hardware/Software Co-Verification
Method for System-On-a-Chip by Using a C/C++ Simulator and

(*) Notice: Subject to any disclaimer, the term of this FPGA Emulator with Shared Register Communication': DAC 2004;
patent is extended or adjusted under 35 Jun. 7-11, 2004; Copyright 2004; pp. 299-304.

(21) Appl. No.: 11/076,798 Primary Examiner Henry W. H. Tsai
9 Assistant Examiner Michael Sun

(22) Filed: Mar 10, 2005 (74) Attorney, Agent, or Firm Robert M. Brush; LeRoy D.
Maunu

(51) Int. Cl.
G06F 3/28 (2006.01) (57) ABSTRACT

G06F 3/00 (2006.01) Method and apparatus for communication between hardware
G06F 3/4 (2006.01) G06F I3/38 2006.O1 blocks configured in a programmable logic device (PLD) and

(.01) a computation device external to the PLD is described. A bus
(52) U.S. Cl. 1922. 2028; 7.019. controller is provided for receiving words from the computa

710/240; 709/212; 709/245 tion device. Each of the words includes an address component
(58) Field of Classification Search 710/22 and a data component. A first-in-first-out buffer (FIFO) is

See application file for complete search history. configured for communication with the bus controller to store
the words. A processing engine is provided having a memo (56) References Cited p g eng p 9. ry

U.S. PATENT DOCUMENTS

3,918,030 A 11, 1975 Walker
4,862,407 A 8, 1989 Fette et al.
5,001,624 A 3, 1991 Hoffman et al.
5,077,664 A 12/1991 Taniai et al.
5,276,821 A 1/1994 Imai et al.
5,392,391 A * 2/1995 Caulk et al. 345,503
5,442,789 A 8, 1995 Baker et al.
5,497,501 A * 3/1996 Kohzono et al. 710/29

TOIFROM
BUSADAPTER

DMA
CONTROLLER

BUS
CONTROLLER

402

space associated with the hardware blocks and being config
ured to receive a word at a top of the FIFO. An address
decoder is provided for decoding the address component of
the word at the top of the FIFO to obtain an address of a
memory location in the memory space. A strobe generator is
provided for coupling a strobe signal to the processing
engine. The strobesignal is configured to store the word in the
memory location.

18 Claims, 9 Drawing Sheets

US 7,743,176 B1
Page 2

U.S. PATENT DOCUMENTS

7,543,114 B2 6/2009 Cho 711 137
2002/0035671 A1 3f2002 Kametani et al. T11 118
2003,0005261 A1 1/2003. Sheaffer
2003, OOO9651 A1 1/2003 Najam et al.
2003/0028751 A1 2/2003 McDonald et al.
2004/O193852 A1 9, 2004 Johnson
2005/0033875 A1* 2/2005 Cheung et al. 710/29
2005/0177674 A1* 8, 2005 Ober et al. 711.5
2005/0223131 A1* 10/2005 Goekjian et al. T10/22
2005/0228966 A1 10, 2005 Nakamura
2005/0278502 A1 12/2005 Hundley

OTHER PUBLICATIONS

Barr, Michael, “Making Sense of Programmable Logic', O'Reilly
Network, Mar. 2, 2004, pp. 1-8, available at www.oreillynet.com/lpt/
af4658.

Schumacher, Paul et al., “A Virtual Socket Framwork for Rapid
Emulation of Video and Multimedia Designs”. Jul. 2005, pp. 1-4.
available from IEEE, 3 Park Avenue, 17th Floor, New York, NY
10016-5997.

U.S. Appl. No. 1 1/076,797, filed Mar. 10, 2005, Schumacher, Paul R.
et al., “Method and Apparatus for Communication Between a Pro
cessor and Hardware Blocks in a Programmable Logic Device'. 33
pages, available from Xilinx, Inc., 2100 Logic Drive, San Jose, CA
95124.

U.S. Appl. No. 10/912,844, filed Aug. 6, 2004, Ansari, Ahmed et al.,
“Coprocessor Interface Controller', 119 pages , available from
Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124.
Dehon, André, “Transit Note #118, Notes on Coupling Processors
with Reconfigurable Logic.” Mar. 1995, M.I.T. Transit Project.

* cited by examiner

U.S. Patent Jun. 22, 2010 Sheet 3 of 9 US 7,743,176 B1

3O4. 306

ADDRESS ALLOCATION

READ-ONLY REGFILE WRITE-ONLY REGFILE
socKET # START END START | END
MASTER - O 0 || M-1 NM (N+1)"M-1

1 M 2M-1 (N-1) M I (N2)"M-1
(N+2)"M

N (N-1)M NM-1 (2N-1) M 2"NM-1

READ-ONLY BLOCK MEM WRITE-ONLY BLOCK MEM
socKET # START | END START END

1 (2 N+1)"M (2"N+2)"M-1 (3"N+1)"M I (3"N+2)"M-1

(2"N+4)*M (2"N+5)"M-1 (3"N+5)"M-1
| | | | |

N (3*N-1)"M (4"N-1)*M

302
3O8 31 O

FIG. 3

US 7,743,176 B1

N | EXMOOS

HETTIOHINOO VWO

Sheet 5 Of 9

HETTO HINOO STIE

22, 2010

| || EXHOOS| ||
>| || EXMOOS HEJLSV/W| No.

Jun

HEIGIOOEC] SSE HOJCIV/

U.S. Patent

US 7,743,176 B1 Sheet 6 of 9 Jun. 22, 2010 U.S. Patent

WOCl

XOOTE HOSSE OORHc]

US 7,743,176 B1 Sheet 7 Of 9

Z LEXIOOS ERHV/NACTHVH || ZZZ02/

Jun. 22, 2010

| || EXMOOS ERHV/NACJHWH3,814 %,
| -8 || Z.

LEXIOOS HELLSV/W

0-8 || /

A_90/

U.S. Patent

80/

HETTOHALNOO Å HOWEWN

US 7,743,176 B1 Sheet 9 Of 9 Jun. 22, 2010 U.S. Patent

CIV/EH O L SE LÅº

|- 106

906

| 0 ||

US 7,743,176 B1
1.

METHOD AND APPARATUS FOR
COMMUNICATION BETWEENA

PROCESSOR AND HARDWARE BLOCKS INA
PROGRAMMABLE LOGIC DEVICE

FIELD OF THE INVENTION

One or more aspects of the present invention relate gener
ally to processing systems and, more particularly, to a method
and apparatus for communication between a processor and
hardware blocks in a programmable logic device.

BACKGROUND OF THE INVENTION

Traditional complex processing systems are typically
implemented using Software running on a microprocessor in
conjunction with multiple dedicated hardware blocks.
Examples of processing systems employing mixed hardware/
software descriptions include various MPEG (moving picture
experts group) systems for processing multimedia content,
such as MPEG-4 systems. In MPEG-4, standardization
efforts have resulted in a software description of the compres
sion algorithm from which mixed hardware/software imple
mentations can be derived. In Such systems, the hardware
blocks are capable of performing complex functions more
efficiently than Such functions could be performed using pure
software.

Supporting mixed hardware/software designs of a process
ing system with appropriate test and emulation platforms is
critical to their deployment and acceptance in the industry.
The conventional approach for testing and verifying Such a
design involves the application of a large number of test
vectors to a software simulation of the design. As design
complexity increases, however, simulation times are becom
ing prohibitively long on current desktop computers.

Another approach for testing and Verifying designs
involves the use of a test engine running on a standard com
putation device (e.g., a computer) in communication with
hardware emulators. The hardware emulators allow for more
accurate and efficient simulation of the hardware portion of
the design. The hardware emulators may be implemented
using hardware blocks in a programmable logic device
(PLD), such as a field programmable gate array (FPGA).
PLDs exist as a well-known type of integrated circuit (IC) that
may be programmed by a user to perform specified logic
functions.
The interface between the standard computation device

and the hardware emulators is becoming increasingly impor
tant as processing system designs become more complex. For
Video and multimedia designs that involve an enormous
amount of data to be processed, communication between a
test engine running on a standard computation device and
hardware emulators configured in a PLD is one of the primary
bottlenecks that affect the test/verification process.

Accordingly, there exists a need in the art for an improved
method and apparatus for communication between a proces
sor and hardware blocks configured in a programmable logic
device.

SUMMARY OF THE INVENTION

Method and apparatus for communication between a pro
cessor and hardware blocks configured in a programmable
logic device is described. One aspect of the invention relates
to communication between hardware blocks configured in a
programmable logic device and a computation device exter
nal to the programmable logic device. A bus controller is

10

15

25

30

35

40

45

50

55

60

65

2
provided for receiving words from, and transmitting words to,
the computation device. At least one first-in-first-out buffer
(FIFO) is provided for communication with the bus controller
to store the words. A Processing engine is provided having a
memory space associated with the hardware blocks. The pro
cessing engine is configured to receive the words in the FIFO
(s). An address decoder is provided for decoding an address
component of the words in the FIFO(s) to obtain addresses of
memory locations in the memory space. A strobe generator is
provided for coupling a strobe signal to the processing
engine. The strobe signal is configured to store the words in
the respective memory locations.

In another embodiment, communication between hard
ware blocks and a processor in a programmable logic device
is described. A shared memory is provided along with a
memory controller for controlling access to the shared
memory. An interface is configured to receive auxiliary
instructions from the processor, select the hardware blocks
for the requested tasks in response to the auxiliary instruc
tions, notify the hardware blocks of those tasks, and arbitrate
access to the memory controller among the hardware blocks.

BRIEF DESCRIPTION OF THE DRAWINGS

Accompanying drawing(s) show exemplary embodiment
(s) in accordance with one or more aspects of the invention;
however, the accompanying drawing(s) should not be taken to
limit the invention to the embodiments) shown, but are for
explanation and understanding only.

FIG. 1 is a block diagram depicting an exemplary embodi
ment of a processing system constructed in accordance with
one or more aspects of the invention;

FIG. 2 is a functional block diagram depicting an exem
plary embodiment an interface between software running on
a processor and a hardware block of the processing system in
FIG. 1:
FIG.3 is a table depicting an exemplary address allocation

scheme in accordance with one or more aspects of the inven
tion;

FIGS. 4 and 5 are block diagrams depicting an exemplary
embodiment of a interface between a processor and multiple
hardware blocks in accordance with one or more aspects of
the invention;

FIG. 6 is a block diagram depicting an exemplary embodi
ment of an FPGA coupled to a program memory;

FIG. 7 is a block diagram depicting another exemplary
embodiment of a processing system constructed in accor
dance with one or more aspects of the invention;

FIG. 8 is a functional block diagram depicting an exem
plary embodiment an interface between software running on
a processor and a hardware block of the processing system in
FIG. 7; and
FIG.9 is a table depicting an exemplary embodiment of an

auxiliary instruction in accordance with one or more aspects
of the invention.

DETAILED DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram depicting an exemplary embodi
ment of a processing system 100 constructed in accordance
with one or more aspects of the invention. The system 100
includes a computer 102 in communication with a program
mable logic device (PLD) 104. The PLD 104 may be in
communication with external memory 106. In general, the
computer 102 is configured to execute software code that
makes use of one or more hardware blocks configured in the
PLD 104. The hardware blocks may act as “hardware accel

US 7,743,176 B1
3

erators' configured to perform particular functions more effi
ciently than Software implementations of Such functions. In
addition, the hardware blocks may act as “hardware emula
tors' for more realistic and efficient testing and verification of
a design.

In particular, the computer 102 includes a processor 108,
memory 110, support circuits 112, an input/output (I/O) inter
face 116, and a bus adapter 120, each of which is in commu
nication with a system bus 103. The processor 108 may be any
type of microprocessor known in the art. The Support circuits
112 for the processor 108 include conventional cache, power
Supplies, clock circuits, data registers, I/O interfaces, and the
like, as well as a bus arbiter 114. The bus arbiter 114 deter
mines which circuit in the computer 102 has control of the
system bus 103. The system bus 103 may comprise any type
of bus known in the art, such as a typical local bus found in
many personal computers known in the art.
The I/O interface 116 may be in communication with vari

ous I/O devices 118, such as a conventional keyboard, mouse,
printer, display, and the like. The bus adapter 120 is config
ured to couple the PLD 104 to the system bus 103. The bus
adapter 120 acts as a bridge between buses and allows trans
fers to take place between the PLD 104 and other devices
coupled to the system bus 103, such as the processor 108 and
the memory 110. For example, the bus adapter 120 may
comprise a local bus to peripheral component interface (PCI)
bus bridge or like type bus adapter known in the art. Alterna
tively, the PLD 104 could support a number of other bus
formats known in the art (e.g., the PLD 104 may be config
ured with USB, FireWire, or other bus formats). The memory
110 stores software 113 to be executed by the processor 108.
The PLD 104 is configured with an interface 122 in com

munication with a processing engine 124. The processing
engine 124 includes sockets 128-0 through 128-N (collec
tively referred to as sockets 128), where N is an integer. The
sockets 128 include a master socket 128-0 and N hardware
sockets 128-1 through 128-N. The sockets 128-1 through
128-N may include various hardware blocks. The master
socket 128-0 may be used to identify the presence of hard
ware blocks in the sockets 128-1 through 128-N and to con
trol transfers between the PLD 104 and the external memory
106. The PLD 104 may comprise a field programmable gate
array (FPGA) or like type device known in the art. An exem
plary FPGA is shown in FIG. 6.

The interface 122 is configured to provide access to the
sockets 128 for use by the computer 102. In general, the
interface 122 controls the transfer of data, address, and con
trol information between the processing engine 124 and the
system bus 103. The software 113 running on the processor
108 may access the sockets 128 through the interface 122. An
exemplary embodiment of a flow control mechanism imple
mented by the interface 122 is described below with respect to
FIGS. 4 and 5.

Each of the sockets 128 comprises a hardware block 130
and a wrapper 132. The wrapper 132 provides a standard
interface to the hardware block 130. That is, each of the
sockets 128 includes a standard interface to its respective
hardware block. The wrapper 132 includes a data transfer
state machine 134 and a memory space 136. The data transfer
state machine 134 is configured to communicate with the
interface 122 and to control data flow to and from the hard
ware block 130. The memory space 136 includes a write-only
register file 150, a read-only register file 152, a write-only
block memory 154, and read-only block memory 156. The
terms “write' and “read” are defined with respect to the
interface 122. That is, the interface 122 stores data to the
write-only memories 150 and 154 and reads data from the

5

10

15

25

30

35

40

45

50

55

60

65

4
read-only memories 152 and 156. Conversely, the hardware
block 130 reads data from the write-only memories 150 and
154 and writes data to the read-only memories 152 and 156.
The register file memories 150 and 152 are used for writing

and reading control signals. The write-only register file 150 is
used to store flags and parameters that are required by the
hardware block 130 (e.g., a status flag indicating the presence
of input data). The read-only register file 152 is used to
convey various flags and parameters computed by the hard
ware block 130 (e.g., a status flag indicating the presence of
completed output data). The read-only register file 152 can
also contain any information that the hardware block 130
would like to transmit to the computation device (e.g., func
tional capabilities, estimated performance of specified tasks,
etc.). The block memories 154 and 156 are used for transfer
ring data between the interface 122 and the hardware block
130. For example, the hardware block 130 may be a discrete
cosine transform (DCT) circuit for performing DCT opera
tions. Input data comprising blocks of pixel values are
received through the interface 122 and stored in the write
only block memory 154. Output data comprising blocks of
DCT coefficients are stored in the read-only block memory
156 and read-out through the interface 122. An exemplary
configuration for the memory space 136 of a socket is
described immediately below with respect to FIG. 2.

FIG. 2 is a functional block diagram depicting an exem
plary embodiment an interface between the software 113
running on the processor 108 and a socket 128-X of the
Sockets 128 in the processing engine 124. The memory space
136 includes one or more information registers 218, a finish
flag register 220, a start flag register 222, output memory 224,
and input memory 226. The wrapper 132 for the socket 128-X
includes control logic 216. The information registers 218 and
the finish flag 220 form the read-only register file space, and
the start flag 222 forms the write-only register file space. The
output memory 224 forms the read-only block memory space,
and the input memory 214 forms the write-only block
memory space.

Data is written to the input memory 226 by the software
113 via path 208 to the interface 122. The hardware block 130
is configured to read the input data from the input memory
226 for processing. The hardware block 130 is configured to
stored output data to the output memory 224. The output data
is read by the software 113 via path 206 from the interface
122. Various protocols may be used to perform the data trans
fer to the input memory 226 (e.g., streaming databased on
empty/full flags of the input memory 226). One method is the
use of a start flag register 222. The software 113 sets the start
flag register 222 via control path 204 to the interface 122. The
control logic 216 detects the state of the start flag register 222
and signals the hardware block 130 to begin processing input
data in the input memory 226.
The hardware block 130 signals the control logic 216 after

processing is complete and output data is stored in the output
memory 224. In response, the control logic 216 sets the finish
flag register 220. Various protocols may be used to perform
the data transfer from the output memory 224 (e.g., streaming
data based on empty/full flags of the output memory 224,
interrupt signals sent from the interface 122 to the processor
108). One method is the use of a finish flag register 220 that is
polled by the software 113 running on microprocessor 108.
The software 113 periodically polls the state of the finish flag
register 220 and reads data from the output memory 224 in
response to the finish flag register 220 being set. The infor
mation registers 218 may be used to store data indicative of
the capabilities of the hardware block 130. For example, the
information registers 218 may be configured to store a list of

US 7,743,176 B1
5

task(s) that the hardware block 130 is capable of performing,
as well as a cost function related to how fast the hardware
block 130 can perform the task(s).

FIG. 3 is a table 300 depicting an exemplary address allo
cation scheme that may be employed with respect to the
memory space 136 for each of the sockets 128. In the present
example, there are N sockets 128 and Maddress locations in
each of the memory spaces 150 through 156 for each of the
sockets 128 where M is an integer). The software 113 may
access the memories in the sockets 128 in accordance with the
addresses in the table 300 (i.e., the write-only register file 150,
the read-only register file 152, the write-only block memory
154, and the read-only block memory 156).

In particular, a column 302 in the table 300 indicates the
socket number ranging from Zero (the master socket 128-0)
through N (the socket 128-n). A portion 304 of the table 300
indicates an exemplary address allocation for the read-only
register file 152 in each of the sockets 128. In the present
example, the read-only register file 152 for the master socket
128-0 starts at address 0 and ends at address M-1. The read
only register file 152 for the socket 128-1 starts at address M
and ends at address 2M-1, and so on until the read only
register file 152 for the socket 128-Nstarts at address (N-1)M
and ends at address NM-1.
A portion 306 of the table 300 indicates an exemplary

address allocation for the write-only register file 150 in each
of the sockets 128. The write-only register file 150 for the
master socket 128-0 begins at address NM and ends at address
(N+1)M-1, and so on until the write-only register file 150 for
the socket 128-N begins at address (2N-1)M and ends at
address 2NM-1. A portion 308 of the table 300 indicates an
exemplary address allocation for the read-only block memory
156 in each of the sockets 128. The read-only block memory
156 for the master socket 128-0 begins at address 2NM and
ends at address (2N+1)M-1, and so on until the read-only
block memory 156 for the socket 128-N begins at address
(3N-1)M and ends at address 3NM-1. Finally, a portion 310
of the table 300 indicates an exemplary address allocation for
the write-only block memory 154 in each of the sockets 128.
The write-only block memory 154 for the master socket
128-0 begins at address 3NM and ends at address (3N+1)M-
1, and so on until the write-only block memory 154 for the
socket 128-N begins at address (4N-1)M and ends at address
4NM-1.

Returning to FIG. 1, in one embodiment, the read-only
register file 152 of the master socket 128-0 is configured to
store a hardware identification value. The hardware identifi
cation value provides information related to which of the
Sockets 128 in the processing engine 124 includes a hardware
block. In one embodiment, the hardware identification value
comprises an N+1 bit word, where each bit indicates the
presence (e.g., a “1” value) or the absence (e.g., a “0” value)
of a hardware block in a respective one of the sockets 128.
That is, the least significant bit is associated with the master
socket 128-0 and the most significant bit is associated with the
socket 128-N. For example, the hardware identification value
“00000 . . . 00001000011 indicates that the master Socket
128-0 and sockets 128-1 and 128-6 include hardware blocks.
The software 113 may access the read-only register file 152

in the master socket 128-0 to read the hardware identification
value and determine which of the sockets 128 may be used for
processing. In one embodiment, functionality of the available
Sockets is determined using a predefined table of socket num
bers and their corresponding hardware functionality. In
another embodiment, the read-only register file 152 in the
master socket 128-0 is configured to store information related
to the functionality of the hardware block in each of the

10

15

25

30

35

40

45

50

55

60

65

6
available sockets. As the PLD 104 is programmable and par
tial reconfiguration of PLD 104 is possible, individual hard
ware blocks in the Sockets 128 may change dynamically over
time, thus modifying the value of read-only register file 152.
The polling of the register file 152 can be performed by either
the software 113 or by the interface 122 and future tasks
allocated accordingly.

FIGS. 4 and 5 are block diagrams depicting an exemplary
embodiment of the interface 122 coupled to the sockets 128 in
accordance with one or more aspects of the invention. In
particular, FIG. 4 depicts a portion 400 of the interface 122
related to writing data to the sockets 128. FIG. 5 depicts a
portion 500 of the interface 122 related to reading data from
the sockets 128. Identical elements in FIGS. 4 and 5 are
designated with identical reference numerals. For purposes of
clarity, elements specific to reading data from the Sockets 128
are omitted from FIG. 4. Likewise, elements specific to writ
ing data to the sockets 128 are omitted from FIG. 5.
The interface 122 employs a flow control mechanism to

control writing to, and reading from, the memory space of the
sockets 128. Referring to FIGS. 1, 4, and 5, the interface 122
includes a bus controller 404 and a direct memory access
(DMA) controller 402. The bus controller 404 is configured
for communication with the bus adapter 120. A port of the bus
controller 404 is in communication with a port of the DMA
controller 402.
The DMA controller 402 includes internal registers (not

shown) that control its operation. The internal registers typi
cally include an address register, a byte count register, and a
control register, such registers being well known in the art.
For a data transfer from the bus adapter to the interface 122,
the address register is loaded with the desired memory
address in which to store the data. The memory address is
defined with respect to the combined memory space of the
sockets 128 (e.g., the example shown in FIG. 3). The byte
count register is loaded with the number of bytes to be trans
ferred, and the control register is loaded with control data
(e.g., data indicative of the direction of the transfer). The
internal registers may be loaded with their respective data by
the processor 108. Such initialization of the DMA controller
402 is well known in the art.

After the internal registers are initialized, the DMA con
troller 402 signals the bus controller 404 that it should request
control of the system bus 103. The bus controller 404 is
configured for bus mastering Such that the interface 122 is
capable of becoming a master of the system bus 103. The bus
controller 404 negotiates with the bus arbiter 114 for control
of the system bus 103. Once the bus controller 404 has control
of the system bus 103, the DMA controller 402 then controls
the DMA transfer between the memory 110 and the interface
122. When the DMA transfer is complete, the DMA control
ler 402 notifies the bus controller 404 that it no longer requires
control of the system bus 103. The bus controller 404 then
relinquishes control of the system bus 103 to the bus arbiter
114. By employing the PLD 104 as a bus master, this embodi
ment of the invention reduces overhead with respect to com
munication between the PLD 104 and the computer 102.

Referring specifically to FIG. 4, the interface 122 further
includes write first-in-first-out circuitry (write FIFO) 406,
control logic 408, and a multiplexer 418. An output port of the
bus controller 404 is coupled to a data input port 420 of the
write FIFO 406. A data output port 421 of the write FIFO 406
is coupled to an input port of each of the sockets 128. In one
embodiment, the write FIFO 406 includes a single FIFO for
the entire interface 122. In another embodiment, the write
FIFO 406 includes a separate FIFO for each of the sockets
128. In such an embodiment, the bus controller 404 includes

US 7,743,176 B1
7

de-multiplexing logic 450 for selecting a FIFO for loading
data therein. Use of a FIFO for each of the sockets 128 allows
the hardware blocks in the sockets 128 to accept data at their
own desired rates, which can be different for each of the
hardware blocks.

The write FIFO 406 comprises multiple memory locations,
which include a top memory location (“top 416'). The control
logic 408 is in communication with the write FIFO 406 to
read data at the top 416. The control logic 408 includes an
address decoder 410 and a strobe generator 412. The control
logic 408 includes N+1 output ports respectively coupled to
input ports of the sockets 128-0 through 128-N. Each of the
sockets 128 is in communication with the write FIFO 406 via
a path 417 to read data at the top 416. The multiplexer 418
includes N+1 input ports respectively coupled to output ports
of the sockets 128-0 through 128-N. An output port of the
multiplexer 418 is coupled to a pop control terminal 422 of
the write FIFO 406.

In operation, information to be processed by the Sockets
128 is transferred from the computer 102 (e.g., from the
memory 110) to the write FIFO 406 using the DMA/bus
mastering process described above. In particular, the bus con
troller 404 pushes each received word into the write FIFO 406
via the data input port 420. Each received word includes one
or more of an address component, a control component, and
a data component.
The address decoder 410 reads the address component of

the word at the top 416 of the write FIFO 406 and decodes the
address. That is, the address decoder 410 determines which
memory location in the combined memory space of the Sock
ets 128 is being addressed. The strobe generator 412 then
provides a strobe signal to the addressed memory location in
the address one of the sockets 128. For example, in accor
dance with the exemplary allocation scheme of FIG. 3, an
address of (3N+3)M refers to the write-only block memory
154 of the socket 128-3. After decoding the address (3N+3)
M, the strobe generator 412 would generate a strobesignal for
the write-only block memory 154 of the socket 128-3.

Each of the sockets 128 may read a write valid flag from the
word at the top 416 of the write FIFO 406 via the path 417.
The write valid flag comprises at least a portion of the control
component of the word at the top 416 of the write FIFO 406.
For each of the sockets 128, the write valid flag indicates that
the word at its input is valid. If valid, the word at the top 416
of the write FIFO 406 is stored in the addressed memory
location in the address one of the sockets 128 in accordance
with the strobe signal generated by the strobe generator 412.
After the word is stored, the addressed one of the sockets 128
asserts a write ready signal to the multiplexer 418. The mul
tiplexer 418 selects the write read signal of the addressed one
of the sockets 128, which pops the write FIFO 406 and cause
the next word to be located at the top 416 of the write FIFO
406. The process is then repeated. In this manner, information
may be transferred from the computer 102 to one or more of
the sockets 128. The selection control for the multiplexer 418
is performed by the address decoder 410. In one embodiment,
data is written to the same socket as long as the write FIFO
406 is not empty.

Referring specifically to FIG. 5, the interface 122 further
includes a multiplexer 502 and a multiplexer 504. An output
port of the bus controller 404 is coupled to the control logic
408. An output port of the control logic 408 is coupled to a
control terminal of each of the multiplexers 502 and 504.
Output ports of the multiplexers 502 and 504 are coupled to
input ports of the bus controller 404. Input ports of the mul
tiplexer 504 are coupled to data output ports of the sockets
128. Input ports of the multiplexer 502 are coupled to strobe

10

15

25

30

35

40

45

50

55

60

65

8
output ports of the sockets 128. An output port of the DMA
controller 402 is coupled to an input port of each of the
sockets 128.

In operation, information produced by the sockets 128 is
transferred from the PLD 104 to the computer 102 using the
DMA/bus mastering process described above. In particular,
the bus controller 404 receives a read request from the com
puter 102. The address decoder 410 decodes an address com
ponent of the read request to determine which memory loca
tion in the combined memory space of the sockets 128 is
being addressed. The control logic 408 provide a control
signal to the multiplexers 502 and 504 to select a socket of the
sockets 128 in accordance with the address decoded by the
address decoder 410. For example, in accordance with the
exemplary allocation scheme of FIG. 3, an address of (2N+
3)M refers to the read-only block memory 152 of the socket
128-3. After decoding the address (2N+3)M, the control logic
408 causes the multiplexer 504 to select the data output port
of the socket 128-3, and the multiplexer 502 to select the
strobe output port of the socket 128-3.

In response to the read request, the bus controller 404
becomes the master of the system bus 103, as described
above. The bus controller 404 notifies the DMA controller
402 that it has control of the system bus 103, and the DMA
controller 402 notifies the sockets 128 to begin transferring
data to a specified address in the memory 110. As described
above, the internal registers 403 of the DMA controller 402
are initialized with address and control information for the
transfer. The addressed one of the sockets 128 provides the
data to the bus controller 404 through the multiplexer 504,
and provides the strobe signal for the memory 110 to the bus
controller 404 through the multiplexer 502. The information
is then coupled to the system bus 103 such that the data is
stored in the memory 110. The process is then repeated for
each read request. In this manner, information may be trans
ferred from the PLD 104 to the computer 102.

FIG. 6 is a block diagram depicting an exemplary embodi
ment of an FPGA 602 coupled to a program memory 620. The
FPGA 602 may be used as the PLD 104 in the system 100 of
FIG. 1. The FPGA 602 illustratively comprises program
mable logic circuits or “blocks, illustratively shown as CLBs
604, IOBs 606, and programmable interconnect 608 (also
referred to as “programmable logic'), as well as configuration
memory 616 for determining the functionality of the FPGA
602. The FPGA 602 may also include an embedded processor
block 614, as well as various dedicated internal logic circuits,
illustratively shown as blocks of random access memory
(“BRAM 610), configuration logic 618, and digital clock
management (DCM) blocks 612. Those skilled in the art will
appreciate that the FPGA 602 may include other types of
logic blocks and circuits in addition to those described herein.
As is well known in the art, the IOBs 606, the CLBs 604,

and the programmable interconnect 608 may be configured to
perform a variety of functions. Notably, the CLBs 604 are
programmably connectable to each other, and to the IOBs
606, via the programmable interconnect 608. Each of the
CLBs 604 may include one or more "slices” and program
mable interconnect circuitry (not shown). Each CLB slice in
turn includes various circuits, such as flip-flops, function
generators (e.g., a look-up tables (LUTs)), logic gates,
memory, and like type well-known circuits. The IOBs 606 are
configured to provide input to, and receive output from, the
CLBS 604.

Configuration information for the CLBs 604, the IOBs
606, and the programmable interconnect 608 is stored in the
configuration memory 616. The configuration memory 616
may include static random access memory (SRAM) cells.

US 7,743,176 B1
9

The configuration logic 618 provides an interface to, and
controls configuration of the configuration memory 616. A
configuration bitstream produced from the program memory
620 may be coupled to the configuration logic 618 through a
configuration port 619. The configuration process of FPGA
602 is also well known in the art.
The DCM blocks 612 provide well-known clock manage

ment circuits for managing clock signals within the FPGA
602, such as delay lock loop (DLL) circuits and multiply/
divide/de-skew clock circuits. The processor block 614 com
prises a microprocessor core, as well as associated control
logic. Notably, such a microprocessor core may include
embedded hardware or embedded firmware or a combination
thereof for a “hard' or “soft' microprocessor. A soft micro
processor may be implemented using the programmable logic
of the FPGA 602 (e.g., CLBs 604, IOBs 606). For example, a
MICROBLAZE soft microprocessor, available from Xilinx
of San Jose, Calif., may be employed. A hard microprocessor
may be implemented using an IBM POWER PC, Intel PEN
TIUM, AMD ATHLON, or like type processor core known in
the art.

The processor block 614 is coupled to the programmable
logic of the FPGA 602 in a well-known manner. For purposes
of clarity by example, the FPGA 602 is illustrated with 12
CLBs, 16 IOBs, 4 BRAMs, 4 DCMs, and one processor
block. Those skilled in the art will appreciate that actual
FPGAs may include one or more of Such components in any
number of different ratios. For example, the FPGA 602 may
be selected from the VIRTEX-4 family of products, commer
cially available from Xilinx, Inc. of San Jose, Calif.

FIG. 7 is a block diagram depicting another exemplary
embodiment of a processing system 700 constructed in accor
dance with one or more aspects of the invention. The system
700 may be implemented entirely within a PLD, such as the
FPGA 602 of FIG. 6 or the Virtex-4 FPGA available from
Xilinx, Inc. of San Jose, Calif. The system 700 comprises a
processor block 702, an interface 704, a processing engine
706, a memory controller 708, shared memory 710, and cache
memory 712. In one embodiment, the processor block 702
includes a processor 714 and an auxiliary processor unit
(APU) 716 (an example of an APU is found in the Virtex-4
FPGA, further details are in co-pending application, U.S.
application Ser. No. 10/912,844, entitled “Coprocessor Inter
face Controller', by Ahmad R. Ansari, et. al., filed Aug. 6,
2004, which is herein incorporated by reference). The pro
cessing engine 706 includes sockets 718-0 through 718-N
(collectively referred to as sockets 718), where N is an integer.
Similar to the embodiment of FIG. 1, the sockets 718 include
a master socket 718-0 and Nhardware sockets 718-1 through
718-N. In contrast to the embodiment of FIG.1, the processor
714 and APU 716 are embedded in the PLD, rather than being
part of an external computation device. The memory 710 can
be either embedded in the PLD or be external to the PLD.
A port of the processor 714 is coupled to a port of the APU

716. Another port of the processor 714 is coupled to a port of
the cache memory 712. A port of the processor block 702 is
coupled to a port of the memory controller 708. Another port
of the APU 716 is coupled to a port of the interface 704.
Another port of the interface 704 is coupled to another port of
the memory controller 708. Yet another port of the interface
704 is coupled to the processing engine 706. Another port of
the memory controller 708 is coupled to a port of the shared
memory 710.

In operation, the processor 714 executes software code that
makes use of one or more hardware blocks of the processing
engine 706. The processor 714 may be any type of micropro
cessor known in the art. The processor 714 may use the cache

5

10

15

25

30

35

40

45

50

55

60

65

10
memory 712 for storing software instructions and/or local
data. In some cases, the Software instructions stored in the
cache 712 may be fetched from another memory, such as the
shared memory 710. The processor 714 may access the
shared memory 710 via the memory controller 708. The
memory controller 708 is configured to arbitrate access to the
shared memory 710 among the processor block 702 and the
interface 704.

Some of the Software instructions comprise auxiliary
instructions that are not executed by the processor 714, but are
rather sent by the processor 714 to the APU 716. Notably, an
auxiliary instruction may comprise a task to be performed by
a socket of the sockets 718 in the processing engine 706.
Upon receiving an auxiliary instruction associated with the
processing engine 706, the APU 716 forwards the auxiliary
instruction to the interface 704. The data to be processed by
the processing engine 706 is stored in the shared memory 710.
The interface 704 includes decoder logic 720 for decoding

auxiliary instructions received from the APU 716. Notably,
FIG. 9 is a table depicting an exemplary embodiment of an
auxiliary instruction 900 in accordance with one or more
aspects of the invention. The auxiliary instruction 900 com
prises four words 901-1 through 901-4 (collectively referred
to as words 901). For purposes of clarity by example, each of
the words 901 includes 32 bits. It is to be understood that the
words may comprise any number of bits.
The word 901-1 includes a priority component 904 and a

function/task component 906. The function/task component
906 includes data representative of the particular task to be
performed by the processing engine 706. The priority com
ponent 904 includes data representative of the priority of the
task with respect to a predefined priority scale. The priority
component 904 may be used to aid the interface 704 in select
ing a socket for performing the task among multiple contend
ing Sockets. In the present example, the priority component
904 includes four bits for 16 possible priority levels, and the
function/task component 906 includes 28 bits. It is to be
understood that the priority component 904 and the function/
task component 906 may have other bit-sizes.
The word 901-2 includes data representative of the start

address in the shared memory 710 for the input data to be
processed by the processing engine 706. The word 901-2
includes data representative of the start address in the shared
memory 710 for the output data produced by the processing
engine 706 in response to processing the input data. The word
901-4 includes a first component 908 and a second compo
nent 910. The first component 908 includes data representa
tive of the number ofbytes to be read by the processing engine
706 from the start address of the input data indicated by the
word 901-2. The second component 910 includes data repre
sentative of the maximum number of bytes to be written to the
shared memory 710 by the processing engine 706. In the
present example, each of the first component 908 and the
second component 910 includes 16 bits. It is to be understood
that the first component 908 and the second component 910
may have other bit-sizes.

Returning to FIG.7, the decoder logic 720 analyzes the first
word of the auxiliary instruction to identify the task to be
performed and its associated priority. The interface 704 is
configured with knowledge of the hardware functionality of
each of the sockets 718. Based on this knowledge, the
requested function/task, and the priority of the task, the inter
face 704 notifies the appropriate one of the sockets 718 to
begin performing the requested task. In particular, the inter
face 704 informs the selected socket of the start address in the
shared memory 710 for the input data to be processed. The

US 7,743,176 B1
11

interface 704 processes each auxiliary instruction received
from the APU 716 in a similar manner.
The interface 704 further includes memory arbitration

logic 722 for arbitrating access to the memory controller 708
among the sockets 718. That is, after a socket receives noti
fication of a task to be performed, the socket requests access
to the memory controller 708 (and ultimately the shared
memory 710) from the memory arbitration logic 722. The
interface 704 also includes processor arbitration logic 724 for
arbitrating access to the processor 714 among the Sockets
718. For example, a socket may communicate an interrupt to
the processor 714. The interface 704 may also include a status
register 726 that can be read by the processor 714. The status
register 726 may be used to inform the software running on
the processor 714 whether a requested task has been com
pleted, as well as only partially completed due to a number of
possible reasons (e.g., limited memory space, unsupported
features, and the like).

Each of the sockets 718 comprises a hardware block 730
and a wrapper 728. The wrapper 728 provides a standard
interface to the hardware block 730. That is, each of the
sockets 718 includes a standard interface to its respective
hardware block. The wrapper 728 includes a data transfer
state machine 750 to communicate with the interface 704 and
a memory space 732 having a write-only register file 734, a
read-only register file 736. The terms “write” and “read” are
defined with respect to the interface 704. That is, the interface
704 stores data to the write-only register file 734, and reads
data from the read-only register file 736. Conversely, the
hardware block 730 reads data from the write-only register
file 734, and writes data to the read-only register file 736.
Notably, the memory space 732 does not include read/write
block memories, since actual input and output data is not
communicated between the processor 714 and the interface
704. Rather, communication between the interface 704 and
the hardware block 730 is in the form of an instruction. The
shared memory 710 is used to store both the input data and the
resulting output data.
The register file memories 734 and 736 are used for writing

and reading control signals. The write-only register file 734 is
used to store flags and parameters that are required by the
hardware block 730 (e.g., a status flag indicating the presence
of input data). The read-only register file 736 is used to
convey various flags and parameters computed by the hard
ware block 730 (e.g., a status flag indicating the presence of
completed output data). The read-only register file 736 can
also contain any information that the hardware block 730
would like to transmit to the processor block 702 (e.g., func
tional capabilities, estimated performance of specified tasks,
etc.). An exemplary configuration for the memory space 732
of a socket is described immediately below with respect to
FIG 8.

FIG. 8 is a functional block diagram depicting an exem
plary embodiment of an interface between Software running
on the processor 714 and a socket 718-X of the sockets 718 in
the processing engine 706. The memory space 732 includes
one or more information registers 818, a finish flag register
820, and a start flag register 822. The wrapper 728 for the
socket 718-X includes control logic 816. The information
registers 818 and the finish flag 820 form the read-only reg
ister file space, and the start flag 822 forms the write-only
register file space.

The processor block 702 notifies the interface 704 of a
requested task via the path 808. The task request includes the
start address in the shared memory 710 of the input data, the
start address in the shared memory 710 for the output data,
and the number of bytes to be read from and written to the

10

15

25

30

35

40

45

50

55

60

65

12
shared memory 710. Various protocols may be used to per
form the data transfer from the shared memory 710 (e.g.,
streaming databased on empty/full flags). One method is the
use of the start flag register 822. The interface 704 sets the
start flag register 822 in response to the task request and
communicates the address and byte count information to the
control logic 816. The control logic 816 detects the state of the
start flag register 822 and signals the hardware block 730 to
begin processing input data in the shared memory 710 at the
start address of the input data. The hardware block 730
receives input data from the memory controller 708 through
the interface 704 via the path 802. The hardware block 730
sends data to be stored in the shared memory 710 to the
interface 704 via the path 804.
The hardware block 730 signals the control logic 816 after

processing is complete and output data is stored in the shared
memory 710. In response, the control logic 816 sets the finish
flag register 820. Various protocols may be used to perform
the data transfer to the shared memory 710 (e.g., streaming
databased on empty/full flags, interrupt signals sent from the
interface 720 to the processor 714). One method is the use of
the finish flag register 820. In one embodiment, the interface
704 periodically polls the state of the finish flag register 820
and set the status register 726 to indicate that the task has been
completed in response to the finish flag register 820 being set.
The information registers 818 may be used to store data
indicative of the capabilities of the hardware block 730. For
example, the information registers 818 may be configured to
store a list of task(s) that the hardware block 730 is capable of
performing, as well as a cost function related to how fast the
hardware block 730 can perform the task(s).

While the foregoing describes exemplary embodiment(s)
in accordance with one or more aspects of the present inven
tion, other and further embodiment(s) in accordance with the
one or more aspects of the present invention may be devised
without departing from the scope thereof, which is deter
mined by the claim(s) that follow and equivalents thereof.
Claim(s) listing steps do not imply any order of the steps.
Trademarks are the property of their respective owners.
The invention claimed is:
1. An apparatus for communication between a plurality of

hardware blocks configured in an integrated circuit and a
computation device external to the integrated circuit, com
prising:

a bus controller for receiving words from the computation
device;

a first-in-first-out buffer (FIFO) in communication with the
bus controller for storing the words:

a processing engine having respective memory spaces
associated with the hardware blocks, the processing
engine configured to store the words from the FIFO in
the memory spaces;

an address decoder for decoding an address component of
each of the words to obtain addresses of memory loca
tions in the memory spaces;

a multiplexer having a control port coupled to the address
decoder, input ports respectively coupled to the hard
ware blocks for receiving write-ready signals, and an
output port coupled to a pop control terminal of the
FIFO:

a strobe generator for providing strobe signals to the pro
cessing engine, the strobe signals configured to store the
words in the respective memory locations; and

wherein after a word is stored in the respective memory
space associated with an addressed one of the hardware
blocks, the addressed one of the hardware blocks asserts
a respective write-ready signal to the multiplexer, in

US 7,743,176 B1
13

response to a control signal from the address decoder the
multiplexer selects the respective write-ready signal for
input to the pop control terminal, and a top word is
popped from the FIFO.

2. The apparatus of claim 1, wherein each of the words
further includes a control component, and wherein each of the
hardware blocks is configured to receive the control compo
nent of each of the words.

3. The apparatus of claim 2, wherein for each word of the
words the control component comprises data indicating that
the word is valid.

4. The apparatus of claim 1, further comprising:
a direct memory access (DMA) controller coupled to the

bus controller for controlling data transfers between the
processing engine and the computation device.

5. The apparatus of claim 1, wherein the bus controller is
configured to be a bus master of a system bus in the compu
tation device.

6. The apparatus of claim 1, wherein the bus controller is
further configured to receive read requests from the compu
tation device, the apparatus further comprising:

a first multiplexer having first input ports respectively
coupled to data output ports of the hardware blocks, a
first control port coupled to the address decoder, and a
first output port coupled to the bus controller; and

a second multiplexer having second input ports respec
tively coupled to strobe output ports of the hardware
blocks, a second control port coupled to the address
decoder, and a second output port coupled to the bus
controller.

7. A method of communication between a plurality of
hardware blocks configured in an integrated circuit and a
computation device external to the integrated circuit, com
prising:

receiving words from the computation device into a first
in-first-out buffer (FIFO) in the integrated circuit;

decoding an address component of a word at the top of the
FIFO to select a memory location in a respective
memory space associated with one of the hardware
blocks;

storing a data component of the word to the selected
memory location in the respective memory space asso
ciated with the one of the hardware blocks;

after the storing of the data component of the word in the
respective memory space associated with the one of the
hardware blocks, asserting a respective write-ready sig
nal by the one of the hardware blocks:

Selecting, in response to the decoded address component,
the respective write-ready signal asserted by the one of
the hardware blocks from a plurality of write-ready sig
nals from the plurality of hardware blocks; and

popping a top word from the FIFO in response to the
selected write-ready signal asserted by the one of the
hardware blocks.

8. The method of claim 7, further comprising:
repeating the steps of decoding and storing for at least one

additional word at the top of the FIFO.
9. The method of claim 7, wherein the data portion of the

word is stored in the selected memory location by providing
a strobe signal to the hardware block based on the selected
memory location.

10. The method of claim 7, wherein the step of receiving
the words comprises:

mastering a system bus in the computation device.
11. The method of claim 10, wherein the words are

received using a direct memory access (DMA) process.

10

15

25

30

35

40

45

50

55

60

65

14
12. The method of claim 7, further comprising:
receiving read requests from the computation device;
selecting a hardware block in response to the read request;

and
providing output data to the computation device from the

hardware block.
13. A processing system, comprising:
a computation device having a processor and a memory

coupled to a system bus; and
an integrated circuit configured to include an interface and

a processing engine having respective memory spaces
associated with a plurality of hardware blocks, the inter
face including:
a bus controller for receiving words from the system bus

of the computation device;
a first-in-first-out buffer (FIFO) in communication with

the bus controller for storing the words;
an address decoder for decoding an address component

of each of the words to obtain addresses of memory
locations in the memory space;

a multiplexer having a control port coupled to the
address decoder, input ports respectively coupled to
the hardware blocks for receiving write-ready signals,
and an output port coupled to a pop control terminal of
the FIFO; and

a strobe generator for providing a strobe signal to the
processing engine, the strobe signal configured to
store the words in the respective memory locations;
and

wherein after a word is stored in the respective memory
space associated with an addressed one of the hard
ware blocks, the addressed one of the hardware blocks
asserts a respective write-ready signal to the multi
plexer, in response to a control signal from the address
decoder the multiplexer selects the respective write
ready signal for input to the pop control terminal, and
a top word is popped from the FIFO.

14. The system of claim 13, wherein each of the words
further includes a control component, and wherein each of the
hardware blocks is configured to receive the control compo
nent of each of the words.

15. The system of claim 14, wherein for each word of the
words the control component comprises data indicating that
the word is valid.

16. The system of claim 13, wherein the interface further
comprises:

a direct memory access (DMA) controller coupled to the
bus controller for controlling data transfers between the
processing engine and the computation device.

17. The system of claim 13, wherein the bus controller is
configured to be a bus master of the system bus in the com
putation device.

18. The system of claim 13, wherein the bus controller is
further configured to receive read requests from the compu
tation device, the apparatus further comprising:

a first multiplexer having first input ports respectively
coupled to data output ports of the hardware blocks, a
first control port coupled to the address decoder, and a
first output port coupled to the bus controller; and

a second multiplexer having second input ports respec
tively coupled to strobe output ports of the hardware
blocks, a second control port coupled to the address
decoder, and a second output port coupled to the bus
controller.

