= UK Patent Application « GB « 2190 521 ..A

(43) Application published 18 Nov 1987

(21) Application No 8628175
(22) Date offiling 25 Nov 1986
{30) Priority data

(31) 863878 (32) 16 May 1986

(33) US

{71) Applicant
Intel Corporation,

{Incorporated in USA-California),

3065 Bowers Avenue, Santa Clara, California 95051, United

States of America

(72) and (74) continued overleaf

(51) INTCL?
GO6F 9/30

{52) Domestic classification (Edition 1)

G4AFNPB

(56) Documents cited
EP A10075633 US 4530049
EP A10075632 US 4268903

(58) Field ofsearch
G4A :
Selected US specifications from IPC sub-class GO6F

{54} Stackframecacheona
microprocessor chip

(57) Astackframecacheona
microprocessor chip and a control
mechanism therefor. A plurality of
global registers 21 are provided onthe
microprocessor chip. One ofthe global
registersis aframe pointer register
containing the current frame pointer,
and the remainder of the global registers
are available to a current process as
general registers. A plurality of floating
point registers are also provided for use
by the current process in execution of
floating point arithmetic operations by
processor 22. A register set pool 23
forming an on-chip cache and made up
ofa plurality of register sets is provided,
each register set being comprised of a
number of local registers. When acall
instruction is decoded, a register set of
local registers from the register set pool
is allocated to the called procedure, and
the frame pointer register is initialized.
When a return instruction is decoded,
the register setis freed for allocationto
another procedure called by a
subsequent call instruction. Ifthe
register set pool is depleted a register
setassociated with a previous
procedure is saved in the main memory,
and thatregister setis allocated tothe
current procedure. The local registersin
aregister set associated with a
procedure contain linkage information
including a pointer to the previous frame
and an instruction pointer, thus enabling
most call and return instructions to
execute without needing any references
to off-chip memory.

FIG. |
{ L
20 LOCAL BUS |
LOCAL BUS SEQUENCER
Py - L
o INSTRUCTION [M . .
7 FETCH UNIT g < ?| 80-BIT
(s B FPU
3 2 :
== [NSTRUCTION |,]
—| CACHE
Y FP
Sl RECISTERS
INSTRUCTION],
DECODER 2
%t GLOBAL
MICRO- e
L3 1KSTRUCTION & > REGISTERS
14~ SEQUENCER
26
: 1 REGISTER
(STACK
MICRO- .
G FRAME)
'NSI;ROU,%”O”) il CACHE
|8\
TRANSLATION | g Y=
¢ LOOK ASIDE | 32 BIT
BUFFER (€ JdTEu
v -4 v ;
T ki 24

The drawing(s) originally filed was (were) informal and the print here reproduced is taken from a later filed formal copy.

V LG 06l ¢ 9D

(72) Inventors
Glenford J. Myers,
Konrad Lai,
Michael T. Imel,
Glenn Hinton,
Robert Riches

(74) Agentand/or Address for Service
Potts Kerr & Co., 15 Hamilton Square, Birkenhead,
Merseyside L41 6BR

Yy
Tl

1/3

2190521
FIG. |
29 LOCAL BUS i
| LOCAL BUS SEQUENCER
e
INSTRUCTION][
CACHE [€
Fp
28 I 12 REGISTERS
INSTRUCTION
DECODER >)
5LOBAL
MICRO-
INSTRUCTION REGISTERS
14~{ SEQUENCER
a 1 REGISTER
(STACK
MICRO-
ERAME)
INSTRUCTIoN (it
18
TRANSLATION
LOOK ASIDE 32-BIT
BUFFER IEU
)
T T

2

30~

LINEAR ADDRESS

FIG. 3

~

A

/3

G Tl T

2190521

FIG. 2

/A

619

GLOBAL REGISTERS
-32

{

FPO
FP3

FLOATING POINT
| REGISTERS

2% %30-|

_A%THMETIC CONTROLS

PACE

JINSTRUCTION PONTER

0D Sp —=

40 —

////////////////////////////////

777777/PADDING AREA 777277777

////////////////////////////////

L0

PREVIOUS FRAME PTRIPFP) [PIRRR|T

44/L_1/

STACK POINTER (SP)

Ty

RETURN INSTRUCTION POINTER (RIP)

L3

L4

o e)

)

LIS

—e=—

(PREVIOUS)
(FRAME)

—

[_J |
(CURRENT)

. p—re——r—

. (FRAME)

RO

3/3

FIG. 5

RIS

GLOBAL
REGISTERS

RI6

R3l|

—-—

-———

FRAME |

RIG

R3I

—_————

————

FRAME

RI6

FRAME
REGISTER
SET

R3l

R ——

FRAME

— — — s

TOP OF
STACK

«1duasl

GB 2190521 A

1

10

15

20

25

30

35

40

45

50

55

60

65

SPECIFICATION
Stack frame cache on a microprocessor chip

Technical field
The presentinvention relates to data processing systems, and more particularly to apparatus for
minimizing main memory references initiated during execution of call/return instructions.

Background art

Rapid advances in VLS| technology and design techniques have enabled microcomputers to approach the
performance and sophistication of a super minicomputer. As processors become faster, the traffic between
the processor and off-chip main memory increases causing a performance bottleneck. In prior systems this
bottleneck has been lessened by using a local on-chip memory (called a cache) to store frequently used
memory data. If data required by the processor is in the cache, an off-chip memory reference is avoided since
the data can be fetched directly from the cache. Further reductions in memory traffic could be achieved ifthe
cache design were expanded to include instruction fetches. For example if informatioin relating to call and
return instructions were available locally on the chip, call and return instructions could execute without
references to the off-chip memory. The resulting decreased memory bus traffic would also reduce the
probability thata load or store instruction will have to wait for the memory bus.

Itis therefore an object of the present invention to provide an apparatus for minimizing main memory
references occurring during execution of call/return instructions.

Brief description ofthe invention

Briefly, the above object is accomplished in accordance with the invention by providing a plurality of global
registers on the microprocessor chip. One of the global registers is a frame pointer register containing the
current frame pointer, and the remainder of the global registers are available to a current process as general
registers. A stack frame cache mechanism is provided comprised of a register set pool made up of a plurality
of register sets, each register set being comprised of a number of local registers on the chip. When a call
instruction is decoded, a register set from the register set pool is allocated to the called procedure, and the
frame pointer register is initialized. When a return instruction is decoded, the register set is freed for
allocation to another procedure called by a subsequent call instruction. If the register set pool is depleted, the
contents of a register set associated with a previous procedure are saved in the main memory, and that
register setis allocated to the current procedure.

In accordance with an aspect of the invention, the local registers of a register set associated with a
procedure contain linkage information including a pointer to the previous frame and an instruction pointer,
thus enabling most call and return instructions to execute without needing any references to off-chip
memory.

The invention has the advantage that it significantly reduces the saving and restoring of registers that must
be done when crossing subroutine boundaries.

The invention also has the advantage that since the local register sets are mapped into the stack frames, the
linkage information that normally appears in stack frames (e.g., pointerto previous frame, saved instruction
pointer) is contained in the local registers. This means that most call and return instructions execute without
causing any references to off-chip memory.

Description of the drawings

The foregoing and other objects, features, and advantages of the invention will be apparent from the
following more particular description of the preferred embodiments of the invention as illustrated in the
accompanying drawings, wherein:

Figure 1is a functional block diagram illustrating each of the major components of the microprocessorin
which the invention is embodied;

Figure 2is a block diagram of an execution environment when executing aninstruction on the system
showninFigure 1;

Figure 3is a diagram of the stack frame structure within the current linear address space of the execution
environmentshown in Figure 2;

Figure 4is a diagram of the call stack structure within the current linear address space of the execution
environment shownin Figure 2; and,

Figure 5illustrates the mapping of the microprocessor’s register sets into the program’s stackinmemory.

Description

Referring now to Figure 1, the microprocessor is logically subdivided into seven major units: the
Instruction Fetch Unit {10), the Instruction Decoder (12}, the Microinstruction Sequencer (14), Translation
Lookaside Buffer {18), the Floating Point Unit (22), the Local Bus Sequencer (20), and the Integer Execution
Unit (24).

Communication paths between all of these units include a 32-bit data bus, a 29-bit microinstruction bus
(26), and microinstruction-valid signal (28). The microinstruction bus controls and synchronizes the activities

10

15

20

25

30

35

40

45

50

55

60

65

2

GB 2190521 A

10

15

20

25

30

35

40

45

50

b5

60

65

ofthe autonomous units. Each ofthe units is described briefly below.

Theinstruction Decoder (ID) decodes and controls instruction (macrocode) execution. The ID decodes
instructions, performs operand addressing and fetching, handles branch instructions (i.e., instruction
pointer manipulation), and either emits execution microinstructions (for simple instructions) or starts
microprogram flows {for complex instruction).

The Instruction Fetch Unit (IFU) fetches, prefetches, and caches instructions from memory for use by the
ID. The IFU also maintains six instruction pointers that track instructions through the pipeline. The IFU caches
the most recently used blocks of instructions and keeps the instruction decoder supplied with a stream of
instructions. It also contains the instruction pointers and operand reduction logic controlled by the ID.

The Microinstruction Sequencer (MIS) sequences microcode flows to handle chipinitialization,
macroinstructions that are too complex to handle directly, and exception and interrupt conditions.

The MIS contains a 3K by 42-bit microcode ROM and sequencing logic for microcode flows. The functions
that the MIS perform include: fetch the next microinstruction, microprogram branching, handle exception
conditions, maintain a scoreboard on the register file, and in conjunction with the ID, detect
macroinstruction-boundary and trace events.

The Integer Execution Unit {(IEU) executes most of the microinstructions issued by the ID and the MIS. It
contains the registers visible to the programmer, the scratch registers used by microcode, the ALU, barrel
shifter, and the logic needed to execute its instructions. The |[EU contains one-hundred twelve 32-bit
registers, a 32-bit ALU, and a 32-bit barrel shifter. It features an ALU bypass path that allows ALU operations
to be executed at the rate of one per cycle. It also contains a single-port register file that can be accessed twice
in one cycle such thatthe result from the previous operation can be stored in the same cycle as anew
operand is being fetched for the current operation.

The Floating Point Unit (FPU) contains the logic needed to perform floating point operations, and integer
multiply and divide. The FPU contains four floating point registers, several temporary registers, a 68-bit
shifter that can shift up to 16 bits in either direction, a 69-bit mantissa adder, a significant bit finder, a
mantissa ROM, two internal 68-bit data paths, and a separate exponent data path thatincludes its own 16-bit
adder and registers. It executes integer multiply and divide, and all floating point operations, including the
cordic algorithms for the transcendental instructions.

The Translation Lookaside Buffer (TLB) performsthe address translation needed to implement virtual
memory mechanisms. The TLB performs address translation and memory protection using an associative
table of storage descriptors and page table entries. It contains a48-entry address cache, a six-bit address
adder, and memory protection checking hardware. Each entry in the address cache contains 27 CAM bits and
38 RAM bits. The TLB supports several address translation mechanisms to allow the user to choose the type
of memory protection from a variety of conventional mechanisms {paging or segmentation).

The Local Bus Sequencer pipelines and sequences external bus accesses. The local bus sequencer
contains the interface hardware to the external local bus, manages the bus protocol, and recognizes external
events (e.g., interrupts, initialization). It contains an outgoing 33-bit wide address and data FIFO, anincoming
33-bit data FIFO, and a sequencer. The outbound FIFO allows up to 3 requests to be queued in the local bus
sequencer so that the rest of the processor can proceed with execution, independent of the memory access
latency. The inbound FIFO buffers read data returning from external memory until a free cycle is available to
transferthe datato its destination. .

A plurality of global registers (21) are provided. One of the global registers is a frame pointerregister
containing the current frame pointer, and the remainder of the global registers are available to acurrent
process as general registers. A register (stack frame) cache (23) is provided comprised of a register set pool
made up of a plurality of register sets, each register set being comprised of a number of local registers. When
acallinstruction is decoded, a register set from the register set pool is allocated to the called procedure, and
the frame pointer register isinitialized. When a return instruction is decoded, the register set is freed for
allocation to another procedure called by a subsequent call instruction. If the register set pool is depleted, the
contents of a register set associated with a previous procedure are saved in the main memory, and that
register set is allocated to the current procedure. The local registers of a register set associated with a
procedure contain linkage information including a pointer to the previous frame and an instruction pointer,
thus enabling most call and return instructions to execute without needing any references to off-chip
memory.

Instruction set

Aprocess sees aflatlinear address space, addressed with 32-b ordinals, out of which it allocates data,
instruction, and stack space. A call instruction creates a new stack frame (activation record) on asequentially
allocated stack.

The instruction set of the microprocessor is similar in design to those of RISC (reduced instruction-set
computer) machines. All instructions are 32-bits in length and must be aligned on word boundaries, and only
load, store, and branching instructions reference memory (all others reference registers).

Refer to Figure 2 which shows the environment when executing. The execution environment consists of a
2%*32 byte linear address space (30) and thirty six registers. Of the thirty six registers, 16 are 32-bitglobal
registers {32), sixteen are 32-bit local registers (34), and the remaining four are 80-bit floating-point registers
(36). The local registers are associated with a mechanism known as the stack-frame cache. When a procedure

10

15

20

25

30

35

40

45

50

55

60

65

GB 2190521 A

3

10

15

20

25

30

35

40

45

50

~ 55

60

65

is called, a new set of iocal registers are allocated from a pool of registers on-chip, and are feed by a
procedure return. The present embodiment of the invention provides four sets (64) of local registers on-chip,
but this numberis transparentto the programmer.

The register model consists of 16 global registers and 4 floating-point registers that are preserved across
procedure boundaries, and multiple sets of 16 local {or frame) registers that are associatively mapped into
each stack frame.

Atany instant, an instruction.can address thirty six of these registers as follows:

Registertype Register name

Global register G0...G15
Floating-pointregister FPO..FP13
{floating-point operand)

Local register L0...L15

Atany pointintime, one can address thirty-two 32-bit registers, and four 80-bit floating-point registers (the
32registers can also be used to hold floating-point values). Of the 32 registers, 16 are global registers and 16
arelocal registers. The difference is thatthe 16 global registers are unaffected when crossing procedure
boundaries (i.e., they behave like “normal” registers in other processors {ocal registers are affected by the
call and return instructions.

When a call instruction is executed, the processor allocates to the called procedure a new set of 161ocal
registers from an on-chip pool of four register sets. If the processor’s four-set pool is depleted, the processor
automatically reallocates aregister set by taking one register set associated with an earlier procedure and
saving the contents of that register set in memory. The contents of the earlier procedure’s register set are
saved inthe first 16 words of the procedure’s stack frame in memory. Because of this, the mechanism s
named the stack frame cache. The return instruction causes the currentlocal register set to be freed (for use
by a subsequent call).

There are sixteen global registers (32) associated with a process; they are saved in the process control
biock when the process is not executing. Global registers are not associatively mapped into the process
control block.

Of the sixteen 32-bit registers, G15 contains the currentframe point (FP) and G0..G14 are general-purpose
registers. The FP contains the linear address {pointer) into the current execution environment for the current
(topmost) stack frame. Since stack frames are aligned to 64-byte boundaries, the low-order 6 bits of FPare
ignored and always interpreted to be zero. This register is initialized on calls and restored on returns.

Areference to a register as an operand thatis bigger than 32 bits uses the registers with consecutive higher
register numbers.

Floating-point registers

There are four floating-point registers (34) associated with a process; they are saved in the process control
block when the process is not executing. Floating-point registers are not associatively mapped into the
process control block.

Floating-point numbers are stored in extended real format in the floating-point registers. Floating-point
registers are accessed only as operands of floating-point instructions (but such instructions may also use the
32-bitlocal and global registers).

Arithmetic controls

The Arithmetic Controls (36) are used to control the arithmetic and faulting properties of the numeric
instructions as well as for storing the conditions codes. When a process is suspended, the arithmetic controls
information is saved in the process control block.

Instruction pointer

The Instruction Pointer (38) is a linear address (pointer) into the current linear address space to the first byte
ofthe currentinstruction. Since instruction must begin on word (4-byte) boundaries, the two low-order bits
ofIPareignored and assumedto be 0.

Local (orframe) registers

Referto Figure 3. Registers L0..L15, the [ocal registers, do not denote registers of the conventional variety;
they denote the first 16 words of the current frame. Thus, register L0 is mapped into linear address FP+0to
FP+3, register Liis mappedinto linear address FP=4ito FP+4i+3,and soon.

Acache of multiple stack frames is provided. There are multiple banks of high-speed registers, one bank
per procedure activation. The program does not have to save and restore registers explicitly.

Stackframe
The stack frame, shown in Figure 3, is a contiguous portion of current linear address space, containing data
in a stack-like fashion. There is one stack frame per activated procedure, which contains local variables,

10

15

20

25

30

35

40

45

50

b5

60

65

4 GB 2190521 A 4
parameters, and linkage information. A call operation acquires a new stack frame; a return operation
releases it. When a new frame is acquired, it is aligned on a 64-byte boundary.
The fields in the stack frame of Figure 3 are defined as follows:
5 Padding Area. This area (42) is used to align the FP to the next 64-byte boundary. The size of this areavaries 5
from 0to 63 bytes. When a call operation is performed, a padding areais added to round the caller's SPto the
next 64-byte boundary to form the FP for this frame. If the caller's SPis already aligned, the padding areais
absent.
Frame Status (L0). The frame status (42) records the information associated with the frame, after a call, to
10 beused on areturnfrom the frame. The fields of a frame status are defined asfollows: 10
Trace Enable, T (Bit0). In a supervisor call, this bitrecords the trace-enable bit at the time of the call. On
return, this bitis used to restore the caller’s trace-enable bit in the process if the execution mode ofthe
returning frame is supervisor.
Return Status, RRR (bits 1-3). This 3-bit field records the call mechanism used in the creation of thisframe
15 and is usedto selectthe return mechanism to be used on return. The encodings of this field are as follows: 15
000 Local
001 Supervisor
010 Interrupt
20 011 Nonsubsystem fault 20
100 Subsystem
101 reserved
110 Idle/stoppedinterrupt
111 reserved
25 25
Prereturn Trace, P. (bit4). On a return from a frame when the prereturntrace bitis 1, a prereturn trace event
(if enabled) occurs before any actions association with the return operation is performed. This bitisinitialized
tozeroonacall.
Previous Frame Pointer, PFP (bit6-31). A linear, address (42) to the first byte of the previous frame. Since
30 frames are aligned to 64-byte boundaries, only the most-significant 26 bits of the FP are saved. [f the return 30
status indicates subsystem transfer, this field contains the most-significant 26 bits of the linear address ofthe
top-most (last)frame in this call stack before the call. Otherwise, the top-most frame is the calling frame.
During a call, the lower five bits of the frame status are initialized asfollows:
35 0000- - Local call, or supervisor call from 35
supervisor state
0001T - Supervisor call from user mode
0010- - Interrupt call
0011- -- Nonsubsystem fault call
40 0100- - Subsystem call 40
0110- - interrupt call fromidle or stopped state
Tisthe value ofthe trace bit defined above. “-" indicates a reserved bit, while “x” indicates a don‘t-care bit.
Onall returns, the bits are interpreted as follows:
a5 45
T XXXX - Generate a prereturn trace
0000x - Perform alocal return
0001T - In supervisor mode, perform a supervisor
return. The T bitis assigned to the trace-enable bitin the process controls, and the
50 execution-mode bitis set to user. Otherwise, perform alocal return. 50
0010x - Perform aninterrupt return
0011x -- Perform afaultreturn
0100x - Perform a subsystem return
0101x - OPERATION. RETURN fault
55 0110x -- Perform anidle/stopped-interruptreturn 55
0111x -- OPERATION. RETURN fault
Stack Pointer, S P (Li). A linear address (44) to the first free byte of the stack, that is, the address of the last
byte in the stack plus one. SPis initialized by the call operation to pointto FP plus 64.
60 ReturnInstruction Pointer, RIP {L2). When a call operation is performed to a new frame, the return IP (46) is 60
saved here. When the process is suspended, the instruction pointer of the nextinstruction is stored here. It
contains a 32-bit linear address to which control is returned after a return to thisframe.
Aprocedure call saves the IP in a register of the current frame. Since implicit procedure calls can occur (due
tofaults and interrupts), programs do not use this register for other purposes.
656 The Stack grows (Figure 4) from low addresses to high addresses. 65

5 GB 2190521 A 5

Figure 5illustrates the mapping of the microprocessor's register setsinto the program'’s stack in memory.

The page, or simple object, into which the first 64 bytes of a frame are mapped must be of local lifetime. The
lifetime of the page or simple object is checked during a call. This restriction is necessary to ensure efficient
manipultion of ADs inthelocal registers.

5 5
Linearaddress space structure

As shown in Figure 2, each execution environment defines a 32-bit linear address space. The linearaddress
space is partitioned into four regions. The first three regions of an execution environment are specific to the
current process (i.e., defined by the process control block). The composition of the process specific regions

10 canbe changed by a subsystem call/return. The fourth region of an execution environment is shared by all 10
processes (i.e., defined by the processor control block). There are no restrictions on where instructions, stack
frames, or data are located int he linear address space.

Local procedure mechanism
15 Aprocedure begins atany arbitary word address in a linear-address space. Procedure calls and return use 15
astackinthelinear address space.
Instructions
20 CALL 20
CALL-EXTENDED

CALL and CALL-EXTENDED invoke the procedure at the address specified. CALL specifies the procedure as
IP plus a 24-bit signed displacement. CALL-EXTENDED specifies the procedure using a general memory

25 effective address. CALL-EXTENDED also contains an operand which becomes AP in the newframe. 25

Anew stack frame is allocated during the call operation and the control flow is transferred to the specified
procedures. The execution environment remains unchanged.

RETURN

30 30

The RETURN instruction transfers control back to the calling procedure’s addressing environment and
releases the called procedure’s stack frame. Instruction execution is continued at the instruction pointed to
by the RIP in the calling procedure’s frame.

35 MODIFY -AC 35

CONVERT -ADDRESS
MODIFY -AC s used to read or modify the current arithmeter controls. Because the region ADS are not
directly accessible, the CONVERT -ADDRESS instruction can be used to convert a linear address into a virtual

40 address. 40
Process management

Asoftware process ortask, is represented by a process control biock. Two means are provided forthe
control of process switching. One is via two instructions (save-process and resume-process), which allowan

45 operating system to switch processes explicitly. Another is a priority-based process scheduling and 45
dispatching function that s builtinto the processor. Using the latter mechanism, the processor will
automaticaily dispatch processes from a queue in memory.

The processor keeps track of the cumulative execution time of each process, and also provides optional
time-slice management. For the latter, whenever a process executes for longer than a prescribed amount of

50 time, the processor will generate afault, or enqueue the process on the queue of available processes and 50
dispatch another process.

When automatic process dispatching is used, a set of interprocess communication instructions are
provided, which are similar to services normally provided in software operating-system kernels. They
provide support for the communication of messages among processes.

55 55
Tracing and ICE Support

Software debugging and tracing is provided by means of atrace-controls register that s part of each
process. The trace controls allow detection of any combination of the following events:

Instruction execution (i.e., single step)

60 Execution ofataken branch instruction 60

Execution of a call instruction

Execution of a return instruction

Detection that the next instruction is areturninstruction

Execution of a supervisor or subsystem call

65 Breakpoint(hardware breakpoint or execution of a breakpointinstruction) 65

6

GB 2190521 A

10

15

20

25

30

35

40

45

50

55

60

65

When atrace eventis detected, the processor generates a trace fault to give control to a software debugger
or monitor. The processor contains two instruction breakpoint registers, into which a debugger can place the
addresses of two instructions.

External bus

The microprocessor's bus is a 32-bit multiplexed bus with burst-transfer capability. The burst-transfer
mechanism (which aliows multiple words to be transferred in successive cycles) allows the bus to be defined
as multiplexed. Burst transfers can occur for 1, 2, 3, or4 words. During the address cycle, the processar
indicates the number of words in the request in the low-order two address bits. For instance, if the processor
wishes to read four words, the bus operation isn’tterminated until four READY's are received. Burst-transfer
operations are used often by the processorfor instruction-cache fills, stack-frame-cache saves and restores,
multiword loads and stores, string operations, and so on.

The microprocessor is highly pipelined. There are normally five instructions in different stages of
execution inthe pipeline at any given moment. In any given cycle, the instruction pointerto instruction n+4is
computed, instruction n+3is read from the instruction cache, instruction n +2is decoded and issued to the
microinstruction bus, instruction n+1 is being executed, and the result of instruction nis being stored into
theregisterfile.

While the invention has been particularly shown and described with reference to preferred embodiments
thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and
detail may be made therein without departing from the spirit and scope of the invention.

CLAIMS

1. Foruseinadata processorconnectable to a main memory, a stack frame cache in said data processor
and a control mechanism therefor comprising:

aplurality of global registers, one of said global registers being a frame pointer register containing a
currentframe pointer which pointsto a current frame, and the remainder of said global registers being
available as general registers to a current process;

aregister set pool made up of a plurality of register sets, each register set being comprised of a number of
local registers;

first control means activated upon the decoding of a call instruction for allocating, to the called procedure,
aregister set of local registers from said register set pool and for initializing one of said frame pointer
registers to create a current frame; and,

second control means activated upon the decoding of a return instruction for freeing said register set for
allocation to another procedure called by a subsequent call instruction.

2. Thecombination in accordance with claim 1 wherein said first control means includes means operable
upon the condition that said register set pool is depleted for saving, in said main memory, the contents ofa
register set associated with a previous procedure and for allocating said register set to said current
procedure.

3. Thecombinationin accordance with claim 1 wherein said first control means includes return status
bits for recording the call mechanism used in the creation of said frame and for selecting thereturn
mechanism to be used on return.

4. Thecombination in accordance with claim 1 wherein said local registers in a register set associated
with a procedure contain linkage information including a pointer to the previous frame and aninstruction
pointer.

5. Thecombination in accordance with claim 2 wherein said local registers in a register set associated
with a procedure contain linkage information including a pointer to the previous frame and aninstruction
pointer.

6. Thecombinationin accordance with claim 1 wherein said local registers in a register set associated
with a procedure contain a stack frame including frame status bits for recording the information associated
with the frame after a call, to be used on a return from the frame, said information including return status bits
for recording the call mechanism used in the creation of said frame and for selecting the return mechanismto
be used on return.

7. Thecombination in accordance with claim 1 wherein said local registersin a register setassociated
with a procedure contain a stack frame including previous frame pointer bits comprised of a linear addressto
the first byte of the previous frame.

8. Thecombination in accordance with claim 1 wherein said local registers in a register set associated
with a procedure contain a stack frame including a return instruction pointer field for storing the return
instruction pointer upon the condition that a call operation is performed to a new frame and for storing the
instruction pointer of the nextinstruction upon the condition that the process is suspended, said field being a
linear address to which controlis returned after a return to this frame.

9. Thecombination in accordance with claim 2 wherein said local registers in a register setassociated
with a procedure contain a stack frame including frame status bits for recording the information associated
with the frame after a call, to be used on a return from the frame, said information including return status bits
for recording the call mechanism used in the creation of said frame and for selecting the return mechanismto

10

15

20

25

30

35

40

45

50

55

60

65

GB2190521 A

7

10

be used onreturn.

10. Thecombination in accordance with claim 2 wherein said local registers in a register set associated
with a procedure contain a stack frame including previous frame pointer bits comprised of a linear addressto
thefirst byte of the previous frame.

11. Thecombination in accordance with claim 2 wherein said local registers in a register set associated
with a procedure contain a stack frame inciuding a return instruction pointer field for storing the return
instruction pointer upon the condition that a call operation is performed to a new frame and for storing the
instruction pointer of the nextinstruction upon the condition that the process is suspended, said field being a
linear address to which control is returned after a return to this frame.

12. Astackframe cache for use in a data processor connectable to a main memory substantially as
hereinbefore described with reference to the accompanying drawings.

Printed for Her Majesty's Stationery Office by Croydon Printing Company {UK) Ltd, 9/87, D8991685.
Published by The Patent Office, 25 Southampton Buildings, London WC2A 1AY, from which copies may be obtained.

10

