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INNERVATED STOCHASTIC CONTROLLER
FOR REAL TIME BUSINESS DECISION-MAKING SUPPORT

SPECIFICATION

This application claims the benefit of United States provisional
application No. 60/497,834 filed August 26, 2003, which is hereby incorporated by

reference herein in its entirety.

FIELD OF THE INVENTION
This invention relates to systems and methods for supporting business

decision-making in complex and uncertain process environments. More particularly,
the invention relates analysis of probable process events and to the prediction of
action outcomes to support business and engineering decision-making in the face of
uncertainty.

BACKGROUND OF THE INVENTION

A defining characteristic of the modern industrial society is the

complexity of business processes that are involved in the production and delivery to
market of almost every type of goods or services that are available today. Large or
complex business processes are involved in the production and delivery of diverse
products ranging, for example, from energy, health care, food, automobiles, sundry
goods, telecommunications, music and other media. The business processes are
complex not merely because of the physical size of the supply chain to market, but
because of the complex array of decision-making variables that can affect production
and delivery. For example, in the electric power industry, utility plant operating
engineers and managers are faced with a complex array of decision making variables,
-- arising from deregulated markets, technology change, multiple weather events,
physical failure situations and supply anomalies, and now the specter of terrorist
attacks across multiple power grids. The variables have impacts of varying scale, e.g.,
local or global, short term or long term, on the business process. Further, the impact
of each variable in real time may be dependent on the state of the other variables.

Conventional systems and methods for supporting decision-making
deal with complexity in the business process by treating the business process in

fragments. The business process is partitioned by organizational parts or divisions,
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and by hierarchal levels (e.g., regulatory control, supervisory control, and strategic
planning). For example, regulatory control is used at a low level to tactically control
local process variables. At the next higher level, supervisory control is used, for
example, to optimize production schedules and to co-ordinate activities of different
parts of the business process. Scheduling, operation planning, and capacity planning,
or strategy functions, which may affect the business process on longer time scales, are
carried out at even higher hierarchical levels. The business process decisions made at
each level are often supported in isolation on the basis of ad hoc assumptions or static
models of the process conditions at the other levels or of the state of other variables at
that level. The fragmented approach to the complexity of the business processes can
lead to gaps, and missed synergies or common mode interactions, which can affect the
efficiency and security of the business process. While the fragmented approach for
dealing with complexity may be adequate in static business environments, it does not
exploit the potential for real time decision making support that is made possible by
increasing investments in computerization and automation of the business processes.

Consideration is now being given to improving prior art systems and
methods for business decision support. Attention is particularly directed to
integrating supervisory and regulatory control as well as higher level strategy control
for decision making under uncertainty in real time. Attention is also directed to
integrating real option valuations in the decision making process.

SUMMARY OF THE INVENTION

The invention provides systems and methods for supporting business

decisions under uncertainty. A stochastic controller system is used to optimize
decision making through time. A unified approximate dynamic programming
algorithm using reinforcement learning is implemented to treat multiple
interconnected operational levels of a business process in a unified manner. The
operational levels of business may, for example, include low levels such as
supervisory and regulatory control levels and higher levels such as portfolio
management, strategic (capacity) planning, operational planning, and scheduling.
Human decision making knowledge within all the operational levels of
the business process can be captured in suitable learning matrices. The leaning
matrices include expert knowledge on process situations, actions and outcomes at

each level. The learning matrices are chained to obtain a unified representation of the
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entire business process. The learning matrices are then used as a source of "end
games" knowledge (in the sense that computer chess games include a representation
of expert play knowledge). A forward model of the business process is used to train
the unified reinforcement learning algorithm to generate optimal actions at all levels
of the business process. The endgame knowledge in the learning matrices is used to
generate learning scenarios for the learning process. The stochastic controller system
may include suitable process simulators to exercise the reinforcement learning in
training.

The unified reinforcement learning algorithm uses suitable techniques
to address the curse of dimensionality problem of dynamic programming algorithms
The techniques used may include, for example, Codebooks (Vector Quantization),
Neuro-Dynamic Programming (NDP), support vector machines, MAXQ hierarchical
reinforcement learning and Lagrangian Decomposition. In one embodiment of the
invention, NDP techniques approximate a cost-to-go function using neural networks
for function approximation. The reduction in the demand for computational resources
using the NDP techniques to approximate the cost-to-go function using neural
networks for function approximation, can help the unified reinforcement-learning
algorithm to scale with the dimensions of the business process. In another
embodiment, support vector machines are used instead of neural networks for
function approximation.

The unified reinforcement-learning algorithm may be configured to
evaluate opportunities as real options. In one embodiment of the invention, the
unified reinforcement learning algorithm processes is configured to generate actions
or decisions that are always worth something if exercised immediately (that is they
are “in-the-money” in options terminology), with respect to both financial
profitability and engineering efficiency. Such in-the-money actions may be used to
implement always advancing (non-losing) strategies/sequences of actions (that are
called martingales using terminology from probability theory).

In an application of the present invention, a martingale stochastic
controller is configured to carry out remote sub-sea decisions in a real-time affecting
the form and timing of gas, oil, and water production in the ultra deepwater. An
integrated reservoir asset and production model is developed. The model may include

production constraints based, for example, on skin damage and water coning in wells.
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The stochastic controller is trained to generate flexible production/injection schedules
that honor production constraints and produce exemplary field production shapes.
The flexible production/injection schedules are optimized on the basis of total
economic value increase (real option value + NPV) by the controller.

In another application of the present invention, the innervated
stochastic controller is configured as a learning system in computer-based simulation
and training tool — Decision Support Threat Simulator (DSTS), for training human
operators to make optimal asset management decisions against threats or other
exigencies in the business operations. The DSTS may be used for training power grid
control operators to maintain the stability of transmission and distribution electric
power grids, which are modeled with suitable simulators.

Further, the DSTS can be configured for human-in-the-loop control of
the power grid as an adaptive aiding system, which is additionally useful for
computer-based training of operators. The principal concepts of adaptive aiding
systems are described, for example, in William, B. Rouse, Adaptive aiding for
human/computer control, Human Factors, v.30 n.4, p.431 - 443, Aug. 1988. In this
configuration, the DSTS can be used to advise or guide operators on what actions to
take in the same manner common car navigation systems are used to guide or direct
car drivers. The DSTS suggests a control direction to the operators, while the
operators operate the subject system being controlled, and further the DSTS also
continually tracks the current state of the subject system to provide further control
direction suggestions. The DSTS in its adaptive aiding configuration can be used
either online while the operators are controlling actual grid operations, in a shadow

mode, or offline for training exercises,
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BRIEF DESCRIPTION OF THE DRAWINGS

Further features of the invention, its nature, and various advantages
will be more apparent from the following detailed description of the preferred
embodiments and the accompanying drawings, wherein like reference characters
represent like elements throughout, and in which:

FIG. 1 is an illustration of the elements of an exemplary Innervated
Stochastic Controller constructed in accordance with the principles of the present
invention;

FIG. 2 is an illustration of the multiple levels of operations in a
business process that can be controlled by the Innervated Stochastic Controller, in
accordance with the principles of the present invention;

FIG. 3 is an illustration of a two-layer Artificial Neural Network
(ANN), which has powerful representational properties that can be used as a universal
approximator to approximate a broad class of functions. Two learning matrices
chained together can represent the two-layer ANN;

FIG. 4 is an illustration of a learning matrix and a corresponding map
representing a single layer neural network. Two learning matrices chained together
can represent the two-layer ANN of FIG. 3, in accordance with the principles of the
present invention;

FIG. 5 illustrates an exemplary “Detections to Problems” learning
matrix for applications in oil and gas field asset management, in accordance with the
principles of the present invention;

FIG. 6 schematically illustrates the role of models in the operation of
the Innervated Stochastic Controller in accordance with the principles of the present
invention;

FI&S. 7a and 7b schematically further illustrate the use simulations in
the Innervated Stochastic Controller, in accordance with the principles of the present
invention;

FIG. 8 schematically illustrates the use of vector quantization to define
a vector quantization reinforcement learning (VQRL) codebook that makes high

dimensionality computational problems tractable;
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FIG. 9 schematically illustrates the evolution of the set of cells in the
VQRL codebook of FIG. §;

FIG. 10 illustrates the general architecture of an Innervated Stochastic
Controller architecture in accordance with the principles of the present invention;

FIG. 11 illustrates the architecture of a prior art E-field system for real
time reservoir management;

FIGS 12a-12d illustrate the results of a prior art case study
investigation of the value of modulating reservoir production in response to market
price signals;

FIG. 13 is a graph illustrating the flexible oil and gas production
options generated for reservoir asset management, in accordance with the principles
of the present invention;

FIG. 14 illustrates the general architecture of an Innervated Stochastic
Controller, which is configured as a Learning System for training power grid control
operators, in accordance with the principles of the present invenﬁon; and

FIG. 15 is a schematic of a computer-based Decision Support Threat
Simulator for training power grid control operators to respond to grid exigencies, in

accordance with the principles of the present invention.

DESCRIPTION OF THE INVENTION

The present disclosure provides control systems and methods for
supporting business decisions under uncertainty. The business decisions may relate to
actions at various levels of the operations in a business process, organization, entity or
enterprise. The levels may include, for example, broad strategy levels at the upper
ends of a business process and supervisory or regulatory control levels at the lower
ends of the business process. The inventive control systems and methods may be
used to optimize decision-making through time in the face of uncertainty. The
decision-making may be based on a comprehensive consideration of all influencing
factors, for example, economic as well as engineering factors, across each level of
operations.

Suitable control links may allow rapid or real-time data

communications between various levels or parts of a diverse business process,
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organization, entity or enterprise. The suitable control links may be implemented
using, for example, electronic networks, wireless and other data communication
technologies. The control links may include human input at one or more levels. Such
implementations may advantageously allow business decision-making to be
conducted in real time to actively respond to changing process conditions or outlooks.

In the present invention, a subject business process is viewed in a
stochastic control framework. Under the stochastic control framework, business
process outcomes or events are viewed as probable or stochastic events. The
stochastic nature is due to uncertainties that come from both within the organization
and external to it, such as markets, prices, risky internal development projects, etc.

An adaptable “Innervated” Stochastic Controller (ISC) is developed to
optimize decision-making at all levels of the subject business process. (See FIGS. 1
and 10, ISC 100 and ISC system 1000, respectively). The ISC includes a single or
integrated algorithm, which has inputs and outputs at all levels of the subject business
process.

It will be understood that the qualifier ‘innervated’ is used herein in a
sense analogous to the conventional dictionary meaning of the word: to supply or
stimulate an organ or a body part with nerves. In a manner similar to the distribution
of nerves in an animal, to and from its brain, spinal cord and all of its body parts, the
ISC provides control links or “nerves” that extend through and connect various levels
of a multi-level business process. FIG. 2 shows various operational levels 210-270 of
a business enterprise 200. Business enterprise 200, for example, may be in the oil and
gas production industry. The various operational levels include business headquarters
operation 210, capacity planning design 220, and operational planning 230,
scheduling operations 240, supervisory control 250, regulatory control 260 and plant
business operations 270. The factors influencing events at each level may involve
factors having different time scales. The decision-making at each level involves both
a business factor and an engineering factor. The former factor may predominate at
the higher levels (e.g., business headquarters level 210). Similarly, the latter factor
may predominate at the lower levels (e.g., plant level 270). The various levels are
interconnected by control links 290, which are schematically shown in FIG. 2. The

innervation of control links 290 throughout the business process is symbolically
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represented by the figure of the human nervous system, which is shown to the right in
FIG. 2.

With reference to FIG. 1, ISC 100 may be represented by three basic
blocks or components — an adaptive reinforcement learning (“RL”) algorithm 102, a
matrix representation 104 of practicum (situation, event and interaction data at all
levels of the business process), and a casual training model 106. These blocks or
components may be technologically implemented in any conventional or custom-built
digital communications environment (e.g., electronic and computing network
environment 110) that extends from human cognition to data sensors or data sources
in the business operations.

Adaptive RL algorithm 102 uses reinforcement learning (dynamic
programming) agent architecture to provide optimal decision-making choices under
uncertain conditions. The reinforcement-learning has explicit goals (e.g., a fixed
return, NPV, production success), can sense aspects of their environments, and can
choose actions to influence their environments. The reinforcement-learning agents
map business process situations to business process actions so as to, for example,
maximize a numerical reward signal related to an explicit goal. The reinforcement
learning agents deployed in RL 102 may be developed using any suitable
reinforcement learning techniques that are commonly known, for example, in artificial
intelligence, operations research, neural networks, and control systems. Descriptions
of several common reinforcement learning techniques and agent architectures may be
found, for example, in Richard S. Sutton and Andrew G. Barto, Reinforcement
Learning: An Introduction, MIT Press, Cambridge, MA, 1998.

To treat the various levels of a business process (like that shown in
Figure 2) within an approximate programming framework, the MAXQ method for
hierarchical reinforcement learning can be used. (See e.g., Dietterich T., “The MAXQ
Method for Hierarchical Reinforcement Learning,” Proc. 15th International Conf. on
Machine Learning, 1998).

Matrix representation 104 component of ISC 100 includes expert
knowledge relating to possible situations, actions and outcomes of the business
processes. This expert knowledge may be conveniently cataloged or stored in the
form of learning matrices. These learning matrices may represent or Acorrespond toa

broad class of maps of the business process, which include, for example, maps of
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detections or observations to problems, and maps of problems to solutions. FIG. 5
shows an exemplary learning matrix 500, which is useful for asset management in oil
and gas production industry. Learning matrix 500 includes expert knowledge, which
maps empirical engineering detections or observations in oil and gas field production
to, for example, equipment condition or status. Representation of knowledge in the
form of learning matrices is known in the art. Here, in ISC 100, learning matrix 500,
may be used in the same manner in which spreadsheets are used for generalized
backpropagation learning using an "ordered derivatives" approach. (See e.g., Werbos,
P.J., Maximizing Long-Term Gas Industry Profits in two Minutes in Lotus using
Neural Network Methods, IEEE trans. On Systems, Man, and Cybernetics, Vol. 19,
No. 2, 315-333, 1989) (“Werbos™).

Each learning matrix (e.g., matrix 500) can represent mapping rules for
business processes. Further as known in the art, two matrices are needed to represent
two layers of a neural network. Similarly, three matrices may be needed to represent
three layers of a neural network. (See FIGS. 3 and 4). Two layer ANNs, which
correspond to two chained matrices, are known to have very general function
approximation abilities. Chaining more than two matrices or adding more than two
layers in an ANN may be useful for factoring processes but do not add to the
representational power of a two layer ANN. In general mathematical terms, the
chained learning matrices are a representation of a generalized functional network.
The function of interest in the network may, for example, be a logistic in a neural net,
or a summation.

The particular learning matrices that are included in matrix
representation 104 component of ISC 100 may be combined or chained together to
represent "common mode" interactions within different parts of the business process.
The chained learning matrices can provide a universal approximator to represent the
entire business process. For example, chaining a ‘detection to problem’ matrix with a
‘problems to solutions’ matrix generates a map for ‘detections to solutions’. FIG. 4
shows another exemplary learning matrix 400, which relates actions (e.g., chemical
treatment and work over) to business objectives (e.g., NPV, exploration success and
drilling success). The values of chained learning matrix 400 may be weights that are
assigned to the matrices in the chain, for example, in the manner of the so-called

credit assignment problem in machine learning theory. Known computational

9.



WO 2005/020044 PCT/US2004/028185

10

15

20

25

30

solutions (e.g., back propagation) may be used for computing the assigned weights.
In an embodiment of the present invention, computational solutions are based on the
genéralized notion of backpropagation using chained matrices and ordered
derivatives, which is described in the works of P.J. Werbos.

A business process can have an enormous number of inputs
(dimensions). Conventional dynamic programming techniques that are useful for
reinforcement learning can be computationally prohibitive because of the well known
“curse of dimensionality.” In an embodiment of ISC 100 (e.g., FIG. 10 Martingale
Stochastic Controller System (MSC) system 1000), the curse of dimensionality is
avoided by adopting using an approximate dynamic programming approach to
reinforcement learning such as neuro-dynamic programming (NDP). The NDP
approach may be used, for example, for evaluation of cost-to-go functions that useful
for decision-making. Additionally, vector quantization techniques within
reinforcement learning (e.g., VQRL) may be used to reduce the dimensionality of the
input space. VQRL advantageously avoids over fitting of data exploiting the ability
of vector quantization to generalize from quantized data. Other suitable
reinforcement learning techniques such as the “MAXQ” method for hierarchical
reinforcement learning also may be used. Similarly, the curse of dimensionality
problem also may be addressed by adopting suitable methods from other disciplines
such as the Langrangian Decomposition method in stochastic programming. Of
particular utility in one approach to address the curse of dimensionality, may be a
range of approximations developed by Powell and Van Roy, who generalize methods
from the discipline of dynamic vehicle allocation to general approximate dynamic
programming. This range of approximations can effectively approximate value of the
dynamic programming function Q#(x), at each time period, to yield a form of the
dynamic programming approximation method. This approach can deal with
thousands of dimensions. (See e.g., W. B. Powell and B. Van Roy, "Approximate
Dynamic Programming for High-Dimensional Dynamic Resource Allocation
Problems," in Handbook of Learning and Approximate Dynamic Programming, edited
by J. Si, A. G. Barto, W. B. Powell, and D. Wunsch, Wiley-IEEE Press, Hoboken, N7,
2004).

ISC 100 may use suitable simulations or models (e.g., FIG. 6 forward

model 620) of the business operations under its control for reinforcement learning. A
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suitable computer simulator may be integrated with ISC 100 as a computer learning
system. ISC 100 may learn from experience gained by computer simulations of
business outcomes in response to flexible engineering decisions. For example, in oil
and gas field asset management applications, an Integrated Production Model (IPM)
may be used to model the ultra deep water assets (e.g., reservoirs), the reservoir to
surface plumbing, and the operation of the assets at the sea-floor. The IPM may be
used to train ISC 100 for optimal management of assets that are at a remote location.

The training or reinforcement learning of ISC 100 may advantageously
be compressed in time by the use of simulations of the business operations. FIGS. 6,
7a and 7b schematically show the role of simulation in the training of ISC 100. FIG.
6 shows a general reinforcement learning feed back arrangement in which process
output is monitored by a “critic” component to ensure, for example, conformance with
previously set performance metrics. Evaluation of the process output by the critic
may be is compared with an evaluation of outcomes predicted by a process model.
Responses and changes to process operational procedures for optimizing or tuning
process performance are broadcast back to the process in a classical feedback loop.
FIG. 7a shows ISC 100, which is configured to control plant 710. Reinforcement
learning algorithms may be used to build ISC 100 including a fast forward model
(720) of plant 710. Scaling issues in dynamic programming computations of the cost-
to-go function are avoided by use of the fast forward approximation model 720 of the
plant. FIG. 7b shows a simulation 730, which may be used to train ISC 100 during
the times when plant 710 is idle or using a parallel offline training configuration.
Simulation 710 may include traditional models for the plant 710. Simulation 710 may
be configured to generate training exercises (e.g., security threats) for ISC 100 while
plant 710 is idle or using a parallel offline training configuration. Thus,
reinforcement learning can be accomplished without engaging plant 710. This
arrangement of reinforcement learning by ISC 100 is similar to the well-known
reinforcement learning computer system TD Gammon, which achieves expert level
playing capability by playing against itself.

The inventive stochastic controller may be configured to optimize
strategic business objectives and yet at the same time honor all necessary engineering
or other physical constraints on business operations. For such configurations of the

inventive stochastic controller, an integrated asset model of the subject business
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process is developed. The integrated asset model may be designed to predict all of the
relevant quantities or parameters (e.g., economic, engineering, etc.) that are involved
in making asset management decisions at each level of operation in the business
process. The integrated asset model may incorporate all of the necessary engineering
or other constraints on the business operations so that the stochastic controller can be
trained to avoid operations in undesirable or inaccessible variable space (e.g., the
constrained engineering space). FIG. 8 depicts exemplary undesirable or inaccessible
operating regions in a plant’s operation space as L -, bar - and square - shaped barriers
840, which the stochastic controller can learn to avoid.

FIG. 8 also shows the use of a vector quantization technique for
simplifying reinforcement learning computations of a plant’s operations by ISC 100.
Suitable vector quantization algorithms or procedures are used to reduce the
dimensionality of the input space. FIG. 8 shows an exemplary algorithmic
partitioning of the plant state space into 2-dimensional encoding cells. These 2-d cells
are represented by codevectors (i.e., numbered points 1 - 20). The set of cell
definitions is commonly referred to as a codebook in information theory terminology.
A vector quantization algorithm itself is an adaptive learning algorithm. As new
information is obtained or learnt, the codebook cells may be redefined and discretized,
thereby further reducing the dimensionality of input space. FIG. 9 figuratively shows
a typical evolution of cells in the codebook as the vector quantization adaptive
algorithmic progresses in time.

With reference to FIG. 8, ISC 100 may learn optimal actions in
response to problem cells (i.e. plant states) using an approximate dynamic
programming (reinforcement learning) algorithm. Directional arrows 835 represent
the optimal action for each cell that are generated by a trained ISC controller 100.

The set of optional actions 835 for all cells may be referred to as a policy or strategy.
Trajectory 810 represents a series of optimal actions, which ISC 100 may recommend
for moving plant operations to a desired goal 830 from a starting point 820 in the
plant state space.

Trajectory 810 avoids the L -, bar -, and square-shaped barriers 840
while traversing the plant’s state space. The shape of trajectory 810 is also
determined by operational and business policies that may be incorporated in ISC

controller 100. The incorporated policies define the actions to be chosen in every
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state visited by the system. The operational and business policies, which are
incorporated in ISC controller 100, may relate to any quantifiable aspect of the
business process including, for example, those governing the degree of acceptable risk
or the level of expected returns from each action.

Financial institutions often have established policies to use options to
hedge their investment portfolios against a spectrum of risk, among them interest rate
risk, political risk, and market risk. Traditionally, the use of options has been limited
to the finance industry (i.e. for financial instruments). The present invention
advantageously enables the use of options to hedge risk in other business processes
and operations. The reinforcement learning algorithm (102) of ISC 100 may be
adapted to conform to a real options framework or methodology in which opportunity
selections (i.e. the actions recommended ISC 100) are valued as options. Such
options methodology provides decision - making flexibility in identifying profitable
actions despite risks and uncertainties atA each level of the subject business process
controlled by ISC 100.

The reinforcement learning algorithm used in ISC 100 is particularly
suited for tightly integrating real options valuations into RL algorithm 102. In
dynamic programming, the problem of real option valuations and optimization can be
treated as a stochastic control problem. The problem of optimizing real option value
for the stochastic processes may, for example, be formulated as the problem of
maximizing the expected value of discounted cash flows (DCF). The approximate
dynamic programming technique for real option valuations gives the arbitrage-free
price for an action/investment option when the given stochastic processes are
constrained to be always in-the-money (i.e. a “martingale™) and the risk-free rate of
return is used as the DCF discount factor. As reinforcement leaning is a type of
approximate dynamic programming, the same reinforcement algorithm framework
used in ISC 100 can be used to conduct real option valuation.

FIG. 10 shows the system architecture and the operation of an
exemplary stochastic controller system — “Martingale Stochastic Controller (MSC)
system 10007, in which business process actions (e.g., in the operation of plant 1200)
are evaluated as real options. MSC system 1000 may be designed to conform to a
business policy to generate actions or decisions that are always in-the-money (i.e. a

martingale) with respect to both financial profitability and engineering efficiency.
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MSC system 1000 includes a reinforcement-learning controller 1002, a
critic function 1003 that may be coupled to optional learning matrices 1004, and a
model 1006 of plant 1200. Plant model 1006 may include temporal descriptions of
the plant as a Plant State Vector, a Plant Action Vector, and a set of Plant System
Measurements. The Plant State Vector may, for example, be a set of measures of the
plant state (i.e. configuration) including information on plant component
identification (ID) and types, and variable values for the plant components. The Plant
State Vector is used as input for controller 1002. The Plant Action Vector is a set of
values, messages, or instructions for placing the plant components into a desired state
by each component. The Plant State Vector is used as input for controller 1002. The
Plant System Measurements may be a set of measurements of plant condition and
output, which can be used by the critic function to monitor plant performance. Model
1006 optionally also may include Configuration Tables, which is a set of named
configurations of the plant.

The operation MSC system 1000 can be understood with reference to
the learning process steps, which are shown as lettered steps a-d in FIG. 10, and also
with general reference to FIGS. 6, 7a and 7b. At an Action Sequence or Policy step d,
MSC system 1000 uses approximate dynamic programming (reinforcement learning)
to learn optimal actions (i.e. policies) guided, for example, by evaluation signals
generated by the critic function. MSC system 1000 may learn and act to control plant
1200 via simulations. For these simulations, MSC system 1000 may take a one kind
of action to initialize plant model 1006 into a desired state. This initialization may be
accomplished at optional step ¢ by selecting and implementing a named configuration
of the plant (from the Configuration Tables). The initialization step d can be repeated
so that plant model 1006 can be replayed as many times or as frequently as desired for
learning simulations. Another step d in the learning process involves execution of the
action on model 1006. Optimal action also may be executed on plant 1200
automatically or by the intervention of appropriate decision-makers via control links
290. At step b, the critic function monitors plant performance (i.e., Plant System
Measurements) to provide a feedback training signal to reinforcement controller 1002.

MSC system 1000 can be advantageously implemented to control
complex and diverse business processes. MSC system 1000 makes it possible to

implement real options as well as regulatory, supervisory and scheduling control, and
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operational and capacity planning functions that may be necessary to conduct
technical and business operations in a businesses process. This capability of MSC
1000 is particularly advantageous for managing remote plant operations (e.g.,. the
downhole "factory" notion in oil and gas extraction in ultra deepwaters).

In an exemplary implementation, MSC system 1000 is configured for
ultra deepwater reservoir management applications in the oil and gas production
industry. MSC system 1000 may be used to carry remote sub-sea decisions in a real-
time affecting the form and timing of gas, oil, and water production in the ultra
deepwater based on reinforcement learning. MSC system 1000 caﬁ achieve lower
level control objectives at the same time that it maximizes the expected value of
discounted cash flows under reservoir, technical, and market uncertainties.

For this exemplary implementation, the components of the subject
plant 1200 (FIG. 10) may be an “e-Field” — i.e., an integrated asset model of the
physical equipment and electronic infrastructure, for real time remote monitoring and
control of gas, oil, and water production in ultra deepwater and uncoyventional gas
fields. See e.g., Thomas et al. United States Patent 6,266,619 (“Thomas”).

FIG. 11, which for convenience is reproduced from Thomas, shows the
architecture of an exemplary e-Field plant 1100 that may be controlled by MSC
system 1000. MSC system 1000 when integrated with e-Field 1100 can implement
real options as well as regulatory, supervisory and scheduling control, and operational
and capacity planning functions that may be necessary to conduct remote technical
and business operations in a unified manner. Real options management of the
reservoir assets under the control of MSC system 1000 may involve management of
the shape and mix of the production within fields through operational and/or
implementation flexibility.

A key to the reinforcement learning approach to the stochastic
controller system for the ultra deepwater is the ability to simulate or model the
reservoir to surface assets (e.g., oil field plumbing or distribution system). An
integrated asset simulation capability may be provided for this purpose. Unlike
common real option valuation methods, reinforcement learning by MSC system 1000
can be non-parametric. MSC system 1000 may be configured to directly sample the
possible action paths via simulation instead of first building a parametric model of the

stochastic variables (including financial variables) of the processes to be controlled.
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The controller learns from the experience gained by simulations of the business
outcomes of flexible engineering decisions (FIGS. 6, 7a and 7b), and provides a series
of actions or trajectories that are martingales by maximizing the expected value of
DCF. While finding such trajectories, the controller honors the necessary engineering
and reservoir physics constraints (such as avoiding skin damage and water coning) in
the overall injection and production policy of the field. An integrated reservoir
model, which can predict quantities such as skin depth, is useful for identifying the
reservoir operation constraints. The engineering predictions of such an integrated
reservoir model may be incorporated in the asset simulation capability with the
undesirable or constrained operating regions represented as barriers in the operation
space (like those represented by the L-, bar-, and square- shaped barriers 840 in FIG.
8).

The Integrated Production Models (IPMs) that are used in MSC system
1000 may include IPMs that are known in the art. Simulation models and techniques
that may be useful are described, for example, in John T Han, “There is Value in
Operational Flexibility: An Intelligent Well Application”, SPE Hydroc“arbon
Economics and Evaluation Symposium, Dallas, Texas, 5-8 April 2003 (“SPE
82018”); S.H. Begg and R.B. Bratvold, and J.M. Campbell, “Improving Investment
Decisions Using a Stochastic Integrated Asset Model”, SPE Annual Technical
Conference and Exhibition, New Orleans, Louisiana, 30 September-3 October 2001
(“SPE 71414”); C.V. Chow, and M.C. Arnondin, “Managing Risks Using Integrated
Production Models: Process Description”, Journal or Petroleum Technology, March
2000 (“SPE 57472”); and, Steve Begg, Reidar Bratvold, and John Campbell, “The
Value of Flexibility in Managing Uncertainty in Oil and Gas Investments”, SPE
Annual Technical Conference and Exhibition, San Antonio, Texas, 29 September-2
October 2002 (“SPE 77586), all of which are incorporated by reference in their
entireties herein.

The advantages of using real option valuations to manage assets by
application of MSC system 1000 can be appreciated with reference to FIGS. 12a- d.
These exemplary figures, which are reproduced from the last cited reference SPE
77586, show the theoretical increase in dollar value (NPV) that can be achieved by
flexible control of oil production from an oil field in response to fluctuating market oil

price signals (FIG. 12b). The increase in dollar value of a flexible production scheme
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(FIG. 12c) over a static production scheme (FIG. 12a) is larger as price volatility (oil
price std. deviation) increases (FIG. 12d). The increase in dollar value is more
significant when both acceleration and deceleration of production are permitted than
when only deceleration is permitted (See e.g., top curve vs. bottom curve, FIG. 12 d).
In practice, MSC system 1000 of the present invention (in conjunction with suitable e-
Field technology) may be utilized to modulate field production in real - time
according to similar market price signals.

The real time learning algorithm that is used in MSC system 1000 for
reservoir management may be developed, and tested or verified using investigations
or case studies of historical reservoir production data. In one such case study,
production data on a particular deepwater turbidite field — South Timbaler block 295,
is used. The South Timbaler block 295 field, which is the Gulf of Mexico’s first
deepwater turbidite field, has three major producing reservoirs. This field has been
previously modeled using seismic imaging software. A reservoir model for South
Timbaler block 295 developed for the“4D SeisRes” project is available to conduct
such as case study. See e.g., Anderson, R.N., G. Guerin, W. He, A. Boulanger and U.
Mello, "4-D Seismic reservoir simulation in a South Timbaler 295 turbidite reservoir”,
The Leading Edge, 17(10),1416-1418, 1993. The case study investigation is designed
to demonstrate that a suitable stochastic controller can maximize the expected value
of discounted cash flows (i.e., net present value (NPV) + option value) while at the
same time avoiding operational problems in oil field production. The case study can
demonstrate that both an increase in value and a reduction of cost would have been
achieved if the stochastic controller system MSC system 1000 had been used to select
flexible production schedules in response to both production engineering problems
and market price signals.

The case study can leverage the 4D SeisRes simulator work to
construct a surrogate for a real time stochastic controller applicable to the e-Field real
time reservoir management architecture (e.g., FIG. 11). Fast approximate simulations
of the reservoir, which are described in SPE 71414, may be used to train the
stochastic controller.

The integrated production modeling concepts described in FIG. 11 and
SPE 57472 may be used to provide a combined economic/engineering-state space for

the path sampling by the stochastic controller to learn from, and then optimize. The
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integrated asset model for the case study may include a fast 1D reservoir model with a
commercially available Integrated Production Management (IPM) tool suite (e.g.,
MBAL, Prosper, and GAP tools sold by Petroleum Experts Inc., of Houston, Texas,
77079). The tool suite enables estimation of engineering reservoir parameters and
optimization of operations with respect to estimate parameters that, for example, are
shown in Figure 11. Further, the tool suite may be used to estimate production
engineering penalties for any actions causing skin damage and water coning (i.e.
create barriers for the optimal action trajectories, FIG. 8).

In the case study, various strategic production shaping objectives may
be simulated, for example, Base-load gas, peaking oil production; Base-load oil,
peaking gas production; Base-load oil, base-load gas production; and Peaking of both
gas and oil production. A description of the notion of peaking and base load
production shaping for fields and portfolios may be found, for example, in Roger
Anderson and Albert Boulanger, “Flexible manufacturing techniques make ultra deep
water attractive to independents™, Oil & Gas Journal, August 25, 2003, which is
hereby incorporated by reference in its entirety herein.

Exemplary flexible production options were generated from multiple
reservoir simulation runs using a VIP Reservoir Simulator (Landmark) to estimate
production engineering constraints or penalties. These flexible production options are
shown in FIG. 13. The dotted and solid curves shown in FIG. 13 represent possible
oil and gas production options for a horizontal well at four occasions (Time=1, 2, 3,
4) relatively late in the production cycle of the field. The curves represent acceptable
engineering options for oil (top) and/or gas (bottom) under varying oil and gas price
conditions. The oil and gas prices are assumed to be independent. First, in the
pricing case where the price of oil is high and that of gas is low, the upper curve
represents maximum possible oil production and the lower curve represents minimal
gas production. Then, in the pricing case where the oil and gas prices are reversed,
the upper dots represent the minimal possible oil production and the lower dots
represent the maximum possible gas production. Two pricing cases are shown at
Time = 4. The first case is for high prices for both oil and gas (dots), and the second
case is for low prices for both oil and gas (lines).

The case study investigation may further simulate different water

injector and production programs using actual prices for the 1990s, and evaluate the
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increase in option value for different strategic goals. The return-on-investment of
these new production options for the field may be estimated, and compared with the
historical program. The effectiveness of the stochastic controller to achieve real time
production engineering objectives by simulating the policies derived from the
controller may be studied.

For ease in understanding, the steps or tasks involved in the case study-
based development of suitable stochastic controller for deepwater reservoir asset

management are summarized below:

1. Develop a stochastic controller based on the approximate
dynamic programming method of reinforcement learning. Various "curse of
dimensionality" reduction methods may be explored including but not limited to
VQRL, NDP, and MAXQ.

2. Assemble an integrated reservoir model based on fast 1D

simulation and Integrated Production Management software.

3, Gather data set for South Timbaler block 295 and build

simplified reservoir and integrated production model (IPM).

4. Establish production constraints based on skin damage, water

coning, and breakthrough for selected wells in South Timbaler block 295 fields.

5. Train the stochastic controller to generate production/injection
schedules that honor production constraints and produce exemplary field production
shapes knowing the resultant price of oil and gas sales and water disposal expense

from the 1990s well production history.

6. Derive the total economic value increase (real option value)
based on these flexible schedules and the historical baseline and compare with the

actual return-on-investment.

7. Identify cost reductions based on optimizing the schedule of

engineering interventions in the subsurface via the stochastic controller's ability to
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minimize and avoid bad production/injection regimes such as skin damage and water
coning and breakthrough.

The stochastic controllers of the present invention may be designed to
control operations in fully automated business process environments (€.g., E-Field oil
reservoirs, robotic manufacturing plants or assembly lines) with no or minimal human
intervention. However, for some applications, the inventive stochastic controller may
be specially configured as learning systems for operator training, for example, for
business processes where manual intervention in operations is necessary or desirable.
FIG. 14 shows the system architecture and the operation of an exemplary Learning
System 1400, which can be set up for training operators of a distributed electrical
power grid 1600. Like MSC 1000, learning system 1400 includes a reinforcement-
learning controller 1002, optional learning matrices 1004 that are used within critic
function 1003, and a model 1006 of power grid 1600. The subject power grid can
include regional power generation, transmission, and distribution grids as well as
integrated transcontinental power grids (e.g., the North American power grid).

The Learning System 1400 may be used to train power control system
operators, for example, to take suitable actions to respond quickly to fluctuations or
interruptions in electricity flow anywhere in the power grid. Learning System 1400
may be configured as a computer-based simulation and training tool (e.g., Decision
Support Threat Simulator (DSTS) 1500, FIG. 15) that learns “best response
scenarios” to specific events on the grid, which, for example, can lead to critical
failure cascades across integrated generation, transmission, and distribution grids such
as the North American grid if not controlled.

Learning system 1400 also may be configured to act on its own and
take automatic control actions, for example, in response to fast moving events that
cannot be quickly or properly responded to manually by human operators. In this
configuration, the power grid is subject to mixed automatic and human control. The
shifting automatic- manual responsibility for control actions is tracked and learned by
the reinforcement learning system and the models it uses.

Using suitable simulation models of the subject power grids, the DSTS
can link and analyze specific threat events (e.g., storm outages, normal failure, natural
disaster, man-made threats) on power grid 1600, and generate planned and prioritized

responses to the specific threat events by analysis of catastrophic grid-wide sequences
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that the learning system computer has seen or learnt before. The planned responses to
specific events may be designed to meet safety, reliability, engineering, security, and
financial objectives conjointly.

The learning system computer automatically and continually “learns™
as it absorbs, stores, and makes relationships among discrete simulation runs of the
power grids. Grid operation intelligence and expertise is extracted and embedded in
DSTS 1500 by the use of learning matrices so that optimal learned responses to crises
and attacks anywhere on the integrated grid are readily available. Thus, operators
using DSTS can be trained and prepared to respond to unforeseen contingencies
without the need to run new simulations at the moment. DSTS can identify and
optimize answers to the following problems throughout the organization that impact
the stability of the grid:

- What are the new threats to the grid system?

- What are the new failure points in the grid?

* What are the new downward propagation patterns or cascading effects?
* What are the best response scenarios?

In one implementation of learning system 1400 as a computer-based
simulation and training tool (e.g., DSTS 1500 (FIG. 15), the subject regional and
distribution power grids are modeled using commercially available power flow and
short-circuit modeling tools (such as Distribution Engineering Work Station (DEW),
sold by EPRIsolutions, Inc., Palo Alto, California 94304). DEW can, for example,
model inverter and synchronous distributed generation power flow, as well as
multiple-source fault analysis. DEW is in common use in the power industry as a real-
time simulator of a utility’s distribution system, for example, in conjunction with the
utility’s Supervisory Control And Data Acquisition (SCADA) system and/or its
energy management system (EMS) and their associated data historian.

DEW also may be used to model regional grid behavior using, for
example, Federal Energy Regulatory Commission (FERC) data. DEW models the
power flows in the grid, plans peak load leveling, peak shaving, voltage correction,
right sizing of equipment, and automated data modeling.

In DSTS 1500, learning system 1400 and DEW simulators 1550 are
linked into an integrated software tool. The integrated software tool may be

configured, for example, to identify new threats to the grid, pinpoint new failure
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points in the grid, identify new downward propagation patterns or domino effects,
prioritize and plan the restoration sequence in response to a disturbance in the grid;
estimate and reduce restoration costs, identify acceptable solutions quickly, select
most efficient economic options, eliminate delays in transmitting vital data, and
facilitate getting the right data to and from the right people. DSTS 1500 provides a
way to eliminate the “wish I could have seen it coming” reaction by making failure
models predictive and storing responses and remediation scenarios for grid failures in
the future.

Reinforcement learning controller 1002 in learning system 1400 may
be implemented using neuro-dynamic programming (NDP) approaches or support
vector machines to deal with computationally expensive cost-to-go function
evaluations. Expert knowledge for learning matrices 1004 (e.g., similar to FIG. 5)
may be derived by scenario playing in “table-top” exercises, in which “war-gaming”
experts pose problems and work through the solutions with grid operations experts.
The learning matrices are used to guide the generation of simulation-based scenarios
as well as used for the critic function in the reinforcement-learning algorithm. It will
be understood that the application of DSTS to simulate and/or control power grid
1600 is exemplary. DSTS 1500 can be suitably extended or reconfigured to cover
asset management threats to any interrelated infrastructure for which coupled models
of the infrastructures of interest are available. An example of a coupled infrastructure
model is the Interdependent Infrastructure Modeling, Simulation, and Analysis
Project (SOFIA) model developed by the D4 Division of Los Alamos National Labs.
Using such a coupled infrastructure model, DSTS 1500 may be, for example, used to
cover asset management threats to interrelated gas and oil supply and power
infrastructures, or interrelated communications and power infrastructures. Other
exemplary interrelated infrastructures of interest to which DSTS 1500 may be applied
include water supply and power, transportation and power, and earth hazards and
power.

Furthermore it is possible to use DSTS for threats to infrastructures
that are not directly related to power such as ports and transportation hubs or
transportation networks if simulations are available. An example of such a simulation
is the port simulator, PORTSIM developed by the Decision and Information Science

Division, Argonne National Laboratory. Another example is the transportation
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simulator TRANSIM, developed by the D4 division, Los Alamos National Laboratory
and marketed by IBM Business Consulting..

In accordance with the present invention, software (i.e., instructions)
for implementing the aforementioned innervated stochastic controllers and systems
can be provided on computer-readable media. It will be appreciated that each of the
steps (described above in accordance with this invention), and any combination of
these steps, can be implemented by computer program instructions. These computer
program instructions can be loaded onto a computer or other programmable apparatus
to produce a machine, such that the instructions, which execute on the computer or
other programmable apparatus create means for implementing the functions of the
aforementioned innervated stochastic controllers and systems. These computer
program instructions can also be stored in a computer-readable memory that can
direct a computer or other programmable apparatus to function in a particular manner,
such that the instructions stored in the computer-readable memory produce an article
of manufacture including instruction means which implement the functions of the
aforementioned innervated stochastic controllers and systems. The computer program
instructions can also be loaded onto a computer or other programmable apparatus to
cause a series of operational steps to be performed on the computer or other
programmable apparatus to produce a computer implemented process such that the
instructions which execute on the computer or other programmable apparatus provide
steps for implementing the functions of the aforementioned innervated stochastic
controllers and systems. It will also be understood that the computer-readable media
on which instructions for implementing the aforementioned innervated stochastic
controllers and systems are be provided, include without limitation, firmware,
microcontrollers, microprocessors, integrated circuits, ASICS, and other available
media.

It will be understood, further, that the foregoing is only illustrative of
the principles of the invention, and that various modifications can be made by those
skilled in the art, without departing from the scope and spirit of the invention, which
is limited only by the claims that follow.
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Claims:

1. A method for providing decision-making support under uncertainty in

a multi-level business process, wherein process events can be stochastic events, the
method comprising:

deploying an adaptive stochastic control algorithm for generating
actions in response to process situations;

assembling expert knowledge of process situations, actions and
outcomes corresponding to each level of the multi-level business process;

using the expert knowledge as a unified representation of the business
process; and

using a process model in conjunction with the unified representation of
the business process for reinforcement learning so that the stochastic adaptive control

algorithm is trained to generate optimal actions.

2. The method of claim 1 wherein assembling expert knowledge

comprises assembling a learning matrix.

3. The method of claim 2 wherein using the expert knowledge as a
unified representation of the business process comprises chaining at least two learning

matrices together.

4. The method of claim 1 wherein deploying the stochastic adaptive
control algorithm comprises approximate dynamic programming in the form of

reinforcement learning.
5. The method of claim 1 wherein reinforcement learning comprises
using vector quantization to reduce the dimensionality of the input space of the

stochastic adaptive control algorithm.

6. The method of claim 1 further comprising using process simulations to

train the stochastic adaptive control algorithm.
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7. The method of claim 1 wherein using a process model comprises using

a fast forward approximation of the process.

8. The method of claim 1 wherein using a process model comprises using
an integrated asset model which recognizes constraints on process operation space,
and wherein training the stochastic adaptive control algorithm comprises training the

algorithm to generate optimal actions that avoid constrained process operation space.

9. The method of claim 1 further comprising integrating real option

valuations in the stochastic adaptive control algorithm.

10.  The method of claim 9 wherein the stochastic adaptive control

algorithm is trained to always generate actions that are in-the-money.

11.  Aninnervated stochastic controller for providing decision-making
support in multiple levels of a business process, the stochastic controller comprising:
an adaptive reinforcement learning algorithm for generating actions in
response to process situations of the business process;
a chained matrix representation of the business process;
a process model of the business process,
wherein the adaptive reinforcement learning algorithm is trained on the chained

matrix representatioh and the forward model to generate optimal actions.

12.  The innervated stochastic controller of claim 11 wherein the adaptive -

reinforcement learning algorithm comprises approximate dynamic programming,

13. The innervated stochastic controller of claim 11 wherein the

reinforcement learning algorithm comprises vector quantization of its input space.

14.  The innervated stochastic controller of claim 11 further comprising

process simulations to train the adaptive reinforcement learning algorithm.
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15.  The innervated stochastic controller of claim 11 wherein the process

model comprises a fast forward approximation of the process.

16.  The innervated stochastic controller of claim 11 wherein the process
model comprises an integrated asset model which recognizes constraints on process
operation space, and wherein the adaptive reinforcement learning algorithm is trained

to generate actions that avoid constrained process operation space.

17.  The innervated stochastic controller of claim 11 wherein the process
model comprises an integrated asset model which recognizes constraints on process
operation space, and wherein the adaptive reinforcement learning algorithm is trained

to generate actions that avoid constrained process operation space.

18.  The innervated stochastic controller of claim 11 wherein the adaptive
reinforcement learning algorithm is trained to always generate actions that are in-the-

money.

19. A martingale stochastic controller system for providing decision-
making support in multiple levels of a business process, the stochastic controller
system comprising:

an adaptive reinforcement learning controller for generating actions in
response to process situations of the business process by evaluating real options,

a chained matrix representation of the business process; and

a process model of the business process,
wherein the adaptive reinforcement learning algorithm is trained on the chained
matrix representation and the process model to generate optimal actions of the
business process, and wherein the optimal actions are martingales.

20. A martingale stochastic controller system for providing decision-
making support of a business process, the stochastic controller system comprising:

an adaptive reinforcement learning controller for generating actions in
response to process situations of the business process by evaluating real options,
wherein the reinforcement learning controller comprises a reduced dimensionality

representation of the business process inputs,
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learning matrices representing the business process decision making or
other kinds of expertise;

a process model of the business process, the model comprising a
business process state vector and business process system measurements,
wherein the reinforcement learning controller is trained on the learning matrices and
the process model to generate optimal actions of the business process that are

martingales.

21. A decision support threat simulator (DSTS) for training power grid

control operators to respond to grid exigencies, the DSTS comprising;

a power grid simulator;

a learning system for learning power grid behavior from simulations
using the power grid simulator, wherein the learning system comprises:

an adaptive reinforcement learning controller; and

a critic function,

wherein the adaptive reinforcement learning controller is trained on
power grid simulations in conjunction with the critic function to analyze specific

events on the power grid and to generate planned responses to the specific events.

22.  The DSTS of claim 21 wherein the planned responses to specific
events are designed to meet safety, reliability, engineering, security, and financial

objectives conjointly.

23.  The DSTS of claim 21 wherein learning matrices are used to guide the
generation of simulation-based scenarios and are used by the critic function in the

reinforcement-learning controller.

24. The DSTS of claim 21 wherein the reinforcement-learning controller
makes relationships between individual power grid simulations and stores optimal

learned responses to grid events for operator use.

25.  The DSTS of claim 21 wherein the power grid simulator is a real-time

simulator of a utility’s power distribution system, and wherein the power grid
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simulator is used in conjunction with the utility’s Supervisory Control and Data
Acquisition System and/or its energy management system (EMS) and their associated
data historian.-

26 The DSTS of claim 21 wherein a learning matrix of expert knowledge
is optionally used as part of the critic function in reinforcement learning and in part to

guide the generation of simulation-based scenarios.

27.  The DSTS of claim 21 wherein offline reinforced learning is used to

train the system.

28.  The DSTS of claim 21 wherein reinforced learning to train the system.

is conducted using online power grid operations in a shadow mode.

29. A computer readable medium for providing decision-making support
in multiple levels of a business process, the computer readable medium comprising:
an adaptive reinforcement learning algorithm for generating actions in
response to process situations of the business process; and
a set of instructions for training the adaptive reinforcement learning
algorithm on a chained matrix representation of the business process and a process

model of the business process to generate optimal actions.

30.. The computer readable medium of claim 29 wherein the adaptive

reinforcement learning algorithm comprises approximate dynamic programming.

31.  The computer readable medium of claim 29, wherein the adaptive

reinforcement learning algorithm comprises an algorithm for valuing real options.

32.  The computer readable medium of claim 29, wherein the set of
instructions for training comprises instructions for training the adaptive reinforcement

learning algorithm to always generate actions that are in-the-money.

33. A computer readable medium for training power grid control operators

to respond to grid exigencies, the computer readable medium comprising a set of
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instructions operable to direct the functions of a power grid simulator, and a learning
system for learning power grid behavior from simulations using the power grid
simulator, wherein the learning system comprises an adaptive reinforcement learning
controller and a critic function, so as to train the adaptive reinforcement learning

5 controller on power grid simulations in conjunction with the critic function to analyze
specific events on the power grid and to generate planned responses to the specific

events.
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Figure 2: These Layers in Business Operations are controlled by the same Innervated

Stochastic Controller.
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Figure 3. This figure is an example of a two layer Artificial Neural Network (ANN). A
two layer ANN has powerful representational properties and can approximate a broad
class of functions — a universal approximator. This two layer ANN can be represented

by two learning matrices chained together.
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t Example of a learning matrix and the map it represents. This can represent a
single layer neural net - two matrices can represent a two layer neural network.
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Figure 5: Example Detections to Problems Learning Matrix for Asset Management in
Oil and Gas.
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Figure 7: The role of simulation in the Innervated Stochastic Controller.
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Figure 8. How reinforcement learning uses vector quantization to define the codebook

(VQRL).
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Figure 10: The General architecture of the Innervated Stochastic Controller.
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Figure 10. The oil (green) and gas (red) production for two wells (top and bottom) that are computed
using a Landmark’s VIP reservoir simulator to maximize, then minimize oil, then gas production late in
the field’s life. The pressure transients from this variation are shown as solid black line and dots in
bottom well. Vertical scale for both oil and gas are shown at left.
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