
US008176085B2

(12) United States Patent (10) Patent No.: US 8,176,085 B2
Della-Libera et al. (45) Date of Patent: May 8, 2012

(54) MODULAR FOREST AUTOMATA 2006/0242197 A1 10/2006 Tsyganskiy
2006/0282422 A1 12/2006 Al-Omari
2007/OOO6071 A1 1/2007 Erman

(75) Inventors: Giovanni M. Della-Libera, Seattle, WA 2007,0006151 A1 1/2007 Conway et al.
(US); Steven E. Lucco, Bellevue, WA 2008, 0071802 A1 3, 2008 Lucco
US (US) OTHER PUBLICATIONS

(73) Assignee: Microsoft Corporation, Redmond, WA “Visibly Pushdown Automata for Streaming XML.” by Viraj Kumar,
(US) P. Madhusudan and Mahesh Viswanathan, University of Illinois at

Urbana-Champaign, Urbana, Illinois, pp. 1053-1062 online
(*) Notice: Subject to any disclaimer, the term of this retrieved on Dec. 13, 2007). Retrieved from the Internet: http://

patent is extended or adjusted under 35 www2007.org paperspaper 88.pdf s
U.S.C. 154(b) by 641 days. SAFT: Static Analysis with Finite Tree Automata.” by Author

Unknown, Danish Natural Science Research Counsel, 1 pg. online
retrieved on Dec. 13, 2007). Retrieved from the Internet: http://akira. (21) Appl. No.: 12/242,322 ruc.dk/-jpg/SAFT/home.html.

1-1. “Abstract Interpretation over Non-Deterministic Finite Tree
(22) Filed: Sep. 30, 2008 Automata for Set-Based Analysis of Logic Programs.” by John P.

O O Gallagher and German Puebla, University of Bristol, Department of
(65) Prior Publication Data Computer Science, Bristol, UK, 17 pgs. online retrieved on Dec.

US 201O/OO94906A1 Apr. 15, 2010 13, 2007. Retrieved from the Internet: http://www.clip.dia.fi.upm.
espapers set-based-absint-padl.pdf.

(51) Int. Cl "Automata Theory for XML Researchers.” by Frank Neven, Univer
we sity of Limburg, Diepenbeek, Belgium, 8 pgs. Online retrieved on

G06F 7700 (2006.01) Dec. 13, 2007). Retrieved from the Internet: http://www.cs.earlham.
G06F 7/30 (2006.01) edu/~theory/papers/sr.pdf.

(52) U.S. Cl. ... 707f797
(58) Field of Classification Search 707,797, * cited by examiner

707/808
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,317,509 A 5, 1994 Caldwell
5,915,259 A 6, 1999 Murata
5,946,490 A 8, 1999 Lieberherr et al.
6,785,643 B2 8/2004 Hayosh et al.
7,055,093 B2 5, 2006 Tozawa et al.
7,058,937 B2 6, 2006 Fu et al.
7,093,231 B2 8, 2006 Nuss
7,240,048 B2 7, 2007 Pontius

2004/0260683 A1* 12/2004 Chan et al. 707/3
2005/0027681 A1 2/2005 Bernstein et al. 707/1
2005/009.7453 A1 5/2005 Simonyi
2005/0278781 A1* 12/2005 Zhao et al. 726/22
2006.0167915 A1 7/2006 Furlong et al.

2

Water

Cance

Primary Examiner — Hosain Alam
Assistant Examiner — Van Oberly
(74) Attorney, Agent, or Firm — Workman Nydegger

(57) ABSTRACT

Modular forest automata (MFA) provide a unified description
of partially-ordered regular tree patterns. MFAS provide
simple methods for determinization, Sub-typing, intersection,
and complementation of these patterns. MFAS Support high
performance pattern analysis and matching. Modular forest
transducers, in conjunction with modular forest automata,
enable compilers to place semantic actions on any state tran
sition while supporting efficient transformation of labeled,
directed graphs.

12 Claims, 6 Drawing Sheets

U.S. Patent May 8, 2012 Sheet 1 of 6 US 8,176,085 B2

ift Processor

U.S. Patent May 8, 2012 Sheet 2 of 6 US 8,176,085 B2

Bridge

Cafage

Fig. 2

U.S. Patent May 8, 2012 Sheet 3 of 6 US 8,176,085 B2

30

PSN&S

Fig. 3

U.S. Patent May 8, 2012 Sheet 4 of 6 US 8,176,085 B2

Fig. 4

U.S. Patent May 8, 2012 Sheet 5 of 6 US 8,176,085 B2

8:

lshift Nelaccept 10 7YSlany Y

Neishi/

Notherwise

(23.24.657)

{),3,5,7,8,1,3
Shift
shift

N accept 10/

M
/8,012

Shift
accept

Fig. 7

U.S. Patent May 8, 2012 Sheet 6 of 6 US 8,176,085 B2

800 900

Receive Data 1

Determine
Machine For Sequence

91
82

92
-83

93.
8-it

Determine
Acceptance

States

Determine Sub-Type
Relationship

Fig. 8

- 94.

Deter nine 950
86. Correspondence

Fig. 9

US 8,176,085 B2
1.

MODULAR FOREST AUTOMATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

NAA

BACKGROUND

Programming languages can use patterns to distinguish
among classes of values. For example, the following two lines
of pseudo-code define a function that computes the sum of a
list of integers.

Sum(nil) = 0;
Sum(conshead,tail) = head--Sum (tail);

The patterns in this example serve two purposes. First, they
distinguish among input cases. Second, they enable concise
value deconstruction through the use of pattern variables and
type inference.

Patterns are closely related to structural types. The regular
tree patterns described herein are regular tree types that may
also include variable bindings. A tree pattern coupled with a
semantic action is called a tree transformation rule.

Structural type systems, such as XML Schema languages,
define categories of values. Programming languages often
use structural type systems to statically check program safety
properties. SQL databases also use a type system that is
primarily focused on structure. Tables that result from joins,
for example, containtuples that can be described as having an
anonymous structural type. Database management systems
require that a variety of programs can interpret the data stored
in the system. Structural type systems help database manage
ment systems meet this requirement.

Distributed systems also induce a requirement for struc
tural types. Due to latency, messages exchanged among dis
tributed program components are often larger and more com
plex than method parameters exchanged among objects.
The values stored in databases and exchanged among dis

tributed components are intermediate in complexity between
the simple values manipulated by program expressions and
the complexity of a Turing Machine. Described herein, regu
lar tree patterns are used to define these intermediate levels of
structural complexity.

Expressing and analyzing both ordered and unordered
regular tree patterns would be useful and beneficial abilities.
Examples of domains in which analysis would beneficially be
improved include model checking and authorization logic
which uses partially-ordered tree patterns. Certain existing
languages, such as XML Schema, may use partially ordered
regular trees but currently lack a means for sub-typing. Fur
ther, Such languages may impose semantic restrictions in
order to Support efficient implementation under currently
known methods.
Some work on greedy regular expression matching and the

programming language XStatic has explored how to incorpo
rate regular ordered tree types into object-oriented languages.
Like XDuce, XStatic uses a uniform representation for
sequences. Such work maps regular ordered tree types to
objects, but uses flattening to Support the natural Semantics of
regular language inclusion. Finally, trx explores regular
ordered tree types in the context of Scheme.

10

15

25

30

35

40

45

50

55

60

65

2
Some work has also been accomplished on pushdown for

est automata (PFAs). However, PFAs do not provide a sub
typing algorithm or a mechanism for addressing unordered
nests (multisets).

BRIEF SUMMARY

Embodiments of the present invention relate to modular
forest automata (MFA). Modular forest automata, described
herein, can be used to describe and analyze regular tree pat
terns and modular forest transducers (MFTs) can be created
that can concisely express the transformation of labeled
directed graphs. Graph transformation is a basic ingredient in
the implementation of logics, process models, and program
ming languages. Implementations of modular forest
automata may be used to Support high-performance, strongly
typed graph transformation.

Modular forest automata are a mechanism for defining,
reorganizing, and transforming collections of partially-or
dered, finite, unranked trees. MFAS Support the analysis and
composition of MFA hierarchies. MFAS provide a unified
treatment of ordered and unordered tree patterns.

Embodiments described herein include methods, systems,
and computer program products for analyzing regular tree
patterns. Particular embodiments allow for data being
received which can be determined or rewritten as modules
(machines) describing both sequences and sets. A union may
be created from the modules which are determined from the
received data. Determined modules and unions of modules
may comprise labeled acceptance states. From the labeled
acceptance states, sub-type relationships may be determined
for the modules.

Other embodiments described herein also include meth
ods, systems, and computer program products for expressing
a transformation of regular tree patterns. A regular tree pattern
may be received and particular instance data may be received.
A transducer may be compiled from the received regular tree
pattern. Transducer transitions may be augmented with
instructions which correspond to a desired transformation.
From the augmented transducer transitions and the instance
data, a correspondence between elements of the regular tree
pattern and elements of the instance data may be determined.

This Summary is provided to introduce a selection of con
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed sub
ject matter, nor is it intended to be used as an aid in determin
ing the scope of the claimed Subject matter.

Additional features and advantages of the invention will be
set forth in the description which follows, and in part will be
obvious from the description, or may be learned by the prac
tice of the invention. The features and advantages of the
invention may be realized and obtained by means of the
instruments and combinations particularly pointed out in the
appended claims. These and other features of the present
invention will become more fully apparent from the following
description and appended claims, or may be learned by the
practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to describe the manner in which the above-recited
and other advantages and features of the invention can be
obtained, a more particular description of the invention
briefly described above will be rendered by reference to spe
cific embodiments thereof which are illustrated in the
appended drawings. Understanding that these drawings

US 8,176,085 B2
3

depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings in which:

FIG. 1 illustrates a computing environment in which
embodiments of the principles of the present invention may
operate;

FIG. 2 illustrates a permutation modular forest automata
for Nest contents of a pattern;

FIG. 3 illustrates a determinized translation of a particular
pattern Expr;

FIG. 4 illustrates an optimized modular forestautomata for
nest contents of a pattern Pond;

FIG. 5 illustrates a graphical representation of the various
Sub-types determined in Sub-type analysis;

FIG. 6 illustrates a non-deterministic modular forest
automata for the nest contents of a pattern GTE:

FIG. 7 illustrates a determinized modular forest automata
for the nest contents of a pattern GTE:

FIG. 8 illustrates a flowchart of a method for analyzing a
regular tree pattern in accordance with particular embodi
ments of the present invention;

FIG. 9 illustrates a flowchart of a method for expressing the
transformation of a regular tree pattern in accordance with
particular embodiments of the present invention.

DETAILED DESCRIPTION

Embodiments described herein relate to methods, systems,
and computer program products for analyzing regular tree
patterns. Additional embodiments described herein relate to
methods, systems, and computer program products for
expressing a transformation or transformations of regular tree
patterns. The embodiments of the present invention may com
prise a special purpose or general-purpose computer includ
ing various computer hardware, as discussed in greater detail
below.

FIG. 1 describes an example computing environment 100
in which the embodiments described herein may be practiced.
The computing environment 100 includes one or more com
puter processors 110. The computing environment 100 also
includes one or more instances of computer memory 120. The
computer memory 120 may be any computer-readable
memory as known to be suitable and includes (but is not
limited to) RAM, SRAM, and flash. Computer memory may
also be persistent storage 130 such as a hard disc, Solid state
disc drives, CD ROM, DVDs, and the like. The computer
memory 120 and storage 130 may, as may be suitable in any
particular embodiment, be read only, such as ROM or a CD or
DVD, or it may be both readable and writeable such as RAM,
flash, and common disc drives.
The computing environment 100 also includes input and

output 140. The input and output 140 may comprise any
Suitable format or media Such as data stored on magnetic disc,
data accessible via a network, or otherwise. The computing
environment 100 also includes external persistent storage 150
to which and from which data may be transferred. Similar to
storage 130, the external persistent storage 150 may take any
suitable form such as magnetic disc, tape, CD-R/W, or oth
erwise.

Embodiments within the scope of the present invention
also include computer-readable media for carrying or having
computer-executable instructions or data structures stored
thereon. Such computer-readable media can be any available
media that can be accessed by a general purpose or special
purpose computer. By way of example, and not limitation,

10

15

25

30

35

40

45

50

55

60

65

4
Such computer-readable media can comprise storage media
such as RAM, ROM, EEPROM, CD-ROM or other optical
disk storage, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to carry or
store desired program code means in the form of computer
executable instructions or data structures and which can be
accessed by a general purpose or special purpose computer.
When information is transferred or provided over a network
or another communications connection (either hardwired,
wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a
computer-readable medium. Such networks or communica
tions connections are termed and referred to herein as com
munications media. Thus, any Such connection is properly
termed a computer-readable medium. Combinations of the
above including both storage media and communications
media—should also be included within the scope of com
puter-readable media.

Computer-executable instructions comprise, for example,
instructions and data which cause a general purpose com
puter, special purpose computer, or special purpose process
ing device to perform a certain function or group of functions.
Such computer-executable instructions may be stored incom
puter memory 120, persistent storage 130, on any input or
output media or device 140 or on external storage 150. Com
puter-executable instructions may also be transferred to a
Suitable computing environment via any suitable communi
cations medium.

Although the subject matter has been described in lan
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

Embodiments described herein relate to methods, systems,
and computer program products for analyzing regular tree
patterns. Additional embodiments described herein relate to
methods, systems, and computer program products for
expressing a transformation of regular tree patterns. The
embodiments of the present invention may comprise a special
purpose or general-purpose computer including various com
puter hardware, as discussed in greater detail below.

For example, FIG. 8 illustrates a method for analyzing a
regular tree pattern. The method includes receiving data 810
comprising a regular tree pattern comprising at least one of a
sequence and a set. When the tree pattern comprises a
sequence, a machine is determined 820 which corresponds to
the sequence. The determined machines are sometimes
termed “modules. A sequence, as its name implies, is a set of
elements which has a particular order.
When the tree pattern comprises a set, a machine is deter

mined 830 which corresponds to the set. In contrast to a
sequence which has a particular order, a set may be a collec
tion of elements for which no particular order is specified.
A union is created 840 of the determined machines. From

the union of the determined machines (modules), a set of
labeled acceptance states is determined 850. Finally, a sub
type relationship is determined 860 from the labeled accep
tance States.
As described more fully herein, a sub-type relationship

may be one of equivalent, Sub-type, Super-type, disjoint, and
intersecting. If two modules, M and M, have the same
acceptance states, then they are equivalent. If M contains all
the acceptance states of M. but not vice-versa, then M is a
super-type of M and M is a sub-type of M. If M and M.
have no acceptance states in common, the M and M2 are

US 8,176,085 B2
5

disjoint. If M and M share some acceptance states but each
of M and M have acceptance state not shared by the other,
then they are intersecting. The Sub-type relationships are
discussed in more detail below and in conjunction with FIG.
5.

Embodiments also include determining a root level
machine (module) which comprises at least one transition to
a labeled nest. A labeled nest, as described more fully herein,
may have the form of Label--- or Label{---}. A module may
be created corresponding to the labeled nest. A continuation
state which corresponds to a return from the labeled nest may
be placed upon a stack. After placing the continuation state
onto the stack, actions may be performed which correspond to
the labeled nest. When an acceptance state is reached for the
labeled nest, the continuation state is popped from the stack
and processing is resumed for the root level machine.

Embodiments described herein may be employed wherein
received data corresponds to data defining structural types in
a programming language. Such data may be analyzed by the
techniques described herein to determine if the structural
types are equivalent, or have any of the other sub-type rela
tionships as discussed herein.

Embodiments described herein may be employed wherein
received data corresponds to data comprising schema and/or
schema definitions for a database. Such data may be analyzed
by the techniques described hereinto determine if the schema
and schema definitions are equivalent, or have some any of
the other sub-type relationships.

Embodiments described herein may be employed wherein
received data corresponds to XML schema. Such data may be
analyzed by the techniques described herein to determine if
the XML schema are equivalent, or have some any of the
other sub-type relationships.
The embodiments described herein may be employed to

determine structural and logical relationships corresponding
to the determined sub-type relationships and applied for pur
poses of optimization, efficiency, and data translation for data
Structures in programming languages, databases, objects, and
the like.

Embodiments described herein also include methods for
expressing the transformation of a regular tree pattern. FIG.9
illustrates a method 900 for expressing the transformation of
a regular tree pattern. The method includes receiving first data
910 which corresponds to a regular tree pattern. The method
also includes receiving second data 920 corresponding to an
actual instance.

For example, data comprising a regular tree pattern may
comprise an XML schema, may comprise a database schema,
may comprise structural types for a programming language or
object definitions. Data corresponding to an actual instance
may comprise data within a database, may comprise a serial
data input stream, or may comprise data embodied within
object-oriented objects or structural types defined within a
programming language.

The method 900 includes compiling the regular tree pattern
into a transducer. Compiling a tree pattern is described in
more detail in later sections of this description. Once com
piled, the transducer transitions are augmented 940 with
instructions corresponding to a desired transformation. After
the transitions have been augmented with instructions, it may
then be determined 950 from the augmented transitions and
from the data corresponding to an actual instance a corre
spondence between elements of the instance and elements of
the regular tree pattern.

10

15

25

30

35

40

45

50

55

60

65

6
For instance, there may be a pattern such as Root A+, B*,

C? and actual instance data (given within an environment) of
aaa, bbb, -). From this example, the method 900 may deter
mine a particular binding such that A="aaa, B='bbb, and
='-'. Further, actions may be performed such as, for

example, action: Root A, B. C->Root A. C. Once bindings
are determined, the example action may be thought of as the
“delete B action.
The method 900 may be employed in an environment for

variable binding. Such variable binding may determine a
correspondence between structural types in a programming
language, a database schema, an XML Schema, or the like,
and actual values which correspond to the variables defined
within the types or schema.
The instructions of method 900 may also comprise match

ing conditions and may comprise semantic actions. The
instance data of method 900 may comprise XML schema
instances, may comprise instances of data contained within a
database according to a particular database schema, or may
comprise data defined or stored in accordance with structural
types defined within a programming language.
The method 900 may also include compiling query expres

sions and determining the result of the query expression cor
responding to the regular tree pattern and the actual instance
data. For example, Such queries may be database queries Such
as SQL and may be authorization queries such as data access
or the like.

It should be noted that all the methods and techniques
described herein may be realized in various embodiments
which may comprise (but are not limited to) methods execut
ing within computing environments, computer program prod
ucts which comprise computer-executable code for perform
ing the methods and techniques described herein, and
computing systems comprising computer processors and
computer-executable code for performing the methods and
techniques described herein.
A more detailed and thorough discussion of methods and

techniques of embodiments described herein will now follow.
Regular Tree Patterns

Listing 1 describes a syntax that may be used for regular
tree patterns. In the grammar of Listing 1, the term Action is
a parameter that refers to a language for semantic actions. The
terms Name, Variable, and Label are parameters that each
provide a set of symbols called an alphabet. As described
herein, it may be assumed that variable, pattern name, and
label symbols come from distinct alphabets. In addition to
these symbols, patterns may refer to base symbols which may
include nonpattern types or literal values.

Listing 1. Regular Tree Pattern Syntax

Definition
Pattern

Name = Pattern
Union
A Variable.Pattern
8

Rule (I Rule)*
Tree Action?
Label Forest?
Label Forest?
Binding Tree
Tree Repetition
Tree A Tree
- Tree
(Tree)
any
Reference
Tree | Forest, Tree

->

->

Union
Rule
Tree

Forest

US 8,176,085 B2
7

-continued

Listing 1. Regular Tree Pattern Syntax

Repetition -> * || ?
Min... Max

Reference -> Symbol TypeParam?
TypeParam -> (Union)
Binding -> Variable :

Regular tree pattern definitions only allow recursive pat
tern references within the context of the nest operator (as
described below). Such a restriction on regular tree grammars
is employed to prevent regular tree grammars from inducing
the full power of context-free string grammars.

The repetition construct, *|+|?, denotes the minimum and
maximum number of occurrences permitted for the Tree it
modifies. The maximum number of occurrences may be
unbounded. The operators *, +, and 2 are interpreted as
0... Oo. 1 ... oo), and 0... 1 respectively. In other words,
A* is read as Zero or more AS (i.e., O... oo); B+ is read as one
or more Bs (i.e., 1... oo); and C2 is read as Zero or one Cs
(i.e., O... 1). This construct supports patterns that specify
unranked tree nodes. An unranked tree node may have any
number of children.
The any wildcard matches any value. The operator

complements a tree pattern. The operator denotes the inter
section of a pair of tree patterns. The operator denotes the
union of a pair of tree patterns. Finally, the A P. b operator
denotes a polymorphic pattern with body band with pattern
parameter P.
The nest operator LForest? defines an ordered, unranked

tree node with label L. Such ordered items are also referred to
as sequences. The nest operator L{Forest?} defines an unor
dered, unranked tree node with label L. Unordered items are
also referred to as sets (or multisets). We use the term multiset
pattern to refer to patterns of the form L{c} becausec matches
Zero or more multisets of tree nodes. We use the term par
tially-ordered tree pattern to refer to tree patterns that may
specify both ordered and unordered subtrees.

Partially-ordered tree patterns enable programmers to con
cisely express ideas that are tedious or impossible to express
using strictly ordered or unordered tree patterns. For example,
a process model checking application is described below that
includes the transformation rule defined in Listing 2.

Listing 2. A Process Interaction Rule

parsender:choice seqsendx:any,CS:any,any,
receiver:choice seqrecVX:any,CR:any,any,
procs:any*}

==>

par{CS,CR procs

The multiset pattern with label par models a collection of
processes executing in parallel. Each node labeled choice
models a process that will continue by choosing among a set
ofalternatives. Each node labeled seq indicates a sequence of
processes. Finally, sendX and receiveX correspond to send
ing and receiving a message of type X.
The rule models an interaction among a pair of processes

(bound to variables sender and receiver in the pattern). The
sender process sends a message of type X and the receiver
process receives this message. After the interaction the col
lection of parallel processes contains the continuation of

10

15

25

30

35

40

45

50

55

60

65

8
sender (CS), the continuation of receiver (CR) and the col
lection of processes that did not participate in the interaction
(procs).

Within a set of parallel processes, there may be multiple
pairs of potentially interacting processes and therefore mul
tiple possible outcomes when matching the interaction pat
tern. The MFA mechanism described below may be used to
generate one or more of these outcomes.

Multiset patterns offer more than conciseness. They also
enable implementations and particular embodiments to use
inherently unordered representations of input collections.
Direct use of unordered representations, such as search trees
or hash tables, enables transformation engines to avoid build
ing separate indices for input collections.

For example, an authorization logic implementation
described below is evaluated that checks that an access
request meets an authorization policy by matching the request
against a database of assertions and a set of rules. The autho
rization policy application may use a multiset pattern that
works directly against an unordered representation of an
assertions database.

If multiset patterns and polymorphism are removed from a
regular tree grammar, a regular tree type system is arrived at
which, as may be appreciated, is similar to a functional pro
gramming language for XML tree transformation. Such a
system may be employed to generate an algorithm for deter
mining a sub-type relation over nested regular expressions.
Such an algorithm uses a top-down approach to compare
pattern expressions. The algorithm expands upon and extends
previous theoretical work on regular tree expressions. The
project reports that it initially used determinization of bot
tom-up tree automata to decide inclusion, but found that this
was not a scalable approach. The determinization algorithm
for bottom-up tree automata does not take into account left
context when applying its Subset construction. This may
cause exponential blowup to be far more common than if
context were heeded. It will be shown below how modular
forest automata use left context to avoid such a pitfall while
preserving the simplicity of a direct approach to determini
Zation and Sub-typing.

Another embodiment extends the above system with poly
morphism, function types, and records. Records require a
uniqueness constraint over labels. The MFA implementation
described below Supports uniqueness constraints, in addition
to equality constraints over pattern variables.
As may be appreciated, the ambient calculus operator, n,

has a strong correspondence to the regular tree pattern opera
tor Label{Forest?}. It may be demonstrated that the ambient
calculus parallel composition operator may be interpreted as
a tree composition operator that joins a pair of trees at their
roots. It may be proposed that ambient logic may be used as a
basis for describing and querying tree structures. Ambient
logic is a temporal spatial logic for reasoning about processes.
Unlike the regular tree grammar of Listing 1, ambient logic
considers only unordered nests. In ambient logic, deciding a
Sub-type relation is equivalent to deciding implication. This is
tractable for some variants of the logic.
XML Schema Language
A Modular forest automata (MFA) implementation is

described herein that may successfully be imported and deter
mine sub-type relations for instances of the W3C XML
Schema Language. An XSD complex type assigns a name to
a structural formula. Structural formulae in XSD are called
content models. Content models contain element declara
tions, an unordered nest pattern called an attribute inventory,
and particle compositors. There are three compositors: all,
choice and sequence. The regular tree grammar union and

US 8,176,085 B2
9

concatenation constructors correspond to the choice and
sequence compositors, respectively.
The all compositor corresponds to an unordered nest

operator which is described herein. XSD places some restric
tions on its use of the all compositor. For example, this may
require that items within an all compositor have a finite mul
tiplicity.
XML element declarations are isomorphic to the ordered

tree constructor, Label Forest?, of regular tree grammars,
with the operator name Label playing the role of the element
qname. However, the XML Schema language requires that,
for any union of two content particles a and b, a parser must be
able to perform single lookahead unique particle attribution:
reading only one token, a parser must be able to identify
whether an instance corresponds to branch a or b of the
choice.
Modular Forest Automata

Partially-ordered regular tree patterns have been described,
Supra.
Modular Forest Automata (MFA) provide a mechanism

which provides a unified treatment of ordered and unordered
regular tree patterns—of sequences and sets. Such ordered
and unordered regular tree patterns are sometimes termed
sequences and sets. Each MFA implements a contract that
supports analysis and composition of MFA hierarchies. The
contract enables MFAs to take advantage of left context dur
ing determinization as will be discussed herein. The use of left
context in MFAS avoids a possible state blowup which may be
found in certain previous methods for determinization of
bottom-up tree automata.

Modular forest automata (MFAs) are visibly pushdown
automata (VPA). Visibly pushdown automata are a class of
pushdown automata as are known to those of skill in the art.
For MFAs, a pushdown automaton is defined as a tuple:

K is a finite set of states
X is an alphabet (the input symbols)
T is an alphabet (the stack symbols)
seK is the initial state
FCK is the set of final states, and
A, the transition relation, is a finite subset of (KXX*x)x

(KXI*)
The transition relation maps triples (current state, input sym
bols, stack symbol to pop) to pairs (new state, stack symbol to
push).

To support analysis, MFAS adopt the stack use restrictions
of visibly pushdown languages (VPLs). This class of lan
guages are defined using pushdown automata that restrict
their transition relation to conform to one of the three push
down transition categories in Listing 3:

Listing 3. MFA Transition Categories

Local (q0, a 6X, e) -> (q1, e)
Call (callSite, a 6X, e) -> (callTarget, callSite)
Return (returnSite, a 6X., callSite) -> (continuation, e)

These categories partitionX into three disjoint sets: XXX,
corresponding to symbols that can cause call, return, and
local transitions, respectively. Local transitions are identical
to transitions in regular finite automata. A call transition from
a state q in MFA Mo reads a symbola, saves callSite on the
stack and transfers control to a state callTarget. A return
transition pops callSite from the stack and makes continua
tion the current state.

10

15

25

30

35

40

45

50

55

60

65

10
The stack discipline described above enables a VPL to

remain closed under intersection and complementation in
addition to the union, renaming, Kleene Star, and concatena
tion closure properties of pushdown automata. Unlike for
general non-deterministic context-free languages, the class of
non-deterministic VPLs is equivalent to the class of determin
istic VPLS.

Each MFAM has a set T of call target states. M's start state
S is in T as is any state reachable from S by a path that ends
with a call transition. M can be viewed as a hierarchy of
disjoint sets of states called modules. M has one module for
each state teT. Given a call target state t, the corresponding
module Module(T) is the set of states reachable from t using
only local transitions.

It is required that a module contain only one call target state
t. The call target state t is called the entry point of the module.
Correspondingly, MFAS cannot contain call transitions
whose target state is reachable by local transitions from
another call target state. The module containing an MFA's
start state is called the MFA's top-level module. In order to
maintain the stack discipline, MFAs do not allow inter-mod
ule e-transitions.

Finite additional bookkeeping is used with MFAS to apply
the call/return strategy of VPA to unordered nest patterns and
to obtain a single Sub-typing method that can apply to both
ordered and unordered nest patterns.

Each MFA state is labeled with a bit vector that indicates
that Zero or more pattern equivalence classes are accepted by
the state. This label is called a tag. Each MFA includes a
mapping Tag: K->B, where B is a string of kbits. For a given
module M, k is constant and k is called the tag-length of the
module M. For each final state fin F, Tag(f) must contain at
least one non-Zero bit.
The purpose of tags is to guide how a calling MFA contin

ues upon return from a call. In MFAs, return transitions do not
have a fixed target state. Instead, a return transition from MFA
states pops the calling state from the stack, pushes onto the
stack Tag(s), and changes the current state to the calling state.
The calling state then executes a continuation transition that
pops the tag from the Stack and transfers control to a continu
ation state.
The addition of continuation transitions to the MFA

mechanism does not change the fundamental properties of
MFAS because the continuation transitions of MFA with con
tinuation transitions can be eliminated. To eliminate the con
tinuation transitions of an MFA having continuation transi
tions is done as follows. First, a copy is made for each call site
c with call target state t, of the states in Module(t). This copy
is called the target module. Then, for each return transition (r.
CeX., c)->(c. tag) in the target module, the corresponding
continuation transition (c. e. tag)->(continuation; e) is found
in the calling module and both transitions are removed.
Finally, a return transition (r, CeX.; c)->(continuation; e) is
added to the target module. Because it is possible to remove
the continuations transitions as described above, is may be
assumed that MFAS may have continuation transitions.

It may also be assumed that an MFA has access to a stack,
called the input stack of forests. Execution of an MFA begins
at the MFA's start state with the input stack containing the
original input forest. An MFA includes the notion of a current
tree. The current tree is some tree in the forest at the top of the
input stack. These concepts can be used to map to particular
implementations of MFAs. A call pushes the children of a
current tree onto the input stack. A return pops the children off
the stack.

If only local transitions of a module Mare considered, then
Mis a regular string automaton that recognizes the contents of

US 8,176,085 B2
11

a forest. As may be appreciated, this may be used to define the
class of pushdown forest automata (PFAs). Pushdown forest
automata have two sets of states: the forest states Q, and the
tree states Q. Pushdown forest automata have Entry and Exit
transitions that connect disjoint sets of forest states. Push
down forest automata also have a transition relation Comb
that incorporates information from an exit transition and
transfers control from a tree state to a forest state.

If tags are removed from MFAs, then PFAs are isomorphic
to MFAs. A given PFA P can be converted to the equivalent
MFA M, as follows: For each forest state of P. create a state in
M. Fore each tree state in P. create a state in M. Copy the
entry, exit, combination and local transitions of P directly to
M. These correspond to call, return, continuation, and local
transitions, respectively. By splitting each call state c into a
forest state and a tree state t and adapting the continuation
transition of c to be a combination transition whose initial
state is t, then a tagless MFA may be converted to an equiva
lent PFA.
A preprocessor, Prep(s), may be associated with any MFA

states. Prep(s) must either be set to a valid MFA or to L.
Within a given module all states must share the same prepro
cessor value. A module whose states have a preprocessor
other than L is called a preprocessing module. Given an input
foresti, a preprocessing module will call its preprocessor on
each element of i before processing that element. A prepro
cessor is used to discriminate among equivalence classes of
input. Preprocessors can not be called recursively. Specifi
cally, no state within a preprocessing module prep can initiate
a path that contains a transition with target state t such that
Prep (t) prep. Preprocessors may be used to construct an
MFA that can match a multiset pattern.
The addition of preprocessing modules does not change the

fundamental properties of MFAS. A preprocessing module
may be thought of as operating by transforming each of its
inputs i to Pi where I is a reserved label. Preprocessing
steps can then be encoded as call transitions on nests labeled
L?.
Also, a semantic action, Action (tr), may be added to any

local MFA transition tr. A transition augmented in this way is
called an action transition. An MFA with one or more action
transitions is called a modular forest transducer (MFT). The
ordering of semantic actions may be preserved during MFT
determinization.
Translation of Tree Patterns to MFAS

Partially ordered regular tree patterns may be transformed
into MFAs. Because the intersection and complementation
methods include a determinization step, details of a method
for determinization of non-deterministic MFA (NMFA) is
provided first.

Construction procedures for building NMFAs from tree
patterns differ from other known construction procedures.
First, tree patterns include nest operators. Second, tree pat
terns may contain actions and variable bindings. A pattern
compiler in aparticular implementation can translate variable
bindings to actions. Correspondingly, variable bindings are
not treated specially.

Input to an MFA may be a well-formed forest of tree
values. A well-formed input forest ends with the end-of-forest
symbol, “I’. The translation procedure adds to every gener
ated MFA states a return transition on.
A union, M-MoUM of two NMFAS is computed using

the known classic method which is augmented by making
adjustments to tags and preprocessors. In the construction, it
is assumed that Mo has tags of length ko while M has tags of
length ki. M. would then have tags of length kok. When a
states of M2 has a final state of Mo, then a string ofk Zeros is

10

15

25

30

35

40

45

50

55

60

65

12
appended to its tag. Otherwise, when S is a final State of M,
then its tag is shifted left ko places, filling it with Zeros.
To Support combination of preprocessing modules, the

union construction is modified as follows: When computing
MMUM, when the top-level module of Mo has a prepro
cessor prepoz Land the top-level module M has a preproces
sor prepz L, then assign to each state in M's top-level mod
ule the preprocessor prepoUprep.
To combinea preprocessing module with a regular module,

a preprocessor is synthesized for the regular module. Suppose
prepoz Land prep L. A preprocessor for M1 is synthesized
by first setting prep1 to the union of the set of MFAs recog
nizing the transition symbols for local transitions of M1.
Next, for each call transition (c. L., e)->(callTarget, c) in M's
transition relation, then set prep prep UN where N is an
MFA recognizing a tree labeled L with children recognized
by the module whose start state is callTarget.
Nests

Nest operators may be translated whether they are ordered
orun-ordered. Given a nest operator with label Land contents
c, first create an NMFA for c, called M, with start states.
Then create an NMFA, called M, with start states, final
state f, and transitions (S. L., e)->(s, s) (call M) and (s, e.
tag)->(f, e) (continue from call). Finally, incorporate the
states of M into M, assigning to each final state f of M
tag tag and changing f. to a non-final State with a return
transition (fl. S)->(s; tag). In this construction, the states of
M become a module Of M.
The concatenation operator may be used to translate the

contents of ordered nests. Given a pair of NMFASM and M.
the method builds MM M by creating a new start states
for M. creating an e transition from s to Mo’s start state by
creatinge transitions from each final state of Mo to M's start
state and finally by adopting as M's final states the final
states of M.
Multiset Nest Contents
The following strategy may be used to generate an MFA

that recognizes the contents of an unordered nest.
In general, a multiset pattern may be viewed as having the

form
Label p"p.'", p'",

This notation specifies that, for the contents of a multiset nest
operator to match an input collection, each pattern element p,
must match at least 1, input elements and may match at most
h, input elements.

Multiset patterns are first transformed to eliminate arbi
trary occurrence constraints. Given a multiset pattern P speci
fied as above, a pattern compiler may transform P to an
equivalent unit multiset pattern P' as follows.

Listing 4. Transform Multiset Patterns

For each element pattern p" in P.
a) Add to Pl, copies of p.

Call these copies required pattern elements of P.
If h is infinite, add p, to P.
Call the added pattern an unbounded pattern element of P.
Otherwise add h - 1 copies of p.2 to P.
Call these copies optional pattern elements of P.

b)

The pattern compiler next builds a preprocessing MFA called
the element MFA which matches the union of the pattern
elements Up. Third, the pattern compiler builds a permuta
tion MFA. The permutation MFA calls the element MFA as a
preprocessor on its inputs. On each call, the element MFA
returns a tag indicating which of the p, matches the current

US 8,176,085 B2
13

input. The permutation MFA changes state when it encoun
ters an input that matches a required or optional pattern. The
state change counts the required or optional pattern. When the
permutation MFA encounters an unbounded pattern, it loops
back to its current state.

It may be recognized that permutation MFAS are a form of
counting automata. Permutation MFAs differ from other
counting automata in their use of a preprocessor Step. FIG. 2
illustrates how permutation MFAs count their inputs. The
MFA200 illustrated in FIG.2 matches the nest contents of the
following pattern:

Pond=Pond waterfrog+..canoe,bridge?

Repetition, References and Type Parameters
To translate the repetition constructs of Listing 1, a pattern

compileruses well-known techniques. This construction may
be augmented to implement variable bindings that accumu
late input items matching a repeated pattern.

To translate symbol references, a pattern compiler must
distinguish among several classes of symbols. A base type or
literal symbol Sym translated as a single local transition on
Sym A reference to a type parameter param translated as a
formal transition on param. Formal transitions are not execut
able. A compiler may generate a parameterized module con
taining a formal transition, but to create an executable module
it must instantiate the parameterized module by Supplying
actual patterns for the module's formal transitions. During
instantiation, the compiler Substitutes for each formal transi
tion the translation of the corresponding actual pattern.
A pattern compiler translates a reference to a pattern P by

substituting the translation of P into the context that refer
enced P. As may be known, regular tree grammars do not
permit recursive references outside the context of a next
operator. A pattern compiler can combine this property with
the invariant that nests are compiled as calls to ensure that all
inline expansions will reach a base case, such as a nest opera
tor or a pattern that does not contain a pattern reference.

For example, FIG.3 illustrates the translation for the recur
sive pattern

Expr=ciplus ExprExpr.

FIG. 3 labels each node with its tag. FIG. 3 contains two
modules, depicted 300 and 310, which are called Expr 300
and PlusNest 310. Expr 300 has a tag length 2 because it
matches a union. PlusNest 310 has a tag length 1. Module
Expr 300, which includes the start state for the MFA, matches
the Expr pattern by either matching a corby calling PlusNest
310 and then continuing to the final state tagged 10 upon
return of tag 1 from PlusNest. PlusNest 310 matches the
pattern fragment Expr, Expr by concatenating two inlined
instances of the pattern Expr. These inline expansions of Expr
yield recursive calls to PlusNest. Return transitions or paths
that lead to non-final states are not shown.
Determinization

Listing 6. Determinization of NMFAS

O. Given NMFA M = (K, X, T, A, S, F), compute deterministic MFA
M' = (K' C2, X', T., A', s, F).

1. s'= E(s):
Q = :
Enqueue(Q, s');

2. while Qz
a) t = Dequeue(Q);
b) for each Sym in X.
i. moveSet = the set of all states r such that

x et: (X, Sym, e) arrow (r, e) in A;

10

15

25

30

35

40

45

50

55

60

65

14
-continued

Listing 6. Determinization of NMFAS

ii. u = E(moveSet);
iii. ifu (7 K' then Enqueue(Q, u); K = K'U{u}:
iv. add(t, sym, e) -> (u, e) to A':
c) for each L in Labels(t)

i. combineNests (t, L, K, Q, A., A);
3. for each stateste K

a) if st ?n Fz Othen F = F Ust:
4. for each state fe F", Tag(f) = U+. Tag(x).

(The operator U+ computes the bitwise OR of a set of tags.)

Listing 6 provides a construction for determinizing an
MFA. To simplify determinization, represent the combination
of a call transition

(c. Label,e)->(callTarget,c)

and its associated continuation transition

(c.e. tag) (conte)

as an intra-module transition called a nest transition:

(c. (Label,callTarget, tag),e)--> (conte).

This representation enables the determinization method to
process transitions uniformly because both local and nest
transitions are intra-module transitions. For use in the deter
minization method of Listing 6, the function Labels(s) is
introduced which yields the set of labels used in nest transi
tions emanating from S.

For a given top-level module M, the determinization
method adds the following two steps to the class method for
determinization of an NFA. First, step 2.c uses the Com
bineNests method to combine the call targets of nest transi
tions from state t. Second, step 4 updates the tags for each
final state in the determinized MFA's set of final states F". For
a given final state f, step 4 sets the tag for f to the bitwise OR
over the tags of the NMFA states that are members off.
The determinization method uses as a Subroutine the e-clo

sure operator E(s). Given a states, E(s) is the set of states
reachable from S by a path containing only e transitions. For
clarity, Listing 6 omits the details related to handling wildcard
transitions. For implementing wildcard transitions emanating
from a state t, the move set for the wildcard transition is
combined with the move set of each non-wildcard transition
emanating from t.
Sub-Typing

Having invested in extra bookkeeping during determiniza
tion to keep track of tags, a benefit of the extra bookkeeping
may be reaped in comparing a pair of MFAS Mo and M. A
procedure for comparing the MFAS is given in Listing 7.

Listing 7. MFA Comparison Algorithm.

O. Given a pair of MFAS Mo and M, determine the inclusion
relationship between the sets of values recognized by Mo and M.

1. for each state q in Mo or M,
if Tag (q) z Othen set Tag (q) = 1;
otherwise set Tag (q) = 0;

2. Set M = MoUM.
(e.g., The union construction assigns to final states of Mo the tag 01
and assigns to final states of M the tag 10)

3. Set C to the set of distinct tags on final states of Determinize(M2).
Find the relationship between Mo and M by looking up the value of
C in Table 1.

A key idea is that the determinization procedure keeps
track, through tags on final States, of whether Mo and M may

US 8,176,085 B2
15

ever be accepted simultaneously and whether Mo or M or
both may ever be accepted independently of each other. Table
1XXXX can be used to map to a comparison outcome the set C
of tag values present on final states in the determinized union
of M and M. FIG.5 is a graphical illustration of the possible
sub-type relationships listed in Table 1.

TABLE 1.

Using Tags to Compare MFAS

Value of C Interpretation Semantics

{11} equivalent Mo = M1
{10, 11 sub-type Mo C M
{O1, 11 Super-type Mo M
{01, 10} disjoint Mo?h M = 0
{O1, 10, 11 intersecting Mo - Miz O

FIG. 5 depicts each of the equivalent 500 relationship; the
sub-type 510 relationship; the super-type 520 relationship;
the disjoint 530 relationship; and the intersecting 540 rela
tionship.
Complementation, Intersection, and Difference

Additional benefits may be reaped from the tag bookkeep
ing described above. Tags may be used to implement proce
dures for complementation, intersection, and difference of
MFAS. To construct the intersection MM, the intersection
construction first computes the determinized union
I-Determinize(MoUM) and then eliminates from I each
state t from which a final state with tag 11 is not reachable.
When this computation results in an MFA I with no states,

a single non-accepting start state is added to I so that I is the
MFA that accepts no input.
A similar construction may be used to compute Mo-M. To

do so the tag 01 is substituted for tag 11 in the above inter
section construction. To compute M-Mo, the tag 10 is used
in the construction.
To build M, the complement of M, the complementation

construction first computes M'-Determinize(M). Then, for
each final state fin M', the construction sets the tag off to 0
and marks f non-final. For each non-final state inf of the
original M', the construction sets the tag of nifto 1 and marks
inf final. The tag-adjusted Maccepts M.
An important aspect of this construction is that transitions

on Zero tags returned by called modules may lead to final
states. An MFA implementation that saves space by using
implicit transitions on Zero tags must have a way to convert
these transitions to explicit transitions upon complementa
tion.
Ordering of Semantic Actions
One benefit of particular embodiments of the present

invention is to enable a pattern compiler to place a semantic
action on any NMFA transition. To support this flexibility, a
method is required for preserving the order of semantic
actions during determinization. It is beneficial to preserve the
property that, for all paths tr, tr. trofan NMFA M,
Action (tr) is executed before Action(tr) if and only ifisi. To
preserve this property, the paths of Mare associated with the
transitions of Determinize(M).

To accomplish this, a basic path of a deterministic MFA

M=Determinize(M)

is defined as a sequence of local or nest transitions tr.
tra. . . . , tr. Such that for each transition tr. (q, Sym, e)->
(q., e), either q has only one incoming transition, i=0, or
i+1=n. For purposes of this definition, the start state of M is
considered to have an implicit incoming transition.

5

10

15

25

35

40

45

50

55

60

65

16
The basic paths of M" may start and finish with a state that

has multiple incoming transitions. However, any intermediate
states along a basic path must have exactly one incoming
transition. A consequence of this property is that the final
transition tr., of a basic path uniquely identified that path.

This consequence is made use of by assigning to the final
transition tr, of each basic path bp a set A of sequences of
semantic actions gathered in order from the set np of NMFA
paths that correspond to bp. When an MFT executes transition
tr of bp, it also executes each member of A.

For a given basic path bp of M', the corresponding set of
paths np from Mare found using the following method. First,
find, for each transition tr, in bp the NMFA transitions that
correspond to tr. A NMFA transition

nir (rsym,e)-(re)

corresponds to tr, if and only if reqi and req.
For each NMFA transition corresponding to tr, an NMFA

path may be built inpath, path, ntr, path, where path, has the
following properties. First, path is made entirely of e transi
tions whose beginning and ending states are in q. Second, the
first state of path, has no predecessor in qi. Finally, the last
state of path is the beginning state of transition ntr, Similarly,
path, is made entirely of e transitions whose beginning and
ending states are in q, and path, begins with the ending
state of ntr,

In turn, the NMFA paths are built corresponding to basic
path bp by Stringing together all of the Sub-paths that corre
spond to some transition in bp. If each transition of bp has
only one corresponding NMFA transition, these sub-paths
will form a single NMFA path. However, if some transitions
of bp have more than one corresponding NMFA transition,
then the sub-paths are combined by joining pairs (npath,
npath) of NMFA sub-paths for which the last state of npath
is the first state of npath. A given NMFA sub-path may
participate in more than one such pair; therefore several of the
NMFA paths corresponding to a given basic path may share a
common prefix.

FIGS. 6 and 7 show the correspondences between the con
structed NMFA 600 for the nest contents of the pattern

GTE=GTEIany,OIGTEO,SIany

and its determinized equivalent 700, respectively. The MFAS
in these figures include the shift and accept actions described
in Table 2. FIG. 6 uses the symbole to represent an e transi
tion. FIG. 7 illustrates how the action sequences 700 from
each of the NMFA paths have been gathered and assigned to
transitions that finish basic paths of the determinized MFA.
These transitions are also labeled with the NMFA paths
assigned to them.

FIG. 7 also gives a view of the translation for the wildcard
any. The determinized MFA for GTE uses a transition labeled
otherwise to translate the wildcard. This translation is called
a default transition because it will be executed if no other
transition applies. The target state t of a wildcard transition
starting from states is added to the move set for default
transition from S. In addition, t is added to the move set of any
non-wildcard transition from S.

Finally, FIG. 7 illustrates a technique for representing
return transitions that simplifies the ordering of semantic
actions. Return transitions may be viewed as local transitions
on end-of-forest(). These local transitions can then become
placeholders for semantic actions. The pattern compiler
described herein makes use of this technique.
Optimization of Permutation MFAS
To account for differing input orders, permutation MFAs

may have a large number of transitions. To reduce the number

US 8,176,085 B2
17

of transitions in a permutation MFA, a pattern compiler can
assign a partial order, called the tag order, to the tags of the
corresponding element MFA. The compiler can then remove
from the permutation MFA paths that are out of order, antici
pating that the runtime system will match an input forest
using one of two strategies. First, a runtime system can use
can index over the input collection to extract items that will
match required pattern elements. Second, the runtime system
can use the element MFA to preprocess the input forest and
then sort the result according to the element MFA's tag order.

The first strategy works well when one of the pattern ele
ments is the wildcard any. In this scenario, the runtime
system can “cherry pick” the required pattern elements in tag
order using an index and then assign the remaining input
forest items to the wildcard pattern element.
The second strategy trades reduced memory use for poten

tially increased matching time due to sorting. When used to
transform labeled, directed graphs, permutation MFAS may
typically bind to variables large chunks of an input forest.
Further, a user of multiset patterns may expect multiple sets of
variable bindings to emerge from a matching operation. In
these scenarios, a runtime system must retain a copy of an
input forest and therefore Supports Sorting.

Given a set P of pattern elements, a total order for the tags
of the corresponding preprocessor MFA may be derived as
follows. First, order the pattern elements. Given a pair of
pattern elements (pp.) both in P. define p-p, ifp, is required
and p, is not, orifp, is optional and p, is unbounded, orifp, has
a higher priority than p. If no priorities are assigned then
assign priorities lexicographically, so that there is a total order
among the pattern elements.
Upon Determinization, a preprocessor MFA will have tags

that indicate acceptance of a set of one or more pattern ele
ments. Given a pair of such tags (t, t), tist, if min(t)<min(t).
Ift, and t, have the same minimum element, the tist, if it,>lt.
This last rule ensures that permutation MFAs consider first
inputs that may match several pattern elements. FIG. 4 illus
trates the effect of tag order optimization on the MFA 400 for
Pond pattern

Pond=Pond waterfrog+..canoe,bridge?}.

MFA Implementation
In one particular implementation of MFAs and MFTs,

there is a runtime system that implements instances of these
automata called transducers. In another embodiment, a pat
tern compiler transforms regular tree patterns to transducers,
augmenting transducer transitions with instructions that
implement variable binding, matching conditions and seman
tic actions. Particular embodiments may be applied to at least
four applications: claims-based authorization service, a pro
tocol model-checking application, a system for importing,
Subtyping, and matching XML Schema instances, and a com
piler for query expressions.
An actual evaluation of a particular implementation

resulted in a transducer runtime matching labeled, directed
graphs at a rate between 2.4 and 8.9 million nodes per second.
Further, the transducer runtime was able to transform labeled,
directed graphs at a rate between 0.6 and 2.1 million nodes per
second.
Runtime

For Each Transformation Rule

rule pattern,action

a pattern compiler creates a frame template. The frame tem
plate specifies a slot for each variable bound in rule, plus an
additional slot to hold the result of applying action. At runt
ime, the transducer mechanism may allocate for each ruler a

5

10

15

25

30

35

40

45

50

55

60

65

18
stack of frame collections. A frame collection for ruler con
tains Zero or more frames whose layout is described by the
frametemplate forfFrame collections may contain more than
one frame because a multiset pattern can match its input in
more than one way, yielding multiple sets of variable bind
ings. Frame collections may be stacked to handle recursion.
Transducer Instructions

TABLE 2

Transducer Instructions

Instruction Interpretation

Bindrix Assign the current item to r.x
Unify rx Unify the current item with rix
Initrix Assign to r.x the empty collection
Accumr.X Combine the current item with the collection found in

X

Exec r, i. Execute the action associated with ruler. Using the
resulting value as the current item, execute
instruction i. Pop the rule collection stack for r.

Pushr Push onto the rule collection stack for r a new rule
collection.

Accept t Accept the set of rules coded by tag t.
Parb Execute a set of action blocks b in parallel. The

pattern compiler uses this instruction when more than
one NMFA path corresponds to a DMFA transition.

Shift Move the input pointer to the next forest item.

Transducer State transitions may refer to action blocks
which are sequences of transducer instructions. The trans
ducer instruction set includes the instructions given in Table
2. In Table 2, operands labeled r reference grammar rules.
Operands labeled rx reference the slot for variable X within
the rule frames on top of r s rule collection stack. Operands
labeledi refer to instructions. Operands labeled trefer to tags
indicating sets of accepted rules. Operands labeled b refer to
a set of action blocks.

In addition to the explicit operands, instructions may also
contain a shift type and a shifted rule. The shift type indicates
how the transformation engine should move to the next item
in the forest. If the shift type is SHIFT NEST, then the trans
formation engine will rewrite the successors of the current
tree node before moving on to the next tree node. The shifted
rule indicates which rule to rewrite (among several that the
nest pattern may have matched).
The first four instructions in Table 2 are called the frame

update instructions because for Some ruler, they update for
each frame on r's collection stack, the slot for variable r.x.
The Exec instruction pops the top collection from rs col

lection Stack. For each frame in the popped collection, the
Exec instruction executes the rewriting action associated with
r. For each result, the Exec instruction executes the frame
update instruction i which updates some variable target.X. In
recursive cases, target may be the same rule as r.
The Push instruction pushes a new rule collection onto the

rule collection stack for r. The Parinstruction executes a set of
action blocks in parallel. For each action block in the set, the
par instruction starts with the current input node. Each action
block in the set must advance the input pointer the same
amount. The transformation engine does not always execute
each member of a parallel block. Each parallel block member
may be marked with a rule identifier. The transducer will only
execute parallel block members that are marked with an iden
tifier for a rule that the transducer is currently rewriting.
The Shift instruction advances the transducer to the next

input item. The pattern compiler generates this instruction
when there is no variable binding associated with the current
pattern position. When a pattern position does have a variable

US 8,176,085 B2
19

binding, the compiler instead Supplies the shift information as
part of a frame update instruction.
Applications
One particular authorization policy engine (called Thor)

uses an authorization logic that Supports claims-based autho
rization of data access requests. Thor comprises a large
database of claims, expressed in logic Such as claim:
afdns=2x->bfdns=2x, which denotes that if a claims that the
property dins has the value bound to variable x, then b makes
the same claim. The claima/dns="LocalPost' denotes that a
claims that the property dins is assigned the value “Local
Host.” All such claims are represented in the claims database
as an unordered table, indexed by principals and properties.
The authorization policy engine uses a structural contract

to represent its claims database as an unordered forest. To
process a claim, it first converts the claim into a tree of the
form prove context{database, goal). Then the engine uses a
set of rules to repeatedly transform the claim until it reaches
a fixed point. If the engine can prove the claim, the claim will
then be transformed into a proof tree that identifies the steps
in the proof
The pattern compiler may translate the engine's rules into

a transducer. The search procedure calls this transducer to
execute each transformation step. The rules implement a
sequent calculus for constructive logic, augmented with dis
tribution rules for the delegation operator. A typical rule in
this logic is the following:

ImpliesConditionMet =
prove

context{typedTermproofl:andy, a:any,
typedTermproof 2:any, impliesa:any, b:any,
rest:any*,

goal:any

prove
context{rest,

typedTermproofl:any, a:any,
typedTerm applyproof2:any, proofl:any, b:any,

goal:any;

The engine uses the indexing and tag order Sorting previ
ously described herein to achieve a Substantial throughput
(measured in one instance as 23,000 claims per second). This
has a possible benefit of preventing claims processing from
being a rate-limiting step of an overall authorization service.

Another application is a process model-checker. Such a
model-checker may be applied to protocols ranging from
simple alternating-bit protocols to a model of TCP (transmis
sion control protocol). The model-checker may check dead
lock-freedom for such protocols. The model-checker uses
patterns, such as the interaction pattern of Listing 2, that
produce many results. In such cases, the transducer may
buffer several frames worth of variable bindings for each
rewrite.

Another embodiment applies an application which
imports, validates, and Sub-types XML schemas. This
embodiment imports XML schemas into partially-ordered
tree patterns. Such an application may operate in both batch
mode and in interactive mode. In interactive mode, the appli
cation may be employed as part of an authoring system for
incorporating patterns into computer applications.

Yet another embodiment was applied in a compiler com
ponent for query expressions. Such a component may be used
as a front-end for database query applications such as SQL
and the like. The component uses a set of rules to translate a
query expression Q into a comprehension algebra and then

10

15

25

30

35

40

45

50

55

60

65

20
optimizes Q by using a second set of rules that transform the
algebraic representation to a fixed point.

Optimizations of the embodiments described herein are
also possible. For example, a pattern compiler may recognize
dependencies among bound variables and use those depen
dencies to drive matching. The compiler may use this opti
mization on the pattern for implication given above. By first
extracting from the input forest input items that match the
pattern element
typedTerm proof2:any, impliesa...any, b:any.

a generated transducer could constrain the possible matches
for the pattern element
typedTerm proofl:andy, a...any.
Modular forest automata provide a unified description of

partially-ordered regular tree patterns. MFAs also provide
simple algorithms for determinization, Sub-typing, intersec
tion, and complementation of these patterns. In practice,
modular forest automata Support high-performance pattern
analysis and matching. Modular forest transducers enable
compilers to place semantic actions on any state transition
while supporting efficient transformation of labeled, directed
graphs.
The present invention may be embodied in other specific

forms without departing from its spirit or essential character
istics. The described embodiments are to be considered in all
respects only as illustrative and not restrictive. The scope of
the invention is, therefore, indicated by the appended claims
rather than by the foregoing description. All changes which
come within the meaning and range of equivalency of the
claims are to be embraced within their scope.

What is claimed is:
1. A method in a computer environment for analyzing a

regular tree pattern, the computer environment comprising at
least one computer processor and computer-readable
memory, the method comprising:

receiving data comprising a regular tree pattern comprising
each of at least one sequence and at least one set;

determining a first machine corresponding to the at least
One Sequence,

determining a second machine corresponding to the at least
One Set:

creating a union of the first and second machines;
determining a set of labeled acceptance states for the union

of the machines;
determining from the labeled acceptance States a sub-type

relationship for the first and second machine;
determining a root level machine comprising at least one

transition to a labeled nest;
creating a module corresponding to the labeled nest;
placing a continuation state corresponding to the return of

the labeled nest onto a stack;
performing actions corresponding to the labeled nest; and
when reaching an acceptance state for the labeled nest,

popping the continuation state from the stack and resum
ing processing for the root level machine.

2. The method of claim 1 wherein the received data corre
sponds to data defining structural types in a programming
language.

3. The method of claim 1 wherein the received data corre
sponds to data comprising a schema for a database.

4. The method of claim 1 wherein the received data corre
sponds to an XML Schema.

5. The method of claim 1 further comprising determining
whether two data types are equivalent.

6. The method of claim 1 further determining whether two
database schema are equivalent.

US 8,176,085 B2
21

7. A computer program product comprising a tangible
computer-readable storage device having encoded thereon
computer-executable instructions for analyzing a regular tree
pattern, the computer-executable instructions, when per
formed in a computing environment, perform a method com
prising:

receiving data comprising a regular tree pattern comprising
each of at least one of a-sequence and at least one set;

determining a first machine corresponding to the at least
One Sequence,

determining a second machine corresponding to the at least
one set;

creating a union of the first and second machines; deter
mining a set of labeled acceptance states for the union of
the machines;

determining from the labeled acceptance States a Sub-type
relationship for the first and second machine;

determining a root level machine comprising at least one
transition to a labeled nest;

creating a module corresponding to the labeled nest;

10

15

22
placing a continuation state corresponding to the return of

the labeled nest onto a stack;
performing actions corresponding to the labeled nest; and
when reaching an acceptance state for the labeled nest,

popping the continuation state from the stack and resum
ing processing for the root level machine.

8. The computer program product of claim 7 wherein the
received data corresponds to data defining structural types in
a programming language.

9. The computer program product of claim 7 wherein the
received data corresponds to data comprising a schema for a
database.

10. The computer program product of claim 7 wherein the
received data corresponds to an XML Schema.

11. The computer program product of claim 7 further com
prising determining whether two data types are equivalent.

12. The computer program product of claim 7 further deter
mining whether two database schema are equivalent.

k k k k k

