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(57) ABSTRACT 

Modular forest automata (MFA) provide a unified description 
of partially-ordered regular tree patterns. MFAS provide 
simple methods for determinization, Sub-typing, intersection, 
and complementation of these patterns. MFAS Support high 
performance pattern analysis and matching. Modular forest 
transducers, in conjunction with modular forest automata, 
enable compilers to place semantic actions on any state tran 
sition while supporting efficient transformation of labeled, 
directed graphs. 
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MODULAR FOREST AUTOMATA 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

NAA 

BACKGROUND 

Programming languages can use patterns to distinguish 
among classes of values. For example, the following two lines 
of pseudo-code define a function that computes the sum of a 
list of integers. 

Sum(nil) = 0; 
Sum(conshead,tail) = head--Sum (tail); 

The patterns in this example serve two purposes. First, they 
distinguish among input cases. Second, they enable concise 
value deconstruction through the use of pattern variables and 
type inference. 

Patterns are closely related to structural types. The regular 
tree patterns described herein are regular tree types that may 
also include variable bindings. A tree pattern coupled with a 
semantic action is called a tree transformation rule. 

Structural type systems, such as XML Schema languages, 
define categories of values. Programming languages often 
use structural type systems to statically check program safety 
properties. SQL databases also use a type system that is 
primarily focused on structure. Tables that result from joins, 
for example, containtuples that can be described as having an 
anonymous structural type. Database management systems 
require that a variety of programs can interpret the data stored 
in the system. Structural type systems help database manage 
ment systems meet this requirement. 

Distributed systems also induce a requirement for struc 
tural types. Due to latency, messages exchanged among dis 
tributed program components are often larger and more com 
plex than method parameters exchanged among objects. 
The values stored in databases and exchanged among dis 

tributed components are intermediate in complexity between 
the simple values manipulated by program expressions and 
the complexity of a Turing Machine. Described herein, regu 
lar tree patterns are used to define these intermediate levels of 
structural complexity. 

Expressing and analyzing both ordered and unordered 
regular tree patterns would be useful and beneficial abilities. 
Examples of domains in which analysis would beneficially be 
improved include model checking and authorization logic 
which uses partially-ordered tree patterns. Certain existing 
languages, such as XML Schema, may use partially ordered 
regular trees but currently lack a means for sub-typing. Fur 
ther, Such languages may impose semantic restrictions in 
order to Support efficient implementation under currently 
known methods. 
Some work on greedy regular expression matching and the 

programming language XStatic has explored how to incorpo 
rate regular ordered tree types into object-oriented languages. 
Like XDuce, XStatic uses a uniform representation for 
sequences. Such work maps regular ordered tree types to 
objects, but uses flattening to Support the natural Semantics of 
regular language inclusion. Finally, trx explores regular 
ordered tree types in the context of Scheme. 
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2 
Some work has also been accomplished on pushdown for 

est automata (PFAs). However, PFAs do not provide a sub 
typing algorithm or a mechanism for addressing unordered 
nests (multisets). 

BRIEF SUMMARY 

Embodiments of the present invention relate to modular 
forest automata (MFA). Modular forest automata, described 
herein, can be used to describe and analyze regular tree pat 
terns and modular forest transducers (MFTs) can be created 
that can concisely express the transformation of labeled 
directed graphs. Graph transformation is a basic ingredient in 
the implementation of logics, process models, and program 
ming languages. Implementations of modular forest 
automata may be used to Support high-performance, strongly 
typed graph transformation. 

Modular forest automata are a mechanism for defining, 
reorganizing, and transforming collections of partially-or 
dered, finite, unranked trees. MFAS Support the analysis and 
composition of MFA hierarchies. MFAS provide a unified 
treatment of ordered and unordered tree patterns. 

Embodiments described herein include methods, systems, 
and computer program products for analyzing regular tree 
patterns. Particular embodiments allow for data being 
received which can be determined or rewritten as modules 
(machines) describing both sequences and sets. A union may 
be created from the modules which are determined from the 
received data. Determined modules and unions of modules 
may comprise labeled acceptance states. From the labeled 
acceptance states, sub-type relationships may be determined 
for the modules. 

Other embodiments described herein also include meth 
ods, systems, and computer program products for expressing 
a transformation of regular tree patterns. A regular tree pattern 
may be received and particular instance data may be received. 
A transducer may be compiled from the received regular tree 
pattern. Transducer transitions may be augmented with 
instructions which correspond to a desired transformation. 
From the augmented transducer transitions and the instance 
data, a correspondence between elements of the regular tree 
pattern and elements of the instance data may be determined. 

This Summary is provided to introduce a selection of con 
cepts in a simplified form that are further described below in 
the Detailed Description. This Summary is not intended to 
identify key features or essential features of the claimed sub 
ject matter, nor is it intended to be used as an aid in determin 
ing the scope of the claimed Subject matter. 

Additional features and advantages of the invention will be 
set forth in the description which follows, and in part will be 
obvious from the description, or may be learned by the prac 
tice of the invention. The features and advantages of the 
invention may be realized and obtained by means of the 
instruments and combinations particularly pointed out in the 
appended claims. These and other features of the present 
invention will become more fully apparent from the following 
description and appended claims, or may be learned by the 
practice of the invention as set forth hereinafter. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In order to describe the manner in which the above-recited 
and other advantages and features of the invention can be 
obtained, a more particular description of the invention 
briefly described above will be rendered by reference to spe 
cific embodiments thereof which are illustrated in the 
appended drawings. Understanding that these drawings 
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depict only typical embodiments of the invention and are not 
therefore to be considered to be limiting of its scope, the 
invention will be described and explained with additional 
specificity and detail through the use of the accompanying 
drawings in which: 

FIG. 1 illustrates a computing environment in which 
embodiments of the principles of the present invention may 
operate; 

FIG. 2 illustrates a permutation modular forest automata 
for Nest contents of a pattern; 

FIG. 3 illustrates a determinized translation of a particular 
pattern Expr; 

FIG. 4 illustrates an optimized modular forestautomata for 
nest contents of a pattern Pond; 

FIG. 5 illustrates a graphical representation of the various 
Sub-types determined in Sub-type analysis; 

FIG. 6 illustrates a non-deterministic modular forest 
automata for the nest contents of a pattern GTE: 

FIG. 7 illustrates a determinized modular forest automata 
for the nest contents of a pattern GTE: 

FIG. 8 illustrates a flowchart of a method for analyzing a 
regular tree pattern in accordance with particular embodi 
ments of the present invention; 

FIG. 9 illustrates a flowchart of a method for expressing the 
transformation of a regular tree pattern in accordance with 
particular embodiments of the present invention. 

DETAILED DESCRIPTION 

Embodiments described herein relate to methods, systems, 
and computer program products for analyzing regular tree 
patterns. Additional embodiments described herein relate to 
methods, systems, and computer program products for 
expressing a transformation or transformations of regular tree 
patterns. The embodiments of the present invention may com 
prise a special purpose or general-purpose computer includ 
ing various computer hardware, as discussed in greater detail 
below. 

FIG. 1 describes an example computing environment 100 
in which the embodiments described herein may be practiced. 
The computing environment 100 includes one or more com 
puter processors 110. The computing environment 100 also 
includes one or more instances of computer memory 120. The 
computer memory 120 may be any computer-readable 
memory as known to be suitable and includes (but is not 
limited to) RAM, SRAM, and flash. Computer memory may 
also be persistent storage 130 such as a hard disc, Solid state 
disc drives, CD ROM, DVDs, and the like. The computer 
memory 120 and storage 130 may, as may be suitable in any 
particular embodiment, be read only, such as ROM or a CD or 
DVD, or it may be both readable and writeable such as RAM, 
flash, and common disc drives. 
The computing environment 100 also includes input and 

output 140. The input and output 140 may comprise any 
Suitable format or media Such as data stored on magnetic disc, 
data accessible via a network, or otherwise. The computing 
environment 100 also includes external persistent storage 150 
to which and from which data may be transferred. Similar to 
storage 130, the external persistent storage 150 may take any 
suitable form such as magnetic disc, tape, CD-R/W, or oth 
erwise. 

Embodiments within the scope of the present invention 
also include computer-readable media for carrying or having 
computer-executable instructions or data structures stored 
thereon. Such computer-readable media can be any available 
media that can be accessed by a general purpose or special 
purpose computer. By way of example, and not limitation, 
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4 
Such computer-readable media can comprise storage media 
such as RAM, ROM, EEPROM, CD-ROM or other optical 
disk storage, magnetic disk storage or other magnetic storage 
devices, or any other medium which can be used to carry or 
store desired program code means in the form of computer 
executable instructions or data structures and which can be 
accessed by a general purpose or special purpose computer. 
When information is transferred or provided over a network 
or another communications connection (either hardwired, 
wireless, or a combination of hardwired or wireless) to a 
computer, the computer properly views the connection as a 
computer-readable medium. Such networks or communica 
tions connections are termed and referred to herein as com 
munications media. Thus, any Such connection is properly 
termed a computer-readable medium. Combinations of the 
above including both storage media and communications 
media—should also be included within the scope of com 
puter-readable media. 

Computer-executable instructions comprise, for example, 
instructions and data which cause a general purpose com 
puter, special purpose computer, or special purpose process 
ing device to perform a certain function or group of functions. 
Such computer-executable instructions may be stored incom 
puter memory 120, persistent storage 130, on any input or 
output media or device 140 or on external storage 150. Com 
puter-executable instructions may also be transferred to a 
Suitable computing environment via any suitable communi 
cations medium. 

Although the subject matter has been described in lan 
guage specific to structural features and/or methodological 
acts, it is to be understood that the subject matter defined in 
the appended claims is not necessarily limited to the specific 
features or acts described above. Rather, the specific features 
and acts described above are disclosed as example forms of 
implementing the claims. 

Embodiments described herein relate to methods, systems, 
and computer program products for analyzing regular tree 
patterns. Additional embodiments described herein relate to 
methods, systems, and computer program products for 
expressing a transformation of regular tree patterns. The 
embodiments of the present invention may comprise a special 
purpose or general-purpose computer including various com 
puter hardware, as discussed in greater detail below. 

For example, FIG. 8 illustrates a method for analyzing a 
regular tree pattern. The method includes receiving data 810 
comprising a regular tree pattern comprising at least one of a 
sequence and a set. When the tree pattern comprises a 
sequence, a machine is determined 820 which corresponds to 
the sequence. The determined machines are sometimes 
termed “modules. A sequence, as its name implies, is a set of 
elements which has a particular order. 
When the tree pattern comprises a set, a machine is deter 

mined 830 which corresponds to the set. In contrast to a 
sequence which has a particular order, a set may be a collec 
tion of elements for which no particular order is specified. 
A union is created 840 of the determined machines. From 

the union of the determined machines (modules), a set of 
labeled acceptance states is determined 850. Finally, a sub 
type relationship is determined 860 from the labeled accep 
tance States. 
As described more fully herein, a sub-type relationship 

may be one of equivalent, Sub-type, Super-type, disjoint, and 
intersecting. If two modules, M and M, have the same 
acceptance states, then they are equivalent. If M contains all 
the acceptance states of M. but not vice-versa, then M is a 
super-type of M and M is a sub-type of M. If M and M. 
have no acceptance states in common, the M and M2 are 
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disjoint. If M and M share some acceptance states but each 
of M and M have acceptance state not shared by the other, 
then they are intersecting. The Sub-type relationships are 
discussed in more detail below and in conjunction with FIG. 
5. 

Embodiments also include determining a root level 
machine (module) which comprises at least one transition to 
a labeled nest. A labeled nest, as described more fully herein, 
may have the form of Label--- or Label{---}. A module may 
be created corresponding to the labeled nest. A continuation 
state which corresponds to a return from the labeled nest may 
be placed upon a stack. After placing the continuation state 
onto the stack, actions may be performed which correspond to 
the labeled nest. When an acceptance state is reached for the 
labeled nest, the continuation state is popped from the stack 
and processing is resumed for the root level machine. 

Embodiments described herein may be employed wherein 
received data corresponds to data defining structural types in 
a programming language. Such data may be analyzed by the 
techniques described herein to determine if the structural 
types are equivalent, or have any of the other sub-type rela 
tionships as discussed herein. 

Embodiments described herein may be employed wherein 
received data corresponds to data comprising schema and/or 
schema definitions for a database. Such data may be analyzed 
by the techniques described hereinto determine if the schema 
and schema definitions are equivalent, or have some any of 
the other sub-type relationships. 

Embodiments described herein may be employed wherein 
received data corresponds to XML schema. Such data may be 
analyzed by the techniques described herein to determine if 
the XML schema are equivalent, or have some any of the 
other sub-type relationships. 
The embodiments described herein may be employed to 

determine structural and logical relationships corresponding 
to the determined sub-type relationships and applied for pur 
poses of optimization, efficiency, and data translation for data 
Structures in programming languages, databases, objects, and 
the like. 

Embodiments described herein also include methods for 
expressing the transformation of a regular tree pattern. FIG.9 
illustrates a method 900 for expressing the transformation of 
a regular tree pattern. The method includes receiving first data 
910 which corresponds to a regular tree pattern. The method 
also includes receiving second data 920 corresponding to an 
actual instance. 

For example, data comprising a regular tree pattern may 
comprise an XML schema, may comprise a database schema, 
may comprise structural types for a programming language or 
object definitions. Data corresponding to an actual instance 
may comprise data within a database, may comprise a serial 
data input stream, or may comprise data embodied within 
object-oriented objects or structural types defined within a 
programming language. 

The method 900 includes compiling the regular tree pattern 
into a transducer. Compiling a tree pattern is described in 
more detail in later sections of this description. Once com 
piled, the transducer transitions are augmented 940 with 
instructions corresponding to a desired transformation. After 
the transitions have been augmented with instructions, it may 
then be determined 950 from the augmented transitions and 
from the data corresponding to an actual instance a corre 
spondence between elements of the instance and elements of 
the regular tree pattern. 
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6 
For instance, there may be a pattern such as Root A+, B*, 

C? and actual instance data (given within an environment) of 
aaa, bbb, -). From this example, the method 900 may deter 
mine a particular binding such that A="aaa, B='bbb, and 
='-'. Further, actions may be performed such as, for 

example, action: Root A, B. C->Root A. C. Once bindings 
are determined, the example action may be thought of as the 
“delete B action. 
The method 900 may be employed in an environment for 

variable binding. Such variable binding may determine a 
correspondence between structural types in a programming 
language, a database schema, an XML Schema, or the like, 
and actual values which correspond to the variables defined 
within the types or schema. 
The instructions of method 900 may also comprise match 

ing conditions and may comprise semantic actions. The 
instance data of method 900 may comprise XML schema 
instances, may comprise instances of data contained within a 
database according to a particular database schema, or may 
comprise data defined or stored in accordance with structural 
types defined within a programming language. 
The method 900 may also include compiling query expres 

sions and determining the result of the query expression cor 
responding to the regular tree pattern and the actual instance 
data. For example, Such queries may be database queries Such 
as SQL and may be authorization queries such as data access 
or the like. 

It should be noted that all the methods and techniques 
described herein may be realized in various embodiments 
which may comprise (but are not limited to) methods execut 
ing within computing environments, computer program prod 
ucts which comprise computer-executable code for perform 
ing the methods and techniques described herein, and 
computing systems comprising computer processors and 
computer-executable code for performing the methods and 
techniques described herein. 
A more detailed and thorough discussion of methods and 

techniques of embodiments described herein will now follow. 
Regular Tree Patterns 

Listing 1 describes a syntax that may be used for regular 
tree patterns. In the grammar of Listing 1, the term Action is 
a parameter that refers to a language for semantic actions. The 
terms Name, Variable, and Label are parameters that each 
provide a set of symbols called an alphabet. As described 
herein, it may be assumed that variable, pattern name, and 
label symbols come from distinct alphabets. In addition to 
these symbols, patterns may refer to base symbols which may 
include nonpattern types or literal values. 

Listing 1. Regular Tree Pattern Syntax 

Definition 
Pattern 

Name = Pattern 
Union 
A Variable.Pattern 
8 

Rule (I Rule)* 
Tree Action? 
Label Forest? 
Label Forest? 
Binding Tree 
Tree Repetition 
Tree A Tree 
- Tree 
(Tree) 
any 
Reference 
Tree | Forest, Tree 

-> 

-> 

Union 
Rule 
Tree 

Forest 
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-continued 

Listing 1. Regular Tree Pattern Syntax 

Repetition -> * || ? 
Min... Max 

Reference -> Symbol TypeParam? 
TypeParam -> (Union) 
Binding -> Variable : 

Regular tree pattern definitions only allow recursive pat 
tern references within the context of the nest operator (as 
described below). Such a restriction on regular tree grammars 
is employed to prevent regular tree grammars from inducing 
the full power of context-free string grammars. 

The repetition construct, *|+|?, denotes the minimum and 
maximum number of occurrences permitted for the Tree it 
modifies. The maximum number of occurrences may be 
unbounded. The operators *, +, and 2 are interpreted as 
0... Oo. 1 ... oo), and 0... 1 respectively. In other words, 
A* is read as Zero or more AS (i.e., O... oo); B+ is read as one 
or more Bs (i.e., 1... oo); and C2 is read as Zero or one Cs 
(i.e., O... 1). This construct supports patterns that specify 
unranked tree nodes. An unranked tree node may have any 
number of children. 
The any wildcard matches any value. The operator 

complements a tree pattern. The operator denotes the inter 
section of a pair of tree patterns. The operator denotes the 
union of a pair of tree patterns. Finally, the A P. b operator 
denotes a polymorphic pattern with body band with pattern 
parameter P. 
The nest operator LForest? defines an ordered, unranked 

tree node with label L. Such ordered items are also referred to 
as sequences. The nest operator L{Forest?} defines an unor 
dered, unranked tree node with label L. Unordered items are 
also referred to as sets (or multisets). We use the term multiset 
pattern to refer to patterns of the form L{c} becausec matches 
Zero or more multisets of tree nodes. We use the term par 
tially-ordered tree pattern to refer to tree patterns that may 
specify both ordered and unordered subtrees. 

Partially-ordered tree patterns enable programmers to con 
cisely express ideas that are tedious or impossible to express 
using strictly ordered or unordered tree patterns. For example, 
a process model checking application is described below that 
includes the transformation rule defined in Listing 2. 

Listing 2. A Process Interaction Rule 

parsender:choice seqsendx:any,CS:any,any, 
receiver:choice seqrecVX:any,CR:any,any, 
procs:any*} 

==> 

par{CS,CR procs 

The multiset pattern with label par models a collection of 
processes executing in parallel. Each node labeled choice 
models a process that will continue by choosing among a set 
ofalternatives. Each node labeled seq indicates a sequence of 
processes. Finally, sendX and receiveX correspond to send 
ing and receiving a message of type X. 
The rule models an interaction among a pair of processes 

(bound to variables sender and receiver in the pattern). The 
sender process sends a message of type X and the receiver 
process receives this message. After the interaction the col 
lection of parallel processes contains the continuation of 
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8 
sender (CS), the continuation of receiver (CR) and the col 
lection of processes that did not participate in the interaction 
(procs). 

Within a set of parallel processes, there may be multiple 
pairs of potentially interacting processes and therefore mul 
tiple possible outcomes when matching the interaction pat 
tern. The MFA mechanism described below may be used to 
generate one or more of these outcomes. 

Multiset patterns offer more than conciseness. They also 
enable implementations and particular embodiments to use 
inherently unordered representations of input collections. 
Direct use of unordered representations, such as search trees 
or hash tables, enables transformation engines to avoid build 
ing separate indices for input collections. 

For example, an authorization logic implementation 
described below is evaluated that checks that an access 
request meets an authorization policy by matching the request 
against a database of assertions and a set of rules. The autho 
rization policy application may use a multiset pattern that 
works directly against an unordered representation of an 
assertions database. 

If multiset patterns and polymorphism are removed from a 
regular tree grammar, a regular tree type system is arrived at 
which, as may be appreciated, is similar to a functional pro 
gramming language for XML tree transformation. Such a 
system may be employed to generate an algorithm for deter 
mining a sub-type relation over nested regular expressions. 
Such an algorithm uses a top-down approach to compare 
pattern expressions. The algorithm expands upon and extends 
previous theoretical work on regular tree expressions. The 
project reports that it initially used determinization of bot 
tom-up tree automata to decide inclusion, but found that this 
was not a scalable approach. The determinization algorithm 
for bottom-up tree automata does not take into account left 
context when applying its Subset construction. This may 
cause exponential blowup to be far more common than if 
context were heeded. It will be shown below how modular 
forest automata use left context to avoid such a pitfall while 
preserving the simplicity of a direct approach to determini 
Zation and Sub-typing. 

Another embodiment extends the above system with poly 
morphism, function types, and records. Records require a 
uniqueness constraint over labels. The MFA implementation 
described below Supports uniqueness constraints, in addition 
to equality constraints over pattern variables. 
As may be appreciated, the ambient calculus operator, n, 

has a strong correspondence to the regular tree pattern opera 
tor Label{Forest?}. It may be demonstrated that the ambient 
calculus parallel composition operator may be interpreted as 
a tree composition operator that joins a pair of trees at their 
roots. It may be proposed that ambient logic may be used as a 
basis for describing and querying tree structures. Ambient 
logic is a temporal spatial logic for reasoning about processes. 
Unlike the regular tree grammar of Listing 1, ambient logic 
considers only unordered nests. In ambient logic, deciding a 
Sub-type relation is equivalent to deciding implication. This is 
tractable for some variants of the logic. 
XML Schema Language 
A Modular forest automata (MFA) implementation is 

described herein that may successfully be imported and deter 
mine sub-type relations for instances of the W3C XML 
Schema Language. An XSD complex type assigns a name to 
a structural formula. Structural formulae in XSD are called 
content models. Content models contain element declara 
tions, an unordered nest pattern called an attribute inventory, 
and particle compositors. There are three compositors: all, 
choice and sequence. The regular tree grammar union and 
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concatenation constructors correspond to the choice and 
sequence compositors, respectively. 
The all compositor corresponds to an unordered nest 

operator which is described herein. XSD places some restric 
tions on its use of the all compositor. For example, this may 
require that items within an all compositor have a finite mul 
tiplicity. 
XML element declarations are isomorphic to the ordered 

tree constructor, Label Forest?, of regular tree grammars, 
with the operator name Label playing the role of the element 
qname. However, the XML Schema language requires that, 
for any union of two content particles a and b, a parser must be 
able to perform single lookahead unique particle attribution: 
reading only one token, a parser must be able to identify 
whether an instance corresponds to branch a or b of the 
choice. 
Modular Forest Automata 

Partially-ordered regular tree patterns have been described, 
Supra. 
Modular Forest Automata (MFA) provide a mechanism 

which provides a unified treatment of ordered and unordered 
regular tree patterns—of sequences and sets. Such ordered 
and unordered regular tree patterns are sometimes termed 
sequences and sets. Each MFA implements a contract that 
supports analysis and composition of MFA hierarchies. The 
contract enables MFAs to take advantage of left context dur 
ing determinization as will be discussed herein. The use of left 
context in MFAS avoids a possible state blowup which may be 
found in certain previous methods for determinization of 
bottom-up tree automata. 

Modular forest automata (MFAs) are visibly pushdown 
automata (VPA). Visibly pushdown automata are a class of 
pushdown automata as are known to those of skill in the art. 
For MFAs, a pushdown automaton is defined as a tuple: 

K is a finite set of states 
X is an alphabet (the input symbols) 
T is an alphabet (the stack symbols) 
seK is the initial state 
FCK is the set of final states, and 
A, the transition relation, is a finite subset of (KXX*x)x 

(KXI*) 
The transition relation maps triples (current state, input sym 
bols, stack symbol to pop) to pairs (new state, stack symbol to 
push). 

To support analysis, MFAS adopt the stack use restrictions 
of visibly pushdown languages (VPLs). This class of lan 
guages are defined using pushdown automata that restrict 
their transition relation to conform to one of the three push 
down transition categories in Listing 3: 

Listing 3. MFA Transition Categories 

Local (q0, a 6X, e) -> (q1, e) 
Call (callSite, a 6X, e) -> (callTarget, callSite) 
Return (returnSite, a 6X., callSite) -> (continuation, e) 

These categories partitionX into three disjoint sets: XXX, 
corresponding to symbols that can cause call, return, and 
local transitions, respectively. Local transitions are identical 
to transitions in regular finite automata. A call transition from 
a state q in MFA Mo reads a symbola, saves callSite on the 
stack and transfers control to a state callTarget. A return 
transition pops callSite from the stack and makes continua 
tion the current state. 
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The stack discipline described above enables a VPL to 

remain closed under intersection and complementation in 
addition to the union, renaming, Kleene Star, and concatena 
tion closure properties of pushdown automata. Unlike for 
general non-deterministic context-free languages, the class of 
non-deterministic VPLs is equivalent to the class of determin 
istic VPLS. 

Each MFAM has a set T of call target states. M's start state 
S is in T as is any state reachable from S by a path that ends 
with a call transition. M can be viewed as a hierarchy of 
disjoint sets of states called modules. M has one module for 
each state teT. Given a call target state t, the corresponding 
module Module(T) is the set of states reachable from t using 
only local transitions. 

It is required that a module contain only one call target state 
t. The call target state t is called the entry point of the module. 
Correspondingly, MFAS cannot contain call transitions 
whose target state is reachable by local transitions from 
another call target state. The module containing an MFA's 
start state is called the MFA's top-level module. In order to 
maintain the stack discipline, MFAs do not allow inter-mod 
ule e-transitions. 

Finite additional bookkeeping is used with MFAS to apply 
the call/return strategy of VPA to unordered nest patterns and 
to obtain a single Sub-typing method that can apply to both 
ordered and unordered nest patterns. 

Each MFA state is labeled with a bit vector that indicates 
that Zero or more pattern equivalence classes are accepted by 
the state. This label is called a tag. Each MFA includes a 
mapping Tag: K->B, where B is a string of kbits. For a given 
module M, k is constant and k is called the tag-length of the 
module M. For each final state fin F, Tag(f) must contain at 
least one non-Zero bit. 
The purpose of tags is to guide how a calling MFA contin 

ues upon return from a call. In MFAs, return transitions do not 
have a fixed target state. Instead, a return transition from MFA 
states pops the calling state from the stack, pushes onto the 
stack Tag(s), and changes the current state to the calling state. 
The calling state then executes a continuation transition that 
pops the tag from the Stack and transfers control to a continu 
ation state. 
The addition of continuation transitions to the MFA 

mechanism does not change the fundamental properties of 
MFAS because the continuation transitions of MFA with con 
tinuation transitions can be eliminated. To eliminate the con 
tinuation transitions of an MFA having continuation transi 
tions is done as follows. First, a copy is made for each call site 
c with call target state t, of the states in Module(t). This copy 
is called the target module. Then, for each return transition (r. 
CeX., c)->(c. tag) in the target module, the corresponding 
continuation transition (c. e. tag)->(continuation; e) is found 
in the calling module and both transitions are removed. 
Finally, a return transition (r, CeX.; c)->(continuation; e) is 
added to the target module. Because it is possible to remove 
the continuations transitions as described above, is may be 
assumed that MFAS may have continuation transitions. 

It may also be assumed that an MFA has access to a stack, 
called the input stack of forests. Execution of an MFA begins 
at the MFA's start state with the input stack containing the 
original input forest. An MFA includes the notion of a current 
tree. The current tree is some tree in the forest at the top of the 
input stack. These concepts can be used to map to particular 
implementations of MFAs. A call pushes the children of a 
current tree onto the input stack. A return pops the children off 
the stack. 

If only local transitions of a module Mare considered, then 
Mis a regular string automaton that recognizes the contents of 
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a forest. As may be appreciated, this may be used to define the 
class of pushdown forest automata (PFAs). Pushdown forest 
automata have two sets of states: the forest states Q, and the 
tree states Q. Pushdown forest automata have Entry and Exit 
transitions that connect disjoint sets of forest states. Push 
down forest automata also have a transition relation Comb 
that incorporates information from an exit transition and 
transfers control from a tree state to a forest state. 

If tags are removed from MFAs, then PFAs are isomorphic 
to MFAs. A given PFA P can be converted to the equivalent 
MFA M, as follows: For each forest state of P. create a state in 
M. Fore each tree state in P. create a state in M. Copy the 
entry, exit, combination and local transitions of P directly to 
M. These correspond to call, return, continuation, and local 
transitions, respectively. By splitting each call state c into a 
forest state and a tree state t and adapting the continuation 
transition of c to be a combination transition whose initial 
state is t, then a tagless MFA may be converted to an equiva 
lent PFA. 
A preprocessor, Prep(s), may be associated with any MFA 

states. Prep(s) must either be set to a valid MFA or to L. 
Within a given module all states must share the same prepro 
cessor value. A module whose states have a preprocessor 
other than L is called a preprocessing module. Given an input 
foresti, a preprocessing module will call its preprocessor on 
each element of i before processing that element. A prepro 
cessor is used to discriminate among equivalence classes of 
input. Preprocessors can not be called recursively. Specifi 
cally, no state within a preprocessing module prep can initiate 
a path that contains a transition with target state t such that 
Prep (t) prep. Preprocessors may be used to construct an 
MFA that can match a multiset pattern. 
The addition of preprocessing modules does not change the 

fundamental properties of MFAS. A preprocessing module 
may be thought of as operating by transforming each of its 
inputs i to Pi where I is a reserved label. Preprocessing 
steps can then be encoded as call transitions on nests labeled 
L?. 
Also, a semantic action, Action (tr), may be added to any 

local MFA transition tr. A transition augmented in this way is 
called an action transition. An MFA with one or more action 
transitions is called a modular forest transducer (MFT). The 
ordering of semantic actions may be preserved during MFT 
determinization. 
Translation of Tree Patterns to MFAS 

Partially ordered regular tree patterns may be transformed 
into MFAs. Because the intersection and complementation 
methods include a determinization step, details of a method 
for determinization of non-deterministic MFA (NMFA) is 
provided first. 

Construction procedures for building NMFAs from tree 
patterns differ from other known construction procedures. 
First, tree patterns include nest operators. Second, tree pat 
terns may contain actions and variable bindings. A pattern 
compiler in aparticular implementation can translate variable 
bindings to actions. Correspondingly, variable bindings are 
not treated specially. 

Input to an MFA may be a well-formed forest of tree 
values. A well-formed input forest ends with the end-of-forest 
symbol, “I’. The translation procedure adds to every gener 
ated MFA states a return transition on. 
A union, M-MoUM of two NMFAS is computed using 

the known classic method which is augmented by making 
adjustments to tags and preprocessors. In the construction, it 
is assumed that Mo has tags of length ko while M has tags of 
length ki. M. would then have tags of length kok. When a 
states of M2 has a final state of Mo, then a string ofk Zeros is 
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12 
appended to its tag. Otherwise, when S is a final State of M, 
then its tag is shifted left ko places, filling it with Zeros. 
To Support combination of preprocessing modules, the 

union construction is modified as follows: When computing 
MMUM, when the top-level module of Mo has a prepro 
cessor prepoz Land the top-level module M has a preproces 
sor prepz L, then assign to each state in M's top-level mod 
ule the preprocessor prepoUprep. 
To combinea preprocessing module with a regular module, 

a preprocessor is synthesized for the regular module. Suppose 
prepoz Land prep L. A preprocessor for M1 is synthesized 
by first setting prep1 to the union of the set of MFAs recog 
nizing the transition symbols for local transitions of M1. 
Next, for each call transition (c. L., e)->(callTarget, c) in M's 
transition relation, then set prep prep UN where N is an 
MFA recognizing a tree labeled L with children recognized 
by the module whose start state is callTarget. 
Nests 

Nest operators may be translated whether they are ordered 
orun-ordered. Given a nest operator with label Land contents 
c, first create an NMFA for c, called M, with start states. 
Then create an NMFA, called M, with start states, final 
state f, and transitions (S. L., e)->(s, s) (call M) and (s, e. 
tag)->(f, e) (continue from call). Finally, incorporate the 
states of M into M, assigning to each final state f of M 
tag tag and changing f. to a non-final State with a return 
transition (fl. S)->(s; tag). In this construction, the states of 
M become a module Of M. 
The concatenation operator may be used to translate the 

contents of ordered nests. Given a pair of NMFASM and M. 
the method builds MM M by creating a new start states 
for M. creating an e transition from s to Mo’s start state by 
creatinge transitions from each final state of Mo to M's start 
state and finally by adopting as M's final states the final 
states of M. 
Multiset Nest Contents 
The following strategy may be used to generate an MFA 

that recognizes the contents of an unordered nest. 
In general, a multiset pattern may be viewed as having the 

form 
Label p"p.'", p'", 

This notation specifies that, for the contents of a multiset nest 
operator to match an input collection, each pattern element p, 
must match at least 1, input elements and may match at most 
h, input elements. 

Multiset patterns are first transformed to eliminate arbi 
trary occurrence constraints. Given a multiset pattern P speci 
fied as above, a pattern compiler may transform P to an 
equivalent unit multiset pattern P' as follows. 

Listing 4. Transform Multiset Patterns 

For each element pattern p" in P. 
a) Add to Pl, copies of p. 

Call these copies required pattern elements of P. 
If h is infinite, add p, to P. 
Call the added pattern an unbounded pattern element of P. 
Otherwise add h - 1 copies of p.2 to P. 
Call these copies optional pattern elements of P. 

b) 

The pattern compiler next builds a preprocessing MFA called 
the element MFA which matches the union of the pattern 
elements Up. Third, the pattern compiler builds a permuta 
tion MFA. The permutation MFA calls the element MFA as a 
preprocessor on its inputs. On each call, the element MFA 
returns a tag indicating which of the p, matches the current 
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input. The permutation MFA changes state when it encoun 
ters an input that matches a required or optional pattern. The 
state change counts the required or optional pattern. When the 
permutation MFA encounters an unbounded pattern, it loops 
back to its current state. 

It may be recognized that permutation MFAS are a form of 
counting automata. Permutation MFAs differ from other 
counting automata in their use of a preprocessor Step. FIG. 2 
illustrates how permutation MFAs count their inputs. The 
MFA200 illustrated in FIG.2 matches the nest contents of the 
following pattern: 

Pond=Pond waterfrog+..canoe,bridge? 

Repetition, References and Type Parameters 
To translate the repetition constructs of Listing 1, a pattern 

compileruses well-known techniques. This construction may 
be augmented to implement variable bindings that accumu 
late input items matching a repeated pattern. 

To translate symbol references, a pattern compiler must 
distinguish among several classes of symbols. A base type or 
literal symbol Sym translated as a single local transition on 
Sym A reference to a type parameter param translated as a 
formal transition on param. Formal transitions are not execut 
able. A compiler may generate a parameterized module con 
taining a formal transition, but to create an executable module 
it must instantiate the parameterized module by Supplying 
actual patterns for the module's formal transitions. During 
instantiation, the compiler Substitutes for each formal transi 
tion the translation of the corresponding actual pattern. 
A pattern compiler translates a reference to a pattern P by 

substituting the translation of P into the context that refer 
enced P. As may be known, regular tree grammars do not 
permit recursive references outside the context of a next 
operator. A pattern compiler can combine this property with 
the invariant that nests are compiled as calls to ensure that all 
inline expansions will reach a base case, such as a nest opera 
tor or a pattern that does not contain a pattern reference. 

For example, FIG.3 illustrates the translation for the recur 
sive pattern 

Expr=ciplus ExprExpr. 

FIG. 3 labels each node with its tag. FIG. 3 contains two 
modules, depicted 300 and 310, which are called Expr 300 
and PlusNest 310. Expr 300 has a tag length 2 because it 
matches a union. PlusNest 310 has a tag length 1. Module 
Expr 300, which includes the start state for the MFA, matches 
the Expr pattern by either matching a corby calling PlusNest 
310 and then continuing to the final state tagged 10 upon 
return of tag 1 from PlusNest. PlusNest 310 matches the 
pattern fragment Expr, Expr by concatenating two inlined 
instances of the pattern Expr. These inline expansions of Expr 
yield recursive calls to PlusNest. Return transitions or paths 
that lead to non-final states are not shown. 
Determinization 

Listing 6. Determinization of NMFAS 

O. Given NMFA M = (K, X, T, A, S, F), compute deterministic MFA 
M' = (K' C2, X', T., A', s, F). 

1. s'= E(s): 
Q = : 
Enqueue(Q, s'); 

2. while Qz 
a) t = Dequeue(Q); 
b) for each Sym in X. 
i. moveSet = the set of all states r such that 

x et: (X, Sym, e) arrow (r, e) in A; 
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-continued 

Listing 6. Determinization of NMFAS 

ii. u = E(moveSet); 
iii. ifu (7 K' then Enqueue(Q, u); K = K'U{u}: 
iv. add(t, sym, e) -> (u, e) to A': 
c) for each L in Labels(t) 

i. combineNests (t, L, K, Q, A., A); 
3. for each stateste K 

a) if st ?n Fz Othen F = F Ust: 
4. for each state fe F", Tag(f) = U+. Tag(x). 

(The operator U+ computes the bitwise OR of a set of tags.) 

Listing 6 provides a construction for determinizing an 
MFA. To simplify determinization, represent the combination 
of a call transition 

(c. Label,e)->(callTarget,c) 

and its associated continuation transition 

(c.e. tag) (conte) 

as an intra-module transition called a nest transition: 

(c. (Label,callTarget, tag),e)--> (conte). 

This representation enables the determinization method to 
process transitions uniformly because both local and nest 
transitions are intra-module transitions. For use in the deter 
minization method of Listing 6, the function Labels(s) is 
introduced which yields the set of labels used in nest transi 
tions emanating from S. 

For a given top-level module M, the determinization 
method adds the following two steps to the class method for 
determinization of an NFA. First, step 2.c uses the Com 
bineNests method to combine the call targets of nest transi 
tions from state t. Second, step 4 updates the tags for each 
final state in the determinized MFA's set of final states F". For 
a given final state f, step 4 sets the tag for f to the bitwise OR 
over the tags of the NMFA states that are members off. 
The determinization method uses as a Subroutine the e-clo 

sure operator E(s). Given a states, E(s) is the set of states 
reachable from S by a path containing only e transitions. For 
clarity, Listing 6 omits the details related to handling wildcard 
transitions. For implementing wildcard transitions emanating 
from a state t, the move set for the wildcard transition is 
combined with the move set of each non-wildcard transition 
emanating from t. 
Sub-Typing 

Having invested in extra bookkeeping during determiniza 
tion to keep track of tags, a benefit of the extra bookkeeping 
may be reaped in comparing a pair of MFAS Mo and M. A 
procedure for comparing the MFAS is given in Listing 7. 

Listing 7. MFA Comparison Algorithm. 

O. Given a pair of MFAS Mo and M, determine the inclusion 
relationship between the sets of values recognized by Mo and M. 

1. for each state q in Mo or M, 
if Tag (q) z Othen set Tag (q) = 1; 
otherwise set Tag (q) = 0; 

2. Set M = MoUM. 
(e.g., The union construction assigns to final states of Mo the tag 01 
and assigns to final states of M the tag 10) 

3. Set C to the set of distinct tags on final states of Determinize(M2). 
Find the relationship between Mo and M by looking up the value of 
C in Table 1. 

A key idea is that the determinization procedure keeps 
track, through tags on final States, of whether Mo and M may 
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ever be accepted simultaneously and whether Mo or M or 
both may ever be accepted independently of each other. Table 
1XXXX can be used to map to a comparison outcome the set C 
of tag values present on final states in the determinized union 
of M and M. FIG.5 is a graphical illustration of the possible 
sub-type relationships listed in Table 1. 

TABLE 1. 

Using Tags to Compare MFAS 

Value of C Interpretation Semantics 

{11} equivalent Mo = M1 
{10, 11 sub-type Mo C M 
{O1, 11 Super-type Mo M 
{01, 10} disjoint Mo?h M = 0 
{O1, 10, 11 intersecting Mo - Miz O 

FIG. 5 depicts each of the equivalent 500 relationship; the 
sub-type 510 relationship; the super-type 520 relationship; 
the disjoint 530 relationship; and the intersecting 540 rela 
tionship. 
Complementation, Intersection, and Difference 

Additional benefits may be reaped from the tag bookkeep 
ing described above. Tags may be used to implement proce 
dures for complementation, intersection, and difference of 
MFAS. To construct the intersection MM, the intersection 
construction first computes the determinized union 
I-Determinize(MoUM) and then eliminates from I each 
state t from which a final state with tag 11 is not reachable. 
When this computation results in an MFA I with no states, 

a single non-accepting start state is added to I so that I is the 
MFA that accepts no input. 
A similar construction may be used to compute Mo-M. To 

do so the tag 01 is substituted for tag 11 in the above inter 
section construction. To compute M-Mo, the tag 10 is used 
in the construction. 
To build M, the complement of M, the complementation 

construction first computes M'-Determinize(M). Then, for 
each final state fin M', the construction sets the tag off to 0 
and marks f non-final. For each non-final state inf of the 
original M', the construction sets the tag of nifto 1 and marks 
inf final. The tag-adjusted Maccepts M. 
An important aspect of this construction is that transitions 

on Zero tags returned by called modules may lead to final 
states. An MFA implementation that saves space by using 
implicit transitions on Zero tags must have a way to convert 
these transitions to explicit transitions upon complementa 
tion. 
Ordering of Semantic Actions 
One benefit of particular embodiments of the present 

invention is to enable a pattern compiler to place a semantic 
action on any NMFA transition. To support this flexibility, a 
method is required for preserving the order of semantic 
actions during determinization. It is beneficial to preserve the 
property that, for all paths tr, tr. . . . . trofan NMFA M, 
Action (tr) is executed before Action(tr) if and only ifisi. To 
preserve this property, the paths of Mare associated with the 
transitions of Determinize(M). 

To accomplish this, a basic path of a deterministic MFA 

M=Determinize(M) 

is defined as a sequence of local or nest transitions tr. 
tra. . . . , tr. Such that for each transition tr. (q, Sym, e)-> 
(q., e), either q has only one incoming transition, i=0, or 
i+1=n. For purposes of this definition, the start state of M is 
considered to have an implicit incoming transition. 
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The basic paths of M" may start and finish with a state that 

has multiple incoming transitions. However, any intermediate 
states along a basic path must have exactly one incoming 
transition. A consequence of this property is that the final 
transition tr., of a basic path uniquely identified that path. 

This consequence is made use of by assigning to the final 
transition tr, of each basic path bp a set A of sequences of 
semantic actions gathered in order from the set np of NMFA 
paths that correspond to bp. When an MFT executes transition 
tr of bp, it also executes each member of A. 

For a given basic path bp of M', the corresponding set of 
paths np from Mare found using the following method. First, 
find, for each transition tr, in bp the NMFA transitions that 
correspond to tr. A NMFA transition 

nir (rsym,e)-(re) 

corresponds to tr, if and only if reqi and req. 
For each NMFA transition corresponding to tr, an NMFA 

path may be built inpath, path, ntr, path, where path, has the 
following properties. First, path is made entirely of e transi 
tions whose beginning and ending states are in q. Second, the 
first state of path, has no predecessor in qi. Finally, the last 
state of path is the beginning state of transition ntr, Similarly, 
path, is made entirely of e transitions whose beginning and 
ending states are in q, and path, begins with the ending 
state of ntr, 

In turn, the NMFA paths are built corresponding to basic 
path bp by Stringing together all of the Sub-paths that corre 
spond to some transition in bp. If each transition of bp has 
only one corresponding NMFA transition, these sub-paths 
will form a single NMFA path. However, if some transitions 
of bp have more than one corresponding NMFA transition, 
then the sub-paths are combined by joining pairs (npath, 
npath) of NMFA sub-paths for which the last state of npath 
is the first state of npath. A given NMFA sub-path may 
participate in more than one such pair; therefore several of the 
NMFA paths corresponding to a given basic path may share a 
common prefix. 

FIGS. 6 and 7 show the correspondences between the con 
structed NMFA 600 for the nest contents of the pattern 

GTE=GTEIany,OIGTEO,SIany 

and its determinized equivalent 700, respectively. The MFAS 
in these figures include the shift and accept actions described 
in Table 2. FIG. 6 uses the symbole to represent an e transi 
tion. FIG. 7 illustrates how the action sequences 700 from 
each of the NMFA paths have been gathered and assigned to 
transitions that finish basic paths of the determinized MFA. 
These transitions are also labeled with the NMFA paths 
assigned to them. 

FIG. 7 also gives a view of the translation for the wildcard 
any. The determinized MFA for GTE uses a transition labeled 
otherwise to translate the wildcard. This translation is called 
a default transition because it will be executed if no other 
transition applies. The target state t of a wildcard transition 
starting from states is added to the move set for default 
transition from S. In addition, t is added to the move set of any 
non-wildcard transition from S. 

Finally, FIG. 7 illustrates a technique for representing 
return transitions that simplifies the ordering of semantic 
actions. Return transitions may be viewed as local transitions 
on end-of-forest(). These local transitions can then become 
placeholders for semantic actions. The pattern compiler 
described herein makes use of this technique. 
Optimization of Permutation MFAS 
To account for differing input orders, permutation MFAs 

may have a large number of transitions. To reduce the number 
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of transitions in a permutation MFA, a pattern compiler can 
assign a partial order, called the tag order, to the tags of the 
corresponding element MFA. The compiler can then remove 
from the permutation MFA paths that are out of order, antici 
pating that the runtime system will match an input forest 
using one of two strategies. First, a runtime system can use 
can index over the input collection to extract items that will 
match required pattern elements. Second, the runtime system 
can use the element MFA to preprocess the input forest and 
then sort the result according to the element MFA's tag order. 

The first strategy works well when one of the pattern ele 
ments is the wildcard any. In this scenario, the runtime 
system can “cherry pick” the required pattern elements in tag 
order using an index and then assign the remaining input 
forest items to the wildcard pattern element. 
The second strategy trades reduced memory use for poten 

tially increased matching time due to sorting. When used to 
transform labeled, directed graphs, permutation MFAS may 
typically bind to variables large chunks of an input forest. 
Further, a user of multiset patterns may expect multiple sets of 
variable bindings to emerge from a matching operation. In 
these scenarios, a runtime system must retain a copy of an 
input forest and therefore Supports Sorting. 

Given a set P of pattern elements, a total order for the tags 
of the corresponding preprocessor MFA may be derived as 
follows. First, order the pattern elements. Given a pair of 
pattern elements (pp.) both in P. define p-p, ifp, is required 
and p, is not, orifp, is optional and p, is unbounded, orifp, has 
a higher priority than p. If no priorities are assigned then 
assign priorities lexicographically, so that there is a total order 
among the pattern elements. 
Upon Determinization, a preprocessor MFA will have tags 

that indicate acceptance of a set of one or more pattern ele 
ments. Given a pair of such tags (t, t), tist, if min(t)<min(t). 
Ift, and t, have the same minimum element, the tist, if it,>lt. 
This last rule ensures that permutation MFAs consider first 
inputs that may match several pattern elements. FIG. 4 illus 
trates the effect of tag order optimization on the MFA 400 for 
Pond pattern 

Pond=Pond waterfrog+..canoe,bridge?}. 

MFA Implementation 
In one particular implementation of MFAs and MFTs, 

there is a runtime system that implements instances of these 
automata called transducers. In another embodiment, a pat 
tern compiler transforms regular tree patterns to transducers, 
augmenting transducer transitions with instructions that 
implement variable binding, matching conditions and seman 
tic actions. Particular embodiments may be applied to at least 
four applications: claims-based authorization service, a pro 
tocol model-checking application, a system for importing, 
Subtyping, and matching XML Schema instances, and a com 
piler for query expressions. 
An actual evaluation of a particular implementation 

resulted in a transducer runtime matching labeled, directed 
graphs at a rate between 2.4 and 8.9 million nodes per second. 
Further, the transducer runtime was able to transform labeled, 
directed graphs at a rate between 0.6 and 2.1 million nodes per 
second. 
Runtime 

For Each Transformation Rule 

rule pattern,action 

a pattern compiler creates a frame template. The frame tem 
plate specifies a slot for each variable bound in rule, plus an 
additional slot to hold the result of applying action. At runt 
ime, the transducer mechanism may allocate for each ruler a 
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stack of frame collections. A frame collection for ruler con 
tains Zero or more frames whose layout is described by the 
frametemplate forfFrame collections may contain more than 
one frame because a multiset pattern can match its input in 
more than one way, yielding multiple sets of variable bind 
ings. Frame collections may be stacked to handle recursion. 
Transducer Instructions 

TABLE 2 

Transducer Instructions 

Instruction Interpretation 

Bindrix Assign the current item to r.x 
Unify rx Unify the current item with rix 
Initrix Assign to r.x the empty collection 
Accumr.X Combine the current item with the collection found in 

X 

Exec r, i. Execute the action associated with ruler. Using the 
resulting value as the current item, execute 
instruction i. Pop the rule collection stack for r. 

Pushr Push onto the rule collection stack for r a new rule 
collection. 

Accept t Accept the set of rules coded by tag t. 
Parb Execute a set of action blocks b in parallel. The 

pattern compiler uses this instruction when more than 
one NMFA path corresponds to a DMFA transition. 

Shift Move the input pointer to the next forest item. 

Transducer State transitions may refer to action blocks 
which are sequences of transducer instructions. The trans 
ducer instruction set includes the instructions given in Table 
2. In Table 2, operands labeled r reference grammar rules. 
Operands labeled rx reference the slot for variable X within 
the rule frames on top of r s rule collection stack. Operands 
labeledi refer to instructions. Operands labeled trefer to tags 
indicating sets of accepted rules. Operands labeled b refer to 
a set of action blocks. 

In addition to the explicit operands, instructions may also 
contain a shift type and a shifted rule. The shift type indicates 
how the transformation engine should move to the next item 
in the forest. If the shift type is SHIFT NEST, then the trans 
formation engine will rewrite the successors of the current 
tree node before moving on to the next tree node. The shifted 
rule indicates which rule to rewrite (among several that the 
nest pattern may have matched). 
The first four instructions in Table 2 are called the frame 

update instructions because for Some ruler, they update for 
each frame on r's collection stack, the slot for variable r.x. 
The Exec instruction pops the top collection from rs col 

lection Stack. For each frame in the popped collection, the 
Exec instruction executes the rewriting action associated with 
r. For each result, the Exec instruction executes the frame 
update instruction i which updates some variable target.X. In 
recursive cases, target may be the same rule as r. 
The Push instruction pushes a new rule collection onto the 

rule collection stack for r. The Parinstruction executes a set of 
action blocks in parallel. For each action block in the set, the 
par instruction starts with the current input node. Each action 
block in the set must advance the input pointer the same 
amount. The transformation engine does not always execute 
each member of a parallel block. Each parallel block member 
may be marked with a rule identifier. The transducer will only 
execute parallel block members that are marked with an iden 
tifier for a rule that the transducer is currently rewriting. 
The Shift instruction advances the transducer to the next 

input item. The pattern compiler generates this instruction 
when there is no variable binding associated with the current 
pattern position. When a pattern position does have a variable 
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binding, the compiler instead Supplies the shift information as 
part of a frame update instruction. 
Applications 
One particular authorization policy engine (called Thor) 

uses an authorization logic that Supports claims-based autho 
rization of data access requests. Thor comprises a large 
database of claims, expressed in logic Such as claim: 
afdns=2x->bfdns=2x, which denotes that if a claims that the 
property dins has the value bound to variable x, then b makes 
the same claim. The claima/dns="LocalPost' denotes that a 
claims that the property dins is assigned the value “Local 
Host.” All such claims are represented in the claims database 
as an unordered table, indexed by principals and properties. 
The authorization policy engine uses a structural contract 

to represent its claims database as an unordered forest. To 
process a claim, it first converts the claim into a tree of the 
form prove context{database, goal). Then the engine uses a 
set of rules to repeatedly transform the claim until it reaches 
a fixed point. If the engine can prove the claim, the claim will 
then be transformed into a proof tree that identifies the steps 
in the proof 
The pattern compiler may translate the engine's rules into 

a transducer. The search procedure calls this transducer to 
execute each transformation step. The rules implement a 
sequent calculus for constructive logic, augmented with dis 
tribution rules for the delegation operator. A typical rule in 
this logic is the following: 

ImpliesConditionMet = 
prove 

context{typedTermproofl:andy, a:any, 
typedTermproof 2:any, impliesa:any, b:any, 
rest:any*, 

goal:any 

prove 
context{rest, 

typedTermproofl:any, a:any, 
typedTerm applyproof2:any, proofl:any, b:any, 

goal:any; 

The engine uses the indexing and tag order Sorting previ 
ously described herein to achieve a Substantial throughput 
(measured in one instance as 23,000 claims per second). This 
has a possible benefit of preventing claims processing from 
being a rate-limiting step of an overall authorization service. 

Another application is a process model-checker. Such a 
model-checker may be applied to protocols ranging from 
simple alternating-bit protocols to a model of TCP (transmis 
sion control protocol). The model-checker may check dead 
lock-freedom for such protocols. The model-checker uses 
patterns, such as the interaction pattern of Listing 2, that 
produce many results. In such cases, the transducer may 
buffer several frames worth of variable bindings for each 
rewrite. 

Another embodiment applies an application which 
imports, validates, and Sub-types XML schemas. This 
embodiment imports XML schemas into partially-ordered 
tree patterns. Such an application may operate in both batch 
mode and in interactive mode. In interactive mode, the appli 
cation may be employed as part of an authoring system for 
incorporating patterns into computer applications. 

Yet another embodiment was applied in a compiler com 
ponent for query expressions. Such a component may be used 
as a front-end for database query applications such as SQL 
and the like. The component uses a set of rules to translate a 
query expression Q into a comprehension algebra and then 
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20 
optimizes Q by using a second set of rules that transform the 
algebraic representation to a fixed point. 

Optimizations of the embodiments described herein are 
also possible. For example, a pattern compiler may recognize 
dependencies among bound variables and use those depen 
dencies to drive matching. The compiler may use this opti 
mization on the pattern for implication given above. By first 
extracting from the input forest input items that match the 
pattern element 
typedTerm proof2:any, impliesa...any, b:any. 

a generated transducer could constrain the possible matches 
for the pattern element 
typedTerm proofl:andy, a...any. 
Modular forest automata provide a unified description of 

partially-ordered regular tree patterns. MFAs also provide 
simple algorithms for determinization, Sub-typing, intersec 
tion, and complementation of these patterns. In practice, 
modular forest automata Support high-performance pattern 
analysis and matching. Modular forest transducers enable 
compilers to place semantic actions on any state transition 
while supporting efficient transformation of labeled, directed 
graphs. 
The present invention may be embodied in other specific 

forms without departing from its spirit or essential character 
istics. The described embodiments are to be considered in all 
respects only as illustrative and not restrictive. The scope of 
the invention is, therefore, indicated by the appended claims 
rather than by the foregoing description. All changes which 
come within the meaning and range of equivalency of the 
claims are to be embraced within their scope. 

What is claimed is: 
1. A method in a computer environment for analyzing a 

regular tree pattern, the computer environment comprising at 
least one computer processor and computer-readable 
memory, the method comprising: 

receiving data comprising a regular tree pattern comprising 
each of at least one sequence and at least one set; 

determining a first machine corresponding to the at least 
One Sequence, 

determining a second machine corresponding to the at least 
One Set: 

creating a union of the first and second machines; 
determining a set of labeled acceptance states for the union 

of the machines; 
determining from the labeled acceptance States a sub-type 

relationship for the first and second machine; 
determining a root level machine comprising at least one 

transition to a labeled nest; 
creating a module corresponding to the labeled nest; 
placing a continuation state corresponding to the return of 

the labeled nest onto a stack; 
performing actions corresponding to the labeled nest; and 
when reaching an acceptance state for the labeled nest, 

popping the continuation state from the stack and resum 
ing processing for the root level machine. 

2. The method of claim 1 wherein the received data corre 
sponds to data defining structural types in a programming 
language. 

3. The method of claim 1 wherein the received data corre 
sponds to data comprising a schema for a database. 

4. The method of claim 1 wherein the received data corre 
sponds to an XML Schema. 

5. The method of claim 1 further comprising determining 
whether two data types are equivalent. 

6. The method of claim 1 further determining whether two 
database schema are equivalent. 
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7. A computer program product comprising a tangible 
computer-readable storage device having encoded thereon 
computer-executable instructions for analyzing a regular tree 
pattern, the computer-executable instructions, when per 
formed in a computing environment, perform a method com 
prising: 

receiving data comprising a regular tree pattern comprising 
each of at least one of a-sequence and at least one set; 

determining a first machine corresponding to the at least 
One Sequence, 

determining a second machine corresponding to the at least 
one set; 

creating a union of the first and second machines; deter 
mining a set of labeled acceptance states for the union of 
the machines; 

determining from the labeled acceptance States a Sub-type 
relationship for the first and second machine; 

determining a root level machine comprising at least one 
transition to a labeled nest; 

creating a module corresponding to the labeled nest; 
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placing a continuation state corresponding to the return of 

the labeled nest onto a stack; 
performing actions corresponding to the labeled nest; and 
when reaching an acceptance state for the labeled nest, 

popping the continuation state from the stack and resum 
ing processing for the root level machine. 

8. The computer program product of claim 7 wherein the 
received data corresponds to data defining structural types in 
a programming language. 

9. The computer program product of claim 7 wherein the 
received data corresponds to data comprising a schema for a 
database. 

10. The computer program product of claim 7 wherein the 
received data corresponds to an XML Schema. 

11. The computer program product of claim 7 further com 
prising determining whether two data types are equivalent. 

12. The computer program product of claim 7 further deter 
mining whether two database schema are equivalent. 

k k k k k 


