» UK Patent Application

(19) GB (11) 2 441 909 (13) A

(43) Date of A Publication 19.03.2008

(21) Application No: 0721753.2 (51) INT CL:
GOG6F 21/00 (2006.01) GO6F 21/04 (2006.01)
(22) Date of Filing: 12.05.2005
(52) UK CL (Edition X):

Date Lodged: 05.11.2007 NOT CLASSIFIED
(30) Priority Data: (56) Documents Cited:

(31) 10894588 (32) 20.07.2004 (33) US None
(62) Divided from Application No (58) Field of Search:

0701190.1 under Section 15(4) of the Patents Act 1977 INT CL GO6F

Other: WPl and EPODOC

(71) Applicant(s):

Lenovo (Singapore) Pte. Ltd

(Incorporated in Singapore)

151 Lorong Chuan,, Singapore 556741,

Singapore
(72) Inventor(s):

David Carroll Challener

John Peter Karidis
(74) Agent and/or Address for Service:

Jensen & Son

366-368 Old Street, LONDON, EC1V 9LT,

United Kingdom
(54) Abstract Title: Scanning files in subdivided storage area for malicious code
(57) A storage device is subdivided into a first area and a

scan area. The first area being securely configurable
between a read only state and a writeable state; the
configuration being under the control of a security
system which has a secure memory inaccessible to
operating system code. Upon successful completion of
a scan, and no discovery of malicious code in files in
the scan area, those files may be written to the first
area.

{To Disk Controller 72) B
"‘ f o7 7(9. 3

.T_’\m

ATA Interfzoe
a0

|

Controlier F— Secure Memory
o w

Low Leve! Drive Circuitry

I

1

[

1

Protected Platiers Readiwrie Plater
202 204

Original Printed on Recycled Paper

V 606 ¥ ¢ 99

- 41
Svse Boot |
yste m Code
Processar(s) ROM I 100
= 2@ £ 44 7‘9 ’
_ v Processor Bus H
- J Y >
v v
System Memory Host Bndge Graphics Adapter |
4 4a #
A 4 (9
PCI1 Local Bus A —p
Network Adapter |« :' Y 3
[
\ 4 y Y
———
> é%?;uﬁfrl ISA Brdge Disk Controller
2 6 7y 200
A p
Memory Bus 54 ISA
f Bus j—> Senai Port
NVRAM ” > k———> Paraliel Port
62 \ < «p{ /O Controller Keyboard /
“ Mouse
Host Bndge ‘L n

[IYARLLH)

151 0900 ¥00Z G2

(9 49 douvyEIY

2/,

—
T

Spina | Motor

Integrated Dnve Electromics

Fig. 2

(AR AL

180 0900 ¥0OZ 83
1 s aTavgey)

3ll

(To Disk Contruller 72) 308

I307

7. 3

306

ATA Interface
300
Controlier Secure Memory
01 302

Low Level Dnve Circuitry

[

Protected Platters

piirg

ReadMnte Platter

LI/ € t90ug

18N 0900 $00Z 854;

18 4o swuoyoyy

............

Y

HDD 200 i Normad Operation

Start
(HDO Reference Recesved)

60

(J

o

+

Wnte Data to ReadMinte Area

}__

604
SN 7

~<=—0ats Existsin ReadWnte Area? >——v—>17 Read Data from Read/MWnte Area

J__.

T '

l Read Data from Protected Area I

> End o

VL1 G 198US
181 (900 ¥00Z §9¢!

19 2 svuepEy Y

v

HDD 200 Actvity o Support of Antveus Software Antvirus Saftware Actty
7& C'___'sr?:) fm
[Delver Drrectory of Fles in Read/Write Area D{Rmmwmmmmw .

J

Scan Fies for Viruses Aganst All Known Vinus
Identifiers (defintions, hashes, etc.)

708 M 706
Carrective Action

(Quarantn e, Delete, etc.) |f Needed

e 707
709 Securel y Log New Successfu Vinus Scan
l Campleton Date for Changed Fies
Wite shs-scan G T p irfo
Sease Memory 302 for Read'Wnte Area

712

~ 710
Adh . m chwnﬂsh‘;:mnyw

. |)
Change Mode of Protected Avea to Read/White “

Move Files n
Area to Protected Area

715 T
Changs Mode of Protected Area to Read-Only 7‘9 7

713

714

N

[YYA:- BRIl

150 0900 POOZ 634!

10 49 JouvpEv)

I

HDD 200 Actmty m Suppart of Antivinus Saftware Antivirus Solftware Actmty

>

Deiver Drectory of Files n Protected Area |©!Rm demmﬁusrumml

Scan Al Protected Area Fles Aganst Virus
Identifiers M!MSMLNS@NQ

fuh e H (qumm)l'w J’I

Change mdmmmmamj

_/g

812

oy
L

814

Allow Corrective Acton Commands mme
Area

815 J,

Crange Mode of Protected Area to ReadOnly
N ' o

[SnNyLmMMCUMDIQMJ
820
MQNMSMM
wto Secre Memary nhwm

P §

[AYFRLLT
181 0900 Y002 G8ds
1 v seuegoyy

o

HDD 200 Actvity i Support of Antivirus Software Antvaus Software Activty

r - o Fies m Protected Ares }Qﬁmmwammwmm'

Jﬂ 306
Identify Flles Dated After New Vinus Identifier Date
and Scan Only Those Fies Aganst New {dentifier

i
Correc tive Acton
L Athenticate m @ e Doetam etc.) If Neadsd]
L

l Change Mode of Pratectext Area to Read/VWito ‘

[-W Nr ° g 7‘9 g

Mmdﬁumﬁm to Read-Ordy

Securel New Successfl Complebon Date for
I Authenbcate Y Lo N e e J
. *-?.E-
Wite New Successfuecan Completion Timestamp
o Secure Memary 302 for Protected Ares

LI 8 190YS
SN 0900 ¥OOZ Bed!
1 . soueivyy

Disk Controiler
Cont roller —— Secure Memory
o1 1102
n

Feg. 11

IJDS

———ee g
2

1002
Area Timestamp
0 12-19 -2004 1407:59

12-21-2 004 19:21 35

Feg. 10

)

Disk Controfler
n

Cab te Electronics

Contoller —— Secure Memory
1201 1202
308

Fig. 12

R—— A
Disk Dnve

L1/ § 190US

11 0BOO 00T 830

19 10 seueioYY

%/

Virtua | Machine !
[o 5]
1304

Virtual Machine 2
0S2

1306

Virtual Machine Monitor

1302

Hardware Layer

System Memory
46

Disk Controller
12

J-SOB

S —
200

1300

Fig. 13

$1/04 103US

187 0900 bOOZ 630

(0 1@ JeuOREY

u/”

HDD 200 Actmity In Suppant of Antvinss. Software

Anbvrus Software Activity

o C=D
\'l Detver Drectary of Changed Files IOlmww:nTsxmm&mme

Scan Fies for Vinsas Aganst Al Known Vinos

{dentifiers (definibons, hashes, etc.)

(Quarantin e, Deiste, etc) If Needed

l Secural y Log New Successhu Virus Scan l
Completion Date for Changed Files.
Wite Successfilscan Completion Timestamp mto
Secure Memory X for ReaxdWhte Area

1414

Corvent ReadWiite Areas Containng Sucoessfully
Scanned Files to Protected Areas (Logesl Move)

1450

Request Cache Fhush or Canversion of
Surcessfuly Scaned Files

|

7. 14

[SYATRT
181 0000 POOZ 659

10 o seuenuy)

2441909

. Description

SECURE STORAGE TRACKING FOR ANTI-VIRUS SPEED-UP

Technical field
[0001] This invention pertains to methods, program products, computer systems

and other information handling systems which enable accelerated
scanning for undesirable or malicious code and, more particularly, to a
computer system which trustfully tracks which files or storage locations
have changed since a last virus scan and allows for accelerated virus
scans by scanning only those files which have changed or files which are
unchanged but which have not been scanned for new viruses.

Background art

[0002]

[0003]

[0004]

While early computers were “stand alone” and unable to communicate
with other computers, most computers today are able to communicate with
other computers for a variety of purposes, including sharing data,
e-mailing, downloading programs, coordinating operations, etc. This
communication is achieved by logging onto a Local Area Network (LAN) or
a Wide Area Network (WAN). While this expanded horizon has obvious
benefits, it comes at the cost of increased exposure to mischief,
particularly from viruses.

A virus is programming code that, analogous to its biological counterpart,
usually infects an otherwise healthy piece of code or data. The virus
causes an undesirable event, such as causing the infected computer to
work inefficiently, or eise fail completely. Another insidious feature of
many viruses is their ability to propagate onto other computers on the
network.

At least four main classes of viruses can be found including file infectors,
system (or boot-record) infectors, worms and macro viruses. A file infector
attaches itself to a program file. When the program is loaded, the virus is
loaded as well, allowing the virus to execute its mischief. A system
infector infects the registry of an operating system or specific hardware
such as the master boot record in a hard disk. A master boot record
infection will often make the hard drive inoperable upon a subsequent
re-boot, making it impossible to boot-up the computer. A worm virus

[0005]

[0006]

[0007)

_—-)

consumes memory or hetwork bandwidth, thus causing a computer to be
non-responsive. A macro virus is among the most common viruses, and
infects word processor programs.

Another common type of virus is aimed at browsers and e-mail. One such
virus causes a Denial of Service (DoS) attack. A DoS virus causes a
website to become unable to accept visitors. Usually, such attacks cause
the buffer of the website to overflow, as a result of millions of infected
computers being forced (unwittingly) to hit the website.

To counter viruses, anti-viral programs are written, and are constantly
updated to be effective against new viruses. Such anti-viral programs are
delivered either on physical media (such as CD-ROMSs), or are
downloaded off a network such as the Internet. The anti-virus programs
compare data on each storage device of the computer system to a virus
definition file which includes all known virus signatures for all known virus
types. This process is termed “scanning.” Updates are typically
downloaded as well, in order to provide rapid deployment of such updates.
However, the time required to complete a virus scan is becoming
increasingly unacceptable and problematic. Two factors which contribute
to unacceptable scan times are the amount of data which is being scanned
and the size of the virus definition file containing the identifiers. Both of
these factors are growing seemingly without limits. It will soon become
common for desktop systems to have disk capacities which approach one
terabyte. Hackers which create viruses appear to have increasing
motivation for doing so and are doing so at ever increasing rates.
Meanwhile, the time it takes for scanning the hard disk does not increase
significantly with increased processor speed since the time required for the
scanning process is more related to disk access speeds. Problems
caused by increased scan times will become more acute and more visible
with time. It is foreseeable that daily virus scans will not be possible in the
near future simply because, given these factors, a virus scan will
eventually take longer than 24 hours to complete. Furthermore, a
workstation can be rendered unusable during the time in which the
scanning process takes place. Productivity is therefore impacted and

[0008]

[0009]

5

eventual cost analyses will reveal that additional system cost is justified in
order to rectify the problem.

Another area of background entails virtual machines and virtual machine
monitors which arose out of the need to run applications written for
different operating systems concurrently on a common hardware platform,
or for the full utilization of available hardware resources. Virtual machine
monitors were the subject of research since the late 1960's and came to
be known as the "Virtual Machine Monitor" (VMM). Persons of ordinary
skill in the art are urged to refer to, for example, R. P. Goldberg, "Survey of
Virtual Machine Research,” |IEEE Computer, Vol. 7, No. 6, 1974. During
the 1970's, as a further example, Interational Business Machines
Corporation adopted a virtual machine monitor for use in its VM/370
system.

A virtual machine monitor, sometimes referred to in the literature as the
“hypervisor,” is a thin piece of software that runs directly on top of the
hardware and virtualizes all the hardware resources of the machine. Since
the virtual machine monitor’s interface is the same as the hardware
interface of the machine, an operating system cannot determine the
presence of the VMM. Consequently, when the hardware interface is one-
for-one compatible with the underlying hardware, the same operating
system can run either on top of the virtual machine monitor or on top of the
raw hardware. It is then possible to run multiple instances of operating
systems or merely instances of operating system kernels if only a small
subset of system resources are needed. Each instance is referred to as a
virtual machine. The operating system can be replicated across virtual
machines or distinctively different operating systems can be used for each
virtual machine. In any case, the virtual machines are entirely
autonomous and depend on the virtual machine monitor for access to the
hardware resources such as hardware interrupts.

Disclosure of the invention

[0010]

There is a need for apparatus, program products, and methods which
allow for accelerated scan times without compromising security.
Furthermore, there is a need is for an apparatus which provides a platform

[0011]

[0012]

[0013]

A

by which such reduced scan times can be achieved. Additionally, there is
a need for program products and methods which utilize the secure
platform provided by the apparatus to perform scans in a more efficient
and secure manner.

As will be seen, the embodiments disclosed seek to satisfy the foregoing
needs and accomplish additional objectives. The present invention
provides methods, program products, and systems which are able to track
which files or storage areas of a storage device have been altered since a
last virus scan. Furthermore, a secure area is provided for storing
variables which pertain to prior scans. The information can then be used
to accelerate scans for undesirable code or data by reducing the number
of files scanned, and or by reducing the number of undesirable code
identifiers used for scanning.

The aforementioned challenges are addressed, according to one
embodiment of the present invention, by a system which includes a
processor and a main memory for storing code which is executed under a
first operating system by the processor, a security system having a secure
memory which is inaccessible to the code which is executed under the first
operating system, and a storage device which is subdivided into a first
area and a read-write area. The first area is securely configurable under
the control of the security system between a normal read-only state and a
writeable state. The security system maintains at least one trusted variable
in the secure memory. The trusted variable identifies the occurrence of a
last scan for malicious code on the storage device and responds to a
request for status related to the last scan by referencing the trusted
variable and reporting a related result. In addition, the security system
invokes an authentication procedure out of the secure memory in
response to a provided request to configure the first area to the writeable
state.

According to one embodiment of the present invention which addresses
the aforementioned challenges, a method is provided which includes
querying a security subsystem to trustfully determine whether an area of a
storage device has been written to since a last scan. The security

[0014]

[0015]

.5

subsystem includes a memory which is inaccessible to code executing
from an operating system. The determination avails trust through a
reference to the inaccessible memory by the security subsystem. The
method further includes scanning the area for an identifier of undesirable
code in response to a trusted determination from the query that the area
has been written to since the last scan.

According to one embodiment of the present invention, a method is
provided which includes querying a security subsystem to trustfully
determine whether an area of a storage device has been written to since a
last scan. The security subsystem includes a memory which is
inaccessible to code executing from an operating system. The
determination avails trust through a reference to the inaccessible memory
by the security subsystem. The method further includes determining
whether a prior identifier of undesirable code was included in the last scan
and bypassing a scan of the area for the prior identifier of undesirable
code in response to (1) a determination from the query that the area has
not been written to since the last scan and in response to (2) a
determination that the prior identifier was included in the last scan.
According to one embodiment of the present invention, a method is
provided which includes querying a security subsystem to trustfully
determine whether an area of a storage device has been written to since a
last scan. The security subsystem includes a memory which is
inaccessible to code executing from an operating system. The
determination avails trust through a reference to the inaccessible memory
by the security subsystem. The method further includes scanning the first
area for known identifiers of undesirable code in response to a trusted
determination from said query that the first area has been written to since
the last scan, determining whether a prior identifier of undesirable code
was included in the last scan, and bypassing a scan of the first area for the
prior identifier of undesirable code in response to (1) a determination from
said query that the first area has not been written to since the last scan
and in response to (2) a determination that the prior identifier was included
in the last scan.

_ [0016]

(0017]

G

In one embodiment of the present invention, a method is provided which
includes scanning files in a read-write area of a storage device for
malicious code. The storage device is subdivided into a first area and the
read-write area. The first area is securely configurable between a normal
read-only state and a writeable state. The configuration of the areas is
under the control of a security system having a secure memory which is
inaccessible to code executed under an operating system. The method
further includes, upon successfully scanning at least one file in which no
malicious code is found, activating and authenticating a first security
measure of the security system to configure the first area to the writeable
state, wherein the authentication executes out of the secure memory;
writing successfully scanned files in the read-write area to the first area;
and configuring the first area to the read-only state after the writing of
successfully scanned files.

Various embodiments of the present invention may be provided as a
computer program product which may include a machine-readable
medium having stored thereon instructions which may be used to program
a computer (or other electronic devices) to perform a process according to
the any of the embodiments of the present invention.

Brief description of the drawings

{0018]

[0019]

{0020]

[0021]

The present invention will now be described, by way of example only, with
reference to the accompanying drawings in which:

Figure 1 is a block diagram of a computer system according to a preferred
embodiment of the present invention which incorporates resources which
enable accelerated scanning for malicious code;

Figure 2 is a simplified schematic side elevation view of a disk drive having
protected areas, read/write areas, and integrated drive electronics adapted
to provide secure tracking of data references and secure data protection in
accordance with a preferred embodiment of the invention;

Figure 3 is an expanded view block diagram of the integrated drive
electronics of the disk drive used in the preferred embodiment of the
invention and includes other hardware which is peripheral to the integrated
drive electronics;

[0022]

[0023]

[0024]

[0025)

[0026]

[0027]

[0028]

[0029]

[0030]

[0031})

1

Figure 4 is a plan view of an individual disk drive platter according to one
embodiment of the present invention having an altemative layout for the
protected areas and read/write areas;

Figure 5 is a plan view of an individual disk drive platter according to one
embodiment of the present invention having an alternative layout for the
protected areas and read/write areas;

Figure 8 is a flow diagram of the logic which caches data in the read/write
area while operating in a normal mode where modification to the protected
area is not taking place;

Figure 7 is a flow diagram depicting the logic for scanning all files that
have been written since a last virus scan according to one embodiment of
the present invention;

Figure 8 is a flow diagram depicting the logic for scanning unchanged files
in the protected area according to one embodiment of the present
invention;

Figure 9 is a flow diagram depicting the logic for scanning a subset of the
unchanged files in the protected area according to one embodiment of the
present invention;

Figure 10 is a table of timestamp entries, one for each of the read/write
and protected areas, according to the preferred embodiment of the present
invention in which timestamps are stored in a secure memory after each
successful run of a virus scan in each respective area;

Figure 11 is a block diagram of one embodiment according to the present
invention in which a controller and a secure memory are located in the disk
controller;

Figure 12 is a block diagram of one embodiment according to the present
invention in which a controller and a secure memory are located in the IDE
cable;

Figure 13 is a system virtualization layer diagram showing the abstraction
layers in a computer system running virtualization software according to
one embodiment of the present invention in which a virtual machine
monitor is employed to implement the secure memory and other protective
functions in lieu of a hardware-implemented controller; and

. {0032]

?

Figure 14 is a flow diagram depicting the logic for scanning all files that
have been written since a last virus scan according to one embodiment of
the present invention in which the movement of files from the read/write
area to the protected area are performed logically rather than physically.

Mode(s) for carrying out the invention

[0033]

[0034]

[0035]

While the present invention will be described more fully hereinafter with
reference to the accompanying drawings, in which a preferred
embodiment of the present invention is shown, it is to be understood at the
outset of the description which follows that persons of skill in the
appropriate arts may modify the invention here described while still
achieving the favorable results of this invention. Accordingly, the
description which follows is to be understood as being a broad, teaching
disclosure directed to persons of skill in the appropriate arts, and not as
limiting upon the present invention.

Referring now more particularly to the accompanying drawings, in which
like numerals indicate like elements or steps throughout the several views,
a preferred embodiment of the present invention will be described.
Reference throughout this specification to “one embodiment,” “an
embodiment,” or similar language means that a particular feature,
structure, or characteristic described in connection with the embodiment is
included in at least one embodiment of the present invention. Thus,
appearances of the phrases “in one embodiment,” “in an embodiment,”
and similar language throughout this specification may, but do not
necessarily, all refer to the same embodiment.

Figure 1 is a block diagram of a computer system according to a preferred
embodiment of the present invention which incorporates resources which
enable accelerated scanning for undesirable code including malicious
code such as viruses. The illustrative embodiment depicted in Figure 1
may be a desktop computer system, such as one of the ThinkCentre or
ThinkPad series of personal computers, or a workstation computer, such
as the Intellistation, which are sold by International Business Machines
(IBM) Corporation of Armonk, New York; however, as will become
apparent from the following description, the present invention is applicable

[0036]

[0037]

[0038]

[0039]

0‘\
to increasing the efficacy and security of virus scans and the like in any
data processing system (ThinkCentre, ThinkPad and Intellistation are
Trademarks of International Business Machines Corporation).
As shown in Figure 1, computer system 100 includes at least one system
processor 42, which is coupled to a Read-Only Memory (ROM) 40 and a
system memory 46 by a processor bus 44. System processor 42, which
may comprise one of the PowerPC™ line of processors produced by IBM
Corporation, is a general-purpose processor that executes boot code 41
stored within ROM 40 at power-on and thereafter processes data under
the control of operating system and application software stored in system
memory 46. System processor 42 is coupled via processor bus 44 and
host bridge 48 to Peripheral Component Interconnect (PCl) local bus 50.
PCl local bus 50 supports the attachment of a number of devices,
including adapters and bridges. Among these devices is network adapter
66, which interfaces computer system 100 to LAN 10, and graphics
adapter 68, which interfaces computer system 100 to display 69.
Communication on PCI local bus 50 is governed by local PCI controller 52,
which is in turn coupled to non-volatile random access memory (NVRAM)
56 via memory bus 54. Local PCI controller 52 can be coupled to
additional buses and devices via a second host bridge 80. EIDE disk
controller 72 governs accesses or references made to and from disk drive
200 by any other system component including processor 42.
Computer system 100 further includes Industry Standard Architecture
(ISA) bus 62, which is coupled to PCI local bus 50 by ISA bridge 64.
Coupled to ISA bus 62 is an input/output (1/O) controller 70, which controls
communication between computer system 100 and attached peripheral
devices such as a keyboard and a mouse. In addition, {/O controller 70
supports external communication by computer system 100 via serial and
parallel ports.
Those of ordinary skill in the art have a working knowledge of operating
systems and file systems in general. With regard to FAT file systems,
Chapter Eight of Advanced MS-DOS: The Microsoft guide for Assembly
Language and C programmers, by Ray Duncan, ISBN 0-914845-77-2,

[0040]

[0041]

[0042]

VO
1986, which describes the structure of a FAT file system, is incorporated
herein by reference. While the FAT file system is used in the preferred
embodiment, other file systems can be used without departing from the
spirit and scope of the present invention.
As used herein, a cluster is a logical unit used by the file system driver of
the operating system to access data on disk drive 200. Each logical
cluster comprises a number of physical sectors which are usually
contiguous. Each FAT partition is presumed to contain a directory of files,
two copies of a file allocation table, and a data area. The directory of files
includes each file’s name and its attributes including a starting cluster,
relevant dates, etc. The file allocation table contains a linked list of
clusters which comprise each file.
An operating system running out of system memory 46 stores computer
files directly in a pre-allocated cluster, or when a file is too large to fit in to
a single cluster, stores computer files by dividing the file into fragments
and storing those fragments in separate clusters on hard disk 200. The
FAT file system allows the operating system to keep track of the location
and sequence of each fragment of a file, and also allows the operating
system to identify which clusters are unassigned and available for new
files. When computer 100 references a file, the FAT file system serves as
a reference for reassembling each fragment of the file into one unit which
is assembled by the file system driver.
For most users, it has been discovered that the vast majority of data
stored in a computer system remains unchanged over time. Scans for
undesirable or malicious code, such as virus scans, are typically being
performed on a weekly basis. The scans are performed with reference to
a virus definition file which is updated frequently. However, over time, the
virus definition file itself consists mostly of unchanged virus identifiers such
as virus signatures, code fragments, data fragments, hashes, etc.
Therefore, as has been discovered, the vast majority of scanning activity is
of unchanged identifiers being scanned against unchanged data. The
various aspects and embodiments of the present invention aim to reduce
the amount of time required to scan a computer system for undesirable

[0043]

[0044]

[0045]

W\

Virw .

code such as viruses by providing a platform by which a scanning
application can securely determine which data are unchanged since a last
successful scan, which is normally the majority of data, and bypassing the
scan of unchanged identifiers, which are the majority of identifiers.

Figure 2 is a simplified schematic side elevation view of a disk drive 200
having protected areas 202, read/write area 204, and integrated drive
electronics 201 adapted to provide secure tracking of data references and
secure data protection in accordance with a preferred embodiment of the
invention. In other embodiments it will be shown that disk drive 200 is a
conventional disk drive and the secure tracking and secure data protection
features are provided elsewhere in the system. However, in the preferred
embodiment shown in Figure 2, since the majority of data accumulated in
a computer system is unchanged relative to a last virus scan, a majority of
individual disks or platters 202 are reserved for unchanged data which has
been successfully scanned for malicious code. An individual disk of the
disk drive, platter 204, is reserved for data which has been written since a
last successful scan. Internally to drive 200, integrated drive electronics
201 maintains a cache of newly written files on platter 204 and keeps the
protected platters 202 in a read-only access mode during normal
operation. Externally to drive 200, integrated drive electronics 201
presents a conventional interface to the file system driver in which the
entire disk drive appears to be writable. This configuration provides a
platform in which (1) malicious code executing out of the operating system
is unable to alter the protected data areas 202 and (2) the file's date and
attribute data can be trusted. Further implementation details are to be
provided as the description ensues.

impiementation details not described herein for disk drive 200 are
considered to be conventional. For the most part, details concerning the
construction of hard disk drives have been omitted in as much as such
details are not necessary to obtain a complete understanding of the
present invention.

Figure 3 is an expanded view block diagram of integrated drive electronics
201 of disk drive 200 used in the preferred embodiment of the invention

[0046]

VL

and includes other hardware which is peripheral to the integrated drive
electronics. The integrated drive electronics 201 of hard disk 200 couples
to system 100 through cable 308 via connectors 307 and 306. Connector
306 is integral to hard disk drive 200 whereas connector 307 forms part of
cable 308. Interface 304 handles the low-level attachment interface and is
implemented as a standard chip which conforms to the ATA standard and
is commonly found on hard disk drives for interfacing to an EIDE controller
such as disk controller 72. Although IDE drives are used in the preferred
embodiment, SCSI drives and other storage devices can be used without
departing from the scope of the present invention. Controller 301 handles
the security and protection features of the present embodiment and
functions as described herein and as shall be described with reference to
the flowcharts. Controller 301 can be implemented as a microcontroller
such as an H8 and is coupled to a secure memory 302. Secure memory
302 is addressable only by controller 301, and thus, a virus running under
an operating system executed by system processor 42 out of system
memory 46 is not able to access secure memory 302. Through /O
commands, controller 301 stores virus-scan specific variables in
nonvolatile portions of secure memory 302. Additionally, controller 301
executes authentication code out of secure memory 302 to provide
authentication services to an anti-virus scanning software application
requesting use of the security and protection features of the preferred
embodiment. In addition to the nonvolatile portions, secure memory 302
contains random access memory portions from which to execute the
authentication code at a higher rate of speed than in the nonvolatile
portions, and for storing temporary variables and the like. For example, as
will be referred to in the description of the flowcharts, authentication is
required by controller 301 in order to change the protected areas 202 from
read-only to read/write modes of access.

In one embodiment, a digital signature scheme is implemented by
controller 301 and secure memory 302 for the purpose of authenticating
predetermined secure operations and services such as those shown in the
flowcharts. The secure operations or services are requested by an

[0047)

[0048)

V5

application such as, for example, a virus scanner. The application is
presumed to have a private key and a public key and controller 301 is
presumed to be privy to the application’s public key information.
According to this scheme, the application requests a secure service
requiring authentication from controller 301. In response, controller 301
generates a onetime (single use) random number, N1, and communicates
N1 to the application. In response, the application digitally signs N1 by
utilizing a Hashed Message Authentication Code (HMAC) function to
combine N1 and the application’s private key to produce a corresponding
onetime password, P1. SHA-1 is used as the secure hashing method and
is presently believed to be immune from dictionary attacks. The
application then communicates P1 to controller 301. In response,
controller 301 decrypts P1 given knowledge of the predetermined and
agreed-to SHA-1 HMAC and the application’s public key to verify the
authenticity of password P1. If verified, the application is given access to
the secure resource being requested.

Other authentication techniques can be used. In one embodiment,
hardware assisted digital signature techniques are used. The public key
would be known to controlier 301 on disk drive 200 (or in other locations
as described in other embodiments), and the private key kept some place
secure, such as ina TCG TPM or a Smart Card. For readers interested in
TPM specifics, the TCG TPM Specification Version 1.2 can be found on
the internet at www.trustedcomputinggroup.org. Authentication to the
TPM or smart card could then be done via a secure path or biometric such
as a retinal eye scan or fingerprint recognition subsystem, thus producing
the authorization required.

Similarly, for the virtual machine monitor embodiment shown in Figure 13
in which the function of controller 301 is embedded in the virtual machine
monitor, authentication could be done by having the virtual machine
monitor take control of the keyboard and screen (not shown in Figure 13)
and either directly run an application that allows for password
authentication or provide a secure virtual machine in which such an
application would run. Again, this password would likely not be passed

[0049]

[0050]

[0051]

[0052]

0

directly to the hardware controlier, but rather be used together with a
random number to provide additional protection against dictionary attacks.
In one embodiment, a direct path from an authentication media to the
hardware that is providing authentication verification could provide a
secure "trusted path” in which to enter a straight password, immune to a
virus. In this embodiment, something as simple as a button could be used
instead of a password, as a virus would have no way to physically "push”
the button.

In one embodiment, where simplicity is desired, a simple password could
be used and would work. However, a scheme as simple as a straight
password could be cracked by a specially designed virus or Trojan that
listens for just such an authentication. Nevertheless, a straight password
does provide a minimum level of security and can be executed
immediately after a virus scan to minimize risk.

The platform avails trust from references to the secure memory 302 which
is unreachable by malicious code, either by reference to the secure
memory in the form of the executing the authentication code, or by
reference to stored variables such as timestamps, file or cluster attributes,
and the like, which are stored in the secure memory 302.

In an alternative embodiment, where a secure memory is not available,
trusted variables such as timestamps and the like are stored in an
insecure memory (not shown) in encrypted form. While this approach may
not be as secure as using memory that is truly inaccessible, it provides a
minimal level of functionality. Scanning programs which rely on the trusted
variables are able to access the insecure memory of this embodiment and
obtain the trusted variables and determine their authenticity using standard
decryption techniques. To the extent that the cryptography provides
security, the content of the variables are unavailable to malicious code. In
the case that malicious code tramples upon the trusted variables stored in
the insecure memory of this embodiment, standard decryption techniques
allow for detection of such trampling. If foul play is detected by the
scanning program upon decrypting the trusted variables, the acceleration

~—

[0053]

[0054]

[0055)

[0056]

[0057]

-
techniques described herein are bypassed and the scanning for malicious
code is performed for all files stored on the disk drive.
Returning now to the description of the embodiment shown in Figure 3,
Controlier 301 interfaces to low-level circuitry 305 in the same manner as
ATA interface 304 would in the absence of controller 301. Low-level drive
circuitry 305 controls low-level disk drive functions including spindle motor
start up and rotational speed, actuator movement, error correction, and
read and write current to protected platters 202 and read/write platter 204
including head current and bit encoding protocol.
In one embodiment, the nonvolatile portions of secure memory 302 or sub-
portions thereof can be implemented as a protected sector or track on the
hard drive itself.
Figure 4 is a plan view of an individual disk drive platter according to one
embodiment of the present invention having an aiternative layout for the
protected areas and read/write areas. In the embodiment shown in Figure
4, rather than dividing the protected and read/write areas as separate
platters, the surface of any one of the individual disks or all of the disks
can be divided into protected areas 402 and read/write areas 404. Files
which have been written since a last successful scan are cached to the
outer read/write tracks 404. Files which were successfully scanned in a
last scan are maintained in the inner protected tracks 402.
Figure 5 is a plan view of an individual disk drive platter according to one
embodiment of the present invention having an aiternative layout for the
protected areas and read/write areas. in the embodiment shown in Figure
5, rather than dividing the protected and read/write areas as separate
platters or separate tracks, protected areas 502 and read/write areas 504
can be tracked (accounted for) logically by controlier 301 by maintaining a
table in secure memory 302. Thus, the division between protected and
read/write areas need not be physical nor contiguous as in other
embodiments. The areas tracked by controller 301 can be clusters
(logical) or sectors (physical) or groups of clusters or groups of sectors or
even individual tracks. Tracking clusters, however, is most convenient -
since the directory on the disk is maintained as clusters and the

[0058]

[0059]

[0060]

|

nonvolatile portions of the table used to track the areas, which would
normaily be implemented in secure memory 302, can be included in the
directory on the hard disk itself. In like fashion to other embodiments, the
determination as to which files have changed avails trust from referencing
the table maintained in secure memory 302 which is inaccessible by a
virus executed from the operating system under the control of main
processor 42.

Controller 301 and secure memory 302, in effect, form a security
subsystem piatform by which an anti-virus scanning application is able to
trustfully determine anti-virus parameters in order to improve the efficiency
of anti-virus scans. Since anti-virus programs work on the level of files
and not of clusters, and since the file system driver of the operating
system writes clusters and not files per se, controller 301 correlates
clusters to filenames for clusters that have been written since the last
successful scan. This is done by referencing the directory and file
allocation table on the hard disk partition for each cluster being written by
the file system driver to obtain the corresponding filename for the files
which are cached in the staging read/write area 204. As will be described
in further detail, these files stored in the read/write area 204 will eventually
be moved, to or converted into, a portion of the protected area once they
have been successfully scanned for malicious code.

in one embodiment, as an alternative to caching, the entire disk can
remain in read/write mode. In this embodiment, controller 301 and secure
memory 302 act to securely track which areas of the hard disk have
changed since the last virus scan by maintaining a list of written clusters in
secure memory 302. The list of files which have changed since last virus
scan can then be derived for the anti-virus software from the directory as
described above. This embodiment provides a reduced level of security
relative to cached embodiments having protected areas.

Figure 6 is a flow diagram of the logic which caches data in the read/write
area while operating in a normal mode where modification to the protected
area is not taking place. The logic shown in Figure 6 is implemented in
controller 301 of Figure 3. The caching process begins 602 when a

N

[0061]

7

reference to the hard disk drive is received from the file system driver of
the operating system. A first query is made to determine 604 whether the
reference is a write reference or a read reference. If a determination 604
is made that the reference is a write reference, the data is written 606 to
the read/write area 204. If 604 the reference is a read reference, a second
determination 608 is made as to whether the data exists in the read/write
area 204. If it is determined 608 that the data exists in the read/write area,
the data is read 610 from the read/write area 204. Else, if it is determined
608 that the data does not exist in the read/write area 204, the data is read
from protected area 202.

Figure 7 is a flow diagram depicting the logic for scanning all files that
have been written since a last virus scan according to one embodiment of
the present invention. The processes shown to the right of the dotted line
in Figure 7 are performed by anti-virus software during the process of
scanning files in read/write area 204. The processes shown to the left of
the dotted line are performed by controller 301 of integrated drive
electronics 201 of hard disk drive 200 in response to the actions taken by
the anti-virus software application. The same convention is used for
Figures 8 and 8, i.e., application actions to the right and controller 301
responses on the left. The anti-virus software first requests 701 a
directory of files written since last virus scan. in response, controller 301
delivers 702 a directory of files in the read/write area 204. The anti-virus
software then scans 704 each file for viruses against ail known virus
identifiers. Identifiers or signatures of malicious code normally take the
form of a hash but can take other forms including a code fragment, a data
fragment, and a registry entry for scanning the registry of the operating
system. Corrective action 708 is then taken if a virus is found in read/write
area 204. After successful completion of the virus scan, the anti-virus
software then securely logs 707 a new successful virus scan completion
date for the files in read/write area 204. Since the request to securely log
the new successful virus scan completion date involves a write to secure
memory 302, controller 301 initially responds to such request with
authentication procedure 708. Authentication procedure 708 can be any

[0062)

\D

of the authentication procedures previously described herein. If the
authentication 708 is successful, controlier 301 writes 708 a timestamp
into secure memory 302 for read/write area 204. This timestamp
represents the time when the last successful virus scan was completed
and is later used to minimize further scanning on subsequent scans. Next,
the anti-virus software requests 710 a cache flush of the successfully
scanned files. In response to request 710, controller 301 executes the
authentication 712 routine. [f authentication 712 is successful, the access
mode of protected areas 202 are changed 713 to read/write mode and the
files from the read/write area 204 are moved 714 into the protected area.
As a part of the move process, the successfully scanned files are deleted
from the read-write area 204 after successfully writing the scanned files to
the protected areas 202. The access mode of protected areas 202 is then
changed 715 to read-only access mode and an acknowledge is returned to
the anti-virus software. Thus, a large number of identifiers, all identifiers,
are scanned against a minority of files, only those files which have
changed since last scan.

Figure 8 is a flow diagram depicting the logic for scanning unchanged files
in the protected area according to one embodiment of the present
invention. The anti-virus software initially requests 802 a directory of files
which have not been written-to since the last virus scan. In response,
controller 301 returns 804 a directory of files in protected areas 202.
These files need not be scanned against identifiers which were included in
a prior scan. Thus, the anti-virus software scans 806 all of the files in
protected areas 202 against only newly introduced identifiers which were
not included in a prior scan. These new identifiers are typically
downloaded from the Internet on a weekly basis and represent a minority
of the set of identifiers in the virus definition file. If corrective action 808 is
needed, as in for example if a virus is found, the corrective action 808
needs to occur relative to data on the protected area 202 which under the
normal mode of operation is set to a read-only mode. Thus, to take
corrective action 808, it is necessary to change the protected area 202 to a
writable mode. Thus, if corrective action 808 is needed, the anti-virus

(0063]

-9

software authenticates 812 the access mode change operation and if the
authentication 812 succeeds, the protected areas 202 are changed 813 to
a read/write mode. Controlier 301 then allows 814 corrective action 808 to
be taken in protected areas 202. Following the corrective action, controiler
301 changes 815 the access mode of protected areas 202 back to the
read-only access mode. Once the virus scans are complete and
successful, the anti-virus software then securely logs 818 the new
successful completion date for the protected areas 202 by requesting such
log from the security subsystem. Upon receiving such request, controller
301 invokes the authentication 819 routine and if successful writes 820 a
successful scan completion timestamp into the secure memory 302 for the
protected areas 202. It is this timestamp that is referenced during scan
806 in detemmining which identifiers have been newly introduced since the
last scan date. The determination can be trusted because the timestamp is
stored in secure memory 302 which is only accessible by controller 301
and which is inaccessible by malicious code executed under the operating
system by system processor 42. After the timestamp is successfully
written to secure memory 302, an acknowledge is sent to the anti-virus
software. Thus, a small number of identifiers, only those identifiers which
have been newly downioaded since the last scan (as verified by the
timestamp), are scanned against the majority of files, the unchanged files
residing in protected areas 202.

Figure 8 is a flow diagram depicting the logic for scanning a subset of the
unchanged files in the protected area according to one embodiment of the
present invention. This embodiment is similar to that of Figure 8 and
allows for scanning fewer than all files in the protected area when new
identifiers are downloaded. This is accomplished by identifying 906 which
files in protected areas 202 are newer than the date in which a virus is
known to have come into existence. Thus, the identifiers, when
downloaded from the internet, would contain such first-known-date
information if applicable. The files dates of the files in the protected areas
202 can be trusted since the protected areas are maintained in a read-only
access mode during normal operation and can only be altered through

[0064]

[0065]

[0066]

- gle)

authenticated procedures. The anti-virus software can then compare the
first known date of the virus with the modification date of the files and scan
only those files which have been created or modified after the first known
date of the virus.

For the embodiments of Figures 7, 8, and 9, although code executing out
of the operating system does have read access to protected areas 202, it
is not inconsistent with the inventive concepts described herein to consider
protected areas 202 as part of the security subsystem because protected
areas 202 are not normally accessible for writing. These areas are only
available for writing immediately after the anti-virus scan has completed
and the anti-virus software has determined that no known virus is actively
running in the system. Thus, for the example given in Figure 9, the
identification 806 of file dates can be performed by reading the protected
areas 202 directly by the anti-virus software to determine the dates.

These dates can be trusted because write access to protected areas 202
is not normally given to code executing out of the operating system.

Figure 10 is a table 1002 of timestamp entries, one for each of the
read/write and protected areas, according to the preferred embodiment of
the present invention in which timestamps are stored in secure memory
302 after each successful run of a virus scan in each respective area. Area
0 corresponds to protected areas 202. Area 1 corresponds to read/write
area 204. These timestamps are maintained so that anti-virus software
can securely determine which identifiers are to be used for scanning in
each respective area. Note that the file dates of files stored in the
read/write area 204 cannot be trusted. Thus, the timestamp which
corresponds to the read/write area 204 represents the last time the cached
staging area was flushed into the protected areas 202. All files stored in
read/write area 204 are scanned against all known identifiers as shown in
Figure 7.

Figure 11 is a block diagram of one embodiment according to the present
invention in which the controller and the secure memory are located in disk
controller 72 rather than in hard disk 200 itself. In this embodiment,
therefore, disk drive 200 is of entirely conventional construction. Protected

[0067)

[0068]

2\

areas 202 and read/write area 204 are logically maintained by controller
1101 in this embodiment. Controller 1101 of this embodiment functions as
per controller 301 in the embaodiments described above relative to
maintaining the areas 202 and 204 and in responding to anti-virus
software requests and queries. Otherwise, the I/O interfaces and
protocols for controller 1101 differ from controller 301 described above due
to its location. Secure memory 1102 is inaccessible to code executed
under the operating system and thus avails trusted to the embodiment of
Figure 11 in a manner analogous to secure memory 302 in the
embodiments described above.

Figure 12 is a block diagram of one embodiment according to the present
invention in which a controller 1201 and a secure memory 1202 are built-in
to IDE cable 308. Thus, the security subsystem can be located throughout
the system without departing from the invention. Indeed, the controller
and the secure memory components of the security subsystem need not
be located on the same subassembly.

Figure 13 is a system virtualization layer diagram showing the abstraction
layers in a computer system running virtualization software according to
one embodiment of the present invention in which a virtual machine
monitor is employed to implement the secure memory and other protective
functions in lieu of a hardware-implemented controller. According to this
embodiment, specialized hardware is not required. At the lowest level of
abstraction is the hardware layer 1300; this is the physical hardware layer
of the computer system. A Virtual Machine Monitor layer 1302 is an
intermediary layer which sits on top of the hardware layer 1300 and
intercepts all access attempts to system memory 48 and disk controller 72
by software running on the computer system. It is within the Virtual
Machine Monitor layer 1302 that the functions of controller 301, according
to any of the embodiments described, are executed as part of the virtual
machine monitor itself. As such, the computer system avails of all the
security and isolation features that virtual machine monitors offer. At the
highest level of abstraction lie the virtual machines 1304 and 1306 which
ultimately run operating systems and software applications. Virtual

(0069)

1L

machines are configured so as to not know of the existence of other virtual
machines. Likewise, system memory 46 is virtualized by virtual machine
monitor 1302 so as to allocate a secure memory which is not directly
accessible by code executed from any operating system; this virtual
secure memory functions analogously to secure memory 302 while the
system is powered on. Thus, a virus executing out of OS-1 in Virtual
Machine-1 1304, for example, will not be able to tamper with the
authentication procedure or have access to the trusted variables. While
the machine is powered off, secure variables, authentication code, and the
like, must be securely stored in any nonvolatile memory using any of the
known methods of saving and restoring encrypted data to an insecure
nonvolatile memory. Thus, the embodiments described herein are not
limited to hardware implementations.

Figure 14 is a flow diagram depicting the logic for scanning all files that
have been written since a last virus scan according to one embodiment of
the present invention in which the movement of files from the read/write
area to the protected area are performed logically rather than physically.
This embodiment is preferably implemented with the protected and
read/write areas configured logically as shown in Figure 5. Rather than
caching data in a read/write area and flushing the cache to a protected
area, this embodiment securely converts protected areas to read/write
areas and read/write areas to protected areas as needed. Except where
noted below, the process shown in Figure 14 is similar to the process
shown in Figure 7. The anti-virus software first requests a directory of files
written since last virus scan. In response, controller 301 delivers 1402 a
directory of files which have changed. This will be the directory of files in
the read/write areas 504 as shown in Figure 5. In this embodiment, the
anti-virus software need not have specific knowledge as to whether the
files are moved logically for physically from the read/write areas to the
protected areas. The request 1410 can be for a cache flush or for the
conversion of successfully scanned files. In response to request 1410,
controller 301 executes the authentication routine. If authentication is
successful, the successfully scanned files in read/write areas 504 are

[0070]

(0071]

3 e

converted 1414, or appended onto, the logical protected areas 502. An
acknowledge is then returmned to the anti-virus software. Allocation of disk
space between the two areas is dynamic and it is therefore less likely that
any one area will run out of space. When new files are added to the
protected areas 502, their storage locations are added to the table that
defines the "logical” protected region 502. To prevent unbounded growth
of the protected area 502, previous copies (i.e., copies currently residing in
the protected area) of any newly added files to the protected area can be
deleted from the logical protected area and added to the logical
"read-write" area, and optionally marked as empty or erased. Utilizing this
process, like the process shown in Figure 7, a large number of identifiers,
all identifiers, are scanned against a minority of files, only those files which
have changed since last scan.

The embodiment shown in Figure 14 can be implemented as a virtual
machine manager as described in relation to Figure 13.

Other embodiments are possible in which the writing or the conversion to
the protected areas occur after the areas to be scanned are first putinto a
read-only state. Alternatively, the areas to be scanned can be first moved
to a read-only staging area such that, once scanned, the files would not
fall under attack from a virus executing between the time the files are
scanned and when they are written or converted. This alternative
embodiment, however, occupies more disk space than other embodiments
presented. An embodiment of the present invention may be provided as a
computer program product which may include a machine-readable
medium having stored thereon instructions which may be used to program
a computer (or other electronic devices) to perform a process according to
the any of the embodiments of the present invention. The
machine-readable medium may include, but is not limited to, floppy
diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs,
RAMs, EPROMs, EEPROMSs, magnet or optical cards, or other type of
media / machine-readable medium suitable for storing electronic
instructions. Moreover, an embodiment of the present invention may also
be downloaded as a computer program product, wherein the program may

[0072]

[0073]

_ 24

be transferred from a remote computer to a requesting computer by way of
data signals embodied in a carrier wave or other propagation medium via
a communication link (e.g., @ modem or network connection).

The order of steps given herein is for exemplary purposes only and shouid
not be interpreted as limiting with respect to other embodiments which are
possible using a different order of steps in implementing the inventive
concepts described herein. Any ordering of steps in the claims are for the
purpose of improving clarity and do not imply any particular order of steps
to be taken.

In the drawings and specifications there has been set forth a preferred
embodiment of the invention and, although specific terms are used, the
description thus given uses terminology in a generic and descriptive sense
only and not for purposes of limitation.

Claims

1. A method comprising:

scanning files in a scan area of a storage device for
malicious code wherein the storage device is subdivided
into a first area and the scan area, the first area being
securely configurable between a normal read-only state and
a writeable state wherein the configuration is under the
control of a security system having a secure memory which
is inaccessible to code executed under an operating system;

upon successfully scanning at least one file in which
no malicious code is found, activating and authenticating a
first security measure of the security system to configure
the first area to the writeable state, wherein the
authentication executes out of the secure memory;

writing successfully scanned files in the scan area to
the first area; and

configuring the first area to the read-only statLe

after said writing of successfully scanned files.

2. The method of claim 1 further comprising:
deleting the successfully scanned files from the scan area

after said writing of successfully scanned files.

3. The method of claim 2 wherein
the authentication for the first security measure is an
authentication selected from the group consisting of a

password, a digital signature, and a biometric.

q. The method of claim 1 wherein

the first and scan areas are subdivided logically.

- 26b-

5. The method of claim 1 wherein

the first and scan areas are subdivided physically.

6. The method of claim 5 whereain
the physically subdivided areas are respectively contiguous

areas on the storage device.

7. The method of claim 1 wherein
said authentication of the first security measure is

executed under the control of a virtual machine monitor.

8. The method of claim 1 wherein

the security system is implemented in hardware such that
the secure memory is additionally inaccessible to a main
processor that executes the operating system, wherein the
hardware is physically located at a location selected from
the group consisting of a storage controller, a storage

device cable, and the storage device.

9. A product comprising:

a computer usable medium having computer readable
program code stored therein, the computer readable program
code in said product being effective to:

scan files in a scan area of a storage device for
malicious code wherein the storage device is subdivided
into a first area and the scan area, the first area being
securely configurable between a normal read-only state and
a writeable state wherein the configuration is under the
control of a security system having a secure memory which
is inaccessible to code executed under an operating system;

upon successfully scanning at least one file in which

no malicious code is found, activate and authenticate a

4

first security measure of the security system to configure
the first area to the writeable state, wherein the
authentication executes out of the secure memory;

write successfully scanned files in the scan area to
the first area; and

configure the first area to the read-only state after

the code writes the successfully scanned files.

10. The product of claim 9 wherein
the computer readable program code is further effective to:
delete the successfully scanned files from the scan

area after the code writes the successfully scanned files.

11. The product of claim 10 wherein
the authentication for the first security measure is an
authentication selected from the group consisting of a

password, a digital signature, and a biometric.

12. The product of claim 9 wherein

the first and scan areas are subdivided logically.

13. The product of claim 9 wherein

the first and scan areas are subdivided physically.

14. The product of claim 13 wherein
the physically subdivided areas are respectively contiguous

areas on the storage device.

15. The product of claim 9 wherein
the authentication of the first security measure is

executed under the control of a virtual machine monitor.

¥ intellectual
- Property
¢ ‘ceoony

For Creativity and naovabion

3

Application No: GB0721753.2 Examiner: Daniel Voisey

Claims scarched: lto 15 Date of search: 9 January 2008

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Catcgory [Relevant | Identity of document and passage or figure of particular relevance
to claims
None
Categories:
X Document mdicating lack ot novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step il’ P Document published on or after the declared prionty date but
combined with one or more other documents of before the filing date of this nvention
same category.
& Member of the same patent family F Patent document published on or after. but with prionty date
earler than, the filing date of this apphcation.
Field of Search:

Scarch of GB, P, WO & US patent documents classified in the following areas of the UKC® -

|]

Worldwide search of patent documents classified m the (ollowing areas of the IPC

[GOGF |
The following online and other databases have been used in the preparation of this search report
| WPI and EPODOC]
International Classification:
Subclass Subgroup Valid From
GO6F 0021/00 01/01/2006
GOO6F 0021/04 01/01/2006

UK Intellectual Property Office I1s an operating name of the Patent Office dﬁi’_'}‘ ‘fft‘*f”_;‘ . J

	ABSTRACT
	DRAWINGS
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

