PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7

(11) International Publication Number:

WO 00/52594

GO6F 17/00 A2 .
(43) International Publication Date: 8 September 2000 (08.09.00)
(21) International Application Number: PCT/US00/05416 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
(22) International Filing Date: 2 March 2000 (02.03.00) ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
(30) Priority Data: SD, SE, SG, SI, SK, SL, TJ, ™™, TR, TT, TZ, UA, UG,
60/124,022 3 March 1999 (03.03.99) Us US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,

(71) Applicant (for all designated States except US): ULTRADNS,
INC. [US/US]; 4004 Eagle Nest Lane, Danville, CA 94506
US). '

(72) Inventors; and

(75) Inventors/Applicants (for US only): LACHMAN, Ronald
[US/USI; 3140 Wisperswoods Court, Northbrook, IL 60062
(US). HOTZ, Steve, Michael [US/US]; 8143 Zitola Terrace,
Plya Del Ray, CA 90293 (US). MANNING, William, Carl
[US/US]; 309 West Sycamore, El Segundo, CA 90245
(US). PETERSON, Alec, Harkness [US/US]; Apartment
205, 8173 West Eastman Place, Lakewood, CO 80227 (US).
HOTZ, Michael, Allen [US/US]; 16247 South 40th Way,
Phoenix, AZ 85044 (US). JOFFE, Rodney, L. [US/US];
4627 East Sanna Street, Phoenix, AZ 85028 (US).

(74) Agents: ECCLESTON, Lynn, E._ et al.; Pillsbury Madison &
Sutro, LLP, 1100 New York Avenue, N.W., Washington,
DC 20005 (US).

LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: SCALABLE AND EFFICIENT DOMAIN NAME RESOLUTION

(57) Abstract

A domain name server (DNS) system for processing domain name requests includes a query mechanism constructed and adapted to
obtain a user request for response information corresponding to a particular domain name; and provide complete response information in
a single response to the user request. The user request may be a domain name resolution request and the query mechanism provides an
Internet Protocol (IP) address corresponding to the domain name. A different response may be provided, depending on context information.
The system may include an Internet protocol processor and an underlying database repository. The system incorporates a database layout
and associated database query strategy that may comprise multiple components which significantly reduces the transaction processing time

and overhead as compared to conventional implementations.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
Cl
CM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
UG
Us
UZ
VN
YU
VAU

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 00/52594 PCT/US00/05416

SCALABLE AND EFFICIENT DOMAIN NAME RESOLUTION

A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears
in the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

BACKGROUND

1. FIELD OF THE INVENTION
This invention relates generally to enhanced domain name servers, and more
particularly, to efficiently processing domain name queries in a network such as the

Internet.

2. BACKGROUND

The Internet has brought about an information revolution through the
development of computerized information resources, on-line services and the World
Wide Web (WWW). The Internet is growing rapidly, with an ever increasing number
of computers and users being connected to the Internet daily.

In order for devices (computers, printers, and the like) on a network such as
the Internet to be able to communicate with each other, the devices need to know (or
be able to determine) each others’ addresses. Many distributive systems (e.g., the
Internet) assign device names in the distributive system by a hierarchical naming
scheme known as domain names. An Internet domain name is generally a sequence
of domain labels separated by periods. For example, “a.ultradns.com” is a domain

name where “com” is a top level domain name of a top level domain, “‘ultradns” is a

10

15

20

25

WO 00/52594 g PCT/US00/05416
second level domain name of a second level domain and “a” is a third level domain
name of a third levél domain. A device in a domain is labeled by the name of the
device followed by the domain name. Thus, a device labeled “server” in the
“a.ultradns.com” domain has the name, “server.a.ultradns.com”. A device hame is
also referred to as a domain name. The Domain Name System (DNS) is a distributed
hierarchical database comprised of client/server transaction servers that provide a
mapping from domain names to associated information, e.g., to [P addresses.

While domain names partition é distributive system in a logical and
hierarchical manner, messages are transferred between devices of the DNS by
identifying devices using specific IP addresses. In the present Internet protocol, IP
addresses are thirty-two-bit numbers that are expressed as four eight-bit values (i.e.,
four numbers in the range 0 to 255) separated by periods, e.g., “121.121.122.2”. IP
addresses contain information such as a network identifier (“ID”) of a device network
connection and a device ID. IP address are assigned by an address authority. The
addresses are assigned in blocks to authoritative address servers.

A comprehensive description of the operation of domain name servers and IP
addresses is given in DNS and BIND In A Nutshell, Paul Albitz and Cricket Liu,
O’Reilly & Associates, 1994, ISBN: 1-56582-010-4, which is incorporated herein by
reference.

IP addresses also relate to each other in a hierarchical manner. Thus, the DNS
also provides a "reverse mapping" of IP addresses to domain names, by using a
representation of the IP address that follows the DNS indexing model. However, the
domain name hierarchy and the IP address hierarchy are not directly related to each
other. While some name servers are also address servers, name and address servers do

not have to be the same device. Thus, it is possible for a server to have authority to

10

15

20

25

WO 00/52594 PCT/US00/05416

resolve a domain name into a corresponding IP address of a device, the same name
server may not bé able to resolve the IP address to the corresponding domain name of
the same device. Thus, resolution of IP addresses to domain names follows a similar
process as resolving domain names to IP‘addresses except different servers may be
involved.

Because IP addresses are numerical and, unlike domain names, are assigned
without regard to the logical and hierarchical organization of the DNS, domain names
are generally used in instructions for fllnctions such as data transfers. Thus, a data
transfer instruction identifies the receiving device by its domain name. However, the
domain name must be translated into a corresponding IP address before the data
transfer can occur.

Domain names are managed by authoritative devices called name servers. That is,
domain name servers perform the task of converting names to IP addresses. Name
servers translate domain names into corresponding IP addresses and vice versa. When
a first device desires to transfer a message to a second device known only by its
domain name, the first device must query a name server to acquire the corresponding
IP address to the known domain name of the second device.

It is estimated that by the year 2003, the number of domains on the Internet
will increase ten-fold, exceeding 150 million domains. Associated with this increase
in the number of domains will be an increase in user dissonance. Current
implementations of the Domain Name System are entirely inadequate and unable to
handle resultant DNS files’ size or the magnitude and frequency of changes to these
DNS files. Even today, real problems exist with content access and/or content
distribution over the Internet. It is estimated that ten to thirty percent of Internet

connection events are unsuccessful or unsatisfactory.

10

16

20

WO 00/52594 : PCT/US00/05416

SUMMARY

The present invention provides a scalable and flexible platform for providing
global directory services. In some embodiments, the invention uses redundant
information:servers to provide ubiquitous and high-performance access to directory
services. This system of servers leverages the scalability and replication mechanisms
provided by commercial database software. The DNS according to the present
invention has an underlying modular design which allows additional wire-protocol
services to be easily incorporated into ;the system, and allows additional modules to
provide intelligent/dynamic responses by affecting changes in the data repository.

In various aspects, the present invention:

e Supports large-scale service model better than alternative DNS servers.

¢ Integrates other Internet services, e.g. “whois”, in a single data repository.

e Multi-threaded server provides scalability to exploit commercial-level

hardware.

¢ Modular database implementation facilitates the addition of new features.

e Database replication provides for ease of management of distributed

servers, and database backup features provide information integrity.

Globally distributed server replicas provide the reliability, throughput and low
delay required to scale a large commercial service. The servers are tied together using
advanced Internet routing mechanisms that are reactive to the state of individual
server replicas.

Multiple servers provide increased system throughput, reliability in the event
of server failure, reliability in the event of provider network failure and nearest server

mechanics serve as basis for advanced redirection service.

10

15

20

25

WO 00/52594 _ - v PCT/US00/05416

Embodiments of the present invention provide a DNS system based on an
information-centric design, where multiple system components interact with system
state that is maintained in the database. The database provides both the principle
Internet information, and the required associations and configuration to specify the
operation of the active components. The system allows for reduced operational staff
requirements by supporting custom user-interface for direct management of user data,
with integrated security and data validation to maintain data integrity.

The present invention also pro‘vides:

e Information update via multiple user-specific custom interfaces, program

APIs, or Internet services such as dynamic DNS updates.

e Fine-granularity security based on association between login and

information objects.

e Modular active components for reporting, billing and data integrity

checking.

In one aspect, this invention provides a system for processing domain name
requests. The system includes a query mechanism constructed and adapted to (a)
obtain a user request for response information corresponding to a particular domain
name; and (b) provide complete response information in a single response to the user
request. The user request may be a domain name resolution request, in which case the
query mechanism provides an Internet Protocol (IP) address corresponding to the
domain name. The system accommodates user requests for other typed DNS data.

In some embodiments the a query mechanism is further constructed and
adapted to provide the response depending on context information. The context
information may include at least one of (a) context information from the request; (b)

context information from the system; and (c) global context information.

10

15

20

WO 00/52594 o PCT/US00/05416

The context information may include address information indicating an
address of the usevr; the local time; and/or the location of the system.

In some embodiments, the system has a data cache and the query mechanism
is further constructed and adapted to, upon receipt of a user request, first attempt to
find an answer to the user request in the data cache.

In some embodiments, the query mechanism is further constructed and
adapted to (a) if the answer exists in the data cache and the answer is fresh, send the
answer directly from the cached data;.and (b) if the answer exists in the data cache
and the answer is stale, or if the answer does not exist in the data cache, then acquire
the answer from a database; send the answer; and update the data cache to reflect the
acquired answer.

Sometimes items in the data cache have a maximum lifetime which ranges
from the time to live of the lowest resource record in a complete answer to the
maximum cache time value configured for the system as a whole.

In some embodiments, the query mechanism is further constructed and
adapted to implement negative caching such that if a request is made for a host that
does not exist in an active domain, the negative response will be saved in the cache.

In another aspect, this invention is a method of providing an Internet Protocol
(IP) address of one of a plurality of devices on the Internet. The method includes
obtaining a user request for an IP address corresponding to a particular domain name;
and providing the IP address in a single response to the user request. The method
may include providing the IP address depending on context information. The context
information may include at least one of (a) context information from the user request;

(b) local context information; and (c) global context information.

10

15

20

25

WO 00/52594 ' ’ PCT/US00/05416

In yet another aspect, this invention is a system comprising a network of
distributed Domain Name Servers (DNSs), each DNS comprising a database; and a
query mechanism constructed and adapted to obtain from the database a user request
for response information corresponding to a particular domain name; and to provide
complete response information in a single response to the user request. The databases

in the network are replicated.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects and advantages of the invention will be apparent upon
consideration of the following detailed description, taken in conjunction with the
accompanying drawings, in which the reference characters refer to like parts
throughout and in which:

FIGURE 1 provides an overview of embodiments of the present invention
operating within the Internet; and

FIGURE 2 depicts the logical structure of the database schema according to

embodiments of the present invention.

DETAILED DESCRIPTION

With reference to FIGURE 1, a Domain Name System (DNS) server 100
(DNS,) according to the present invention comprises a database 102 having a unique
database schema and a complementary unique SQL interface 104. A query
mechanism 106 uses the SQL interface 104 to query the database 102 and to return
results to requesting users, e.g., user 108.

The present invention can be considered at two levels, namely at a server level
(e.g., DNS; 100) and at a system level (e.g., DNS;, DNS,, ..., DNS,).

1. Server-level: At the server level, this invention provides mechanisms that

enable a DNS server (e.g., DNS; 100) according to the present invention to

7

WO 00/52594 ' PCT/US00/05416
achieve sufficient performance (circa thousands of queries/second) even
though the ﬁnderlying data repository supports basic data retrieval at a rate of
hundreds of queries/second.

Features of this server level, discussed below in detail, include:

5 e Aggregate database queries
e Common case optimizations
e Data caching (and consequently-required cache invalidation

mechanisms)

10 2. System-level: At the system level, this invention provides mechanisms that
enable a system of DNS servers (e.g., DNS;, DNS,, ..., DNS, in FIGURE 1) to
provide enhanced/integrated management of information, and provides various
levels of performance enhancement for incoming queries and internal
transactions.

15 Features of this system level, discussed below in detail, include:

¢ Modular data-centric design
e Database-layer synchronization
e Single IP address announcement of replicated servers

The server-level mechanisms according to the present invention enable the
20 DNS server to achieve a greater transaction throughput rate. The system-level
mechanisms work synergistically, and allow the DNS System according to the present
invention to provide a diverse set of features and benefits.
The server-level mechanisms according to the present invention enable the

modular data-centric design and database-layer synchronization.

10

15

20

25

WO 00/52594 PCT/US00/05416

SERVER-LEVEL MECHANISMS
A name server response to a DNS query requires a complex set of calculations

that allow:

(a) different responses to be returned depending on the servers authority,
(b) different answers depending on the existing domain name data, and

(c) the server to return an answer comprised of multiple inter-dependent

sections.

Specifically, a DNS’s response algorithm must consider at least the following:

e Three response sections: Answers, Authority, and Additional
e CNAME (domain name alias) dereferencing
e Wild card matching (matching of leading superstrings)

e Iterative domain name search (matching the longest recognized domain

name)

Conventional (prior art) DNS servers make many distinct queries to the data
repository in order to determine the correct records to include in a response.
Consequently, the transaction rate of the DNS server will be reduced by a similar
factor (e.g., if eight database queries are required, transaction rate will be reduced by
approximately a factor of eight). The DNS server according to the present invention
significantly reduce the average number of queries required to construct a DNS
response, as compared with conventional so-called “straight forward” algorithms that

depend on many distinct queries to the data repository.

Aggregate Database Queries

The DNS server according to the present invention uses compound database
queries so that a single query can return multiple component records required to
construct a DNS response. Moreover, database queries are correlated so that in

instances where multiple queries are required, subsequent queries can be optimized

10

15

20

25

WO 00/52594 PCT/US00/05416

based on records retrieved by earlier database queries. The DNS query strategy
according to the present invention:

(a) retrieves combinations of Answer, Authority, and Additional records in
a single query,

()] retrieves available CNAME records along with
Answer/Authority/ Additional records, and

(c) reduces iterative domain name search overhead by correlating records
from different iterations.

With this invention, the number of database queries required to construct a
complete DNS response can be as low as one. This is a considerably improvement
when compared to a similar strategy based on simple database queries that would
require a separate query for each of Answers and Authority, and multiple queries for

Additional records.

Common Case Optimizations

In general, common case optimizations are effective in systems where there
are a number of distinct potential outcomes (a) with different probabilities of
occurrence, (b) requiring varying levels of incremental overhead, and (c) where a
determination can be made that a specific outcome has been reached, without an
exhaustive outcome analysis.

The present invention recognizes that common case optimization is applicable
to the DNS server database query strategy, and has identified two specific
optimizations based on knowledge of DNS protocols and the expected incoming
query stream. The DNS system according to the present invention implements these
optimizations by making the test for (and handling of) each case a separate code
segment, and promotes this code to handle the task prior to the execution of any

general query code.

10

10

15

20

25

WO 00/52594 PCT/US00/05416

Case #1:

The DNS server according to the present invention contains authoritative
answer for a domain name query that is one label longer than the zone’s domain name
(e.g., with a zone name of “foo.com”, then an optimization is effective for

“www.foo.com” but not for “www.mkt.foo.com”).

Case #2:

The DNS server according to the present invention has delegated the next-
level subdomain name (e.g., the incoming query is for the domain name
“www.mkt.foo.com”, which is in the zone “foo.com”, then the optimization is
effective if the “mkit.foo.com” zone has been subdelegated).

The use of these specific optimizations does not preclude the development of
additional optimizations. The fundamental realization and requirements remain
unchanged, allowing common case optimizations to be applied to outcomes based on
revised outcome probabilities.

Specifically, further common case optimizations specified rely on restrictions
on the records in the database to guarantee the validity of the query response. For
example, a generalization of Case #1 (above) that optimizes for arbitrary length
domain name queries (e.g., the incoming query is for the domain name
“ywww. unit. mkt.foo.com” within the zone for “foo.com”). This case can be optimized
if no conflicting records are present, i.e., any record that could alter the precedence
made for the optimization case (e.g., an intervening NS record or wildcard record
associated with the domain name “mkt.foo.com” would have an impact on the above
example of “www.unit.mkt.foo.com” in zone “foo.com”).

Additionally, the DNS query strategy according to the present invention

allows for flexible/dynamic optimization code to be constructed, where, ¢.g., a

11

10

16

20

WO 00/52594 PCT/US00/05416
specific ordering of individual common case optimizations is associated with each
zone, based on prior knowledge or statistics maintained about each zone. This
technique can be applied so that the best strategy is selected at the granularity of each

zone, each server, or any identifiable class of query stream.

Data Caching and Cache Invalidation

Dynamic data caching is a mechanism that has been applied to achieve
performance in many types of systems, but has never before been use to provide a
fast-access data repository of authoritative data within an Domain Name Server.

The Domain Name System was designed with an integrated “time to live”
(TTL) caching mechanism, and we note three exarhple applications of caching
elsewhere within the Internet and Domain Name System.

e Applications such as web browsers frequently maintain copies of DNS records
obtained while processing HTTP requests, and use applicable DNS records for
subsequent requests. This use of caching does not maintain authoritative data,
nor does it directly effect the operation of a DNS server.

e Caching DNS servers (also known as recursive servers or “helper” servers)
provide a separate function from “hosting” DNS servers. Recursive servers act
on the behalf of an application (e.g., a user’s web browser) and query a
hierarchical series of hosting DNS servers to obtain the required DNS
response. Information obtained in the course of a DNS query resolution may
be maintained and used to expedite subsequent DNS queries, until each
record’s specified time-to-live has expired. This is a fundamental use within
the DNS, but only addresses the behavior of non-authoritative servers when

handling authoritative data.

12

10

15

20

25

WO 00/52594 PCT/US00/05416

e Conventional primary DNS servers (e.g., as embodied by the “bind” server
distribution) read all authoritative domain information into a computer
memory directly from files, and answer queries based on a complete memory-
resident copy of all domain information. Unlike the above caching examples,
this is not an application of dynamic caching, but is a static copy of DNS
information that does not change or replace based on well-known caching
criteria such as frequency of use, nor does it embody any dynamic
mechanisms for maintaining cache consistency. There is no dynamic
mechanism for a “cache miss” that involves the standard alternative method of
making a backup query to the primary (i.e., non-cache) repository.

According to embodiments of the present invention, the DNS server maintains
an internal dynamic cache of recently-used authoritative DNS records taken from the
database repository. Two embodiments are specified: (1) where individual resource
records are cached separately and subsequent DNS response are comprised of the
individual records, and (2) where the entire response to a DNS query is cached as an
aggregate and are immediately available for a subsequent response, eliminating
overhead required to construct a complete response. The strategy for handling
incoming DNS queries includes an examination of the internal cache for efficient
access to data, and if not available, a subsequent query to the primary data repository
(database) is made. These mechanisms are used for both “positive caching,” i.e.,
when the data exists, and “negative caching,” i.e., when the server can authoritatively
respond that the information does not exist.

The DNS server according to the present invention also embodies cache
replacement mechanisms to control the amount of “stale” (infrequently used) data in

the cache, and to allow for effective utilization of cache and system resources.

13

10

15

WO 00/52594

PCT/US00/05416

Multiple embodiments exist to remove DNS data from the cache based on frequency

or timeliness of use.

Cache Invalidation

A dynamic caching system must employ cache invalidation mechanisms to

guarantee that information in the cache corresponds to the state of the primary data

repository. This requires that data items are removed from (or replaced within) the

cache when the corresponding information is changed within the primary data

repository. This allows a DNS server according to the present invention to accurately

reflect the correct information within the system.

The DNS server according to the present invention are embodied by a number

of related cache invalidation mechanisms that address the complete range of

transaction types that can be performed on the primary data repository, and the type of

cache data that can be maintained in the system. The design space that defines the

cache transactions of interest is represented by the Table below which specifies

twenty four different cache invalidation transactions that can be addressed by the

invention’s cache invalidation strategy. Note that not every space need be addressed

by a particular embodiment of the invention, and that some cache invalidation

mechanisms will address multiple invalidation requirements.

Record Cache Query Cache | Query Cache | Query Cache
(Answers) (Authority) (Additional)

Delete from | Positive Positive Positive Positive
Primary -VS.- -Vs.- -VS.- -VS.-
Dbase Negative Negative Negative Negative
Addition to | Positive Positive Positive Positive
Primary -Vs.- -VS.- -VS.- -Vs.-
Dbase Negative Negative Negative Negative
Modify Positive Positive Positive Positive
within -VS.- -VS.- -VS.- -VS.-
Primary Negative Negative Negative Negative
Dbase

14

10

15

WO 00/52594

PCT/US00/05416

Multiple embodiments exist to remove DNS data from the cache based on frequency 7

or timeliness of use.

Cache Invalidation

A dynamic caching system must employ cache invalidation mechanisms to

guarantee that information in the cache corresponds to the state of the primary data

repository. This requires that data items are removed from (or replaced within) the

cache when the corresponding information is changed within the primary data

repository. This allows a DNS server according to the present invention to accurately

reflect the correct information within the system.

The DNS server according to the present invention are embodied by a number

of related cache invalidation mechanisms that address the complete range of

transaction types that can be performed on the primary data repository, and the type of

cache data that can be maintained in the system. The design space that defines the

cache transactions of interest is represented by the Table below which specifies

twenty four different cache invalidation transactions that can be addressed by the

invention’s cache invalidation strategy. Note that not every space need be addressed

by a particular embodiment of the invention, and that some cache invalidation

mechanisms will address multiple invalidation requirements.

Record Cache Query Cache | Query Cache | Query Cache
(Answers) (Authority) (Additional)

Delete from | Positive Positive Positive Positive
Primary -VS.- -VS.- -VS.- -VS.-
Dbase Negative Negative Negative Negative
Addition to | Positive Positive Positive Positive
Primary -VS.- -Vs.- -VS.- -VS.-
Dbase Negative Negative Negative Negative
Modify Positive Positive Positive Positive
within -Vs.- -VS.- -VS.- -VS.-
Primary Negative Negative Negative Negative
Dbase

14

10

15

20

WO 00/52594 PCT/US00/05416

Multiple invalidation mechanisms can be applied together, so that each
addresses a subset of the potential cache interactions and requirements. Further, these
mechanisms can embody varying criteria for timeliness of data invalidation,
according to the importance assigned to each subset. For example, when caching
entire DNS responses the data within an Answer section may be considered more
critical than the data within an Authority section. In this case, mechanisms can be
employed that immediately respond to updates to information in the Answer section,
while other less timely mechanisms.will eventually invalidate the records within the

Authority section.

SYSTEM-LEVEL MECHANISMS

The system-level mechanisms according to the present invention work
synergistically, enabling the DNS System according to the present invention to
provide enhanced/integrated management of information, and to provide a range of
performance enhancement for incoming queries and internal transactions.

e Modular data-centric design
e Database-layer synchronization

e Single IP address announcement of replicated servers

Modular Data-Centric Design

The DNS domain name server according to the present invention (e.g., DNS;
100 of FIGURE 1) separates the functionality of the standard monolithic Internet
server into two distinct components: a commercial database system as the data
repository, and a DNS wire-protocol server designed to answer queries based on

authoritative DNS data from the database component. This architectural choice

15

10

15

20

25

WO 00/52594 PCT/US00/05416
provides for a clean modular design, which in turn provides a flexible and scalable
platform that is leveraged to provide a diverse set of features and inventions.

¢ Data-Centric Modeling and Functional Server Module Extensions—The two-
component design aliows for modular extensions to both the data model, and
the functions (e.g., servers) that operate on the system. Embodiments of this
invention include, but are not limited to, one or more user interfaces for data
management, transaction processors to provide an extensible API for data
management, Internet systerﬁ monitors that can query external system status
(e.g., webserver availability) and affect changes to the data repository, and
servers for other Internet directory servers (e.g., whois, radius, €tc).

e Integrated Access Control Mechanisms—Using a database repository for DNS
information allows several principle objects (e.g., users and other network data
schemas) to be modeled and managed. A significant feature of the DNS
Domain Management System according to the present invention is the ability
to control and delegate the many-to-many access patterns of users accessing
domain name data.

e Query and Context Specific Responses—Conventional (prior art) DNS servers
take as input a <domain name, query type, query class> tuple, and return the
appropriate resource records. The DNS system according to the present
invention has revised the basic query/response transaction by incorporating
additional fields within the data model such that the response to a query can be
based on additional criteria. These criteria can be comprised of information
obtained from the incoming query (e.g., source IP address), information
available to the local server (e.g., time of day or server identity), and similar

context or query specific information.

16

10

15

20

WO 00/52594 PCT/US00/05416

e Dynamically Configurable DNS Record Types—The DNS server according toi
the preseﬁt invention allows new resource record types to be defined, and
immediately incorporated into the system. Based on resource record templates
included in the data model, the DNS server according to the present invention
system can incorporate new record types in minutes without additional low-
level code development. This is in contrast to the conventional (prior art),
where deployment of a new resource record type requires considerable low-
level program design and coding, and requires a new server binary be
deployed on all applicable machines. Moreover, combined with context
specific responses (above), domain administrators may define their own
“local” types that are specific to the answers returned for their DNS domain.

e Ability to deploy and maintain a state-of-the-art data management service
based on commodity implementations of core database technologies. The
conventional (prior art) systems for Domain Name System management
deploy integrated ad-hoc implementations of database technology, which lag
advanced database features and make it difficult to deploy new features based

on database technology advances.

Database-Layer Synchronization

The DNS system according to the present invention maintains data
consistency between multiple redundant servers (e.g., DNS;, DNS,, ..., DNS, in
FIGURE 1) by propagating changes to the managed data using database-level
transaction processing. This has advantages over conventional (prior art) consistency
mechanisms, which are based on application-level transactions. These advantages

include:

17

10

15

20

25

WO 00/52594

PCT/US00/05416
Virtually immediate propagation of changes to Domain Name System
information. This is particularly important when inaccurate information must
be corrected, or when critical domain information changes frequently and
changes must be visible quickly. For example, one of the most frequently
changed zones, “.COM?”, also has the greatest number of records. Using
conventional (prior art) systems, “.COM” has historically been restricted to a
twelve-hour periodic updates. Using the DNS system of the present invention,
changes to “.COM” are routiﬁely propagated within 5-15 minutes.
Ability to accept and propagate changes to Domain Name System information
from multiple servers, and consequently, the ability to make data management
more reliable with better system availability and performance. This is in
contrast to conventional (prior art) DNS systems, which do not have the
conflict resolution mechanisms required to support multiple sources of update

transactions.

Single IP Address Deployment for Replicated Servers

Globally distributed server replicas (e.g., DNS,, DNS,, ..., DNS,) provide the

reliability, throughput and low delay required to scale a large commercial service.

The servers are tied together using advanced Internet routing mechanisms that are

reactive to the state of individual server replicas. In preferred embodiments, each

DNS system according to the present invention shares a common IP address and

supports a name server replica. The shared IP addresses are injected into the Internet

routing mesh by each server so that Internet routers will direct IP packets to the

nearest topological server. Each server replica is monitored for correct behavior, and

the IP route is withdrawn if the server no longer responds to DNS queries. This

mechanism provides the following benefits:

18

10

15

20

WO 00/52594 PCT/US00/05416

e User DNS queries are directed to the nearest DNS replica minimizes the delay 7
experienced for DNS resolution.

e Transitory server and network failures are transparent to a user’s DNS query
and application transaction. Servers that are not reachable or functional are
invisible, and DNS queries arrive at the nearest functional server without
experiencing the delay for standard DNS timeout and retransmission.

e The DNS system acquires user proximity information based on the server
replica that receives the user DNS query. This information can be used to
provide proximity based responses to direct users to nearby application

SEervers.

IMPLEMENTATION

THE DATABASE

This section describes the unique database schema of the database 102.

OVERVIEW

The database 102 according to preferred embodiments of this invention is
organized and structured according to the following unique database schema. The
database schema involves fourteen (14) tables. Only three (3) of these tables contain
actual data (i.e., DNS & Contact), the other eleven (11) tables are needed to manage
the data. The schema allows management of who has access to which data, how can
they access it, who can create new data, and how they should be billed for use of the
system.

The data managed by the DNS Server 100 is (a) contact information, (b) zone
information, and (c) resource record information. Although zones and resource

records are related, the system must have the ability to manage them distinctly. The

19

WO 00/52594

PCT/US00/05416

reason for this is to enable targeting different users, some of which want to use the

Server 100 to manage an entire zone for them, and some of which will just enter

individual resource records (in a particular zone).

For any data that can put in the system, there are two access control

mechanisms involved: (1) a mechanism that specifies whether the item can be put in

(created) in the system, and (2) a mechanism that specifies how items can be

accessed.

TABLE LIST & SUMMARY

Table Name Description

LOGIN User information (to establish identity on the system)

SYS MGMT Describes how the DNS system is managed (e.g., who
can create new zones, billing policy, etc)

RRIJUMBO combined Resource Record (RR) index and data.

CONTACT people/role/organization (like whois)

CONTACT_ASSOC

indicates association between contact information, and

other data/items (e.g., zones or RRs)

ZONE

basic mgmt information for a related set of DNS RRs

ZONE _INTERFACE

list of “outside” servers the system must talk to

primaries/masters OR secondaries we update)

ZONE_CNTL

much like information in SOA record

ZONE_MGMT

zone owner describes how zone may be used (e.g.,

who can create new RRs, billing policy, etc)

ZONE_SERVERS

maintains list of which zones in system, and which IP

addresses can do zone transfer

RR MGMT indicates logins that can modify specific RRs
(Resource Records)

BillingPolicy rules/policy owners set for billing others for use

BillingInfo actual billing information for a particular object

(dertved from owners BillingPolicy)

USAGE_HISTORY

contains past usage data (to answer biiling concerns)

20

WO 00/52594 PCT/US00/05416

Table Name Description
IPV4ARANGE restricts (or allows) access per source IP address
TABLE SCHEMA

This section describes what information is in the tables and, in some cases,
gives the formats and sizes of the data used in some embodiments of the present
5 invention.
The LOGIN table describes identity within DNS system of the present
invention. The table includes information on how to authenticate a user to system.
The LOGIN Table is established via login/password, X.509, PGP, DNSSec, etc.
The following table summarizes the fields of the LOGIN table.

10

LOGIN
Field Description Relationship to other
Tables
Id internal dbase index/pointer appears in other tables
indicating this users has
some claim/access to the
object
Email contact information
Ipaddr restrict logins to specific IP range index to IPV4RANGE
table
x5091d ID for primary authentication
method
Usermame backup login name
Password backup password
Passques user-supplied question for lost
information
Passansw user-supplies answer for lost
information

The SYS MGMT table (described below) provides a template about use,
access, etc. It provides information about how the system is managed; who can
access, modify, create new “objects”, and information on how users are charged for

21

10

WO 00/52594 PCT/US00/05416
access. The SYS MGMT table allows the DNS according to the present invention to 7
be deployed in different ways (e.g., closed access at large companies versus open ISP
access). Some preferred embodiments allow deployment of two object types to be
created, namely contacts and zones. Both can be created by anyone. Contacts can be

created at no charge; zones may or may not incur charges (perhaps per-user).

SYS MGMT

Field Description Relationship to other
Tables

Objtype what type of objects can be created

Access type (create or read)

Login (loginid OR “ANY”) ID in LOGIN table
about who can create

Ipaddr restrict/grant access by IPsrc Addr

Billing specifies how to charge for access index into BILLING
table

The RRIJUMBO table represents DNS resource record (RR) information. This
table is for the “index” or “lookup” of the incoming query, and contains columns for
different parts of RR data section. Resource records are defined in RFC 1035
[Network Working Group Request for Comments: 1035, P. Mockapetris, ISI,

November 1987] which is incorporated herein by reference.

RRJUMBO
Field Description Relationship to other
Tables
Id internal dbase ID referenced by other tables
Active indicates RR is "active" (e.g., paid
for)
Dead indicates "machine" inactive
Zone zone membership identifier indicates RR associated
with ZONE table
Dname domain name (e.g.,
“www.ultradns.com™)
Lname Lower case Dname to optimize
lookups
Type RR type
Class RR Class

WO 00/52594 PCT/US00/05416
RRJUMBO
Field Description Relationship to other
Tables
Servers indicates which server return
particular RR
Time Indicates time frame RR is returned]
ipvdaddr index into IPVARANGE Table index into JPV4RANGE
table (to specify per
IPaddress RRs)
ip_low simple (hi-performance) IP source
address specification
ip_high simple (hi-performance) IP source
address specification
ip_bits simple (hi-performance) IP source
address specification
Create_who login ID of record creator indicates record created
by LOGIN table
Create ip IP address of creator (if anonymous)
Create date when created
Update who | login ID last modify login id of last update
Update when | last modified time
Billing index to BillingInfo billing information
associated with RR
Readcnt recent RR reads
Readsince start time of read count
Writecnt recent RR changes
Writesince start time of write count
Ttl Resource record TTL (time to live)
(seconds)
fl RRdata field #1
F2 RRdata field #2
F3 RRdata field #3
F4 RRdata field #4
F5 RRdata field #5
Fo6 RRdata field #6
F7 RRdata field #7
F8 RRdata field #8
refl dname reference for "additional”
RRs

A “DNS lookup” in the RRTUMBO table uses (matches against) the following
six values to find the requested DNS resource record:

1. domain name (from dns query packet)

2. dns type (from dns query packet)

23

10

15

WO 00/52594 PCT/US00/05416

3. dns class (from dns query packet)

4. serverid (name/id of server answering query)
5. time (current time of day at server)

6. source IP address (from the IP packet)

Note that the use of the RRdata fields, f1 ... {8, depends on the type of RR
(e.g., MX records will use f1 and 2, A records will only use f1, and SOA records will
use f1 - 7).

The RRJUMBO table is used to store data for multiple purposes: in addition to
storing "live" domain records, "template" records are stored which embody the
mechanism to provide configurable DNS records. Each DNS Resource Record type
is represented by one or more template records in the RRJTUMBO table which specify
the format and structure of each record type.

The CONTACT Table contains information about a person, role, or
organization (i.e., this is basically “whois” information). Note that the information in

the CONTACT Table has nothing to do system login.

CONTACT
Field Description Relationship to other
Tables
Id Internal dbase index referenced by other
tables
Order Sequence information for related
records
Type name, phone, fax, email, etc. (see list
below)
Information Associated information (e.g., name:
Steve Hotz)
Anonacl read permission for field (e.g., do not
give out phone number)
ipaddr IP address based read index into IPV4ARANGE
restrictions/permissions Table

The TYPE values for above “type” field (similar to RIPE-181) include:

¢ name

24

10

15

20

WO 00/52594

email

email-alt

phone

phone-alt

fax-no

nic-hdl

nic-hdl-alt

address (multiple-line text string)

source (in case information came from another place)

date-create
date-update

PCT/US00/05416

The CONTACT_ASSOC Table indicates association between contact

information, and other data/items (e.g., zones or RRs)

CONTACT_ASSOC
Field Description Relationship to other
Tables
Id name/id of object (e.g., internal identifier of DNS
“ultradns.com”.) data item (e.g., contact,
zone, or RR)
Objtype {system, zone, record}
contact id of CONTACT information
Type {admin, tech, billing, registration}
Public {yes, no} read access for general
public
The ZONE table basic information about a group of related RRs.
ZONE
Field Description Relationship
to other
Tables
Zone Name of the zone (e.g., “ultradns.com™) Every column
Owner LOGIN id of zone owner in this table
Billing How this zone is billed (BillingInfo) relates to other
zonecntl ZONE CTRL id for internal consistency tables.

The ZONE_INTERFACE Table specifies external servers (i.e., servers that

are not embodiments of the present invention) that must either be used as

primary/master, or updated as secondary/slave.

25

WO 00/52594 PCT/US00/05416

ZONE_INTERFACE
Field Description Relationship to other
Tables
Zone zone being updated/transferred refers to zone name in
numerous tables
mout {in, out}
srvname name of server
Srvip IP address of server
ctrl ZONE_CTRL id for record reference into
controlling frequency ZONE CTRL table
view_ip if multi-dimension records,
snapshot this IP
view_time if multi-dimension, snapshot at
this time
view_srv if multi-dimension, snapshot for
server

The ZONE_CNTL Table contains zone control information, similar to SOA
parameters. This Table is used for database consistency (may not be needed with

internal Oracle, however, can specify interface with external servers).

ZONE_CNTL
Field Description Relationship to other
Tables

Id Internal Identifier Referenced by other tables
Serial
Refresh
Retry
Expire
Mincache
Flags Notify turned on

The ZONE_MGMT table includes information about how a particular zone 1s
managed; who can access, modify, create new “objects”, and information on how the

user is charged for access.

ZONE MGMT

Field Description Relationship to other
Tables

Zone zone being managed relates several tables
holding zone information

login login ID with access (or “ANY™) LOGIN table for who has
access

26

WO 00/52594 PCT/US00/05416
ZONE MGMT
Field Description Relationship to other
Tables
ipaddr source IP access restrictions IPv4Range table for src
address access
Billing billing policy associated with index into BillingPolicy
access table
rrlist bit map of RR types that can be
created
Mods allow zone modifications:
e can modify via dynamic
update
e modify all RRs
e modify all contact
information
¢ modify zone information
e modify zone_mgmt
information
Features e Bit map of allowed features
e define new types
e create multi-dimensional
e can create RRs that allow
dynamic updates
e can create new RRs using
dynamic update
¢ dead machine monitoring
e other
Flags indicate other actions associated
with update/access
¢ indicating required per-record
information (i.e., contact)
e owner requires change
notification (via email)

The ZONE_SERVERS table is an auxiliary table listing zones for which the

system is responsible. This table is used by servers to find zones for which they are

authoritative.

ZONE SERVERS

Field Description Relationship to other
Tables

Zone Zone name Zone name relates to
multiple tables

Server Server holding zone

xferip IPV4RANGE allowed zone transfers | IPv4Range index

27

WO 00/52594

PCT/US00/05416

The RR_MGMT Table provides an access list for specific RRs.

RR MGMT
Field Description Relationship to other
Tables

Rrod Rrindex id Every column (except

Login Login allowed to change (or flags) relates columns in
“ANY”) other tables.

ipaddr src IP based access restrictions

Flags access allowed (initially, all or

nothing)

The BillingPolicy table (set by owner(s) of system or zone) contains

information about how to bill for system use. The owner of system sets this up ahead

of time, and the system enforces the various billing policies.

BillingPolicy
Field Description Relationship to other
Tables
billp_id internal dbase index referenced by other table
columns
what zone, contact, dname, RRtype(s),
feature
type one-time, read, write, time,
<feature name>
Unit <count> for read/write
day|week|month|year for time or
feature
Amt Amount (in dollars)
cnd_type reads OR writes [must be greater
than]
cnd unit count [per]
cnd time time unit (day|week|/month|year)
intro_time days before billing starts
period yearly/monthly/choice

year_discount

can offer (percentage) discount for
yearly rate

Each zone may specify more than one policy. For example,:

<what> | <type> <unit> | <amt> <cond>
Type | > | Unit Time
Zone 1-time 29.99
Zone Time Year 9.99
Zone Write 1 1.00 Write | > 10 Month

28

10

WO 00/52594 PCT/US00/05416
<what> | <type> <unit> <amt> <cond>
: Type | > | Unit Time
Feature Dyn _Upd | Month 1.99

The BILLINGINFO Table contains information about who and when to bill for

use.

BILLINGINFO

Field Description Relationship to other Tables

billi_id internal dbase index referenced by other table

columns

who id billing contact index reference to CONTACT table

Method Credit card, usmail, email

billp id Reference to BillingPolicy table

Credcard credit card account

expire credit card expire date

card 1d billing address for credit card (if | reference to CONTACT table
different from who id)

billp id index to Billing Policy record

Create_date when billing record was created

next date next statement date

The USAGE HIST Table contains historical system/information usage

information. Can attach to various objects: RRdata, Zone, Contact, etc. (Some

preferred embodiments attach to RRs)

USAGE HIST

Field Description Relationship to other
Tables

Id internal dbase ID of object tracked relates to id field of other
tables

Objtype RR/zone/contact/other determines which “other
table”

Access read/write/other

start start of period (seconds since epoch)

End duration of period (e.g., in seconds)

cnt number of accesses

Preferably use logging is (a) only turned on for some records, and (b) could be

a “premium service”. Must keep “current” usage for billing, but this feature is

“turned on”.

29

WO 00/52594

PCT/US00/05416

The IPv4Range Table contains CIDRized subnet masks, primarily used for

address based (i.e., weak) authentication. This table is used for (a) handing out RRs

based on srcipaddress, and (b) simple access control for updates to data (e.g., using

dynamic updates as implemented).

IPv4Range

Field Description Relationship to other
Tables

Ipid index of IP range spec this table id serves as index,
and appears in other tables
(indicating whether access
is allowed from specific
source IP addresses

Flag flag indicating allowed/prohibited

bits number of bits in mask

Low lowest address value

High highest address value

Example

listid Flag bits iprangelow Iprangehi

#1 Prohibit | 0 0x00000000 Ox fffeeft

#1 Allow 16 0x80090000 0x8009ffff

#2 Allow 0 0x00000000 'eivisiiid

#2 Prohibit | 16 0xa0070000 0xa007ffff

#2 Prohibit | 16 0xa0090000 0xa009ffff

#3 Prohibit | 0 0x00000000 Ox fEfffftt

#3 allow 16 0xc9140000 0xcO14£fff

#3 prohibit | 24 0xc9142800 0xc91428ff

#3 prohibit | 24 0xc9142a00 0xc9142aff

#1 allows small number of addresses;

#2 prohibits small number of addresses;

#3 allows all in range, with exceptions;

30

WO 00/52594 PCT/US00/05416
The following section provides the database field formats and sizes for a

preferred embodiment of the present invention. Some of the fields have common

sizes:
256 char = dnames
10 num == 32bit integers (e.g., [Pv4addr and time in seconds)
14 num = internal identifier
LOGIN
Id num 14
Email vch 256
Ipaddr num 14 null-ok
x509id vch 256
Username vch 64
Password vch 32
Passques vch 80
Passansw vch 80
SYS MGMT
objtype Vch 16
access Vch 16
login Num 14
ipaddr Num 14 null-ok
billing Num 14 null-ok
RRJUMBO
id num 14
active num 1
dead num 2
zone vch 256
dname vch 256
type vch 16
class vch 16
servers vch 32 null-ok
time vch 168 null-ok
ipv4addr num 14 | null-ok
ip low num 10 | null-ok
ip_high num 10 | null-ok
ip_bits num 3 null-ok
create who num 14
create ip num 10
create date num 10
update_who num 14
update when num 10
billing num 14 null-ok
readcnt num 8 null-ok

31

WO 00/52594

RRJUMBO
readsince num 10 null-ok
writecnt num 8 null-ok
writesince num 10 null-ok
TTL num 10
f1 vch 1024
2 vch 1024 | null-ok
3 vch 256 null-ok
f4 vch 256 null-ok
5 vch 256 null-ok
f6 vch 256 null-ok
f7 vch 256 null-ok
8 vch 256 null-ok
refl vch 256 null-ok
CONTACT
id num 14
order num 2
type vch 16
info vch 168
anonacl vch 8 null-ok
ipaddr num 14 | null-ok
CONTACT ASSOC
1d num 14
objtype vch 16
contact num 14
type vch 20 | null-ok
public vch 8
ZONE
zone vch 256
owner num 14

billing num 14

null-ok

zonecntl num 14

ZONE INTERFACE
zone vch 256
nout vch 8

srvname vch 256 | null-ok
srvip num 10 | null-ok

ctrl num 14
view 1p num 10 | null-ok
view time num 3 null-ok
VIEW SIV num 3 null-ok

32

PCT/US00/05416

WO 00/52594

ZONE CNTL
id num 14
serial num 10
refresh num 10
retry num 10
expire num 10
mincache num 10
flags vch 8 null-ok
ZONE MGMT
zone vch 256
login num 14 | null-ok
ipaddr num 14 | null-ok
billing num 14 | null-ok
rrlist vch 256
mods vch 16
features veh 16 | null-ok
flags vch 8
ZONE SERVERS
zone vch 256
server vch 256
xferip num 14 | null-ok
RR MGMT
rrid num 14
login num 14 | null-ok
ipaddr num 14 | null-ok
flags vch 8 null-ok
BILLINGPOLICY
billp id num 14
what vch 32
type vch 32
unit vch 16
amt num 8
cnd type vch 8 | null-ok
cnd unit num & | null-ok
cnd time vch 8 null-ok
intro_time num 6
period vch 8
year discount num 4
BILLINGINFO
billi id num 14
who id num 14

33

PCT/US00/05416

10

15

WO 00/52594 PCT/US00/05416

BILLINGINFO
method -vch 12
credcard num 16 | null-ok
expire vch 7 null-ok
card id num 14 | null-ok
billp_id num 14
create date num 10
next date num 10
USAGE HIST
id num 14
objtype vch 16
access vch 16
start num 10
end num 10
cnt num 12
IPV4RANGE
pid num 14
flag num 2
bits num 2
low num 10
high num 10

DESIGN CHOICES

Probably the least obvious design choice is the way that CONTACT is laid
out. What would be more obvious/natural is to have one table row represent each
particular contact record . However, this design breaks contact information into
multiple fields, and represents each field as a row in the database. This method is
more flexible (given the flexible nature of the data), and supports the association and
efficient lookup of "ACCESS POLICY" to individual fields (e.g., to allow random
people looking at a CONTACT record to see an email address but not see a phone

number associated with that record).

THE SQL INTERFACE

The SQL Interface 104 takes queries/requests for domain name/address

resolution and returns the appropriate address and other information. The SQL

34

WO 00/52594 PCT/US00/05416

implementing the interface 104 in a preferred embodiment is listed below (in the

Table titled SQL Query).

EXAMPLE
Here is a sample query made by a user 108 of the DNS 100 according to the

present invention. The request is processed by the query mechanism 106 which uses

5
the SQL interface 104 to access the database 102.
Query: a.b.c.d.wonk.com. <type>
where the system knows that it has “wonk.com. ZONE”
Then, in the worst case, the system has to make the following queries into the
10 database 102:
a.b.c.d.wonk.com. <type> ## commonly returns ANSWER
b.c.dwonkcom. NS ## commonly returns AUTH data
a.b.c.dwonk.com. NS ## common to indicate sub-delegation
*.b.c.d.wonk.com. <type>
15 b.c.d.wonk.com. NS
*.c.d.wonk.com. <type>
c.d.wonk.com. NS
* d.wonk.com. <type>
d.wonk.com. NS
20 * wonk.com. <type>

This invention embodies a query strategy that significantly reduces the
average number of database queries required to complete a DNS query.

There are essentially two common cases:

(1) no sub-delegation—Query gets simple answer for foo.wonk.com

35

10

15

20

25

30

WO 00/52594 PCT/US00/05416

(2) the system will end-up telling about sub-delegation—Query made for
a.b.c.d.wonk.com gets NS for d.wonk.com

In both of the common cases noted above, the answer “dname” is likely to be
one component longer than the zone name. So, the system tests this before making
the query (i.c., the system does not want to query for “a.b.c.d.wonk.com”,
“b.c.d.wonk.com”, and “c.d.wonk.com” just to finally say that the delegation is made
at “d.wonk.com”).

Consequently, the following qﬁery optimization (in the query mechanism 106)
can be used:

If the requested name is one component longer than zone name, then look for
a quick answer.

This can be written as:

if (shorten(reg.dname) == ZONE) {

SQL (<reg.dname>, <type> ##
SQL(d.wonk.com, <types>,

shorten (<reqg.dname>), NS) ##
wonk . com, NS)

if (<type> found)
return_answer;
save NS for later();
SQL (reqg.dname, NS,
“*” + shorten(reqg.dname), <type>);
if (“"*” found, return answer and my NS
records) ;
if (NS found, return authority);
return (NXDOMAIN) ;

If long request name, check for shortest delegation first. For example, if the
request name is “a.b.c.d.wonk.com”, check if “d.wonk.com” has NS.

SQL (shorten.to_one piece (<reg.dname>), NS); if (NS
found) return;

If neither optimization worked then start with original question.

SQL {<reqg.name>, <types>,

36

10

15

20

25

30

35

WO 00/52594

zone.name, NS) ;
if (answer found) {
return (answer + NS);

} else {

save NS for later();

}

PCT/US00/05416

If no answer is found then loop through and look for NS delegations.

for (working name = req.dname,
next name = shorten(working_name) ;
next != zone;

working name = next name, next_name
shorten (working name)

) A

SQL (working name, NS);
if (NS found) return;

No delegation made.

Now loop looking for “*” records.

for (working name = shorten(req.dname),
next name = shorten(working_name) ;
next != zone;
working name = next name, next_name

shorten (working name)

) A

SQL (™ *” + working name, <type>;
if (<type> found) ({
return (answer + save NS records);

return (NXDOMAIN) ;

EXAMPLE

Give the example query “foo.bar.wonk.com. MX”, call following SQL (Table

XX) with following variables:

reg.namel
req.name2

req.name3

req.type

I

\\f

15

oo.bar.wonk.com.”
“* _bar.wonk.com.”
“bar.wonk.com.”

(this is the MX cype)

37

WO 00/52594

PCT/US00/05416

reqg.class = 1 (this is the IN class)
reg.time = <current_time>
req.server = <server ID#>
req.ipaddr = <incoming pkt IP source>
SQL QUERY
SELECT * FROM rrjumbo, RR
The main “start with” clause gets the ANSWERS and AUTHORATATIVE, plus it gets
any “*” records that exist. ‘
START WITH
(
(RR.dname = ‘reg.namel’ AND ((RR.type =
‘req.type’)
OR (RR.type = = 2)))
OR
(RR.dname = ‘reg.name2’ AND (RR.type =
‘req.type’))
OR
(RR.dname = ‘reg.name3’ AND (RR.type = 2))
)
AND
RR.class = ‘reg.class’ AND
substr (RR.time, ‘req.time’, 1) =1 AND
substr (RR.servers, ‘reg.server’, 1) =1 AND
RR.active =1 AND
RR.dead =0 AND
This is part of main query, that handles the IPv4range
EXISTS (select * FROM ipvé4range, IP WHERE
RR.ipvd4addr = IP.ipid AND
IP.low <= req.ipaddr AND
IP.high >= req.ipaddr AND
1p.flag = 2 AND)
This part of query grabs ADDITIONAL records
CONNECT BY
PRIOR refl = dname AND
type = 1 AND
class = ‘reg.class’ AND
substr (time, ‘reg.time’, 1) =1 AND
substr (servers, ‘reqg.server’, 1) =1 AND
active =1 AND
dead =0 AND
Make certain ADDITIONAL RECORDS also have IPv4 permission

38

WO 00/52594 PCT/US00/05416

SQL QUERY
EXISTS (select * FROM ipv4range, 1P WHERE
RR.ipv4addr = IP.ipid AND
IP.low <= req.ipaddr AND
IP.high >= req.ipaddr AND
IP.flag = 2 AND)
SELECT * FROM rrjumbo, RR
START WITH
(
(RR.dname = ‘reg.namel’ AND ((RR.type =
‘reqg.type’)
OR (RR.type = = 2)))
OR .
(RR.dname = ‘reg.name2’ AND (RR.type =
‘reg.type’))
OR
(RR.dname = ‘reg.name3’ AND (RR.type = 2))
)
AND
RR.class = ‘reqg.class’ AND
substr (RR.time, ‘reqg.time’, 1) =1 AND
substr (RR.servers, ‘reqg.server’, 1) =1 AND
RR.active = 1 AND
RR.dead =0 AND
EXISTS (select * FROM ipvé4range, IP WHERE
RR.ipv4addr = IP.ipid AND
IP.low <= req.ipaddr AND
IP.high »>= req.ipaddr AND
IP.flag = 2 AND)
CONNECT BY
PRIOR refl = dname AND
type = 1 AND
class = ‘reqg.class’ AND
substr(time, ‘reqg.time’, 1) =1 AND
substr (servers, ‘reqg.server’, 1) =1 AND
active =1 AND
dead = 0 AND
EXISTS (select * FROM ipv4range, IP WHERE
RR.ipv4addr = IP.ipid AND
IP.low <= req.ipaddr AND
IP.high »= reqg.ipaddr AND
Ip.flag = 2 AND)

39

10

15

20

WO 00/52594 PCT/US00/05416
OTHER FEATURES
Building a modular system has allowed additional mechanisms to be

incorporated easily into the system which can serve as the base for new features/uses.

CONFIGURABLE RESOURCE RECORD TYPES

The DNS according to some embodiments of the present invention has over
thirty (30) defined resource record types, which provide data formats/fields for use by
different applications; current implementations hard-code the type definitions. Thus,
the present invention offers users the ability to dynamically configure RR types, to
allow directory-enabled applications to be deployed and tested within short time

frames.

CONTEXT SENSITIVE (QUERY-SPECIFIC) ANSWERS

In the abstract, a directory service maps a query’s incoming request (key) to an
outgoing response (data indexed by the key). Using a relational database model gives
the present invention an effective mechanism to add other components to the lookup
key. Inthe DNS example, a different answer can be given depending on various
context information: from the packet (IP address), from the machine (local time), and
from global system (which server location). Thus, for example, the system may

provide different answers at different times of day or to different geographic regions.

DyNAMIC DATA CACHE

In some embodiments, the DNS server 100 incorporates a dynamic load-on-
demand cache algorithm which significantly enhances performance by reducing the
amount of data that must be retrieved from the database 102.

When an inbound query is received, the server 100 will first attempt to find

the answer in the data cache 110. If the answer exists and is fresh, the response will

40

10

15

20

WO 00/52594 PCT/US00/05416

be sent directly from the cached data stored in data cache 110. If the answer exists in
the cache 110 but is stale, or if the answer does not yet exist in the cache, the data will
be acquired from the database 102, transmitted in the response, and then added to or
updated within the cache 110. In some embodiments, the cache is maintained in a
Most Recently Used order to optimize lookup times and facilitate cache management.

Items in the cache 110 have a maximum lifetime which ranges from the time
to live (TTL) of the lowest resource record (RR) in the complete answer to the
maximum cache time value confi gure(i for the server as a whole. For records that
change frequently, the TTL value can be set to zero to ensure the data is never added
to cache and always retrieved from the database.

By setting a relatively short lifetime on data in the cache 110, the server 100
can provide maximum throughput while still offering near real-time propagation of
zone changes. Because the cache is load-on-demand, the DNS daemon can be up and
ready to respond to queries within moments of execution.

In addition to normal caching of DNS response data, the cache algorithm is
designed so that negative caching is also achieved. For example, if a request is made
for a host that does not exist in an active domain, the negative response will be saved
just like a valid response. If the server is for some reason hit with a barrage of
requests for this same invalid host, they can be filled using the negative response in
cache, once again eliminating unnecessary calls to the database.

Further, in some embodiments, a management thread is incorporated into the
cache design. This thread comes to life at a configurable interval and walks through
the RR data cache, deleting any stale entries that it encounters. This feature ensures

that the most active data is always the most readily available.

41

10

15

20

WO 00/52594 PCT/US00/05416
In some embodiments, a cache invalidation mechanism is incorporated that is
responsible for removing (or modifying) data within the dynamic cache so that the

cache accurately and acceptably reflects changes made to the primary data repository.

IMPLEMENTATION DETAILS

An embodiment of this invention has been implemented. The DNS server 100
was designed on top of and tightly integrated with the database 102. The database
102 was implemented using Oracle, however, care was taken to modularize the
database interface so that the system could easily be integrated with a database from a
different vendor, such as Sybase or Informix. The server was developed using Gnu
C-++ on a Linux platform. The server build process was later expanded to support
both Linux and Solaris.

Implementations of the present invention can be written in any suitable high-
level computer language. Further, while aspects of the present invention have been
implemented in software running on a computer system as described above, all
aspects of the present invention can also be implemented in hardware or in a
combination of software and hardware. That is, although described with reference to
a particular system, the present invention operates on any computer system and can be
implemented in software, hardware or any combination thereof. When implemented
fully or partially in software, the invention can reside, permanently or temporarily, on
any memory or storage medium, including but not limited to a RAM, a ROM, a disk,
an ASIC, a PROM and the like.

While the above embodiments relate to domain name processing, one skilled
in the art will realize that domain names are merely one example of directory services,

and that the present invention is applicable to other directory services.

42

WO 00/52594 PCT/US00/05416
Thus are provided methods, systems and devices for scalable domain name
resolution. One skilled in the art will appreciate that the present invention can be
practiced by other than the described embodiments, which are presented for purposes
of illustration and not limitation, and the present invention is limited only by the

claims that follow.

43

10

15

20

25

WO 00/52594 PCT/US00/05416

We claim:

1. A system for processing domain name requests, the system
comprising:

a query mechanism constructed and adapted to:

(a) obtain a user request for response information corresponding to a
particular domain name; and

(b) provide complete respo‘nse information in a single response to the user

request.

2. A system as in claim 1 wherein the user request is a domain name
resolution request and wherein the query mechanism provides an Internet Protocol

(IP) address corresponding to the domain name.

3. A system as in claim 1 wherein the a query mechanism is further
constructed and adapted to:

provide the response depending on context information.
4. A system as in claim 3 wherein the context information includes at
least one of (a) context information from the request; (b) context information from the

system; and (c) global context information.

5. A system as in claim 4 wherein the context information includes

address information indicating an address of the user.

44

WO 00/52594 PCT/US00/05416

6. A system as in claim 4 wherein the context information includes the
local time.
7. A system as in claim 4 wherein the context information includes the
5 location of the system.

8. A system as in claim 1 further comprising:
a data cache; |
wherein the query mechanism is further constructed and adapted to:
10 upon receipt of a user request, first attempt to find an answer to the

user request in the data cache.

9. A system as in claim 8 wherein the query mechanism is further
constructed and adapted to:
15 (a) if the answer exists in the data cache and the answer is fresh, send the
answer directly from the cached data; and
(b) if the answer exists in the data cache and the answer is stale, or if the
answer does not exist in the data cache, then
(bl) acquire the answer from a database;
20 (b2) send the answer; and

(b3) update the data cache to reflect the acquired answer.

10. A system as in claim 8 wherein items in the data cache have a

maximum lifetime which ranges from the time to live of the lowest resource record in

45

10

15

20

25

WO 00/52594 PCT/US00/05416

a complete answer to the maximum cache time value configured for the system as a

whole.

11. A system as in claim 8 wherein the query mechanism is further
constructed and adapted to:
implement negative caching such that if a request is made for a host that does

not exist in an active domain, the negative response will be saved in the cache.

12. A method of providing an Internet Protocol (IP) address of one of a
plurality of devices on the Internet, the method comprising:

obtaining a user request for an IP address corresponding to a particular domain
name; and

providing the IP address in a single response to the user request.

13. A method as in claim 12 further comprising:

providing the IP address depending on context information.
14. A method as in claim 13 wherein the context information includes at
least one of (a) context information from the user request; (b) local context

information; and (c) global context information.

15. A method as in claim 14 wherein the context information includes

address information indicating an address of the user.

46

10

15

20

25

WO 00/52594 PCT/US00/05416

16. A method as in claim 14 wherein the context information includes the
local time.
17. A method as in claim 14 wherein the context information includes a

geographic location.

18. A method as in claim 12 further comprising:

attempting to find an answer to the user request in a data cache.

19. A method as in claim 18 further comprising:
(a) if the answer exists in the data cache and the answer is fresh, sending
the answer directly from the cached data; and
(b) if the answer exists in the data cache and the answer is stale, or if the
answer does not exist in the data cache, then
(b1) acquiring the answer from a database;
(b2) sending the answer; and

(b3) updating the data cache to reflect the acquired answer.

20. A method as in claim 18 wherein items in the data cache have a
maximum lifetime which ranges from the time to live of the lowest resource record in

a complete answer to a maximum cache time value.

21. A method as in claim 18 further comprising:
if a request is made for a host that does not exist in an active domain, saving

the negative response in the data cache.

47

WO 00/52594 PCT/US00/05416
22. A system comprising:
a network of distributed replicated Domain Name Servers (DNSs), each DNS
comprising:
a database; and
5 a query mechanism constructed and adapted to:
(a) obtain from the database a user request for response
information corresponding to a particular domain name; and
(b) provide complete‘response information in a single response to
the user request,
10 wherein the databases in the network are replicated and wherein the

DNSs share the same network address.

48

PCT/US00/05416

WO 00/52594

2 b4

1/2

Koljoqbunng

AioysiH abesn

LNOW SAS

ognNrydd

INOZ

JONVIHVAI

DOSSY 1OVINOD 1LND 3ANOZ
SY3AYIS 3INOZ
oyu|buljng 1DVINOD
NIDO1 30V4Y3LNI INOZ

1NOW 3INOZ

LNOW oY

aseqgeje(

201

(414

SUBSTITUTE SHEET (RULE 26)

PCT/US00/05416

WO 00/52594

2/2

USNa

€SNA

¢SNA

aoepa|

S
F44]"

oLt

10S v

wisiueyoap

Asanp

ayoe)n

(+SN@) 1anieg
(SNQ) walshg aweN urewoq

00t k

el

—— 901

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

