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INPUT/OUTPUT FILTER UNIT FOR GRAPHICS PROCESSING UNIT

BACKGROUND

[0001] A graphics processing unit (GPU) may be used to process geometry data (e.g.
vertices defining primitives or patches) generated by an application in order to generate
image data. Specifically, a GPU may determine pixel values (e.g. colour values) of an image

to be stored in a frame buffer which may be output to a display.

[0002] A GPU may process the received geometry data in two phases — a geometry
processing phase and a rasterization phase. In the geometry processing phase a vertex
shader is applied to the received geometry data (e.g. vertices defining primitives or patches)
received from an application (e.g. a game application) to transform the geometry data into
the rendering space (e.g. screen space). Other functions such as clipping and culling to
remove geometry (e.g. primitives or patches) that falls outside of a viewing frustum, and/or

lighting/attribute processing may also be performed in the geometry processing phase.

[0003] In the rasterization phase the transformed primitives are mapped to pixels and the
colour is identified for each pixel. This may comprise rasterizing the transformed geometry
data (e.g. by performing scan conversion) to generate primitive fragments. The term
“fragment” is used herein to mean a sample of a primitive at a sampling point, which is to be
processed to render pixels of an image. In some examples, there may be a one-to-one
mapping of pixels to fragments. However, in other examples there may be more fragments

than pixels, and this oversampling can allow for higher quality rendering of pixel values.

[0004] The primitive fragments that are hidden (e.g. hidden by other fragments) may then
be removed through a process called hidden surface removal. Texturing and/or shading may
then be applied to primitive fragments that are not hidden to determine pixel values of a
rendered image. For example, in some cases, the colour of a fragment may be identified by
applying a texture to the fragment. As is known to those of skill in the art, a texture, which
may also be referred to as a texture map, is an image which is used to represent
precomputed colour, lighting, shadows etc. Texture maps are formed of a plurality of texels
(i.e. colour values), which may also be referred to as texture elements or texture pixels.
Applying a texture to a fragment generally comprises mapping the location of the fragment in
the render space to a position or location in the texture and using the colour at that position

in the texture as the texture colour for the fragment. As described below, the texture colour
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may then be used to determine the final colour for the fragment. A fragment whose colour is

determined from a texture may be referred to as a texture mapped fragment.

[0005] As fragment positions rarely map directly to a specific texel, the texture colour of a
fragment is typically identified through a process called texture filtering. In the simplest case,
which may be referred to as point sampling or point filtering, a fragment is mapped to a
single texel (e.g. the closest texel to the position of interest) and that texel value (i.e. colour)
may be used as the texture colour of the fragment. However, in most cases, the texture
colour for a fragment is determined using more complicated filtering techniques which
combine a plurality of texels close to the relevant position in the texture. For example,
multiple texels close to the relevant position in the texture may be combined using a filtering
technique, such as, but not limited to, bilinear, trilinear or anisotropic filtering, to determine

the texture colour for a fragment.

[0006] The texture colour(s) output by the texture filtering may then be used as input to a
fragment shader. As is known to those of skill in the art, a fragment shader (which may
alternatively be referred to as a pixel shader) is a program (e.g. a set instructions) that
operates on individual fragments to determine the colour, brightness, contrast etc. thereof. A
fragment shader may receive as input a fragment (e.g. the position thereof) and one or more
other input parameters (e.g. texture co-ordinates) and output a colour value in accordance
with a specific shader program. In some cases, the output of a pixel shader may be further
processed. For example, where there are more samples than pixels, an anti-aliasing
technique, such as multi-sample anti-aliasing (MSAA), may be used to generate the colour
for a particular pixel from multiple samples (which may be referred to as sub-samples). Anti-
aliasing techniques apply a filter, such as, but not limited to, a box filter to the multiple

samples to generate a single colour value for a pixel.

[0007] A GPU which performs hidden surface removal prior to performing texturing and/or
shading is said to implement ‘deferred’ rendering. In other examples, a GPU might not
implement deferred rendering in which case texturing and shading may be applied to
fragments before hidden surface removal is performed on those fragments. In either case,

the rendered pixel values may be stored in memory (e.g. frame buffer).

[0008] As texture filtering and pixel filtering (e.g. MSAA filtering) are complex operations,
instead of programming one or more ALUs (arithmetic logic units) to perform the filtering, a
GPU may have dedicated hardware to perform texture filtering and pixel filtering. For

example, reference is now made to FIG. 1 which illustrates an example GPU 100. The
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example GPU 100 comprises a plurality of ALU clusters 102 (which may be referred to as
unified shading clusters) each of which comprises a plurality of ALUs which can be
configured to execute multiple types of shaders (e.g. vertex shaders run in the geometry
processing phase, fragment/pixel shaders run in the rasterization phase, and compute
shaders) which are generated by one of a plurality of data masters 104, 106, 108. For
example, in FIG. 1 the GPU 100 comprises a vertex data master 104 that initiates or
generates vertex shader tasks, a pixel data master 106 that initiates or generates pixel or
fragment shader tasks, and a compute data master 108 that initiates or generates compute

shader tasks.

[0009] In the example of FIG. 1 a micro controller 110 receives vertex, pixel and compute
tasks from a host (e.g. central processing unit (CPU)) and causes the corresponding data
master 104, 106, 108 to generate or initiate the task. For example, when the micro controller
110 receives a vertex task the micro controller 110 may be configured to cause the vertex
data master 104 to generate the task. In response to receiving a task request from the micro
controller 110, a data master 104, 106, 108 generates the task and sends it to a scheduler
112 (which may also be referred to as a coarse grain scheduler) where it is added to a task
queue. The scheduler 112 is configured to allocate resources to the tasks in the queue and
then schedule and issue the tasks to the ALU clusters 102 (e.g. to a fine grain scheduler
(FGS) within the ALU cluster). Each ALU cluster 102 then schedules (e.g. via the FGS) and

executes the tasks received from the scheduler 112.

[0010] As described above, in some cases, during the rasterization phase a texture colour is
identified for one or more fragments via texture filtering. During the texture filtering process,
a position or location in a texture from which a particular fragment is drawn is identified
(which may be referred to as the relevant texture co-ordinate or the mapped texture co-
ordinate), one or more texels near the identified position (which may referred to as the
relevant texels) are read from the texture, and the texture colour for the fragment is
determined by applying one or more filters to the relevant texels. To perform texture filtering
efficiently, the GPU 100 in FIG.1 has a dedicated unit, referred to as the texture unit 114, for
performing texture filtering. Example texture filtering methods or techniques which may be
implemented by the texture unit 114 include, but are not limited to: bilinear filtering in which
the four nearest texels to the identified texture position are read and combined by weighted
average according to distance to produce the texture colour for the fragment; trilinear filtering
which comprises performing a texture lookup and bilinear filtering of the two closest mipmap
levels (one higher and one lower detail) and then linearly interpolating the results to produce

the texture colour for the fragment; anisotropic filtering wherein several texels around the
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identified texture position are read, but on a sample pattern mapped according to the
projected shape of the texture at that fragment; and percentage closer filtering (PCF) which
uses depth comparison to determine the texture colour of a fragment. Accordingly, the
texture unit 114 is configured to fetch one or more samples (i.e. texels) from a texture stored
in memory (not shown), perform a filter operation on the fetched samples (i.e. texels)
according to a texture filtering method, and provide the output of the filter operation to an
ALU cluster as input for, for example, a fragment/pixel shader task. Specifically, as
described above, the texture colour for a fragment generated by the texture unit 114 may be
provided to an ALU cluster as an input to a fragment/pixel shader task (e.g. a task generated
by the pixel data master 106). In some cases, the memory (not shown) may be accessible

via one or more interfaces 118 and/or a system level cache 120.

[0011] As described above, in some cases the output of a pixel shader may be further
processed before it is output. Specifically, one or more filters may be applied to the output(s)
of a pixel shader (which may be referred to herein as pixel filtering) to implement one or more
post processing techniques. For example, where there are more samples than pixels, a box
filter or another filter may be applied to the output for multiple samples to implement an anti-
aliasing technique, such as, but not limited to MSAA, to generate the colour for a particular
pixel. To perform this pixel filtering efficiently the GPU 100 of FIG. 1 has a dedicated unit,
which is referred to as the pixel back end 116, which is configured to receive the outputs of
fragment/pixel shader tasks from the ALU clusters 102, determine the individual pixel colours
therefrom and output the pixel colours to memory. In some cases, this may comprise, for
example, applying a box filter to the data received from the ALU clusters 102 to implement
MSAA or the like, or down-sampling the data received from the ALU clusters 102, and writing
the output of the filtering to memory. However, in other cases, this may simply comprise
outputting the received pixel. The pixel back end 116 may also be able to perform format
conversions. For example, the pixel back end 116 may receive colour values in one format
(e.g. 16-bit floating point format (FP16)) and output the colour values in another format (e.g.

8-bit fixed point or integer format (8INT)).

[0012] The embodiments described below are provided by way of example only and are not
limiting of implementations which solve any or all of the disadvantages of known methods

and hardware for performing texture filtering and pixel filtering.



SUMMARY

[0013] This summary is provided to introduce a selection of concepts that are further
described below in the detailed description. This summary is not intended to identify key
features or essential features of the claimed subject matter, nor is it intended to be used to

limit the scope of the claimed subject matter.

[0014] Described herein are input/output filter units for use in a graphics processing unit.
The input/output filter units include: a first buffer configured to store data received from, and
output to, a first component of the graphics processing unit; a second buffer configured to
store data received from, and output to, a second component of the graphics processing unit;
a weight buffer configured to store filter weights; a filter bank configurable to perform any of a
plurality of types of filtering on a set of input data, the plurality of types of filtering comprising
one or more texture filtering types and one or more pixel filtering types; and control logic
configured to cause the filter bank to: (i) perform one of the plurality of types of filtering on a
set of data stored in one of the first and second buffers using a set of weights stored in the

weight buffer, and (ii) store the results of the filtering in one of the first and second buffers.

[0015] A first aspect provides an input/output filter unit for use in a graphics processing unit,
the input/output filter unit comprising: a first buffer configured to store data received from,
and output to, a first component of the graphics processing unit; a second buffer configured
to store data received from, and output to, a second component of the graphics processing
unit; a weight buffer configured to store filter weights; a filter bank configurable to perform
any of a plurality of types of filtering on a set of input data, the plurality of types of filtering
comprising one or more types of texture filtering and one or more types of pixel filtering; and
control logic configured to cause the filter bank to: (i) perform one of the plurality of types of
filtering on a set of data stored in one of the first and second buffers using a set of weights
stored in the weight buffer, and (ii) store the results of the filtering in one of the first and

second buffers.

[0016] The filter bank may comprise one or more filter blocks, each filter block comprising a
plurality of arithmetic components that can be selectively enabled so as to cause the filter

bank to perform one of the plurality of types of filtering.
[0017] The plurality of arithmetic components may be configured so as to form a pipeline.

[0018] The plurality of arithmetic components may comprise a set of arithmetic components

that form an n input x n weight filter wherein n is an integer.
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[0019] The set of arithmetic components may comprise n multiplier components each of
which is configured to multiply an input value and a weight, and a plurality of adder
components than form an adder tree configured to produce the sum of the outputs of the n

multipliers.

[0020] The plurality of arithmetic components may further comprise n comparators each of
which is configured to compare an input value and provide the result of the comparison as an

input to the n input x n weight filter.

[0021] The plurality of arithmetic components may further comprise a scaling component
configured to receive the output of the n input x n weight filter and generate a scaled version

thereof
[0022] The filter bank may comprises a plurality of filter blocks.

[0023] The control logic may be configured to cause the filter bank to perform one of the
plurality of types of filtering on a set of data stored in one of the first and second buffers using
a set of weights stored in the weight buffer by causing one of the filter blocks to perform a
first portion of the type of filtering in a first pass of the filter block and a second portion of the

type of filtering in a second pass of the filter block.

[0024] Temporary data may be generated during at least one of the first pass and the

second pass which may be stored in one of the first and second buffers.

[0025] The one or more types of texture filtering may comprise one or more of bilinear

filtering, trilinear filtering, anisotropic filtering and percentage closer filtering.

[0026] The one or more types of pixel filtering may comprise one or more of down-sampling,

up-sampling and multiple sampling anti aliasing box filtering.
[0027] The filter bank may be further configurable to perform texture blending.

[0028] The filter bank may be further configurable to perform a set of convolution operations

as part of processing a convolution layer of a neural network.

[0029] The input/output filter unit may further comprise a texture address generator
configured to generate an address for one or more relevant texels for performing a type of

texture filtering for a fragment or a pixel.
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[0030] The input/output filter unit may further comprise a weight generator configured to
generate the set of weights for performing one or more types of filtering and store the

generated weights in the weight buffer.

[0031] The first component may be an arithmetic logic unit cluster configured to perform

shading tasks and the second component may be memory.

[0032] The control logic may be configured to store the results of the filtering in the other of

the first and second buffers.
[0033] The input/output filter unit may be embodied in hardware on an integrated circuit.

[0034] A second aspect provides a method of controlling an input/output filter unit comprising
a first buffer, a second buffer, a weight buffer and a configurable filter bank, the method
comprising: receiving information identifying a filtering task, the information identifying the
filtering task comprising information identifying a set of data stored in one of the first and
second buffers, a set of weights stored in the weight buffer, and a type of filtering of a
plurality of types of filtering, wherein the plurality of types of filtering comprises one or more
types of texture filtering and one or more types of pixel filtering; causing the configurable filter
bank to: perform the identified type of filtering on the identified set of data using the identified

set of weights; and store results of the filtering in one of the first and second buffers.

[0035] The configurable filter bank may comprise one or more filter blocks, each filter block
comprising a plurality of arithmetic components; and causing the configurable filter bank to
perform the identified type of filtering on the identified set of data using the identified set of
weights may comprise selectively enabling one or more of the plurality of arithmetic
components of a filter block of the one or more filter blocks to perform the identified type of

filtering.

[0036] A third aspect provides a graphics processing unit comprising the input/output filter

unit of the first aspect.

[0037] The input/output filter units and graphics processing units described herein may be
embodied in hardware on an integrated circuit. There may be provided a method of
manufacturing, at an integrated circuit manufacturing system, an input/output filter unit or a
graphics processing unit described herein. There may be provided an integrated circuit
definition dataset that, when processed in an integrated circuit manufacturing system,
configures the system to manufacture the input/output filter unit or the graphics processing

unit. There may be provided a non-transitory computer readable storage medium having
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stored thereon a computer readable description of an input/output filter unit or a graphics
processing unit that, when processed in an integrated circuit manufacturing system, causes
the integrated circuit manufacturing system to manufacture an integrated circuit embodying

the input/output filter unit or the graphics processing unit.

[0038] There may be provided an integrated circuit manufacturing system comprising: a non-
transitory computer readable storage medium having stored thereon a computer readable
description of an input/output filter unit or a graphics processing unit described herein; a
layout processing system configured to process the computer readable description so as to
generate a circuit layout description of an integrated circuit embodying the input/output filter
unit or the graphics processing unit; and an integrated circuit generation system configured
to manufacture the input/output filter unit or the graphics processing unit according to the

circuit layout description.

[0039] There may be provided computer program code for performing a method as
described herein. There may be provided non-transitory computer readable storage medium
having stored thereon computer readable instructions that, when executed at a computer

system, cause the computer system to perform the methods as described herein.

[0040] The above features may be combined as appropriate, as would be apparent to a
skilled person, and may be combined with any of the aspects of the examples described

herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0041] Examples will now be described in detail with reference to the accompanying

drawings in which:
[0042] FIG. 1 is a block diagram of a first example graphics processing unit;

[0043] FIG. 2 is a block diagram of a second example graphics processing unit comprising

an input/output filter unit;

[0044] FIG. 3 is a block diagram of an example implementation of the input/output filter unit

of FIG. 2 comprising one or more filter blocks;
[0045] FIG. 4 is a schematic diagram illustrating bilinear filtering;

[0046] FIG. 5 is a block diagram of an example implementation of a filter block of FIG. 3;
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[0047] FIG. 6 is a flow diagram of an example method of controlling the input/output filter unit
of FIG. 3;

[0048] FIG. 7 is a block diagram of an example computer system in which the input/output

filter units and/or the graphics processing units described herein may be implemented; and

[0049] FIG. 8 is a block diagram of an example integrated circuit manufacturing system for
generating an integrated circuit embodying an input/output filter unit and/or a graphics

processing unit described herein.

[0050] The accompanying drawings illustrate various examples. The skilled person will
appreciate that the illustrated element boundaries (e.g., boxes, groups of boxes, or other
shapes) in the drawings represent one example of the boundaries. It may be that in some
examples, one element may be designed as multiple elements or that multiple elements may
be designed as one element. Common reference numerals are used throughout the figures,

where appropriate, to indicate similar features.

DETAILED DESCRIPTION

[0051] The following description is presented by way of example to enable a person skilled
in the art to make and use the invention. The present invention is not limited to the
embodiments described herein and various modifications to the disclosed embodiments will

be apparent to those skilled in the art. Embodiments are described by way of example only.

[0052] The inventor has identified that the texture unit 114 and pixel back end 116 of FIG. 1
perform similar filter, or filter-like operations on similar data, but are separate hardware units.
This creates an inefficiency since it duplicates hardware which unnecessarily increases the
cost and complexity of the GPU. This can be addressed by replacing the texture unit 114
and the pixel back end 116 with a single input/output (1/O) filter unit that can be dynamically
configured to perform texture filtering, pixel filtering, or both texture filtering and pixel filtering.
Not only does this avoid the duplication of filter logic, but it can increase the throughput of the
GPU and improve load balancing when there are more texture filtering tasks than pixel
filtering tasks or vice versa. For example, it allows all of the /O filter unit resources to be
used for texture filtering when there is no pixel filtering to be done instead of leaving the pixel
back end 116 idle. Similarly, it allows all of the /O filter unit resources to be used for pixel
filtering when there is no texture filtering to be performed instead of leaving the texture unit

114 idle or unused. Furthermore, the connections (e.g. wires) between the ALU clusters 102
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and other components are expensive and thus replacing two units connected to the ALU
clusters 102 with one allows the number of connections (e.g. wires) from the ALU clusters
102 to be reduced.

[0053] Accordingly, described herein are input/output filter units, for use in a graphics
processing unit, which can perform both texture filtering, such as bilinear filtering and trilinear
filtering; and pixel filtering, such as filtering to implement MSAA or other anti-aliasing
techniques, down-sampling and/or up-sampling. Specifically, the input/output filter units
described herein comprise a filter bank that comprises one or more filter blocks. Each filter
block can be dynamically configured to perform one of a plurality of types of filtering on input
data. The plurality of types of filtering include one or more types of texture filtering and one
or more types of pixel filtering. The input data may be received from the ALU clusters and
the result of the filtering may be output to memory; or the input data may be received (or
read) from memory and the result of the filtering may be output to an ALU cluster for use as
an input to a task (e.g. fragment/pixel shader task) executed by the ALU cluster. In some
cases, there are at least two filter blocks so multiple filtering tasks can be performed in

parallel.

[0054] Reference is now made to FIG. 2 which illustrates an example GPU 200 that
comprises an input/output filter unit 202. The GPU 200 of FIG. 2 is similar to the GPU 100 of
FIG. 1 in that it comprises a plurality of ALU clusters 102, a vertex data master 104, a pixel
data master 106, a compute data master 108, a micro controller 110 and a scheduler 112
which operate as described above with respect to FIG. 1. However, instead of comprising a
separate texture unit 114 and pixel back end 116 like the GPU 100 of FIG. 1, the GPU 200 of
FIG. 2 comprises a single input/output (I/O) filter unit 202 that can perform texture filtering
and pixel filtering. Specifically, the input/output filter unit 202 is capable of performing (i)
texture filtering on texels read from memory to generate data (e.g. a texture colour) which
can be used as an input to a task executed by an ALU cluster, and (ii) pixel filtering on
pixels/samples (e.g. colour values) generated by the ALU cluster 102. For example, the
input/output filter unit 202 may comprise a filter bank that comprises one or more filter blocks
each of which can be dynamically configured to apply one of a plurality of types of filtering to
input data. An example implementation of the input/output filter unit 202 will be described

with respect to FIG. 3.

[0055] Reference is now made to FIG. 3 which illustrates an example implementation of the
input/output filter unit 202 of FIG. 2. In this example, the input/output filter unit 202

comprises a first data buffer, which may be referred to as the ALU-side buffer 302; a second
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data buffer, which may be referred to as the memory-side buffer 304; a filter bank 306; and a
weight buffer and control logic unit 308. In some cases, the input/output filter unit 202 may

also comprise a texture address generator 310 and/or a weight generator 312.

[0056] The ALU-side buffer 302 is configured to temporarily store data received from, and
sent to, the ALU clusters 102. Data stored in the ALU-side buffer 302 may be used as an
input to a filtering task performed by the filter bank 306 or may be the output of a filtering task
performed by the filter bank 306. For example, the ALU-side buffer 302 may be configured
to store: (i) the results of pixel shader tasks received from the ALU clusters 102 which are
used as an input to a pixel filtering task performed by the filter bank 306, and (ii) the result of

a texture filtering task performed by the filter bank 306.

[0057] The memory-side buffer 304 is configured to temporarily store data received from,
and sent to, memory. Data stored in the memory-side buffer 304 may be used as an input to
a filtering task performed by the filter bank 306 or may be the result of a filtering task
performed by the filter bank 306 which may be written out to memory. For example, the
memory-side buffer 304 may be configured to store (i) the result of a pixel filtering task
performed by the filter bank 306 which is sent to memory (not shown); and (ii) texels read
from memory which are used as an input to a texture filtering task performed by the filter
bank 306. Accordingly, the ALU-side buffer 302 and the memory-side buffer 304, which
may be collectively referred to as the data buffers, store the input to, and results of, filtering
tasks performed by the filter bank 306.

[0058] In addition to storing the inputs to, and results of, filtering tasks performed by the filter
bank 306, the data buffers 302 and 304 may also be used to store intermediate data
produced during a filtering task performed by the filter bank 306. For example, as described
in more detail below, some filtering tasks may require multiple passes of the filter bank 306 to
complete the task. Specifically, the filter bank 306 may only be capable of performing a
certain number of operations at once so complex filtering may be performed over multiple
passes through the filter bank 306. In these cases, one or more passes through the filter
bank may produce intermediate data that is used as the input to a subsequent pass. That
intermediate data may be stored in the ALU-side buffer 302 or the memory-side buffer 304
depending, for example, on which of the buffers provided the input to that pass. For
example, if the input to the pass of the filter bank 306 was provided by the memory-side
buffer 304, the intermediate data generated by that pass may be stored in the ALU-side
buffer 302; and if the input to the pass of the filter bank 306 was provided by the ALU-side
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buffer 302, the intermediate data generated by that pass may be stored in the memory-side
buffer 304.

[0059] The filter bank 306 is logic that can be dynamically configured to perform any of a
plurality of types of filtering on a set of input data. Performing a type of filtering on a set of
input data may be referred to herein as performing a filtering task. The plurality of types of
filtering include at least one type of texture filtering and at least one type of pixel filtering.
Types of texture filtering include, but are not limited to bilinear filtering, trilinear filtering,
anisotropic filtering and percentage closer filtering (PCF). The filter bank 306 may support
any combination of these types of texture filtering. Types of pixel filtering include, but are not
limited to down-sampling, up-sampling and box filtering to implement anti-aliasing such as

MSAA. The filter bank 306 may support any combination of these types of pixel filtering.

[0060] The filter bank 306 may comprise one or more filter blocks 314 each of which can be
configured to perform any of the plurality of types of filtering. Each filter block 314 may
comprise a plurality of fixed arithmetic components which can be individually enabled or
disabled so as to cause the filter block 314 to perform one of the supported types of filtering.
For example, each filter block 314 may comprise a basic filter (e.g. a 2x2 filter) that can
generate a weighted sum of a set of inputs; and one or more other arithmetic components
which may be selectively enabled to perform more complex filtering. As described in more
detail below, the basic filter may comprise n multiplication components (wherein n is an
integer greater than one) which are each configured to multiply an input value and a filter
weight, followed by a plurality of adder components that form an adder tree that produces the
sum of the multiplication component outputs. Examples of the other arithmetic components
include, but are not limited to, a compare component which compares two values, a
minimum component which calculates the minimum of a set of values, a maximum
component which calculates the maximum of a set of values, a scale/offset component which
scales or applies an offset to a value, an addition component which produces the sum of two
values, a subtract component which produces the difference of two values, and a shift
component which shifts an input value by a certain value. An example implementation of a
filter block 314 is described below with respect to FIG. 5.

[0061] As described above, in bilinear filtering the four nearest texels to the relevant position
in a texture (e.g. the mapped texture co-ordinates) are read and are combined by a weighted
average according to distance to produce the texture colour for a fragment. Accordingly,
bilinear filtering may be performed by the basic 2x2 filter by providing the desired texels as

the input data and using filter weights that represent the distance between the texels and the
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relevant position in the texture. Similarly, as described above, where a pixel is over sampled
(e.g. there is more than one sample per pixel — e.g. there are a plurality of sub-samples) then
the sub-samples (colour values) generated by a fragment/pixel shader which relate to a
particular pixel may be combined (using a reconstruction filter) to determine the colour of the
pixel. One common reconstruction filter is a one-pixel wide box filter which essentially
generates the average of all the sub-samples corresponding to (or within) a pixel. Where
there are four sub-samples per pixel then box filtering may be performed by a combination of
the basic 2x2 filter and a shift component by providing the sub-samples as the input data to
the basic 2x2 filter and using filter weights of one, and then dividing the output by 4 (which

may be accomplished by a shift operation).

[0062] As described above, each filter block 314 may only be able to perform a certain
number and/or combination of arithmetic operations at a time. These limitations may be
imposed by the hardware used to implement a filter block 314. However, some filtering
tasks, may require more than this number and/or combination of arithmetic operations. For
example, a filter block may comprise hardware that can calculate the weighted sum of four
inputs, but a filtering task may require the calculation of the weighted sum of a first set of
inputs and the weighted sum of a second set of inputs. Accordingly, the same filter block
may be used multiple times to implement or perform a more complex filtering task. For
example, the filter block may be first used to calculate the weighted sum of the first set of
inputs, and then used to calculate the weighted sum of the second set of inputs. Each time a
filter block is used in relation to the same task is referred to here as a pass, or a hardware
pass, of the filter block. Accordingly, each pass of a filter block 314, the filter block 314
receives input data from one of the data buffers 302, 304 and performs one or more
arithmetic operations on the received data. In some cases, each pass may take one cycle
(e.g. clock cycle) to complete. However, in other cases a pass may take more than one cycle

(e.g. clock cycle).

[0063] For example, trilinear filtering interpolates between the results of two different bilinear
filtering operations —i.e. the result of bilinear filtering performed on the two mipmaps nearest
to the position of interest (e.g. the position of the relevant pixel or sample) are combined.
Where a filter block 314 can perform one bilinear filter operation at a time, then during a first
pass of the filter block 314 the filter block 314 may be configured to perform bilinear filtering
on the first mipmap, and during a second pass of the filter block 314 the filter block 314 may
be configured to perform bilinear filtering on the second mipmap and interpolate between the
outputs of the two bilinear filter operations. It will be evident to a person of skill in the art that

these are examples of how different filtering techniques or methods may be implemented in
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multiple passes, and the number of passes to implement a filtering method or technique is
dependent on the components (e.g. basic filter and arithmetic components) and capabilities

of each filter block.

[0064] In some cases, the arithmetic components of each filter block 314 may be configured
so that each filter bank can perform at least bilinear filtering, trilinear filtering, anisotropic

filtering, PCF filtering and box filtering to implement MSAA wherein:

o Dbilinear filtering can be performed at full speed (e.g. one bilinear filtering output can

be generated each clock cycle);

¢ trilinear filtering can be performed at half speed (e.g. one ftrilinear filter output can be

generated every two clock cycles);

e anisotropic filtering can be performed at 1/x" speed where x is the number of samples
(e.g. an anisotropic filter with sixteen samples would run 16 times slower than bilinear

filtering); and

e box filtering to implement MSAA wherein there are 4 samples per pixel can be
performed a full speed (e.g. one MSAA box filter output can be generated each clock

cycle).

[0065] In general, the more filter blocks 314 the more filtering tasks that can be performed in
parallel by the filter bank. The number of filter blocks 314 may be selected so as to achieve
a desired performance level. In some cases, the number of filter blocks 314 may be selected
to provide a similar level of performance (e.g. the same peak filter rate) as the texture unit
114 and the pixel back end 116 that the input/output filter unit 202 is replacing. For example,
if the texture unit 114 has a peak rate of 4 outputs per clock cycle and the pixel back end 116
has a peak rate of 4 pixels (colour values) per clock cycle and each filter block 314 has a
peak rate of 1 texture or one pixel filter output per cycle then the filter bank 306 may
comprise eight filter blocks 314 so that in any cycle four of the filter blocks 314 can be used
to perform a texture filtering task and four of the filter blocks 314 can be used to perform a
pixel filtering task. However, in other cases, the number of filter blocks 314 may be selected
so as to provide a peak filter rate that is less than the peak filter rate provided by the texture
unit 114 and the pixel back end 116 (e.g. half the rate). For example, if the texture unit 114
has a peak rate of four outputs per clock cycle and the pixel back end 116 has a peak rate of

four output pixels (colour values) per clock cycle, then the filter bank 206 may comprise only
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four filter blocks 314. This may reduce the performance in a small number of cases, but may

have little impact on the overall performance, yet it may produce area and/or power savings.

[0066] The weight buffer and control logic unit 308 comprises a weight buffer for storing the
filter weights for the filtering tasks and control logic for controlling the filter blocks 314 to
perform filtering tasks. As described in more detail below, the filter weights stored in the
weight buffer may be generated by a weight generator such as the weight generator 312 of
FIG. 3 or they may be loaded from memory. In some cases, the weights may not be
immediately removed from the weight buffer after they have been used for a filtering task to
allow the filter weights to be reused for a subsequent filtering task. In other words, in some
cases, the filter weights may be cached. In some cases, a filtering task may require one or
more additional parameters. For example, if a shift is to be performed as part of a filtering
task the amount of the shift may be a parameter that is provided to the filter block 314. In

these cases, the additional parameters may also be stored in the weight buffer.

[0067] The control logic is configured to cause the filter blocks 314 to perform filtering tasks.
Each filtering task is defined by, or comprises, input data (which is stored in one of the data
buffers 302, 304), filter weights (which are stored in the weight buffer and control logic unit
308), and a type of filtering (which is one of a plurality of supported types of filtering). As
described above, in some cases, a filtering task may also comprise additional parameters
(which may also be stored in the weight buffer). The control logic is configured to provide the
appropriate input data from the appropriate data buffer 302, 304, and the appropriate filter
weights (and optionally other parameters) from the weight buffer to a filter block 314 and
cause that filter block 314 to perform a specific type of filtering. The control logic may be
configured to cause a filter block 314 to perform a specific type of filtering by, for example,
causing the filter block 314 to enable and disable a specific combination of the arithmetic
components therein. The control logic may be configured to cause a filter block to perform a

specific type of filtering by sending the filter block one or more control signals.

[0068] In some cases, the input/output filter unit 202 may also comprise a texture address
generator 310. As described above, texture filtering generally comprises obtaining or
reading one or more texels of a texture near a position of interest in the texture and
performing filtering on the obtained texels. The texture address generator 310 may be
configured to generate the address of the relevant texels for a position of interest in the
texture. In some cases, the texture address generator 310 may be configured to receive
information identifying the position (e.g. the x, y co-ordinates) of the relevant pixel or

fragment in the rendering space and map the received position (e.g. x, y co-ordinates) to a
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set of u, v co-ordinates, which may be referred to as the mapped texture co-ordinates. The
mapped texture co-ordinates identify a specific position in the texture which may be referred
to as the relevant position or the position of interest in the texture. In other cases, the texture
address generator 310 may simply receive a set of u,v co-ordinates defining the position of
interest as an input. For example, each vertex may be associated with a set of u,v co-
ordinates and when a primitive is rasterized (e.g. converted into one or more fragments) the
u,v co-ordinates of the primitive’s vertices may be interpolated to generate a set of u,v co-

ordinates for the fragment.

[0069] In either case, the u,v co-ordinates defining the position of interest in the texture are
used to identify the relevant texels and the addresses thereof (e.g. the u,v co-ordinates
thereof). The relevant texels for a position of interest and the number of relevant texels may
be based on the specific type of texture filtering to be performed. Accordingly, in addition to
receiving information identifying the position of interest (or receiving information from which
the position of interest can be generated) the texture address generator 310 may also be
configured to receive information identifying the type of texture filtering to be performed. For
example, for bilinear filtering only the four closest texels to the position of interest in the
texture are obtained. However, for trilinear filtering the texels forming the two mipmaps

nearest the point of interest are obtained.

[0070] The texture addresses (e.g. u, v co-ordinates) generated by the texture address
generator 310 may then be used to obtain or read the relevant texels from memory. The
generated texture addresses (e.g. u, v co-ordinates) may also be provided to a weight
generator (e.g. weight generator 312) for generating the appropriate filter weights for those
texels. In other cases, the input/output filter unit 202 may not comprise a texture address
generator and the texture addresses may be generated by another component or unit, such

as, but not limited to, an ALU cluster 102.

[0071] In some cases, the input/output filter unit 202 may also comprise a weight generator
312. The weight generator 312 is configured to generate the filter weights for a filtering task.
The number and/or calculation of the filter weights may be based on the type of filtering to be
performed. Accordingly, the weight generator may be configured to receive information
identifying the filtering method or type of filtering to be performed. For texture filtering the
weight generator 312 may be configured to also receive information identifying the location of
the relevant texels (e.g. the texture addresses generated by the texture address generator
310) in the texture and calculate the weights for the identified texture filtering method based

thereon. For example, for bilinear filtering or trilinear filtering the weight generator 312 may
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be configured to generate filter weights based on the distance between the relevant texels
and the position of interest in the texture. For example, as shown in FIG. 5, if the closest
texels (the texels in the smallest mipmap) to a point of interest x are c0, ¢1, c2 and ¢3, the
result of bilinear filtering applied to those texels can be expressed as ¢ = (1-t)*(1-s)*c0 + (1-
t)*s*c1 + t*(1-s)*c2 + t*s*c3. Accordingly, the filter weight for the texels c0, ¢1, ¢2 and ¢3 are
w0, w1, w2 and w3 respectively wherein wO=(1-t)*(1-s), w1=(1-t)*s, w2=t*(1-s) and w3 = t*s.
It will be evident that this is an example only and that a person of skill in the art would

understand how to generate the filter weights for different types of filtering.

[0072] In some cases, the weight generator 312 may only be able to generate filter weights
for texture filtering. In other cases, the weight generator 312 may be able to generate filter
weights for one or more other types of filtering, such as, fixed weight filtering. A fixed weight
filter type is a filter that always uses the same weights. Examples of fixed weight types of
filtering include, but are not limited to, box filtering, Gaussian filtering and tent filtering (which
may also be referred to as triangle filtering). In contrast, bilinear filtering uses different filter
weights depending on the data to be filtered so bilinear filtering is not a type of fixed weight
filtering. The types of filtering for which the weight generator 312 can generate filter weights
may only be a subset of the supported types of filtering (i.e. fewer than all of the supported
types of filtering). In some cases, the types of filtering that the weight generator 312 may

generate filter weights for may be hard-coded or may be dynamically configurable.

[0073] The filter weights generated by the weight generator 312 may be output and stored in
the weight buffer and control logic unit 308. In other cases, the input/output filter unit 202
may not comprise a weight generator and the filter weights may be generated by another
component or unit, such as, but not limited to an ALU cluster 102, or they may be retrieved

from memory.

[0074] In FIG. 3 there are data paths 316 between the filter bank 306 and the ALU-side
buffer 302, and data paths 318 between the filter bank 306 and the memory-side buffer 304,
to allow the filter bank 306 to write data to, and read data from, the data buffers 302, 304. In
some cases, the data paths 316, 318 between the filter bank 306 and the data buffers 302,
304 may be sufficiently wide to allow all of the filter blocks 314 to be reading and/or writing
data to the same data buffer 302, 304 at the same time so as to allow all the filter blocks 314
to operate in parallel without stalling. The minimum size of the data paths 316, 318 to allow
all of the filter blocks 314 to be reading and/or writing data to the same data buffer 302, 304
at the same time may be based on the format of the input and output data and the number of

filter blocks 314. In some cases, each texel may be in an RGBA format which comprises a
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value for each of the red, green, blue and opacity channels. Where each channel value is a
32-bit floating point value each texel will be 128 bits. Where four texels can be read and
processed in a texture filtering task and eight texture filtering tasks can be performed in

parallel then the data path may be at least 128 x 4 x 8 = 4096 bits wide.

[0075] In FIG. 3 there are also data paths 320, 322 between the data buffers 302, 304 and
the ALU cluster(s) 102 and memory. In some cases, these data paths 320, 322 may be
narrower than the data paths 316, 318 between the data buffers 302, 304 and the filter bank
306. This is because there is likely to be less data transferred between the ALU cluster(s)
102 and the ALU-side buffer 302, and between memory and the memory-side buffer 304,
than between the data buffers 302, 304 and the filter bank 306 due to re-use of data between
filtering tasks — e.g. re-use of neighbouring values when running sliding window filters. For
example, each bilinear texture filtering task for a fragment may read four texels from the
memory-side buffer 304, however bilinear texture filtering tasks for adjacent fragments may
use some of the same texels so four texels may not have to be read from memory for each
bilinear texture filtering task. In other words, although eight texels may be read from the
memory-side buffer 304 to perform two bilinear texture filtering tasks, less then eight texels
may be read from memory for the two bilinear texture filtering tasks since the two tasks may
use some of the same texels. Accordingly, less data needs to be read from memory than

from the memory side buffer to execute the two bilinear texture filtering tasks.

[0076] Reference is now made to FIG. 5 which illustrates an example implementation of a
filter block 314 of FIG. 3. The example filter block 314 is implemented as a pipeline of
arithmetic components. The pipeline comprises five stages numbered 0 to 4. The first
pipeline stage (STAGE 0), which may be referred to as the compare stage, comprises four
compare components 502,, 5021, 502;, and 502;. The " compare component 502, 502,
5022, and 502 is configured to receive an input data value D/ from one of the data buffers
302, 304, and a reference value REF/ from the weight buffer and control logic unit 308, and
compare the input data value Dj to the reference value and output a ‘0’ or 1’ based on the
comparison. For example, in some cases a compare component 502,, 5021, 502;, and 502;
may output a ‘1’ if the data value Di is larger than the reference value REF/, and a ‘0’
otherwise. However, it will be evident to a person of skill in the art that this is an example
only and that in other examples a compare component 5025, 5024, 502,, and 502; may
output a ‘0’ if the data value Dij is larger than the reference value REF/, and a ‘1’ otherwise.
The compare stage may be used to implement PCF filtering. Specifically, in PCF filtering the
input data is first compared against a reference value before it is filtered. In PCF filtering

each input data value is compared against the same reference value (e.g. REFO = REF1 =
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REF2 = REF3), but in other types of filtering different input data values may be compared

against different reference values.

[0077] The second pipeline stage (STAGE 1), which may be referred to as the multiply stage
or the multiplication stage, comprises four multiplication components 5044, 504+, 504, and
504;. The i multiplication component 5044, 504+, 504,, and 504 is configured to receive
either the input data value Di (if the compare stage or the corresponding compare
component is disabled) or the output of the corresponding compare component 502, 5024,
502, and 5023, and a filter weight Wi from the weight buffer, and generate and output the
product of the inputs DWi. For example, where a multiplication component 504i receives the
original input data value Di and a weight Wi then the multiplication component 504
calculates and outputs Di * Wi. The product of the inputs DWi may be referred to as the

weighted data point.

[0078] The third pipeline stage (STAGE 2), which may be referred to as the first adder stage,
comprises two adder components 506¢ and 5061. Each adder component 506, and 506+
receives two of the weighted data points DWi, and calculates and outputs the sum of the
received weighted data points. For example, the first adder component 506, of the third
pipeline stage receives the weighted data points DWO and DW1 generated by the first and
second multiplication components 504, and 504, of the second pipeline stage, and calculates
and outputs DWO + DW1; and the second adder component 5061 of the third pipeline stage
receives the weighted data points DW2 and DW3 generated by the third and fourth

multiplication components 504, and 5045 and calculates and outputs DW2 + DW3.

[0079] The fourth pipeline stage (STAGE 3), which may be referred to as the second adder
stage, comprise a single adder component 508 that receives the outputs of the adder
components 506, and 506, in the third pipeline stage, and calculates and outputs the sum
thereof. It can be seen that together the third and fourth pipeline adder stages form an adder
tree that produces the sum of the multiplication component 5044, 504+, 504,, and 504,
outputs (i.e. a sum of the weighted data points - DWO0 + DW1 + DW2 + DW3). It can also be
seen that together the second, third and fourth pipeline stages (STAGE 1, STAGE 2, STAGE
3) form a filter unit that calculates the weighted sum of four values. The second, third and
fourth pipeline stages (STAGE 1, STAGE 2, STAGE 3) can alternatively be described as
implementing a convolution engine or convolution operation between four input data points

and four filter weights.
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[0080] The fifth pipeline stage (STAGE 4), which may be referred to as the scale/offset
stage, comprises a scale/offset component 510 which is configured to receive the output of
the fourth pipeline stage (STAGE 3) and apply a scale or an offset to the received value to
generate a filtered output F1. In some cases, the scale or offset applied to the received
value by the scale/offset component 510 may be configurable. For example, a scale or offset
value may be stored in memory (e.g. in the weight buffer and control logic unit 308) and
provided to the filter block 314 as part of the control data. The same offset or scale may be
used for a particular texture - type of filtering combination. For example, a scale of 2 may be

used for any bilinear filtering task related to a particular texture.

[0081] The filtered output F1 may be stored in one of the data buffers 302, 304. In some
cases, the filtered output F1 may alternatively or additionally be provided as an input to the
filter block 314 in the next cycle (e.g. next clock cycle). For example, there may be a
feedback path between the output of the pipeline and the input of the pipeline. For example,
there may be a feedback path (not shown) between the scale/offset component 510 output
and, for example, the input DO to the first compare component 502,. Then, if the filtered
output F1 is to be used in the next pass of the filter block 314, the filtered output F1 is
provided to the first compare component 502, via the feedback path. This may save having
to write the filtered output F1 to memory and subsequently read F1 from memory for the next

pass.

[0082] The weight buffer and control logic unit 308 is configured to control the filter block 314
so as to perform or implement a specific filter type. This may comprise selectively enabling
and/or disabling the arithmetic components (5020, 502+, 5022, 5023, 5044, 5044, 5042, 504,
506,, 506+, 508, 510) of the filter block 314. The weight buffer and control logic unit 308 may
be able to enable or disable whole stages (e.g. all the compare components) and/or enable
or disable individual arithmetic components (e.g. a single compare component). For
example, to cause the filter block 314 to implement a bilinear filtering task or a box filtering
task the weight buffer and control logic unit 308 may be configured to disable the compare
stage (e.g. all the compare components 502, 5021, 5022, 5023) and enable all of the other
stages (e.g. all of the other components 504, 5044, 504,, 504;, 5064, 5061, 508, 510). The
difference between a bilinear filtering task and a box filtering task is that for bilinear filtering
each of the weights (W0, W1, W2, W3) may be different whereas for box filtering all of the
weights are the same (e.g. 1). In another example, to cause the filter block 314 to implement
PCF filtering the weight buffer and control logic unit 308 may be configured to enable all of
the arithmetic components (5020, 5021, 5022, 5023, 5040, 5041, 5045, 5043, 5060, 5064, 508,
510).
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[0083] In some cases, the weight buffer and control logic unit 308 may be in communication
with each of the arithmetic components (5024, 5021, 5022, 5023, 5040, 504+, 504,, 5043, 506,
5061, 508, 510) of the filter block 314 and may be able to enable or disable any of the
arithmetic components by sending an enable or disable signal respectively to that arithmetic
component. In other cases, the filter block 314 may comprise an internal control unit (not
shown) that is in communication with the weight buffer and control logic unit 308 and each of
the arithmetic components, and the weight buffer and control logic unit 308 is configured to
send a control signal to the internal control unit which indicates which arithmetic components
are to be enabled and which are to be disabled, and the internal control unit enables and
disables the arithmetic components accordingly. As described above, in some cases, a
filtering task may be performed over multiple passes of a filter block 314. |n these cases, the
weight buffer and control logic unit 308 may be configured to treat each pass as a separate
control item. Specifically, the weight buffer and control logic unit 308 may be configured to

generate a separate set of control signals for each pass.

[0084] In some cases, the weight buffer and control logic unit 308 may receive information
(e.g. state information) and/or one or more control signals (e.g. instructions) which cause the
weight buffer and control logic unit 308 to cause the filter bank 306 to perform a particular
filtering task. The information or control signals which cause the weight buffer and control
logic unit 308 to cause the filter bank 306 to perform a particular filtering task may be
generated, for example, by the ALU clusters 102. For example, in some cases, an ALU
cluster 102 may be configured to, as part of executing a pixel shader task, issue an
instruction or a set of instructions to the input/output filter unit 202 which cause the
input/output filter unit to perform a particular texture filtering task for a fragment/pixel and
return the results of the texture filtering task to the ALU cluster 102; and/or when an ALU
cluster 102 completes a pixel shader task the ALU cluster may be configured to issue an
instruction or set of instructions which cause the input/output filter unit 202 to perform a pixel
filtering task on the output of the pixel shader task. In other cases, instead of issuing
instructions to the input/output filter unit 202 to cause a filtering task to be performed, the
ALU cluster 102 may be configured to store, alongside the data to be filtered, state data,
which when read by the weight buffer and control logic unit 308, causes the weight buffer
and control logic unit 308 to cause the filter bank 306 to perform a filtering operation on the

stored data.

[0085] While the example filter block 314 of FIG. 5 is configured to implement a 4 input data
X 4 weight filter, it will be evident to a person of skill in the art that this is an example only and

that other example filter blocks may implement other size filters (e.g. a 2 input data x 2
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weight filter or an 8 input data x 8 weight filter). It is noted, however, that using a 4 input data
x 4 weight filter as the base filter allows bilinear filtering of four texels, and RGBA pixel (e.g.
pixels comprises of four values) processing to be performed efficiently which are common
tasks performed by the texture unit 114 and pixel back end 116 of FIG. 1 respectively. Itis
also noted that larger filters may be implemented via multiple passes of the filter block 314.

[0086] It will be evident to a person of skill in the art that the combination and arrangement of
arithmetic components shown in FIG. 5 is merely an example and that in other examples a
filter block 314 may comprise additional, different and/or a different arrangement of,
arithmetic components. For example, in some cases, the filter block 314 may further
comprise a mix/blend component (not shown) which is configured to mix or blend the output
of the scale/offset component with other data, such as data from a previous pass of the filter
block 314.

[0087] In some cases, to make the input/output filter unit 202 more useful and/or more
versatile the filter blocks 314 may be capable of performing additional operations that may
not have typically been performed by the texture unit 114 or the pixel back end 116 of FIG. 1
but are similar to the operations performed thereby. Specifically, in addition to being used for
vertex and pixel processing the filter blocks 314 may also be able to perform generalised
compute tasks or functions such as, but not limited to, image processing, implementing
camera ISP algorithms, and neural network processing. In particular, since neural network
operations are quite similar to filter operations (e.g. they often involve performing a
convolution operation which involves calculating the weighted sum of a set of inputs), the
filter blocks may also be configured to perform neural network operations. In addition to
increasing the usefulness and/or versatility of the input/output filter unit 202 this may
eliminate the need for a separate neural network accelerator in a GPU. Other similar
functions and operations which may be suitable for being performed via the input/output filter
unit 202 may be other filters that use convolutions or weighted sums. Such operations
include, but are not limited to, colour space conversion, gaussian filters, edge aware

filters/scalers (including advanced edge-aware MSAA filters).

[0088] In some cases, the filter blocks 314 may be configured so as to be able to perform
blending. Specifically, trilinear filtering, and by extension anisotropic filtering, is similar in
operation to sampling multiple textures and blending those layers together. Specifically,
trilinear filtering takes the output of bilinear filtering performed on two different mipmap levels
and blends these results together using a weighted mix (e.g. (1-a) x Csource + a x Cdest),

which is a common blending mode implemented by the ALU clusters. Accordingly, the filter
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blocks 314 may be configured so as to be capable of performing simple texture blending, as
used in graphic user interfaces (GUIs) and composition, which may comprise blending layers
without complex arithmetic. This may increase the complexity of the filter blocks 314 but
may allow blending to be performed as a back end operation as data is written from the ALU
clusters to memory (e.g. tile buffers). This may allow the GPU to enter a much lower power
mode where the ALU clusters do not have to be enabled when blending a couple of

composition of blend surfaces.

[0089] In some cases, the filter blocks 314 may also be configured to perform format
conversion. For example, the filter blocks 314 may be able to convert an RGB colour (which
has a value for the red channel R, a value for the green channel G, and a value for the blue
channel B) to YUB (which stores the brightness (luminance) as the Y value, and the colour

(chrominance) as U and V values) or vice versa by using a set of hard coded weights.

[0090] In the past, the data (texels) input to the texture unit 114 was typically in a different
format from the data (pixels/samples) output by the ALU clusters so it would have been
difficult to create a generic unit that could process both data formats. However, now both
types of data are often in a 16-bit floating point format. Accordingly, in some cases the filter
bank 306 and the filter blocks 314 thereof may be configured to support 16-bit floating point
operations. However, in other cases, the filter bank 306 and the filter blocks 314 thereof may
be configured to support a plurality of data or number formats. The plurality of data formats
supported by the filter bank 306 and the filter blocks thereof may include 32-bit floating point
format (e.g. R16G16B16A16_FLOAT), 8-bit fixed point or integer format (e.g. RGBA8888)
and 10-bit fixed point of integer format (e.g. R10G10B10A2) and/or one more smaller formats
such as, but not limited to, 444, 565, and 5551. These smaller formats may be supported by
unpacking them into a wider format to avoid overcomplicating the format support in the filter
bank 306 itself. In some cases (e.g. if neural network operations are supported by the filter
bank 306) it may also be beneficial to support dual rate 8-bit fixed point or integer format

which allows the filter bank 306 to either perform 16-bit operations or two 8-bit operations.

[0091] Reference is now made to FIG. 6 which illustrates an example method 600 for
controlling the input/output filter unit 202 of FIG. 3 which may be implemented by the control
logic of the weight buffer and control logic unit 308. The method 600 begins at block 602
where the control logic receives information and/or control signals identifying a filtering task.
The information identifying a filtering task may comprise information identifying a set of data
stored in one of the data buffers 302, 304, a set of filter weights stored in the weight buffer

and control logic unit 308, and a type of filtering of a plurality of types of filtering. The
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plurality of types of filtering comprises one or more types of texture filtering and one or more
types of pixel filtering. As described above, in some cases, the information identifying a
filtering task may also comprise additional parameters such as, but not limited to, the amount

of a shift or a comparison value.

[0092] As described above, the information or control signals identifying a particular filtering
task may be generated, for example, by the ALU clusters 102. For example, in some cases,
an ALU cluster 102 may be configured to, as part of executing a pixel shader task, issue an
instruction or a set of instructions to the control logic identifying a particular texture filtering
task to be performed on a fragment/pixel; and/or when an ALU cluster 102 completes a pixel
shader task the ALU cluster may be configured to issue an instruction or set of instructions
identifying a pixel filtering task to be performed on the output of the pixel shader task. In
other cases, instead of sending information or control signals to the control logic the ALU
cluster 102 may be configured to store, alongside the data to be filtered, state data which,
when read by the control logic, identifies a filtering task to be performed on the stored data.
Once the control logic has received information identifying a filtering task the method 600

proceeds to block 604.

[0093] At block 604, the control logic causes the filter bank 306 to perform the identified
filtering task. Specifically, the control logic causes the filter bank 306 to perform the identified

type of filtering on the identified set of data using the identified set of weights.

[0094] The control logic may be configured to provide the identified set of data from the
appropriate data buffer 302, 304, and the identified filter weights (and optionally other
parameters) from the weight buffer and control logic unit 308 to the filter bank 306 and cause
the filter bank 306 to perform the identified type of filtering on the received set of data using
the received set of weights. The control logic may be configured to cause the filter bank 306
to perform a specific type of filtering by sending the filter bank 306 one or more control
signals. Where the filter bank 306 comprises one or more filter blocks 314 each with a
plurality of arithmetic components, the control logic may be configured to cause a filter block
314 to perform a specific type of filtering by, for example, selectively enabling and/or
disabling a specific combination of the arithmetic components of the filter block 314. As
described above, where the arithmetic components are divided into stages the control logic
may be able to enable or disable whole stages (e.g. all the compare components) and/or

enable or disable individual arithmetic components (e.g. a single compare component).
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[0095] As described above, some filtering tasks may require multiple passes of the filter
bank 306 to complete the task. In these cases, the control logic may be configured to treat
each pass as a separate control item. Specifically, the control logic may be configured to
generate a separate set of control signals for each pass. For example, the control logic may
be configured to cause one of the filter blocks 314 to perform a first portion of the type of
filtering in a first pass of the filter block 314 and a second portion of the type of filtering in a
second pass of the filter block 314. Once the control logic has caused the filter bank 306 to
perform the identified filtering task the method 600 may end 608 or the method 600 may
proceed to block 606.

[0096] At block 606 a determination is made as to whether there is another filtering task to
perform. If there is another filtering task to be performed then the method 600 proceeds
back to block 602. If there is not another filtering task to be performed then the method 600
ends 608.

[0097] Although FIG. 6 describes controlling the input/output filter unit to perform a single
filtering task, when the filter bank of the input/output filter unit comprises a plurality of filter
blocks each of which can perform a filtering task, multiple filtering tasks may be performed by
the input/output filter unit in parallel. In these cases, method 600 of FIG. 6 may be executed

for each filtering task.

[0098] FIG. 7 shows a computer system in which the input/output filter units 202 described
herein may be implemented. The computer system comprises a CPU 702, a GPU 704, a
memory 706 and other devices 714, such as a display 716, speakers 718 and a camera 720.
A processing block 710 (which may be an input/output filter unit 202 described herein) is
implemented on the GPU 704. In other examples, the processing block 710 may be
implemented on the CPU 702. The components of the computer system can communicate

with each other via a communications bus 722.

[0099] The input/output filter units and graphics processing units of FIGS. 1, 2, and 3 are
shown as comprising a number of functional blocks or units. This is schematic only and is
not intended to define a strict division between different logic elements of such entities. Each
functional block or unit may be provided in any suitable manner. It is to be understood that
intermediate values described herein as being formed by a block or unit need not be
physically generated by an input/output filter unit or a graphics processing unit at any point

and may merely represent logical values which conveniently describe the processing



26

performed by the input/output filter unit or the graphics processing unit between its input and

output.

[00100] The input/output filter units and/or graphics processing units described herein
may be embodied in hardware on an integrated circuit. The input/output filter units and/or
graphics processing units described herein may be configured to perform any of the methods
described herein. Generally, any of the functions, methods, techniques or components
described above can be implemented in software, firmware, hardware (e.g., fixed logic

» u

circuitry), or any combination thereof. The terms “module,” “functionality,” “component”,
“‘element”, “unit”, “block” and “logic’ may be used herein to generally represent software,
firmware, hardware, or any combination thereof. In the case of a software implementation,
the module, functionality, component, element, unit, block or logic represents program code
that performs the specified tasks when executed on a processor. The algorithms and
methods described herein could be performed by one or more processors executing code
that causes the processor(s) to perform the algorithms/methods. Examples of a computer-
readable storage medium include a random-access memory (RAM), read-only memory
(ROM), an optical disc, flash memory, hard disk memory, and other memory devices that
may use magnetic, optical, and other techniques to store instructions or other data and that

can be accessed by a machine.

[00101] The terms computer program code and computer readable instructions as
used herein refer to any kind of executable code for processors, including code expressed in
a machine language, an interpreted language or a scripting language. Executable code
includes binary code, machine code, bytecode, code defining an integrated circuit (such as a
hardware description language or netlist), and code expressed in a programming language
code such as C, Java or OpenCL. Executable code may be, for example, any kind of
software, firmware, script, module or library which, when suitably executed, processed,
interpreted, compiled, executed at a virtual machine or other software environment, cause a
processor of the computer system at which the executable code is supported to perform the

tasks specified by the code.

[00102] A processor, computer, or computer system may be any kind of device,
machine or dedicated circuit, or collection or portion thereof, with processing capability such
that it can execute instructions. A processor may be any kind of general purpose or
dedicated processor, such as a CPU, GPU, System-on-chip, state machine, media

processor, an application-specific integrated circuit (ASIC), a programmable logic array, a
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field-programmable gate array (FPGA), or the like. A computer or computer system may

comprise one or more processors.

[00103] It is also intended to encompass software which defines a configuration of
hardware as described herein, such as HDL (hardware description language) software, as is
used for designing integrated circuits, or for configuring programmable chips, to carry out
desired functions. That is, there may be provided a computer readable storage medium
having encoded thereon computer readable program code in the form of an integrated circuit
definition dataset that when processed (i.e. run) in an integrated circuit manufacturing system
configures the system to manufacture an input/output filter unit or a graphics processing unit
configured to perform any of the methods described herein, or to manufacture a processor
comprising any apparatus described herein. An integrated circuit definition dataset may be,

for example, an integrated circuit description.

[00104] Therefore, there may be provided a method of manufacturing, at an integrated
circuit manufacturing system, an input/output filter unit or a graphics processing unit as
described herein. Furthermore, there may be provided an integrated circuit definition dataset
that, when processed in an integrated circuit manufacturing system, causes the method of

manufacturing an input/output filter unit or a graphics processing unit to be performed.

[00105] An integrated circuit definition dataset may be in the form of computer code,
for example as a netlist, code for configuring a programmable chip, as a hardware
description language defining hardware suitable for manufacture in an integrated circuit at
any level, including as register transfer level (RTL) code, as high-level circuit representations
such as Verilog or VHDL, and as low-level circuit representations such as OASIS (RTM) and
GDSII. Higher level representations which logically define hardware suitable for manufacture
in an integrated circuit (such as RTL) may be processed at a computer system configured for
generating a manufacturing definition of an integrated circuit in the context of a software
environment comprising definitions of circuit elements and rules for combining those
elements in order to generate the manufacturing definition of an integrated circuit so defined
by the representation. As is typically the case with software executing at a computer system
so as to define a machine, one or more intermediate user steps (e.g. providing commands,
variables etc.) may be required in order for a computer system configured for generating a
manufacturing definition of an integrated circuit to execute code defining an integrated circuit

so as to generate the manufacturing definition of that integrated circuit.
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[00106] An example of processing an integrated circuit definition dataset at an
integrated circuit manufacturing system so as to configure the system to manufacture an
input/output filter unit or a graphics processing unit will now be described with respect to FIG.
8.

[00107] FIG. 8 shows an example of an integrated circuit (IC) manufacturing system
802 which is configured to manufacture an input/output filter unit and/or a graphics
processing unit as described in any of the examples herein. In particular, the IC
manufacturing system 802 comprises a layout processing system 804 and an integrated
circuit generation system 806. The IC manufacturing system 802 is configured to receive an
IC definition dataset (e.g. defining an input/output filter unit or a graphics processing unit as
described in any of the examples herein), process the IC definition dataset, and generate an
IC according to the IC definition dataset (e.g. which embodies input/output filter unit or a
graphics processing unit as described in any of the examples herein). The processing of the
IC definition dataset configures the IC manufacturing system 802 to manufacture an
integrated circuit embodying a storage unit allocator or a graphics processing unit as

described in any of the examples herein.

[00108] The layout processing system 804 is configured to receive and process the IC
definition dataset to determine a circuit layout. Methods of determining a circuit layout from
an IC definition dataset are known in the art, and for example may involve synthesising RTL
code to determine a gate level representation of a circuit to be generated, e.g. in terms of
logical components (e.g. NAND, NOR, AND, OR, MUX and FLIP-FLOP components). A
circuit layout can be determined from the gate level representation of the circuit by
determining positional information for the logical components. This may be done
automatically or with user involvement in order to optimise the circuit layout. When the
layout processing system 804 has determined the circuit layout it may output a circuit layout
definition to the IC generation system 806. A circuit layout definition may be, for example, a

circuit layout description.

[00109] The IC generation system 806 generates an IC according to the circuit layout
definition, as is known in the art. For example, the IC generation system 806 may implement
a semiconductor device fabrication process to generate the IC, which may involve a multiple-
step sequence of photo lithographic and chemical processing steps during which electronic
circuits are gradually created on a wafer made of semiconducting material. The circuit layout
definition may be in the form of a mask which can be used in a lithographic process for

generating an IC according to the circuit definition. Alternatively, the circuit layout definition
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provided to the IC generation system 806 may be in the form of computer-readable code
which the IC generation system 806 can use to form a suitable mask for use in generating an
IC.

[00110] The different processes performed by the IC manufacturing system 802 may
be implemented all in one location, e.g. by one party. Alternatively, the IC manufacturing
system 802 may be a distributed system such that some of the processes may be performed
at different locations, and may be performed by different parties. For example, some of the
stages of: (i) synthesising RTL code representing the IC definition dataset to form a gate
level representation of a circuit to be generated, (ii) generating a circuit layout based on the
gate level representation, (iii) forming a mask in accordance with the circuit layout, and (iv)
fabricating an integrated circuit using the mask, may be performed in different locations

and/or by different parties.

[00111] In other examples, processing of the integrated circuit definition dataset at an
integrated circuit manufacturing system may configure the system to manufacture an
input/output filter unit or a graphics processing unit without the IC definition dataset being
processed so as to determine a circuit layout. For instance, an integrated circuit definition
dataset may define the configuration of a reconfigurable processor, such as an FPGA, and
the processing of that dataset may configure an IC manufacturing system to generate a
reconfigurable processor having that defined configuration (e.g. by loading configuration data
to the FPGA).

[00112] In some embodiments, an integrated circuit manufacturing definition dataset,
when processed in an integrated circuit manufacturing system, may cause an integrated
circuit manufacturing system to generate a device as described herein. For example, the
configuration of an integrated circuit manufacturing system in the manner described above
with respect to FIG. 8 by an integrated circuit manufacturing definition dataset may cause a

device as described herein to be manufactured.

[00113] In some examples, an integrated circuit definition dataset could include
software which runs on hardware defined at the dataset or in combination with hardware
defined at the dataset. In the example shown in FIG. 8, the IC generation system may
further be configured by an integrated circuit definition dataset to, on manufacturing an
integrated circuit, load firmware onto that integrated circuit in accordance with program code
defined at the integrated circuit definition dataset or otherwise provide program code with the

integrated circuit for use with the integrated circuit.
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[00114] The implementation of concepts set forth in this application in devices,
apparatus, modules, and/or systems (as well as in methods implemented herein) may give
rise to performance improvements when compared with known implementations. The
performance improvements may include one or more of increased computational
performance, reduced latency, increased throughput, and/or reduced power consumption.
During manufacture of such devices, apparatus, modules, and systems (e.g. in integrated
circuits) performance improvements can be traded-off against the physical implementation,
thereby improving the method of manufacture. For example, a performance improvement
may be traded against layout area, thereby matching the performance of a known
implementation but using less silicon. This may be done, for example, by reusing functional
blocks in a serialised fashion or sharing functional blocks between elements of the devices,
apparatus, modules and/or systems. Conversely, concepts set forth in this application that
give rise to improvements in the physical implementation of the devices, apparatus, modules,
and systems (such as reduced silicon area) may be traded for improved performance. This
may be done, for example, by manufacturing multiple instances of a module within a

predefined area budget.

[00115] The applicant hereby discloses in isolation each individual feature described
herein and any combination of two or more such features, to the extent that such features or
combinations are capable of being carried out based on the present specification as a whole
in the light of the common general knowledge of a person skilled in the art, irrespective of
whether such features or combinations of features solve any problems disclosed herein. In
view of the foregoing description it will be evident to a person skilled in the art that various

modifications may be made within the scope of the invention.
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CLAIMS

1. An input/output filter unit (202) for use in a graphics processing unit (200), the
input/output filter unit (202) comprising:

a first buffer (302) configured to store data received from, and output to, a first

component (102) of the graphics processing unit (200);

a second buffer (304) configured to store data received from, and output to, a second

component of the graphics processing unit (200);

a weight buffer (308) configured to store filter weights;

a filter bank (306) configurable to perform any of a plurality of types of filtering on a set
of input data, the plurality of types of filtering comprising one or more types of texture
filtering and one or more types of pixel filtering, the one or more types of pixel filtering
comprising one or more of down-sampling, up-sampling and multiple sampling anti

aliasing box filtering; and

control logic (308) configured to cause the filter bank to: (i) perform one of the plurality
of types of filtering on a set of data stored in one of the first and second buffers (302,
304) using a set of weights stored in the weight buffer, and (ii) store the results of the

filtering in one of the first and second buffers (302, 304).

2. The input/output filter unit (202) of claim 1, wherein the filter bank (306) comprises one
or more filter blocks (314), each filter block (314) comprising a plurality of arithmetic
components that can be selectively enabled so as to cause the filter bank to perform

one of the plurality of types of filtering.

3. The input/output filter unit (202) of claim 2, wherein the plurality of arithmetic

components are configured so as to form a pipeline.

4. The input/output filter unit (202) of claim 2 or claim 3, wherein the plurality of arithmetic
components comprise a set of arithmetic components (5044, 5041, 504,, 5045, 506,

5064, 508) that form an n input x n weight filter wherein n is an integer.
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The input/output filter unit (202) of claim 4, wherein the set of arithmetic components
comprise n multiplier components (5044, 5041, 504,, 504;) each of which is configured
to multiply an input value and a weight, and a plurality of adder components (506,
5061, 508) that form an adder tree configured to produce the sum of the outputs of the

n multipliers.

The input/output filter unit (202) of claim 4 or claim 5, wherein the plurality of arithmetic
components further comprises n comparators (5024, 5021, 5022, 5023) each of which is
configured to compare an input value and provide the result of the comparison as an

input to the n input x n weight filter.

The input/output filter unit (202) of any of claims 4 to 6, wherein the plurality of
arithmetic components further comprises a scaling component (510) configured to

receive the output of the n input x n weight filter and generate a scaled version thereof.

The input/output filter unit (202) of any of claims 2 to 7, wherein the filter bank
comprises a plurality of filter blocks (314).

The input/output filter unit (202) of any of claims 2 to 8, wherein the control logic (308)
is configured to cause the filter bank to perform one of the plurality of types of filtering
on a set of data stored in one of the first and second buffers (302, 304) using a set of
weights stored in the weight buffer by causing one of the filter blocks (314) to perform
a first portion of the type of filtering in a first pass of the filter block (314) and a second

portion of the type of filtering in a second pass of the filter block (314).

The input/output filter unit (202) of claim 9, wherein temporary data is generated during
at least one of the first pass and the second pass which is stored in one of the first and

second buffers.

The input/output filter unit (202) of any preceding claim, wherein the one or more types
of texture filtering comprise one or more of bilinear filtering, trilinear filtering, anisotropic

filtering and percentage closer filtering.

The input/output filter unit (202) of any preceding claim, wherein the filter bank (306) is

further configurable to perform texture blending.
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The input/output filter unit (202) of any preceding claim, wherein the filter bank (306) is
further configurable to perform a set of convolution operations as part of processing a

convolution layer of a neural network.

The input/output filter unit (202) of any preceding claim, further comprising a texture
address generator (310) configured to generate an address for one or more relevant

texels for performing a type of texture filtering for a fragment or a pixel.

The input/output filter unit (202) of any preceding claim, further comprising a weight
generator (312) configured to generate the set of weights for performing one or more

types of filtering and store the generated weights in the weight buffer (308).

The input/output filter unit (202) of any preceding claim, wherein the first component is
an arithmetic logic unit cluster (102) configured to perform shading tasks and the

second component is memory.

The input/output filter unit (202) of any preceding claim, wherein the control logic (308)
is configured to store the results of the filtering in the other of the first and second
buffers (302, 304).

The input/output filter unit (202) of any preceding claim, wherein the input/output filter

unit (202) is embodied in hardware on an integrated circuit.

A method (600) of controlling an input/output filter unit comprising a first buffer, a
second buffer, a weight buffer and a configurable filter bank, the method (600)

comprising:

receiving information identifying a filtering task, the information identifying a filtering
task comprising information identifying a set of data stored in one of the first and second
buffers, a set of weights stored in the weight buffer and a type of filtering of a plurality
of types of filtering, wherein the plurality of types of filtering comprises one or more
types of texture filtering and one or more types of pixel filtering, the one or more types
of pixel filtering comprising one or more of down-sampling, up-sampling and multiple

sampling anti aliasing box filtering;

causing the configurable filter bank to:
perform the identified type of filtering on the identified set of data using the

identified set of weights; and
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store results of the filtering in one of the first and second buffers.

20. The method (600) of claim 19, wherein:

the configurable filter bank comprises one or more filter blocks, each filter block

comprising a plurality of arithmetic components; and

causing the configurable filter bank to perform the identified type of filtering on the
identified set of data using the identified set of weights comprises selectively enabling
one or more of the plurality of arithmetic components of a filter block of the one or more

filter blocks to perform the identified type of filtering.

21. A computer readable storage medium having stored thereon computer readable
instructions that, when executed at a computer system, cause the computer system to

perform the method (600) of claim 19 or claim 20.

22. A graphics processing unit (200) comprising the input/output filter unit (202) of any of

claims 1 to 18.

23. A computer readable storage medium having stored thereon a computer readable
description of the input/output filter unit (202) of any of claims 1 to 18 or the graphics
processing unit (200) of claim 22 that, when processed in an integrated circuit
manufacturing system, causes the integrated circuit manufacturing system to
manufacture an integrated circuit embodying the input/output filter unit (202) or the

graphics processing unit (200).

24. An integrated circuit manufacturing system comprising:

a non-transitory computer readable storage medium having stored thereon a computer
readable description of the input/output filter unit (202) of any of claims 1 to 18 or the

graphics processing unit (200) of claim 22;

a layout processing system configured to process the computer readable description
so as to generate a circuit layout description of an integrated circuit embodying the

input/output filter unit (202) or the graphics processing unit (200); and
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an integrated circuit generation system configured to manufacture the input/output filter

unit or the graphics processing unit according to the circuit layout description.
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