I*I Innovation, Sciences et Innovation, Science and CA 3158287 A1 2021/05/20
Développement économique Canada Economic Development Canada
en 3 158 287

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office

t2 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13 A1

(86) Date de dépét PCT/PCT Filing Date: 2020/11/12 (51) CLINtAnt.Cl. GO6T 7/10(2017.01),
(87) Date publication PCT/PCT Publication Date: 2021/05/20 GO6T 17/05(2011.01), GOGT 7717 (2017.01),

GO6T 7/12(2017.01), GO6T 7/50(2017.01)
(85) Entrée phase nationale/National Entry: 2022/05/12 .)
(71) Demandeur/Applicant:

(86) N° demande PCT/PCT Application No.: US 2020/060280 GEOMAGICAL LABS, INC., US
(87) N° publication PCT/PCT Publication No.: 2021/097126 (72) Inventeurs/Inventors:
(30) Priorité/Priority: 2019/11/12 (US62/934,387) PUGH, BRIAN, US;

DORBIE, ANGUS, US;
JIDDI, SALMA, US;
DAI, QIQIN, US;
GAUTHIER, PAUL, US;
EDER, MARC, US;

(74) Agent: GOWLING WLG (CANADA) LLP

(54) Titre : PROCEDE ET SYSTEME DE MODIFICATION D'IMAGES DE SCENE
(54) Title: METHOD AND SYSTEM FOR SCENE IMAGE MODIFICATION

Obtaining a set of images S100

100

. [daitalrivieteisiaiattal &

Estimating visual information 1
from each image S200 4”"{ :'""""""',

Fo———————C———m————— 1
Adjusting and compaositing the :
get of images into an image |

scene S300 |

Estimating dense 3D mode! and
semantics of the image scene
$400

:

Computing foreground
occlusion masks and depths for
the image scene 8500

{

Rendering scenes interactively
with occlusion masks S600

A 4

Modifying objects in the
rendered scene S700

FIGURE 1A

(57) Abrégé/Abstract:

System and method for rendering virtual objects onto an image and modifying scene imagery includes one or more of: obtaining a
set of images, estimating visual information, estimating a dense 3D model and semantics of the scene imagery, computing
foreground occlusion masks and depths for the scene imagery, rendering scenes interactively with occlusion masks, and modifying
at least one object in the rendered scene.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

CA 3158287 A1 2021/05/20

en 3 158 287
(13 A1

(72) Inventeurs(suite)/Inventors(continued): YIN, JIANFENG, US; MORALES, LUIS PUIG, US; OTRADA, MICHAEL, US;
LIANOS, KONSTANTINOS NEKTARIOS, US; GUINDI, PHILIP, US; TOTTY, BRIAN, US

Date Submitted: 2022/05/12

CA App. No.: 3158287

Abstract:

System and method for rendering virtual objects onto an image and modifying scene imagery
includes one or more of; obtaining a set of images, estimating visual information, estimating a dense
3D model and semantics of the scene imagery, computing foreground occlusion masks and depths
for the scene imagery, rendering scenes interactively with occlusion masks, and modifying at least
one object in the rendered scene.

WO 2021/097126 PCT/US2020/060280

METHOD AND SYSTEM FOR SCENE IMAGE MODIFICATION

CROSS-REFERENCE TO RELATED APPLICATIONS

[oo01] This application claims priority to US Provisional Application No.
62/934,387, filed 12-NOV-2019, which is incorporated herein in its entirety by this
reference.

TECHNICAL FIELD
[0002] This invention relates generally to the image generation field, and more

specifically to a new and useful method and system for enabling 3D scene modification

from imagery.

BRIEF DESCRIPTION OF THE FIGURES

[0003] FIGURES 1A-1I are schematic representations of the method.
[0004] FIGURE 2 is a schematic representation of the system.
[0005] FIGURE 3 is an example of the method.

[0006] FIGURE 4 is an example of S600.

[0007] FIGURE 5 is an example of S400.

[0008] FIGURE 6 is an example of S400.

[0009] FIGURE 7 is an example of S400.

[0010] FIGURE 8 is an example of S400.

[0011] FIGURE 9 is an example of S500.

[0012] FIGURE 10 is a variant of S600.

[0013] FIGURE 11 is an example of S400.

[0014] FIGURE 12 is a variant of S300.

[0015] FIGURE 13 is an example of S400.

[0016] FIGURE 14 is an example of data passed between the method processes.

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[0017] FIGURE 15 is an example of the output of the method.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0018] The following description of the preferred embodiments of the invention is
not intended to limit the invention to these preferred embodiments, but rather to enable

any person skilled in the art to make and use this invention.

1. Overview.

[0019] A method for modifying scene imagery as shown in FIGURE 1A preferably
includes one or more of: obtaining a set of images S100, estimating visual information
from each image S200, estimating a dense 3D model and semantics of the scene imagery
S400, computing foreground occlusion masks and depths for the scene imagery S500,
rendering scenes interactively with occlusion masks S600, and modifying at least one
object in the rendered scene S700, but the method can additionally or alternatively
include adjusting and compositing the set of images into scene imagery S300 and/or any
other suitable element. The method functions to generate an editable, photorealistic
digital representation of the physical scene that was captured by the set of images. An
example of a generated editable, photorealistic digital representation of the physical scene
is depicted in FIGURE 15.

[0020] All or portions of the method can be performed at a predetermined
frequency, performed upon occurrence of an execution event (e.g., upon a user navigating
to a front-end/end user application on a user device (e.g., 210 shown in Fig. 2), upon a
user submitting images to an image processing platform (e.g., 220 shown in Fig. 2), or
any other suitable execution event), performed in real- or near-real time, performed
asynchronously, or performed at any other suitable time. All or a portion of the method
can be performed locally at a user device or capture device (e.g., smartphone), remotely
at a remote processing system, at a combination thereof (e.g., wherein raw, derivative, or

other data is transmitted between local and remote systems), or otherwise performed.

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[0021] As shown in FIGURE 3 and FIGURE 14, in examples, the method includes
one or more of: obtaining an image, that includes one or more objects; determining metric
scale data (e.g., ARKit™, ARCore™, SLAM information, visual-inertial odometry, IMU
information, binocular stereo, multi-lens triangulation, depth-from-disparity, depth
sensors, range fingers, etc.) associated with the image; determining a photogrammetry
point cloud from the image (e.g., using SLAM, SFM, MVS, depth sensors, etc.);
determining a depth map (e.g., depth estimates for a set of image pixels; etc.) for the
image (e.g., by using neural networks based on the image, the photogrammetry point
cloud, hardware depth sensors, and/or any other suitable information); determining an
object-class per pixel using semantic segmentation based on the image and/or one or
more downsampled images of the original image and/or depthmaps; determining the
floor plane(s) (e.g., using a cascade of 3D depthmap(s), surface normals, gravity, AR-
detected planes, and semantic segmentation, etc.); determining edges (e.g., using image
gradients or frequencies, neural networks trained to identify edges in the image, using a
cascade of methods based on the image, disparity maps determined from the image, the
depth map, ete.); determining a dense scaled point cloud and/or dense scaled depth map
(e.g., dense, scaled, point cloud with estimated depths for every pixel) by combining the
metric scale point cloud, the photogrammetry point cloud and the (dense, estimated)
depth map (e.g., by generating a sparse scaled point cloud by scaling the photogrammetry
point cloud with the metric scaled point cloud, then scaling the depth map with the sparse
scaled point cloud); generating a dense, scaled, accurate point cloud by fusing the
photogrammetry point cloud (and/or metric scale point cloud) with the depth map;
correcting the edges in the dense scaled (accurate) point cloud and/or dense scaled depth
map; regularizing the resulting depth map and/or point cloud using geometries/physics
information; regularizing the floor plane; and determining segmentation masks for each
object based on the per pixel cbject-classes. This example can optionally include one or
more of: normalizing the regularized depth map; processing the normalized depthmap,
regularized floor plane, and segmentation masks in the graphics engine plugin (e.g.,
fragment shader) which functions to translate the information into a form usable by the

graphics engine; processing the translated information in the graphics engine (e.g.,

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

running on the user device); displaying, on the end user application, a static image output
and virtual 3D objects; receiving user instructions to modify/adapt the scene; and
rendering the scene based on the user instructions. However, the method can additionally
or alternatively include any other suitable element and/or process implemented in any
other suitable way.

[0022] In variants, the method includes reducing cast shadows when objects are
removed. In a first example, cast shadows are inferred and reduced using image
processing techniques. In a second example, cast shadows are inferred using trained
neural networks. In a third example, cast shadows are inferred from detected and
estimated light sources. In a fourth example, cast shadows are inferred from inverse
rendering and/or optimization techniques using estimates of 3D light sources and/or 3D
geometry. In a fifth example, cast shadows are inferred from intrinsic image
decomposition. In a sixth example, cast shadows are inferred from plenoptic light field
estimates.

[0023] In variants, the method performs placement processing for a virtual object,
adjusting the occlusion behavior based on object type and placement context. For
example, rather than having a real object occlude a virtual object, the virtual object can
be placed in the image in a non-occluding manner in according to one or more placement
processing techniques and situations.

[0024] In some variations, performing placement processing for a virtual object
includes mapping 2D mouse or touch coordinates to a 3D scene position for a virtual
object. In a first variant, if the virtual object being placed is a floor-mounted object (e.g.,
a sofa), 2D mouse or touch coordinates are mapped to a corresponding 3D scene position
on a 3D floor plane. In some implementations, placement of virtual objects on a floor
plane is constrained to areas of open floor.

[0025] In a second variant, if the virtual object being placed is a wall-mounted
object (e.g., a mirror or wall art), 2D mouse or touch coordinates are mapped to a 3D
scene position on a 3D wall plane, not the corresponding location on the floor plane,
which would typically be located behind the wall. In some implementations, placement

of virtual objects on a floor plane is constrained to areas of open wall.

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[0026] In a third variant, if the virtual object being placed is a stackable object (e.g.,
a vase commonly placed on a table), 2D mouse or touch coordinates are mapped to a 3D
scene position on the top of a surface in the scene (of a photorealistic image). In some
implementations, the base of the 3D location of the placed object is placed on top of the
scene geometry located at indexed 2D screen coordinates. In some implementations, the
base of the 3D location of the placed object is computed using relative pointer motion, the
scene surface mesh, and the gravity vector sliding the object along the surface contour
using physically representative mechanics and collisions. In some variations, the system
determines multiple viable stacking points for the object in the region of the pointer, and
queries the user for selection of a stacking point to be used to place the stackable object.

2. Benefits.
[0027] The method can confer several benefits over conventional systems.
[0028] The applicant has discovered a new and useful system and method for

generating an interactive, photorealistic model of a real-world scene with existing objects
modeled in a manner to enable occlusions, to better provide mixed-reality interactive
experiences, as compared to conventional systems and methods. In particular, the
interactive platform renders virtual objects within a photographic scene, while providing
believable mixed-reality depth occlusions using improved and smoothed 3D depth
estimates and improved 3D edge boundaries (which are both noisy in practice). Improved
object boundary depths can dramatically improve user experience, as humans are
particularly sensitive to errant boundary pixels. In examples, improving the object
boundary depths is accomplished by: identifying the edges within a dense (reasonably
accurate) depth map (e.g., based on depth gradients, based on an edge map extracted
from the same input image(s), based on a semantic segmentation map determined from
the same input image(s), etc.); determining the object that the edges belong to (e.g., based
on the semantic segmentation map); and correcting the edge depths based on the depth
of the object that the edges belong to.

[0029] The applicant has further enabled dynamic occlusion (controllable

obscuring of virtual objects by existing physical objects) and disocclusion (removal of

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

existing foreground objects) using computer vision techmiques and a standard 3D
graphics engine (e.g., by developing custom shaders and transforming the visual
information to a format compatible with the graphics engine).

3. System.

[0030] The system (e.g., 200 shown in Fig. 2) preferably includes one or more user
devices (e.g., 210) and one or more image processing platforms (e.g., 220), but can
additionally or alternatively include any other suitable elements.

[0031] The user device 210 can include: one or more end user applications (clients;
native applications, browser applications, etc.) 212, one or more sensors (e.g., cameras
213, IMUSs 214, depth sensors 215, etc.), one or more SLAM and/or VIO engines 216, one
or more augmented reality platforms/engines (e.g., AR SDKs, such a ARKit™, ARcore™,
etc.), one or more computational photography engines 217, one or more neural networks
218, one or more 3D graphics engines 211, one or more platform API engines 219, one or
more administrative applications 221, but can additionally or alternatively include any
other suitable components. The user device preferably ingests images in S100, optionally
determines auxiliary data associated with the images in S100 (e.g., exposure information,
gravity and orientation, sparse or dense depth maps, metric scale, planes, etc.), displays
rendered scenes in S600, and enables scene modification in §700, but can additionally or
alternatively perform any other suitable functionality. The wuser preferably
modifies/interacts with the rendered scene via the user device, but the user can
additionally or alternatively interact with the scene remotely from the user device and/or
otherwise interact with the scene. The user device preferably interfaces with the platform
(e.g., 220), but can additionally or alternatively include the platform and/or otherwise
relate to the platform.

[0032] The image processing platform 220 preferably includes one or more client
API engines 222, but can additionally or alternatively include one or more camera sensor
data engines 223, one or more image processing engines 224, one or more SLAM / VIO
engines 225, one or more photogrammetry engines 226, one or more reference aligners

227, one or more calibration or image aligners, one or more scale aligners 228, one or

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

more multi-image stitcher engines 229, one or more edge boundary engines 231, one or
more multi-scale segmentation engines 232, one or more geometric neural networks 233,
one or more fusion engines 234, one or more regularizer engines 235, and/or any other
suitable component. The platform (e.g., 220) and/or system (e., 200) preferably stores
data in and accesses data from one or more image repositories 241, one or more image
metadata repositories 242, one or more sensor data repositories 243, one or more model
repositories 244, one or more geometric model repositories 245, one or more training
data repositories 247 and/or one or more application data repositories 246, but can
additionally or alternatively interface with any other suitable repository. The platform
(e.g., 220) can be one or more distributed networks, one or more remote computing
systems, included in the user device and/or any other suitable computing system.

[0033] An embodiment of the system components is depicted in FIGURE 2.

[0034] However, the system can additionally or alternatively include any other

suitable components.

4. Method.
[0035] In variants, at least one component of the system 200 (shown in Fig. 2)
performs at least a portion of the method 100 (shown in Figs. 1A-I).

4.1 Obtaining a set of images.

[0036] In variants, the method 100 includes obtaining at least one image S100. In
a first variant, one image is obtained at S100. In a second varianl, a set of several images
is obtained at S100. Obtaining at least one image (S100) functions to provide base data
for the generated scene. S100 preferably includes receiving and/or capturing images and
associated camera and sensor data for a set of positions in a scene (e.g., the set of positions
in a scene can be a set of interior positions in a room) (S110 shown in Fig. 1B). In a first
implementation, the captured images and associated data is uploaded from the user
device (e.g., 210) to the platformn (e.g., 220) (S120 shown in Fig. 1B). In a second

implementation, the captured images and associated data are stored at the user device

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

and at least partially processed by using the user device. However, S100 can additionally
or alternatively include any other suitable elements.

[0037] In variants, S100 is performed by the user device (e.g., 210 shown in Fig. 2),
but can additionally or alternatively be performed partially or entirely by one or more
components of the system (e.g. device, computing system), by an entity, or by any other
suitable component. When the images are obtained (e.g., captured) by the user device
(e.g., by the capture application, end user application 212, and/or any other suitable
application), the images and/or any associated data can be transmitted from the device
(e.g., 210) to a computing system (e.g., remote computing system, platform 220, etc.)
either directly or indirectly (e.g., via an intermediary). However, S100 can be otherwise
performed by any suitable system.

[0038] The set of images can include a single image, two or more images, five
images, and/or any suitable number of images. The images of a set of images can share a
common: scene (e.g., be regions of the same scene, include overlapping regions, etc.),
rotation, translation, quality, alignment, altitude, be unrelated, or have any other suitable
relationship. An image of a set of images can optionally have one or more subsets of
images (e.g. repeat images of the same scene, close-up view of an element in the scene,
cropped pieces of the captured scene, or any other suitable characteristic).

[0039] A set of images preferably capture a scene, as shown in FIGURE 4, but can
additionally or alternatively capture an entity, or any other suitable element. The scene is
preferably indoor (e.g., a room), but can additionally or alternatively be an outdoor scene,
a transition from indoor to outdoor, a transition from outdoor to indoor, a collection of
spaces, or any other suitable scene. The scene preferably includes one or more objects,
but can additionally or alternatively include landmarks, entities, and/or any other
suitable element. The sets of images can depict the same scene, but additionally or
alternatively can depict different scenes, overlapping scenes, adjacent scenes, or any other
suitable scene. For example, a first set of images could capture a communal space (e.g.,
living area, work area, dining area, lounge, reception area, etc.) and a second set of images
could capture a cooking space (e.g., kitchen, commercial kitchen, kitchenette, cookhouse,

galley, etc.). The images preferably capture adjacent, overlapping regions of the scene but

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

can additionally or alternatively capture non-adjacent regions of the scene, non-
overlapping regions of the scene, or any other suitable configuration of the scene.

[0040] Each image in a set of images preferably overlaps a sufficient section (e.g.,
50% of the pixels, 30% of the pixels, or any other suitably sufficient overlap) of another
image included in the set (e.g., preferably the one or more adjacent images, or any other
suitable image). Additionally or alternatively, each sequential image pair can share an
overlapping section of the scene (e.g., 0.5 meter overlap at 1 meter distance, 2 meter
overlap at 1 meter distance, etc.), or have any other suitable overlap. Images of a set
preferably cooperatively capture a continuous region of the scene (e.g., a horizontal
region, a vertical region, a rectangular region, a spherical region, or any other suitable
region). Images of a set preferably collectively cover a horizontal and vertical field of view
suitably wide to cover the desired scene area without missing imagery (for example, at
least 80 degree field of view horizontally and 57 degrees vertically, but can additionally or
alternatively cover a larger, smaller, or any other suitable field of view. An image of a set
preferably contains at least one element or feature that is present in at least one other
image in the set, but can additionally or alternatively include nc shared elements or
features.

[0041] Each image of the set of images is preferably associated with auxiliary data.
The auxiliary data can be obtained from the capture device (e.g., determined by a camera’s
image signal processor (ISP), or augmented reality engine), by an auxiliary sensor system,
depth sensors, custom visual-inertial SLAM, known object detection, neural network
estimates, user input (e.g., via the end user application 212), and/or be otherwise
determined. The auxiliary data is preferably contemporaneously captured with the set of
images, but can be captured asynchronously. The auxiliary data is preferably associated
with the image (e.g., with image pixels, etc.) and/or set of images, but can be unassociated
with the image. Examples of the auxiliary data can include: gravity and orientation
information, metric scale information, a metric sparse depth map (e.g.,, depth
measurements for a subset of the image’s pixels), a metric dense depth map, plane
estimates (e.g., floor planes, wall planes, etc.), camera poses, an image index (e.g., from

the guided capture, such as the image’s position within the guided capture; the first image,

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

the second image, the middle image, etc.; predetermined panorama position, etc.), time,
location, camera settings (e.g. ISO, shutter speed, aperture, focus settings, sensor gain,
noise, light estimation, camera model, sharpness, focal length, camera intrinsics, etc.),
image exposure information, two-dimensional features, three-dimensional features (e.g.,
depth data for a subset of the pixels per image), optical flow outputs (e.g., estimated
camera motion between images, estimated camera motion during image capture, etc.),
orientation and/or AR (augmented reality) and/or SLAM (simultaneous localization and
mapping) and/or visual-inertial odometry outputs (e.g., three-dimensional poses, six-
dimensional poses, pose graphs, maps, gravity vectors, horizons, etc.), but additionally or
alternatively include any other suitable metadata. However, each image can be associated
with any other suitable data.

[0042] The metric scale information is preferably a point cloud (e.g. a set of points
such as 50 points, 100 points, etc.), but can additionally or alternatively be a set of metric
scale camera positions, depthmaps, IMU Kinematics, measurements and/or any other
suitable information. The metric scale information is preferably measured in meters but
can additionally or alternatively be in yards, feet, inches, centimeters, and/or any other
suitable metric, however the metric scale information can be normalized or be otherwise
represented. The metric scale information can be estimated from the set of images (e.g.,
estimate the camera location above a plane such as the floor, next to a plane such as a
wall, etc.). However, the metric scale information can additionally or alternatively be
otherwise determined.

[0043] S100 is preferably performed before S200, but can additionally or
alternatively be performed contemporaneously. S100 can be performed during a
capturing period. The capturing period can include one or more iterations of S100. For
example, the capturing period can produce one or more sets of images (e.g. real, synthetic,
generated, virtual, etc.). S100 can be performed on schedule and/or at any suitable time.
[0044] However, S100 can additionally or alternatively include any other suitable

elements.

4.2 Estimating visual information from each image S200.

10

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[0045] In variants, the method includes estimating visual information from each
image S200, which functions to determine features that can be used in subsequent
processes. S200 can include one or more of: identifying 2D image features in each image
and optional correspondences across images by performing feature extraction, tracking,
and/or matching on each image (S210); identifying object boundaries and object classes
in the image by performing edge, contour, and segmentation estimation (S220);
identifying 3D image features by performing multiview triangulation using SLAM (and
optionally VIO) processes (S230); estimating depths of pixels and depth edges included
in the image (S240); and identifying 3D image features by performing at least one
photogrammetry process (e.g., SFM, MVS, CNN) (S250), as shown in Fig. 1C.

[0046] Examples of features include keypoints; patches; blobs; edgels; line
segments; edgemaps, such as an image representation that reflects the strength (e.g.,
binary, probability score, etc.) of an edge (e.g. edge point is labelled 1 and the other points
are labelled o in the visual representation); contours (e.g., outline representing and/or
bounding the shape or form of an object); segmentation masks (e.g., each mask can be
associated with an object in the scene); point clouds (e.g., determined by
photogrammetry, depth sensors, etc.); geometries (e.g., relationships of points lines,
surfaces, etc.); semantics (e.g., correlating low level features such as colors; gradient
orientation; with the content of the scene imagery such as wall, window, table, carpet,
mirror, etc.); planes; depth; and/or any other suitable visual information.

[0047] The visual information can include two-dimensional features, three-
dimensional features, or additionally or alternatively neural network features or any other
suitable features. The features can come from the set of images, subsets of images from
the set, metadata associated with each image in the set of images, and/or from any other
suitable source.

[0048] Two-dimensional features that can be extracted (at S210) can include pixels,
patches, descriptors, keypoints, edgels, edges, line segments, blobs, pyramid features,
contours, joint lines, optical flow fields, gradients (e.g., color gradients), learned features,
bitplanes, and additionally or alternatively any other suitable feature. Two-dimensional

features and/or correspondences can be extracted (e.g., using feature-specific extraction

11

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

methods), read (e.g., from metadata associated with the image), retrieved data from the
device, or otherwise determined. Two-dimensional features and/or correspondences can
be extracted using one or more: feature detectors (e.g., edge detectors, keypoint detectors,
line detectors, convolutional feature detectors, etc.), feature matchers (e.g., descriptor
search, template matching, optical flow, direct methods, etc.), neural networks (e.g.,
convolutional neural networks (CNN), deep neural networks (DNN), recurrent neural
networks, generative neural networks, etc.), object detection (e.g., semantic
segmentation, region-based segmentation, edge detection segmentation, cluster-based
segmentation, etc.), and any other suitable method for extracting and matching features.
[0049] In one variation of correspondence identification in S200, if a camera's
intrinsics matrix and gravity vector estimate is available for an image (e.g. from inertial
sensors in camera, from vanishing point estimation, from neural networks, etc.), then the
vertical vanishing point can be estimated. The vertical vanishing point indicates the
direction that all 3D vertical lines in the scene should be pointing. Then, for every point
in an image, a vertical reference orientation (pointing from an image point to the
vanishing point) can be compared for all images. This can aid in feature matches, by only
matching features that also have matching vertical orientation in each image, but can aid
in any other suitable manner.

[0050] In a second variation of correspondence identification in S200, if a gravity
vector estimate is available for an image (e.g. from inertial sensors in camera, from
vanishing point estimation, from neural networks, etc.) it can be used to add artificial, 3D
plausible lines in the images by constructing a gravity-oriented 3D projected line through
an image point and the calculated vanishing point. Generating such vertical lines uniquely
across images can also be used to generate virtual line matches from point matches (e.g.
gravity-oriented points), but can be used in any other suitable manner. However,
correspondences (e.g., between features, objects, pixels, etc.) can be identified in any
other suitable manner.

[0051] S200 can include determining three-dimensional features (S210). The
three-dimensional features can be determined based on: 3D features from visual-inertial

odometry and/or SLAM, from multiple view triangulation of points or lines, from active

12

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

depth sensors (e.g., depth data from time-of-flight sensors, structured light, LIDAR, range
sensors, etc.), from stereo or multi-lens optics, from photogrammetry, from neural
networks, and any other suitable method for extracting 3D features.

[0052] The three-dimensional features can be: captured, extracted, calculated,
estimated, or otherwise determined. The three-dimensional features can be captured
concurrently, asynchronously, or otherwise captured with the images. Three-dimensional
features can include depth data. The depth data can be depth maps (e.g., sparse, dense,
etc.), 3D meshes or models, signed-distance fields, point clouds, voxel maps, or any other
suitable depth data representation. The three-dimensional features can be determined
based on the individual images from the set, multiple images from the set, or any other
suitable combination of images in the set. The three-dimensional features can be
extracted using photogrammetry (e.g., structure from motion (SFM), multi-view stereo
(MVS), etc.), three-dimensional point projection, or any other suitable method. Three-
dimensional point projection can include determining image planes for an image pair
using respective camera poses and projecting three-dimensional points to both image
Planes using camera poses, or any other suitable method.

[0053] Three-dimensional features that can be determined can include: three-
dimensional camera poses (e.g., in metric scale), three-dimensional point clouds, three-
dimensional line segment clouds, three-dimensional surfaces, three-dimensional feature
correspondences, planar homographies, inertial data, or any other suitable feature. The
planar homographies can be determined by estimating the homographies based on points
and/or line matches (optionally enhanced by gravity), by fitting planes to 3D data, by
using camera pose and/or rotation estimates, or otherwise calculated. However, S200 can
additionally or alternatively include any other suitable elements performed in any
suitable manner.

[0054] In one variation, S200 includes determining a depth map (sparse depth
map) based on the set of images. This can include: computing disparity across images of
the set (e.g., based on camera pose estimates), and estimating semi-dense depth from the
disparity (e.g., using binocular stereo camera methods).

13

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[0055] In a second variation, S200 includes determining a depth map, registered
to the image, from a depth sensor.

[0056] In a third variation, S200 includes determining a semi-dense depth map
using one or more photogrammetry techniques. This variation can leverage the camera
pose priors (e.g., from the augmented reality engine, VIO, SLAM, etc.), video and/or still
image frames, preprocessed images (e.g., from S300) point clouds (e.g., from AR, SFM,
depth-from-disparity, MVS for sparse 3D reconstruction and pose estimation, etc.), to
obtain sparse 3D data from photogrammetry. In one example, S200 includes optionally
first registering the key photographic views, and then adding in video room scan data to
maximize odds that key photographic views are covered. In a second example, S200
includes using AR outputs (e.g., worldmap, poses, etc.) and/or depth-from-disparity as
priors or filters. However, the depth map can be otherwise determined.

[0057] In variants, S200 is performed by the platform (e.g., 220), but can
additionally or alternatively be performed by the user device (e.g., 210), or by any other
suitable system.

[0058] S200 is preferably performed after S100, but can additionally or
alternatively be performed contemporaneously and/or at any other suitable time.

[0059] However, S200 can additionally or alternatively include any other suitable
elements performed in any suitable manner.

4.3 Adjusting and compositing the set of images into scene imagery S300.

[0060] In variants, in a case where a set of several images are obtained at S100, the
method includes adjusting and compositing the set of images into scene imagery S300.
S300 preferably functions to generate a photorealistic wide-angle image, but can
additionally or alternatively improve image visual quality, rectify images, stitch images
together (e.g., for subsequent analysis on the stitched-together image) (at S310 shown in
Fig. 1D), and/or generate any other suitable image for any other suitable analysis or use.
S300 preferably ingests the information from S100 and S200, but can additionally or
alternatively ingest any other suitable information. S300 can include rectifying the

images (S320 shown in Fig. 1D), stitching the images into composite panoramas (S310),

14

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

improving the image appearance (S330 shown in Fig. 1D), but can additionally or
alternatively process the set of images in any other suitable manner.

[0061] In variants, S300 is performed by the platform (e.g., 220), but can
additionally or alternatively be performed by the user device (e.g., 210), or by any other
suitable system.

[0062] S300 is preferably performed after S200, but can additionally or
alternatively be performed contemporaneously and/or at any other suitable time.

[0063] Rectifying the images (8320) can include rotational rectification. Rotational
rectification can function to correct camera orientation (e.g. pitch, yaw, roll, etc.) for a
given image to improve appearance or reduce perspective distortion. Rotational
rectification is preferably applied to each image of the set, but can additionally or
alternatively be applied to a composite image, a subset of the images (e.g., all images
except the reference image), a single image, or to any other suitable set of images.

[0064] Rotational rectification can be achieved by rotation-based homography
warp of the image (e.g., raw image, globally aligned image, locally aligned image, final
panorama, etc.) relative to a set of target rotations or target coordinate axes, or any other
suitable method. The target rotations can be computed using extrinsic camera pose
estimates, gravity vectors, vanishing point calculations, device sensors, or any other
suitable method.

[0065] In a first example, rectifying the image includes: adjusting the pitch angle
of camera to make vertical lines (which appear to slant in 2D due to converging
perspective) closer to parallel (e.g., in the image and/or in the 3D model). In a second
example, rectifying the image includes adjusting the roll angle of the camera to make the
scene horizon line (or other arbitrary horizontal line) level. In a third example, rectifying
the image includes adjusting angles or cropping to optimize field of view. In a fourth
example, rectifying the image includes moving the horizontal & vertical components of
the principal point of the image.

[0066] Gravity vectors can be useful to rectify images to identify angle of pitch and
roll. In man-made built environments, floors commonly have surface normals in the

gravity direction, and walls typically have surface normals orthogonal to gravity.

15

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[0067] Gravity vectors can be estimated by multiple methods. In a first variation,
the gravity vector is calculated from the phone orientation or camera orientation, during
image capture (e.g., from phone IMU). In a second variation, the gravity vector is inferred
from the images. In one example, the gravity vector can be inferred from vanishing point
clustering methods applied to line segment features, present in the images. In a third
variation, gravity directions can be estimated by trained machine learning methods. In a
fourth variation, gravity directions are received from a user. However, the gravity
directions can be otherwise determined. However, the images can be otherwise rectified.
[0063] Determining stitched panoramas from the set of images (S310) can include
identifying correspondences between images, computing coarse warps for image
alignment (e.g., based on correspondences or global parametric motion models, using
constrained local warping, content-preserving warps, global shape anchors, etc.),
computing local warps (e.g., locally moving, floating, or stretching local areas of the image
to better align images, seam-carving and blending (e.g. to seamlessly combine portions of
images), using slit-scan mosaicking, using novel view synthesis, using light field
rendering, or additionally or alternatively include any other suitable process or
combination of processes.

[0069] Determining stitched panoramas from the set of images can include
blending, cropping, or otherwise modifying the images. Blending can include removing
any visible edges when compositing the seam-carved images and/or blending pixels from
overlapping images. Blending can be done in the image domain, the gradient domain, the
frequency domain, or other formulations. The blending can additionally or alternatively
include image normalization. Cropping can include making the final panorama
rectangular for the desired horizontal and vertical field of view (e.g., according to a
predetermined size, shape, etc.), and/or repositioning (e.g. centering) the principal point
in one or two dimensions.

[0070] In one variation, S300 can include applying one or multiple pixel motion
models to complete images or to partial images, which can function to coarsely (i.e.
approximately) align an image with other images in the set of images and/or to the

currently aligned panorama being created. The outputs of the pixel motion moedels can be

16

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

used to: find feature correspondences (e.g., wherein features are matched using the bulk-
associated pixels); compute coarse warps (e.g., to find the coarse alignments); or
otherwise used. The pixel motion models preferably ingest an image of interest and a
reference image (e.g., both of which can be from the image set), or can use any other
suitable set of inputs (e.g., camera motion parameters, etc.). The pixel motion models
preferably output global or semi-global mappings that bulk associate pixels in the image
to the target, but can additionally or alternatively output motion parameters (e.g.,
parametric motion parameters), or output any other suitable set of parameters. For
example, S300 may use one or multiple pixel motion models including: homography
warps, affine warps, rotational warps, translational warps, optical flow fields, depth-
layered warps, novel-view synthesis, or any other suitable coarse-alignment technique.
However, the pixel motion models can include local mappings, pixel-to-pixel
associations, or any other suitable model.

[0071] An example of S300 is depicted in FIGURE 12.

[0072] However, S300 can additionally or alternatively include any other suitable
elements performed in any other suitable manner.

4.4 Estimating dense 3D model and semantics of the scene imagery S400.

[0073] In variants, the method includes S400, estimating dense 3D geometry,
surfaces, and fine segmentation of the scene imagery. S400 preferably functions to
determine fused metric depth map, architectural surfaces, and enhanced segments, but
can additionally or alternatively determine any other suitable information. In variants,
S400 includes one or more of: estimating boundaries and depth discontinuities S410;
segmenting the scene S420 (e.g., performing multi-scale scene segmentation); estimating
dense pixelwise geometry S430; metric scaling geometry S440; estimating horizontal
planes (e.g., floors and table tops, etc.) S450; performing multi-model geometry
regularization, densification, and fusion S460; and regularizing the final geometry
(including planar surfaces such as walls) and segmentation S470, as shown in Fig. 1E.
However, 5400 can include any other suitable processes. S400 is preferably performed

17

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

after S200 and/or S300, but can additionally or alternatively be performed
contemporaneously with S300, and/or at any other suitable time.

[0074] In variants, S400 is performed by the platform (e.g., 220), but can
additionally or alternatively be performed by the user device (e.g., 210), or by any other
suitable system.

[0075] Estimating boundaries and depth discontinuities S410 preferably functions
to estimate edges of objects (included within an image obtained at S100 or composited at
S300), which can subsequently be used to guide semantic segmentation, to correct edges
in the depth maps or point clouds (e.g., the dense depth map; sparse depth map; dense,
scaled depth map, etc.), or otherwise used. S410 can be performed before S420, but can
additionally or alternatively be performed at any other suitable time. S410 preferably
determines edges based on information from S100-S300 (e.g., object information, metric
scale information, metadata, visual information, depth discontinuities, extracted
features, the raw set of images, pre-processed images, etc.), but can additionally or
alternatively determine edges based on any other suitable set of data. The resultant
edgemaps (generated by estimating edges of objects) are preferably associated with (e.g.,
aligned with) pixels from the raw image set (e.g., obtained at S100), but can additionally
or alternatively be associated with point cloud or depth map points (e.g., in the sparse
depth map, dense depth map, etc.) or any other suitable datum. S410 can determine
estimates of edges of objects using one or more methods. Examples of methods that can
be used to determine estimates of edges of objects include: 2D image gradient techniques
(e.g., Canny edge detector, Sobel derivatives, Laplacians, line segment detectors such as
LSD, MCMLSD, EDLines, etc.); neural network based line detection algorithms; neural
network based wall seam and architectural edge detection algorithms; neural network
based contour detection algorithms using disparity maps and/or depthmaps to identify
regions likely to have sudden change in depth (i.e., depth discontinuity), optionally
refining the maps/depth edges using RGB image information; using multi-scale
variations of the aforementioned techniques; and/or any other suitable process.

[0076] An example of object edges estimated at S410 is depicted in FIGURE 11.

18

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[0077] However, S410 can additionally or alternatively include any other suitable
elements performed in any other suitable manner.

[0078] Segmenting the scene S420 preferably functions to determine semantic
probabilities for each of a set of pixels, and can optionally determine edges for each
identified object. Segmenting the scene (S420) can include generating a semantic
segmentation map that can be used to: refine edge depth in the dense, scaled, fused depth
map; generate object masks; and/or be otherwise used. S420 preferably functions to
output fused ensemble semantic probabilities (e.g., by chaining multiple semantic
segmentation techniques) but can additionally or alternatively perform any other suitable
set of functionalities. In some implementations, scene segmentation is performed by
performing at least one semantic segmentation process (e.g., using a classifier, a neural
network, a convolutional neural network, an ensemble of classifiers, a tree classifier, ete.).
S420 is preferably performed after S410, but can additionally or alternatively be
performed at any other suitable time. S420 is preferably performed using the raw image
set (e.g., obtained at S100), but can additionally or alternatively be performed using: the
edgemap (e.g., generated S410), the depth maps (e.g., dense depth map, sparse depth
map), the pre-processed image (e.g., generated at S300), and/or any other suitable data.
In one example of S420, S420 can include: using multi-scale segmentation, using
edgemap fusion (e.g., probabilistic perceptual edges for spatial-weighting), using CRF
and other edge enhancement, and/or using depth estimates to improve segmentation, but
can additionally or alternatively include using any other suitable method.

[0079] In a first variation, S420 includes segmenting objects appearing in the scene
captured by the raw image set (obtained at S100)}, and determining a class (and/or a class
probability) for each of pixel forming the segments.

[0080] In a second variation, S420 can include a multi-scale ensemble scheme to
achieve both fine pixel segmentation (using at least one high resolution version of the
image(s) and edge probabilities) and classification robustness (using at least one lower
resolution version of the image(s)). An example of S420 can include: down-sampling the
images from the raw image set based on a set (e.g., pyramid configuration) of down-

sampling thresholds (e.g., choosing 1 pixel per 5x5 pixel region, wherein regions have no

19

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

overlap, choosing 1 pixel per 10x10 pixel region, etc.) to generate a set of different-
resolution versions of the image (segmentation images). Each segmentation image is then
processed by one or more of the same or different semantic segmentation classifiers to
obtain edge values and/or object classes for each pixel in the respective image. The results
of the multiple semantic segmentation processes are then merged by prioritizing the edge
values from higher-resolution images and prioritizing the class values from lower-
resolution images. In one example, for each pixel in an image, a probability score for each
object-class is organized in a vector. A weighted score vector can be determined for a pixel
by multiplying (elementwise) the vector of probability scores (for that pixel) by a vector
of weights (wherein each weight can be the same, the weights can be different, the weights
can be based on information associated with the thresholds and/or otherwise
determined). Each weighted score vector can be combined (e.g., addition, multiplication,
etc.) to determine a combined vector. The entry in the combined vector with the highest
value can be determined to be the object-class of the pixel.

[0081] In a third variation, the per pixel object-classes can be combined to obtain
object masks (e.g., each pixel associated with an object class can be combined to form a
single object mask).

[0082] An example of S420 is depicted in FIGURES 5 and 13.

[0083] However, S420 can additionally or alternatively include any other suitable
elements performed in any other suitable manner.

[0084] In variants, estimating dense pixelwise geometry S430 functions to
determine a dense depth map for the image (e.g., obtained at S100, composited at S300,
etc.). Additionally, or alternatively, estimating dense pixelwise geometry S430 functions
to determine a point cloud for the image. This dense geometry preferably includes a depth
estimate for each pixel (or a depth estimate for a threshold proportion of the pixels in a
given image or image set, e.g., more than 50%, 60%, 70%, 90%, etc.). In some
implementations, the determined depth estimates can be inaccurate and/or unscaled.
Additionally or alternatively, the dense geometry can be accurate and/or scaled. S430 can
be performed using: the raw image set, the auxiliary data, and/or any other suitable input.

In one variation, the images and/or image segments can be one or more crops from the

20

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

images determined in S100 (optionally warped-rotated) (e.g., to feed into estimation
algorithms such as neural networks, regressions, nearest neighbors, etc.), which can for
example function to allow images of the wrong dimensions to match neural network input
tensors, and/or to provide multi-scale invariance and improved stability, but can
additionally or alternatively provide any other suitable set of functionalities.

[0085] Estimating dense pixelwise geometry (e.g., estimating depth estimates for
pixels in the image) at S430 is preferably performed using one or more neural networks,
but can be otherwise performed. Examples of the neural networks include: single-view
(monocular) depth and normal neural networks, two-view (stereo) depth and normal
neural networks, and multi-video depth and normal neural networks. In some variations,
depth estimates for pixels are estimated from semi-dense data generated by performing
at least one of a depth-from-disparity process and a multiview stereo process.
Additionally, or alternatively, depth estimates for pixels are estimated from semi-dense
data generated from hardware depth sensors. However, any other suitable method can
be used to generate semi-dense data for estimating depth of pixels in the image being
processed at S430. In one example, S430 fuses multiple semi-dense and dense depth
estimation techniques to determine depth maps of the images and/or image segments of
S100 or S300. S430 is preferably performed contemporaneously with S420, but can
additionally or alternatively be performed before, after, or at any other suitable time.
[0086] In one example, S430 uses a depth estimation network that internally
optimizes depth and normal priors from S250 to improve geometry estimation. However,
dense pixelwise geometry can be otherwise estimated.

[0087] However, S430 can additionally or alternatively include any other suitable
elements performed in any other suitable manner.

[0088] The method can include S440: metric scaling the dense geometry (e.g.,
generated at S430). In variants, the 3D geometry output by S200 is scaled at S440.
Additionally, or alternatively, the depth map output at S430 is scaled at S440. However,
any other suitable 3D geometry can be scaled at S430. In variants, at S440, the depth
map is scaled based on metric scale information captured with the image set (at S100).

Additionally, or alternatively, the depth map can be scaled based on cloud-based visual-

21

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

inertial odometry, information identifying detected objects with known scale (and depth)
within the scene, manual measurements, or any other suitable type of data or
information. Scaling of the dense geometry (at S440) can be performed
contemporanecously with S430, after S430, and/or performed at any other suitable time.
[0089] In a first variation of S440, the dense depth map (generated at S430) is
scaled using metric scale information (e.g., metric scaled point cloud, metric scaled
planes, etc.) captured with the image set (at S110). In some implementations, the metric
scale information is filtered using statistics, estimated geometry and segmentation data
to remove outliers and noise.

[0090] In a second variation of S440, the dense geometry (generated at S430) is
scaled using a pre-scaled sparse (photogrammetry) depth map (e.g., generated at S200).
In some implementations, the photogrammetry depth map (e.g., generated at S200) is
scaled using metric scale information captured with the image set (at S110). In some
implementations, metric scaling the geometry (at S440) functions to fuse the metric scale
information (e.g., point cloud) with the photogrammetry point cloud, but can additionally
or alternatively provide any other suitable set of functionalities.

[0091] In some implementations, the dense depth map generated at S430 is scaled
at S440.
[0092] Scaling at S440 (for either of the photogrammetry depth map generated at

S200, or the dense depth map generated at S430) can include one or more of: using a
visual-inertial SLAM/AR sparse point cloud and interpolation to assign metric scale to
photogrammetry point clouds/reconstructions; using a visual-inertial SLAM/AR sparse
point cloud and mesh densification (e.g., Delaunay triangulation, Poisson filtering, least-
squares filtering, etc.) to propagate metric scale to photogrammetry point clouds (or
reconstructions); using visual-inertial SLAM/AR sparse point clouds and dense neural
network depth estimates to propagate metric scale to photogrammetry point clouds
(reconstructions); using visual-inertial SLAM/AR metric pose estimates to fuse metric
scale information with photogrammetry, such as by determining a best-fit scaling (or
metric scaling factor) for poses (e.g., determining a best fit similarity transform by

determining rotation and translation between photogrammetry pose estimates and/or

22

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

visual-inertial SLAM/AR pose estimates) and aligning photogrammetry pose estimates to
visual-inertial SLAM/AR pose estimates (e.g., to determine a metric scaling factor); using
detected planes from AR and/or segmentation (e.g., from neural networks; clustering
algorithms, histogram-based methods, and/or any other suitable method) to infer metric
scale; and/or using visual-inertial SLAM/AR (sparse) point clouds and/or floor
segmentation to align/scale floor planes to photogrammetry point
clouds/reconstructions; using metric scale depth estimates from depth sensors (e.g.
depthmaps from ToF or structured light sensors) to improve geometric scale; using metric
scale depth estimates from stereo or multi-lens cameras to improve geometric scale; using
known object detection to improve geometric scale; using fiducial markers to improve
geometric scale; and using user-input measurements or adjustments to improve
geometric scale. However, any suitable process can be used to perform scaling at S440.

[0093] In a first example, scaling at S440 includes: scaling a point cloud by using a
height estimate. The height estimate can be a floor-plane height estimate. The height
estimate can be a high quality, metric-scale height estimate. The height estimate can be
determined from visual-inertial odometry, AR platform, range sensor, fiducial marker, or
any suitable process. The point cloud can be a photogrammetry point cloud, a dense point
cloud, or any suitable type of point cloud. Scaling the point cloud can include scaling the
point cloud with a scalar. Secaling the point cloud can function to make the height of the
floor class points (point cloud points of a room’s floor in a scene captured by the images(s)
obtained at S100) consistent with the estimated floor plane height. The scaling can be
performed by using a robust model fit (e.g. RANSAC, median scaling, etc.). In variants
where the point cloud (e.g., photogrammetry point cloud, dense point cloud) is scaled
using a high-quality floor plane estimate, the point cloud can optionally be refined or
augmented by adding/replacing the depth of all pixels which are confidently segmented
as an object class (e.g., floor) to and/or with the depth of the floor plane, but the
photogrammetry point cloud can be scaled using any other suitable process. For
example, if the depth of the floor is known, the estimated depths for all pixels associated
with the floor (as determined by segmentation results generated at S420) are set to the

depth of the floor. In some implementations, a depth is assigned to each segment

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

identified during segmentation at S420, and pixels or points associated with a segment
are assigned the depth of the segment. In this manner, rather than estimate, or
determine, a depth for each pixel of a segment, a depth is determined for the segment,
and this depth is assigned to each pixel or point related to the segment. In a specific
example in which a segment is a planar surface, the depth of each pixel representing the
planar surface is estimated based on the geometry of the planar surface, such that the
estimated depths for each pixel of the surface all lie within a same flat geometric plane.
[0094] In a second example, scaling at S440 includes: using adjacent SLAM/AR
map points (which overlap or are nearby to the points within the photogrammetry or
dense point cloud) to scale the point cloud such that the point cloud’s points best agree
with the adjacent SLAM/AR map points in the image(s) (e.g., from S100). S440 can
optionally use interpolation/extrapolation methods to estimate values between sparse
SLAM/AR points (e.g., using RANSAC, median scaling, ICP, and/or any other suitable
model).

[0095] In a third example, scaling at S440 includes: scaling the photogrammetry
point cloud by fitting a similarity transform to the camera pose positions of the
photogrammetry and/or AR point clouds, finding the optimal transform (e.g., that best
makes the poses agree, that is optionally robust, that is optionally tolerant of outliers, etc.}
and applying the transform to the photogrammetry point cloud, a subset of points of the
photogrammetry point cloud, and/or any other suitable point cloud.

[0096] In a fourth example, scaling at S440 includes: computing a scaling factor
from metric scale camera poses (e.g. from SLAM/AR) and photogrammetry poses.
Determining scale from photogrammetry poses and metric poses can include computing
baseline distances for the photogrammetry poses (e.g. from an arbitrary reference pose
index), computing baselines for the metric poses (e.g. from the same reference pose
index), determining scale ratios by scaling the baselines of the metric poses by the
baselines for the photogrammetry poses (e.g., using element-wise division), and robustly
determining the best scaling factor that brings the photogrammetry poses into
conformance with the SLAM/AR metric poses (e.g. rejection extreme outliers, robust
averages, RANSAC, etc.).

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[0097] In a fifth specific example of S440, global scale can be determined by
robustly computing a global scalar that causes the metric points (e.g. from visual inertial
SLAM/AR, etc.) to best fit with the estimated geometry. Determining a global scalar that
best fits metric points to geometry can include: robustly determining global scalar from
overlapping (or nearly overlapping) portions of photogrammetry depth maps and metric
depthmaps; robustly determining global scalar from projecting and intersecting metric
points onto interpolations and/or extrapolations of sparse geometry (e.g. Delaunay
tesselation, least-squares meshing, neural network interpolation); robustly determining
global scalar from projecting and intersecting metric points onto dense reconstructions.
[0098] In a sixth example of S440, scaling is restricted to certain points, pixels or
segmentation classes (e.g. only use floor points, only use high-confidence points, avoid
mirrors or reflective surfaces, avoid objects behind windows, avoid distant points, etc.).
[0099] In a seventh example of S440, global scale can be determined by detecting
heights of objects based on detecting known objects in an image and obtaining the height
based on a predetermined height (or set of heights) of the known object (e.g., retrieved
from a database).

[00100] In an eighth example of S440, global scale can be determined by
determining the height of the camera from the floor plane the photographer is standing
on based on the heights of known objects in the image calculated using single-view
odometry using gravity (see Figure 7), an average camera height (e.g., 1.43 meters, 4.7
feet, 5 feet, etc.), and/or determined in any other suitable manner; determining planes or
parameters thereof (e.g., height) based on user input (e.g., fine tuning) where the user
adjusts a floor height to define the height (e.g., based on visual cues) or drags a virtual
marker to define the corners and/or edges of the floor or wall; and/or determining planes
based on user input (e.g., manual measures) where the user can mark a vertical floor
height for a known height in the image; but can additionally or alternatively include any
other suitable process. The process can be a single process, a set of chained processes
(e.g., executed sequentially) and/or suitable process.

[00101] A specific example of estimating camera height above floor from known

objects is illustrated in FIGURES 6 and 7, wherein the camera height is estimated from a

25

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

measured height from a reference object to the floor (RF) using gravity, vanishing points,
and projective geometry. In variants, this includes computing the camera to floor height
(“h.”) based on a known reference object height (“h;”) (e.g., using cross ratios) where the
vanishing line and the vanishing point can be determined based on the plane normal of
the (x-z) plane parallel to the floor (e.g., gravity). In a specific example, the camera height
can be computed using the following equation:

hr d(v,f)-d(c,r)

'EZ,? -+ d(v,r)-d(c,f)

where v is the vertical vanishing point, fis the floor point aligned with v, ¢ is the camera

height at the horizon, r is a point on the horizontal virtual plane extending through the
top of the reference object aligned with fand v, and d(x,y) can be the distance between
the x and y points. However, any other suitable equation can be used. In an example,
two pixel projections of the end points of a vertical line segment of a reference object,
which should pass through vertical vanishing point “v” and intersect the horizon
vanishing line at “c” as shown in FIGURE 7.

[00102] However, S440 can additionally or alternatively include a combination of
the above and/or any other suitable elements performed in any other suitable manner.
[00103] S450 preferably identifies horizontal planes (e.g., floors), but can
additionally or alternatively identify vertical planes (e.g., walls) and/or any other suitable
plane. S450 can optionally determine heights, surface normal, orientation, and/or any
other suitable plane information. S450 can be performed contemporaneously with S440,
after, and/or at any other suitable time. The planes can be determined based on: neural
network surface normal and/or plane estimators, auxiliary information (e.g., AR detected
planes, AR point planes, gravity measurements, ete.), plane fitting to point clouds or
depth map(s), semantic segmentation map, fiducials, manual labels, and/or any other
suitable input. The planes can be determined using: trained machine learning models,
heuristics, histogram searching, RANSAC, robust model fitting, plane-fitting, and/or any

other suitable method or combination thereof (e.g., cascade, voting).

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[00104] In some examples, estimating planes (at S450) includes one or more of:
using planes detected by an AR (Augmented Reality) platform (e.g., included in the user
device 210 of the system 200, included in the platform 220 of the system 200, shown in
Fig. 2); estimating planes by using robust fitting of line, point, class and/or surface normal
features; determining horizontal planes by first orienting a reference axis parallel to
gravity (e.g. the Y axis of AR systems is often defined as -gravity) and then using
histograms of the gravity-aligned component of 3D points, where the peaks indicate
horizontal planes; determining horizontal planes based on fitting planes to point clouds
with a surface normal parallel to the gravity vector {(e.g., using histogram search,
RANSAC, search, and/or any other suitable model fit); determining floor planes by
filtering point clouds for points labeled as semantic floor classes, before horizontal plane
fitting; determining horizontal and/or floor planes using a trained neural network that
determines plane regions and plane equations; determining architectural boundaries
(e.g., floor, wall, ceiling, etc.) based on floor/wall/ceiling points near wall seams, near
chair legs, near sofa boundaries, and/or based on any other suitable set of points;
handling noise and unreliable points by determining point confidence weighting, which
can be achieved by determining the number of views the point was visible, reprojection
error/variance, closeness to a wall boundary, closeness to a depth occlusion
(photogrammetry methods can cause false depth overhangs), local intensity variance
across images, and/or using any other suitable process; and determining normal vectors
and depths based on recognizing special markers (e.g., fiducials) on horizontal surfaces.
[00105] However, S450 can additionally or alternatively include any other suitable
elements performed in any other suitable manner.

[00106] In wvariants, performing multi-model geometry regularization,
densification, and fusion at S460 includes combining data to determine a fused depth
map for the image (e.g., obtained at S100, generated at S300). In some implementations,
the fused depth map is a dense, accurate, scaled depth map. In some implementations,
combining data to determine the fused depth map includes: combining output generated
by multiple models and available depth estimates. In some implementations, the

available depth estimates include one or more of: depth estimates included in the

27

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

photogrammetry point cloud, depth estimates included in the neural network dense
depth map, depth estimates included in the AR sparse depth map, depth estimates
included in depthmaps, depth estimates included in plane equations, and the like. S460
can be performed contemporaneously with S450, after S450, and/or at any other suitable
time relative to S430, S440, and/or S450.

[00107] In wvariants, performing multi-model geometry regularization,
densification, and fusion at S460 includes one or more of: determining a fused depth map
by fusing the photogrammetry, neural geometry and/or AR point clouds (e.g., use the
dense depth map’s estimates to fill gaps in the photogrammetry and/or AR point clouds);
filtering (local) outliers in MVS data (e.g., during the process of fusing the
photogrammetry, neural geometry and/or AR point clouds); and densifying the point
clouds (e.g., using Delaunay triangulation, Poisson meshing, LS filtering, bilateral
filtering, domain transfer filtering, etc.). In some implementations, S460 includes
performing local error correction and/or space filling for the fused depth map by using
least squares meshes. In some implementations, meshes are used as an interpolation
mechanism for depth and/or delta depth for tight local error correction or space filling,
and/or for any other suitable functionality.

[00108] In one example of S460, fusing the photogrammetry point cloud with the
neural depth map includes one or more of: removing outliers by filtering and averaging
the depths of the photogrammetry point cloud; adding additional pseudo depth points
(e.g., from the scaled neural depth map) around the perimeter of the image (e.g., so that
the convex hull of the photogrammetry point cloud contains the whole image and/or for
any other suitable benefit) where the pseudo depth points can optionally be spaced
around the perimeter of the image (e.g., distal regions with real photogrammetry points,
proximal regions with real photogrammetry points, etc.); optionally applying
densification/meshing/interpolation/extrapolation techniques to densify sparse data
(e.g., using methods including 2D Delaunay triangulation interpolation, Poisson filter
mesh, least squares meshing, and/or any other suitable process); fusing depth data (e.g.
neural depth data) with sparse depth data (e.g., photogrammetry point cloud, AR point
clouds, etc.) by filling in gaps in the sparse depth data with the dense depth data; and

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

regularizing the resultant depth map (e.g., by segmentation classes, normal, and/or other
priors) to cutput a fused, dense depth map. However, S460 can be otherwise performed.
[00109] In a specific example, S460 can use 2D Delaunay triangulation of
photogrammetry data as an interpolation mechanism for depth for tight local error
correction and space filling of neural dense depth data. The 2D Delaunay triangulation
algorithm can include one or more of: filtering outliers of the photogrammetry depths,
generating 2D Delaunay triangle meshes based on MVS points (semi-dense), computing
delta depths between the photogrammetry depths and the neural depths on the triangular
vertices (e.g., by, on a 2D image, determining the difference between the photogrammetry
depth and the neural depth), interpolating the sparse delta depths based onlocal triangles
and/or perspective correction techniques; and eombining the interpolated delta depths
and the neural depths (e.g., by adding) to obtain the corrected depth map.

[00110] In a second example, S460 can use energy-minimizing meshes such as
Least-squares meshes and Laplacian meshes to refine a dense depth map by steering the
depth map locally toward sparse photogrammetry anchor depths while preserving the
local shape relationship of the dense depth. S460 can additionally or alternatively include
any other interpolation and/or optimization mechanism for fusing dense neural depths
with sparse depths and/or provide any other suitable set of benefits.

[00111] However, S460 can additionally or alternatively include any other suitable
elements performed in any other suitable manner.

[00112] In variants, regularizing geometries and segmentation S470 functions to
jointy improve geometry (including planar surfaces) and segmentation. In many cases,
segmentation can be used to improve geometry, and geometry can be used to improve
segmentation. S470 can regularize the geometry using: a segmentation map (e.g., by
regularizing geometries within the same segment), normal maps, planes (e.g., from
S450), depth sensor data, VIO (Visual Inertial Odometry) outputs, depth maps (e.g., from
S460, S430, S440, etc.), and/or any other suitable data. Regularizing geometries and
segmentation (S470) can include using energy-based optimization, filtering, heuristics,

and/or any other suitable method to determine regularized geometry and/or

29

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

segmentation. S470 can be performed after, before, and/or contemporaneously with
S460, and/or at any other suitable time.

[00113] In one example, S470 includes regularizing walls to improve their surface
normal accuracy (e.g. vertical walls should be orthogonal to the floor plane) and
uniformity (e.g. flatness). Regularizing walls can be determined based on multiple sources
of representational data such as from SFM (structure from motion) & MVS (multi-view
stereo) photogrammetry, neural networks, architectural seams, vanishing points, gravity,
plane equations, semantic segmentation, and/or any other information. The
regularization can be modelled as an energy-minimization optimization and solved using
linear or variational methods.

[00114] In a second example, S470 can include regularizing semantic segmentation
data using color images, segmentation maps, depthmaps and/or point clouds, and normal
maps. The regularization can reduce false negatives and false positives in segmentation
by using plural modalities such as normals, 3D depths and/or point cloud of the scene. As
illustrated in FIGURE 8, floor pixels mis-segmented as not-floor can be corrected using
the class probability and likelihood that class would have local depths and normals as
observed.

[00115] In one example, the refinement algorithm can include three passes. The first
phase (e.g., FIGURE 8) can include: determining high probability points p (e.g.,
probability(p)>0.9) using a point-to-plane distance, given a 3D estimated floor plane and
a probability map of segmented floor points. A threshold over Euclidean distance can be
used. Depth of confirmed points can be refined using the computed point-to-plane
distance difference. However, the first phase can additionally or alternatively include any
other suitable process.

[00116] The second phase (e.g. FIGURE 8) can process the mid-probability points
(e.g., p (0.5 < probability(p) < 0.9)). A voting scheme can be applied to refine the floor-
labels as follows: using MVS, compute, for each point p within a search window, the
distance to the detected floor plane and/or the normals deviation using the floor’s
estimated normal. If both conditions are satisfied, point p can be attributed a vote. If point
p holds enough votes (above a threshold), it is then confirmed as a floor point; otherwise,

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

it’s assigned the label of its second highest probability segment. The search window can
be adaptive depending on the sparsity/density of the inputs. Confirmed points’ depth can
be refined as described in the first phase. Optionally, in case of sparse points or in favor
of time-processing, the refined label can be attributed as follows: (a) cluster the mid-
probability points using normals; (b) for each cluster, if the sum of received votes is
significant, then assign the cluster a floor label; else, assign its second highest predicted
label.

[00117] In the third phase (e.g. FIGURE 8), non-floor labeled points can be
processed. A similar voting scheme as described in phase two can be implemented for
non-floor labeled points. Points/pixels are corrected using a search window: if significant
window-pixels are confirmed as a floor-point, then the current pixel’s label can be labeled

as floor. Otherwise the initial predicted label can be retained.

[00118] The transformation can additionally or alternatively include any other
suitable process/phase, and/or be applied to other object classes.

[00119] However, S470 can additionally or alternatively include any other suitable
elements performed in any other suitable manner.

[00120] However, S400 can additionally or alternatively include any other suitable
elements

4.5 Computing foreground occlusion masks and depths for the scene imagery S500.
[00121] S500 preferably functions to determine foreground occlusion masks and,/or
depths for the scene imagery (e.g., for each of a set of objects appearing in the scene), but
can additionally or alternatively perform any other suitable set of functionalities. In
variants, several occlusion data assets are generated for the image being processed. These
occlusion data assets can be used to render a scene at S600. In variants, the data assets
can be used by a renderer to render (e.g., in real time) virtual objects onto a real scene,
and perform occlusion (e.g., conditional occlusion) processing for virtual objects that
overlap real objects in the rendered scene.

[00122] The data assets generated at S500 can include one or more of: photorealistic
imagery 501; an object mask with clean depth edges 502; a dense depthmap that includes

depth estimates for each pixel of the image being processed 503; and information

31

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

identifying pixels that correspond to key geometric surfaces (e.g., walls, floors, horizontal
surfaces, etc.) 504, as shown in Fig. 3.

[00123] The data assets generated at S500 can be used to identify real objects in the
rendered scene, and depths for each identified real object. For example, an object mask
can identify pixels associated with each real object in the rendered scene. By generating
object masks with clean depth edges, the object boundaries can more easily be identified.
By using the dense depthmap, the depth of each identified real object can be identified at
each pixel of the object. By virtue of the clean depth edges of the object masks, depth
estimates for object edges can be corrected for consistency with edge geometry of the
object (e.g., all depths along a straight edge should have the same depth, or depths should
lie along a continuous line, etc.). By using the data that identifies the geometric surfaces,
depth estimates for object edges can be corrected for consistency with surface geometry
of the object (e.g., all depths within a planar surface should have the same depth, or
depths that lie within a continuous plane, etc.). For example, depth estimates for a floor
surface should be the same, or at least be consistent with a generally flat surface (e.g., not
have depths that would suggest that the floor has holes or bulges).

[00124] In variants, S500 includes: identifying edge pixels included in edges of real
objects included in the photorealistic image, by using at least one generated object mask
(e.g., segmentation mask 502), and for at least one edge pixel, adjusting the depth for the
pixel based on depths of other edge pixels included in the same edge.

[00125] In variants, S500 includes: identifying planar surface pixels that are
included in a planar surface identified by the generated geometric surface information
(e.g., 504), and for at least one planar surface pixel, adjusting the depth for the pixel based
on depths of other planar surface pixels included in the same planar surface. In some
implementations, planar surfaces identified by the generated geometric surface
information (e.g., 504) include at least one of a wall surface and a floor surface. However,
any suitable surface can be identified by the geometric surface information.

[00126] In wvariants, S500 includes one or more of: computing connected
components/subregions S510; regularizing connected component occlusion depths S520;

and storing occlusion masks and depths S530, as shown in Fig. 1F. However, S500 can

32

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

additionally or alternatively include any other suitable process. S500 can be performed
after S400, contemporaneously with S400, and/or at any other suitable time.

[00127] In variants, S500 is performed by the platform (e.g., 220 shown in Fig. 2),
but can additionally or alternatively be performed by the user device (e.g., 210), or by any
other suitable system.

[00128] Computing connected components/subregions S510 can be performed after
S400, but can additionally or alternatively be performed contemporaneously and/or at
any other suitable time. In variants, the occlusion masks are determined based on one or
more of: the semantic segmentation map (e.g., from S4z0, from S470, etc.); a subset of
the semantic segmentation map (e.g., segments for a given object class); a depth map
(e.g., fused depth map from 5460, dense depth map, sparse depth map, etc.); and/or any
other suitable data. The occlusion masks can be determined using filters (e.g., median
filtering, pseudo-median filters, bilateral filters, smoothing, other non-linear digital
filtering, etc.) or otherwise determined. Computing connected components S510 can
include: for each semantic segmentation class in the class set (identified at 5420):
gathering the set of independent connected components. In variants, for each connected
component, the region masked by the connected component is obtained from the depth
map (e.g., obtained at S430 or S460). In variants, a smoothing filter (e.g., median filter
smoothing kernel) is applied over the obtained region.

[00129] A specific example of a filtered and edge-enhanced depth map is depicted
in FIGURE 9.

[00130] However, S510 can additionally or alternatively include any other suitable
elements performed in any other suitable manner.

[00131] Regularizing connected component occlusion depths S52o0 functions to
enhance the depths at the edges of objects. By enhancing depths at the edges of objects,
visual appearance of a resulting displayed image can be improved. For example, when
placing virtual objects in a scene, occlusion of virtual objects by images of real objects can
be improved by providing more locally consistent, more RGB consistent, and/or more
accurate depths for at the edges of the images of the real objects. By having more accurate

depths for edges of real objects, the system can more accurately determine whether a

33

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

virtual object is placed in front of, or behind, the image of the real object. By more
accurately aligning depth edges to color edges of objects, object occlusion is also more
convincing. If there is variance in the depths of the real object at the object’s edges, the
system might determine that the virtual object is in front of portions of the real object,
and behind other portions of the real object, resulting in a distorted image. Ss520
functions to improve the occlusion operations described herein by more accurately
determining depths at the edges of real objects.

[00132] S520 is preferably performed after Ss10, but can additionally or
alternatively be performed contemporaneously or at any other suitable time.

[00133] At Ss520, depths at the edges of real objects in the image can be more
accurately determined by using one or more of depth maps (e.g., 901), color images (e.g.,
902) and normal maps (e.g., 904 shown in Fig. 4). This information can be used to more
accurately identify the edges of objects, which should have similar depths (or at least
depths that vary in a manner that is consistent with the object’s geometry.

[00134] S520 can include regularizing connected component occlusion depths by
combining depth maps, color images and normal maps. S520 can be determined based
on depth map(s) (e.g., the fused depth map), a set of images (e.g., from Si100, S300), a
normal map, and/or any other suitable data.

[00135] In one example of S520, depths can be determined by combining depth
map(s) (e.g., input image depth map 901 shown in Fig. 9, filtered and/or edge-enhance
image depth map 903 shown in Fig. 9), color images (e.g., 902 shown in Fig. 9), and
normal map(s) (e.g., 904 shown in Fig. 9). Determining depths by combining depth
maps(s), color images and normal map(s) can include: for each pixel in the input image
depth map (e.g., 901): given a search window (region of neighboring pixels such as kxk,
3x3, 10x10, etc.), determining a dissimilarity weight using guidance image(s) between
pixelsiand j. Determining a dissimilarity weight using guidance image(s) between pixels
i and j can include determining a similarity between pixels i and j based on one or more
of: a color assigned to each pixel, a surface color assigned to a surface that includes the
pixels, a surface that is associated with each pixel, and information for each pixel that is

recorded in at least one normal map. The dissimilarity weights can be computed based

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

on the determined similarities (e.g., a dissimilarity weight value can increase as the
similarity between a pair of pixels decreases). In some implementations, the input image
depth map (e.g., 901) is filtered based on the dissimilarity weight (e.g., drawing a sharper
edge at pixels with high dissimilarity weights). In other words, adjacent pixels having a
high dissimilarity weight can identify a edge of a real object, whereas adjacent pixels
having a low dissimilarity weight can identify pixels within an interior region (surface) of

the object. In one example, the dissimilarity weight (W) can be calculated as follows:

_RCi-osl ik
[00136] Wi j(C.N)=¢e" 5 e on
- cost(H)}
[00137] Wii(f) =e <f
[00138] where C is the surface color consistency; surface normal (N) can be

determined from the input depth map, provided by a neural network, or otherwise
determined; and cost(f) corresponds to the cost of a feature dissimilarity f between pixels
iand j, wherein the feature can be one or more of: coplanarity, 3D distance, segmentation,
and/or any other suitable feature. The dissimilarity weight is preferably independent
from the input image, but can additionally or alternatively be dependent on the input
image and/or have any other suitable relationship with the depth image. However, the
dissimilarity weights and/or edges can be otherwise determined.

[00139] In wvariants, the regularized connected component occlusion depths
generated at S520 include more accurate depth information for edges of real objects
included in the image being processed.

[00140] However, S520 can additionally or alternatively include any other suitable
elements performed in any other suitable manner.

[00141] Storing occlusion masks and depths S530 preferably functions to store
occlusion masks and/or depths for subsequent use (e.g., by a graphics engine), but can
additionally or alternatively provide any other suitable set of functionalities. In variants,
the depths include depths for each pixel included in the image being processed. A depth
recorded for a pixel (e.g., in a depth map) can include one or more of: a measured depth

(e.g., determined by using sensor data) and an estimated depth. Ss30 is preferably

35

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

performed after Ss20, but can additionally or alternatively be performed
contemporaneously, and/or at any other suitable time. The occlusion masks and depths
can be stored in video memory, texture memory, a buffer, and/or any other suitable
memory. S530 preferably includes storing the image being processed (e.g., pano image
such as the full resolution wide-angle panorama image, a single image captured on a
camera, and/or any other suitable image) and the depth map (which stores a depth for
each image pixel) for the image, but can additionally or alternatively include storing any
other suitable information. The depth map can have any suitable resolution. In some
implementations, the depth map has a resolution that matches the resolution of at least
one associated image. Example resolutions can include: panorama resolution, standard
camera resolution, and/or any other suitable resolution. In one example of storing the
image, the image can be stored as eight bits each of red, green, and blue image pixels, and
eight-bit alpha channel which stores binary (foreground or background) masks. In one
example of storing the depth map, storing the depth map can include storing a 24-bit
depth map (e.g., consuming the red, green, and blue channels) and the inverse floor
probability (e.g., represented in 8 bits of alpha). However, S530 can additionally or
alternatively include any other suitable elements performed in any other suitable manner.

[00142] However, S500 can additionally or alternatively include any other suitable
elements.
[00143] In variants, S500 includes: the platform 220 providing the generated

occlusion data assets to the user device 210.

4.6 Rendering scenes interactively with occlusion masks S600.

[00144] Rendering scenes interactively with occlusion masks S600 preferably
functions to render interactive scenes on a user device (e.g., 210). In variants, the scenes
are rendered at S600 by using one or more of the occlusion data assets are generated at
S500 (e.g., imagery 501; an object mask 502; a dense depthmap 503; and geometric
surface information 504, shown in Fig. 3). In variants, the platform provides the
occlusion data assets (generated at S500) to the user device. Alternatively, the user device

generates the occlusion data assets at S500. In variants, rendering scenes interactively

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

with occlusion masks (S600) includes rendering (e.g., in real time) virtual objects onto a
real scene.

[00145] In variants, S600 includes one or more of: compiling and loading custom
graphics shaders S610; loading RGB images, depthmap(s), and occlusion mask(s) S620;
generating occlusion information S630; facilitating interactive virtual object insertion
and movement in the rendered scene S640, as shown in Fig. 1G. However, S600 can
additionally or alternatively include any other suitable process. S600 can be performed
after S500, contemporaneously with S500, and/or at any other suitable time.

[00146] In variants, S600 is performed by the user device (e.g., 210), but can
additionally or alternatively be performed by the platform (e.g., 220), or by any other
suitable system.

[00147] In a first variation of S600, one or more images (e.g., accessed at S100)
and/or processed images depth map(s) (e.g., 602 shown in Fig. 10) and semantic
segmentation information (e.g., 603 shown in Fig. 10) (e.g., that are stored in memory,
video memory and/or texture memory) are written to a framebuffer (e.g., 604 shown in
Fig. 10) of the user device (e.g., 210). This data can be written to the framebuffer via one
or more blit and/or lexturing operations. In some implementations, the framebuffer is
given 1) a color image and 2) depth buffer information. The depth buffer selectively
occludes based on the earlier-supplied semantic segmentation information (e.g., at
S400), discriminating between regions that the framebuffer might occlude and those
(regions) which the frame buffer must never occlude during subsequent rendering. For
example, semantic segmentation information can be a bitmask, a probability mask,
and/or any other suitable mask (e.g., identifying one or a plurality of known labeled
features, such as floor which must never occlude rendered 3D objects, like furniture or
floor coverings). Determining objects which should not occlude rendered 3D objects can
add tolerance to the process, wherein the process might suffer from rendering artifacts
and imprecise output of computational photography and Al processing of images (e.g.,
zfighting) otherwise, and/or confer any other suitable benefit.

[00148] In a second variation of S600, depth occlusion information and semantic

segmentation information can be stored in texture memory (e.g., 601 shown in Fig. 10).

37

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

In some implementations, the depth occlusion information (e.g., 602 shown in Fig. 10)
and semantic segmentation information (e.g., 603 shown in Fig. 10) can be stored in the
texture memory (e.g., 601) as components of a packed 3 or 4 component texture and used
as a depth value and a write mask in a shader. The depth value can be written to the
framebuffer (e.g., 604 shown in Fig. 10), where the semantic segmentation mask allows
the framebuffer and the depth information to subsequently occlude 3D rendering.
Elsewhere, no value is written or a distant value is written to prevent occlusion of a desired
type of data, such as floor coverings or wall coverings.

[00149] In a third variation of S600, depth information can be converted from the
storage format to depth information expected in the framebuffer for 3D rendering (e.g.,
normalizing the depth information such as to values between o and 1).

[00150] S610 is preferably performed after Ss00, but can additionally or
alternatively be performed contemporaneously and/or at any other suitable time. Custom
graphics shaders can include a fragment shader and/or a vertex shader, but can
additionally or alternatively include any other suitable combination of texture format
storage, precision, numerical encodings, use of multiple textures, use of stencil tests
instead of and/or in addition to alpha tests, and/or using destination buffer stencil test
operations, or any other suitable shader. In one example, the fragment shader converts
depth and semantic segmentation information from texture memory and transfers the
information to the framebuffer. Optionally, transferring information to the framebuffer
can be based on one or more semantic segmentation masks. In a specific example of the
framebuffer, 2 bytes of texture information from red and green channels can be converted
to 16 bit depth and a conversion to hardware perspective linear depth is generated using
near and far clip values supplied as a uniform. The linear depth can be written to the
framebuffer or discarded depending on the semantic segmentation information/mask
stored in the alpha channel of the texture memory. In a second example, the vertex shader
generates pixel fragments using geometry, attributes, and uniforms, but can additionally
or alternatively use any other suitable feature. The pixel fragments generated by the
vertex shader can be used by the fragment shader to transform the information and/or

the pixel fragments can be used in any other suitable process. However, S610 can

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

additionally or alternatively include any other suitable elements performed in any other
suitable manner.

[00151] Loading RGB images, depthmap(s), and occlusion mask(s) S620 is
preferably performed after S610, but can additionally or alternatively be performed
contemporaneously or at any other suitable time. The RGB image is preferably the
photorealistic image generated in S300, but can be any other suitable image (e.g., an
image accessed at S100). The depthmap is preferably the depthmap from S500, but can
additionally or alternatively be the depthmap from S400, and/or any other suitable
depthmap. The occlusion mask is preferably the foreground masks from S500, but can
additionally or alternatively be any other suitable masks. However, S620 can additionally
or alternatively include any other suitable elements performed in any other suitable
manner.

[00152] Generating occlusion information S630 is preferably performed after S620,
but can additionally or alternatively be performed contemporaneously or at any other
suitable time.

[00153] In variants, generating occlusion information 8630 can include one or more
of: semantically-aware filtering out non-occluding objects using the fragment shader
and/or any other suitable shader; writing a fused depth image to the zbuffer (e.g., 605
shown in Fig. 10} over an RGB image (e.g., for hardware accelerated occlusion of synthetic
rendered objects).

[00154] In some variations, generating occlusion information S630 includes
determining if a graphics engine (e.g., 211 shown Fig. 2) of the user device (e.g., 210)
supports writes to the depth buffer of the user device from a fragment shader of the user
device (S631 shown in Fig. 1H). If the graphics engine supports writes to the depth buffer
from the fragment shader (“YES™ at S631), then the fragment shader loads the RGB image
in texture memory of the user device. In some implementations, the graphics engine of
the user device binds the RGB image to a rectangular occlusion quad, and the graphics
engine registers a custom fragment shader for the rectangular occlusion quad that
represents the RGB image. In variants, the occlusion quad is associated with the dense

depthmap (loaded at S620). In variants, the custom fragment shader generates occlusion

39

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

information by processing fragments of the rectangular occlusion quad. In some
implementations, the fragments include image pixels from the photorealistic image. In
some implementations, processing fragments of the rectangular occlusion quad includes
sampling image candidate pixels from the photorealistic images included in the occlusion
quad. In some implementations, the fragment shader processes a fragment by
determining whether the fragment is segmented as pixel of a surface that should not
occlude a virtual object (e.g., a floor surface, wall, ceiling, etc.) (S632). In some
implementations, the semantic segmentation information accessed at S600 is used to
determine whether fragment is segmented as a pixel of a surface that should not occlude
(S632). If the fragment is segmented as pixel that should not occlude a virtual object
(“NO” at S632), then the custom fragment shader discards the depth of the fragment (at
S633) so that it does not occlude. Otherwise, if the fragment is segmented as pixel that
should occlude a virtual object (“YES” at S632), then at S634 the custom fragment shader
updates the depth of the fragment by using the depthmap loaded at S620. In variants,
the depth of the fragment is updated at S634 with a corresponding depth identified by the
depthmap loaded at S620. In some implementations, the custom fragment shader
converts the depth identified by the depthmap to a viewport projective depth value, and
updates the depth of the fragment to be the converted depth. The generated occlusion
information is the depths of the fragments of the rectangular occlusion quad.

[00155] If the graphics engine does not support writes to the depth buffer from a
fragment shader of the user device (*NO” at $631), then the graphics engine of the user
device generates occlusion information by generating an occlusion mesh and tessellating
the occlusion mesh. In variants, performing generating the occlusion information by
tessellating the occlusion mesh includes sampling the depthmap (loaded at S620) to
generate the occlusion mesh (S635). In variants, a sampling density is identified, and the
sampling of the depthmap is performed in accordance with the sampling density. The
sampling density represents a tradeoff between occlusion accuracy and memory usage
and processing performance. The sampling density can be predetermined, configured,
dynamically determined, or otherwise identified. In some implementations, each

depthmap sample obtained at S635 is converted into an eye-space Z value.

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[00156] In variants, the graphics engine uses the depthmap samples (e.g., raw
samples, samples converted into eye-space Z values, etc.) to tessellate a triangular mesh,
such that the depths of the pixels of the triangular mesh correspond to the depths of the
depthmap samples (S636). In some implementations, the graphics engine crops triangles
of the triangular mesh that overlap with planar segments (e.g., segments representing a
floor) that should not occlude. In an example, the graphics engine crops triangles of the
triangular mesh that overlap with floor segments such that the image representing the
floor does not occlude virtual images rendered by the graphics engine.

[00157] In variants, at S637 the triangular mesh is rendered to fill the depth buffer
that is used to enable occlusion. In some implementations, the generated occlusion
information includes the depths of the pixels of the rendered triangular mesh.

[00158] In some implementalions, the triangular mesh is registered with a 3D
graphics system of the user device as an invisible, z-occluding scene model. In some
implementations, the graphics system renders the virtual objects with occlusion by using
the triangular mesh. In some implementations, rendering the virtual objects with
occlusion by using triangular mesh includes: discarding occluded virtual object pixels,
and compositing non-occluded virtual object pixels with the photorealistic image.
[00159] In variants, the dense depthmap is updated after rendering the virtual
objects with occlusion, and the updated dense depthmap is provided to an end user
application (e.g., 212).

[00160] Facilitating interactive virtual object insertion, movement, rotation, or
configuration in the rendered scene S640 is preferably performed after S630, but can
additionally or alternatively be performed contemporaneously or at any other suitable
time. The occlusion and positioning behavior of virtual behavior can vary based on object
type, scene position, available scene data, and occlusion logic.

[00161] In some variants, S640 includes receiving user input identifying selection
of at least one virtual object (e.g., by mouse click, scroll wheel, keyboard input, tracking
device, etc.) and optionally receiving user input identifying a target location for at least
one selected virtual object within the image (e.g., by mouse drag & drop, etc., obtained at

S300, obtained at S100, etc.). In response to receiving the user input, one or more virtual

41

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

objects is rendered onto the image. In some implementations, the user input is received
via the user device (e.g., 210 shown in Fig. 2).

[00162] In some variants, S640 converts 2D mouse or touchscreen positioning
information into 3D scene positioning information. Multiple user interfaces can be
supported, changing the mapping from 2D screen position to 3D scene location. In one
implementation, the (x,y) coordinates of the mouse pointer or touchscreen indicate (with
optional offset) the base point of the object on a floor plane. In a second implementation,
the (x,y) coordinates of the mouse pointer or touchscreen indicate (with optional offset)
the base point of the object on a geometric surface. In a third implementation, the (x,y)
coordinates of the mouse pointer or touchscreen indicate (with optional offset) the base
point of the object on a wall. In a fourth implementation, the (x,y) motions of the mouse
pointer or touchscreen relatively move an object along a surface.

[00163] In some variants, S640 assumes virtual objects to be positioned on the floor
plane, mapping 2D pointing positions over a 2D image to 3D virtual positioning of an
object on the floor plane, permitting 3D computations of virtual object depths and
occlusion. Optionally, positioning can be constrained to limit placement of the object to
empty floor regions. In floor placement modes, it is optionally possible to place objects
behind walls (where they can be occluded).

[00164] In some variants, S640 includes special handling for hanging objects on
walls or other vertical surfaces (e.g., mirrors, wall art, wall sconces, etc.). In some
implementations, the system uses metadata associated with the virtual object to identity
a virtual object as a hangable object. Alternatively to variants where the objects are fixed
to a ground plane, in hangable modes, a 2D position on a wall would not slide an object
along the ground plane where it could be potentially placed and occluded behind a wall —
instead the 2D mouse motion would map to 3D positions along the hangable surface.
[00165] In some variants, S640 includes special handling for “stacking” virtual
objects on top of existing virtual or real objects (e.g., placing a vase on a table, or a pillow
on a sofa). In some implementations, the system uses metadata associated with the
virtual object to identify a virtual object as a “stackable” virtual object. Alternatively to
variants where the objects are fixed to a ground plane, in stackable mode, the bottom

42

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

index point of stackable objects can ride along the vertical surface contour of scene
geometry, and adhere to arbitrary geometric surfaces as the object is moved, modifying
the normal floor placement and occlusion, such that the virtual object is considered to be
placed ON the placeable surface instead of on the floor. In this mode, the coordinates of
the pixels (in the image coordinate space) of the virtual object are automatically updated
to render the virtual object on top of the placeable surface.

[00166] In some variants, S640 uses geometric representations of the scene (e.g.,
depthmaps, normal maps, meshes, etc.) and/or gravity, to position stackable objects in
scene lmagery.

[00167] In some variants, S640 uses horizontal surface detection and/or semantic
segmentation to identify valid locations for placing stackable objects (e.g., a flat,
horizontal area such as a table top, shelf, or countertop).

[00168] In some variants, S640 includes rendering virtual objects using occlusion
information generated at S630, using the generated occlusion information to perform
occlusion processing for virtual objects that overlap real objects in the rendered scene.
For each virtual object pixel of the virtual object, the depth for the virtual object pixel is
identified. The image pixel of the image being processed at the same location (in the
image’s coordinate space) as the virtual object pixel is also identified, and the depth of
this pixel is identified (by using the occlusion information generated at S630). Optionally,
the depths of other virtual object pixels at the same location are identified. The pixel
having the shortest depth at the location is displayed. If the depth of the virtual object
pixel is the lowest, then the virtual object pixel is displayed. If the depth of the image pixel
is the lowest, then the image pixel is displayed. If the depth of another virtual object pixel
is the lowest, then the other virtual object pixel is displayed.

[00169] An example of S600 is depicted in FIGURE 4.

[00170] However, S600 can additionally or alternatively include any other suitable

elements.

4.7 Removing objects in the rendered scene S700.

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[00171] In variants, S700 functions to remove real objects, or portions of real
objects, from the rendered scene (e.g. removing a sofa from a scene so you can replace
with another). However, S700 can additionally or alternatively perform any other
suitable set of functionalities (e.g. move, copy, clone, etc.). S700 is preferably performed
after $600, but can additionally or alternatively be performed contemporaneously, or at
any other suitable time. S700 is preferably performed by the user device (e.g., 210 shown
in Fig. 2), but can additionally or alternatively be performed by the platform (e.g., 220),
or by any other suitable system.

[00172] In some implementations, the scene is represented as an image, and images
of real objects (or portions of images of real objects) in the scene are removed. In an
example, the image is an RGB image. However, the scene can be represented as any
suitable type of image. In variants, images of real objects are 2D representations of 3D
objects. In some implementations, removing pixels of a real object from a rendered scene
includes adjusting color values. For example, removed pixels can be replaced with color
patterns that indicate deletion, or plausibly represent background textures. In some
implementations, removing pixels of a real object from a rendered scene includes changes
to occlusion behavior such as disabling occlusion for removed pixels, removing depth
information for pixels of the object from the 3D depthmap of the scene, and/or
replacing the depths of the removed pixels with new depth values.

[00173] In a first variation, removing pixels of real object(s) in the rendered scene
(S700) includes one or more of: identifying pixels to remove S710; estimating depths of
replacement pixels (e.g., by using estimated scene geometries to reconstruct the 3D
depths and/or shapes likely to appear behind the removed pixels) S720; determining
color of replacement pixels (including adjustment of colors of pixels outside the region
being replaced for the purpose of color harmonization, blending, or shadow management)
S730; improving the resulting geometry and imagery S740; and storing the resulting
model for future use S750. However, S700 can additionally or alternatively include any
other suitable process. However, S700 can be otherwise performed.

[00174] Identifying pixels to remove from the rendered scene S710 is preferably
performed after S600, but can additionally or alternatively be performed

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

contemporaneously or at any other suitable time. In one example of S710, pixels can be
identified by the user interfacing with the end user application (e.g., 212). In some
implementations, a user interface provided by the end user application (e.g., 212 shown
in Fig. 2) receives user input via a user input device included in the user device (e.g., 210).
In some implementations, the user interface includes user input elements that receive
user input that is used by the system to identify pixels to be replaced. Example user input
approaches include: a “magic eraser brush”, lasso and/or region selector, segment
selector, and/or object selector (e.g., couch, table, and/or any other suitable connected
component). In a first example, user input identifying selection of pixels to be replaced
includes: information identifying movement of a “magic eraser brush” in a coordinate
space of the image from which pixels are to be removed. In a second example, user input
identifying selection of pixels to be replaced includes: information identifying a
rectangular region of the image. In a third example, user input identifying selection of
pixels to be replaced includes: information identifying a freeform lasso region of pixels to
erase. In a fourth example, user input identifying selection of pixels to be replaced
includes: information identifying a segment of the image (e.g., generated as output of a
semantic segmentation process performed on the image). In a fifth example, user input
identifying selection of pixels to be replaced includes: selecting a coherent, pre-segmented
object instance (e.g., click to select a segmented region of pixels estimated to belong to a
table). In a sixth example, user input identifying selection of pixels to be replaced
includes: selecting a visually coherent region or “superpixel” (e.g., click to select a
superpixel region to remove). In a seventh example, user input identifying selection of
pixels to be replaced includes: information identifying desire to remove foreground
objects, yielding an empty room. In this example, the system removes all pixels that are
not included in image segments related to structural components of a room (e.g., floor,
walls, ceiling, stairs) or objects that are not likely Lo be removed from a room (e.g., doors,
cabinetry, built-ins). However, one or more objects or sets of pixels to be removed can
otherwise be identified. Optionally, the user can interactively add/delete/modify removal
regions, however the end user application can provide the user with any other suitable set
of tools to modify the scene.

45

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[00175] Estimating depths of replacement pixels S720 is preferably performed after
S710, but can additionally or alternatively be performed contemporaneously and/or at
any other suitable time.

[00176] In a first variant, S720 includes: for each replacement pixel, setting the
depth to a depth related to a known depth or a predicted depth for a key geometric surface
(or surfaces) behind (or predicted to be behind) the location of the pixel being replaced.
In some implementations, the key geometric surface is an architectural geometric surface
of a room (e.g., a wall, a floor, etc.). In variants, the new depth for a replacement pixel is
interpolated based on known or estimated depths for pixels of the partially-occluded
surface (or surfaces) that surround the replacement pixel. For example, in removing an
object that is positioned in front of a wall in an image of a room, the new depths for the
pixels at the location (in the image’s coordinate space) of the removed object are
determined based on known depths for the wall. As another example, in removing an
object that is positioned in front of a corner formed by two walls in an image of a room,
the new depths for the pixels at the location (in the image’s coordinate space) of the
removed object are determined based on known geometry for the two walls. In some
implementations, the pixels associated with the key geometric surfaces of the image are
identified by using the key geometric surfaces information 504 generated at S500, and
the depths for these pixels are identified by using the dense depthmap generated at S500.
The system identifies the most likely key surface (or surfaces) that is behind the pixel
being replaced, and uses the known depths of the identified surface to interpolate (or
estimate) the new depth of the replacement pixel.

[00177] In a second variant, S720 includes: for each replacement pixel, setting the
depth to a depth related to a known (or estimated) depth for an object surface (or surtaces)
that includes the location of the pixel being replaced. For example, in removing an object
that is positioned in front of a couch in an image of a room, the new depths for the pixels
at the location (in the image’s coordinate space) of the removed object are determined
based on known or estimated depths for the couch behind the removed object. In some
implementations, the pixels associated with object surfaces of the image are identified by

using the segmentation masks 502 generated at 5500, and the depths for these pixels are

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

identified by using the dense depthmap generated at S500. The system identifies the
most likely object surface (or surfaces) that is behind the pixel being replaced, and uses
the known depths of the identified object surface to interpolate (or estimate) the new
depth of the replacement pixel.

[00178] In a third variant, S720 includes for each replacement pixel, setting the
depth to a predetermined depth (e.g., an infinite depth, such that the replacement pixel
of the image does not occlude any virtual objects rendered onto the image).

[00179] In a fourth variant, S720 makes use of a more complete 3D view of the scene,
where there are multiple layered depth values behind a replacement pixel visible from the
images collected in S100, beyond the panoramic image and depthmap produced by S330.
In such a case, S210-S250 may produce depth data for portions of the scene which are
occluded by real object(s) which are subsequently selected for removal in S710. In this
case, S720 can determine the depth from the closest of the multiple layered depth values,
the most distant of the multiple layered depth values, or allow the user to choose or cycle
through the occlusion options for the removed pixels.

[00180] In a fifth variant, S720 can include using estimates of volumetric scene
geomelry, occupancy dala, or plenoptic light fields for the scene to hypothesize depths of
replacement pixels after the removal of geometry.

[oo131] In some implementations, S720 includes one or more of: given consistent
depth profiles to one or multiple sides of the object for removal, extruding the depth
profiles (e.g., to extend soffits, molding and/or any other suitable/common features);
given a partially obscured object, recognizing a similar object, and virtually completing
and instantiating the object behind the object for removal (e.g., using the depths from the
virtually rendered object/partially obscured object). However, S720 can additionally or
alternatively include any other suitable elements performed in any other suitable
[00182] In some implementations, S720 can include training a neural network (e.g.,
convolutional neural network, fully-connected neural network, generative neural
network, feed forward neural network, etc.), such as a deep neural network (e.g.,
generative image inpainting with contextual attention) on dense depth maps with regions

marked for removal supervised by dense depth maps with the correct replacement depth

47

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

in these regions. The training dataset can be generated by creating depth maps of 3D CAD
models of representative scenes with room structure and furniture models. Selection
regions can be generated by choosing scene objects (e.g., furniture, art, etc.) to remove.
The supervised depth map can be generated from the modified CAD model without the
chosen object. During execution, an updated depth map can be generated by feeding the
network a new depth map (e.g., not part of the training dataset) with a “selected region”.
[00183] Determining the color of the replacement pixels S730 is preferably
performed after S720, but can additionally or alternatively be performed
contemporaneously and/or at any other suitable time.

[00134] In variants, determining the color of replacement pixels at S730 includes
one or more of: performing context-aware fill (inpainting) to determine a color for one or
more pixels included in the region of replacement pixels (e.g., the region of pixels
replacing the pixels belonging to the removed object); replacing erased pixels with locally
median color (e.g., median color in the vertical/horizontal /patch nearest to the removed
object); receiving user input via the end user application (e.g., 212 shown in Fig. 2) that
identifies color selection (e.g., by pixel, patch, area, material, style, etc.) for one or more
of the replacement pixels; neural network region filling, wherein a neural network
determines the color of replacement pixels; replacing erased pixels with a “transparency
grid” signifying deletion; using “correspondence search or nearest neighbor search to
determine the pixel color(s) (e.g. using “PatchMatch” techniques); using texture synthesis
techniques; using neural network inpainting techniques; receiving user input (via the end
user application) that identifies paint replacement instructions; receiving user input (via
the end user application) that identifies anchor replacement area and fill based on the
replacement area; receiving user input (via the end user application) that identifies one
or more possible color variants; determining color based on images from S100 which
include the area being revealed; and determining a color based on of partial objects
adjacent to the removed item.

[00185] However, S730 can additionally or alternatively include any other suitable

process. In a first variant, the color of replacement pixels is the same as the original color

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

of the pixels being replaced. In a second variant, the color of replacement pixels is
different from the original color of the pixels being replaced.

[00186] In a third variant, the color of replacement pixels represents a “ghost
version” of the original pixels, by modifying the original replacement color in a manner
to suggest deletion, such as adjusting the saturation, brightness or color of the
replacement pixels. These adjustments can be static, or vary based on user action or time
(e.g., have deleted pixels periodically “pulse” or “glow” to indicate deletion). In an
example, determining the color of replacement pixels at S730 includes assigning to a
replacement pixel one of: a static ghosting color, a dynamic ghosting color, a static
ghosting pattern, and a dynamic ghosting pattern. In an example, determining a color for
a replacement pixel includes assigning a ghosting color (or time varying series of colors)
to the replacement pixel, to visually signify deletion. The ghosting color can be any
suitable color that identifies a pixel as being associated with an object that has been
deleted from the image. For example, the ghosting color can be a grey color, a black color,
a color with less intensity as the original color, a lighter color, a darker color, a color with
less contrast, a transparency grid pattern, a time-varying or animated pattern, or any
suitable type of color that can be used to distinguish a replacement pixel from other pixels
in the image. In particular, the ghosting pattern can be evocative of the room geometry
that lies behind the removed pixels. Pixels with floor behind them can be filled with a
ghost pattern that looks like a tile floor. Pixels with wall behind them can be filled with a
ghost pattern that looks like a simple wallpaper pattern. These ghosting color patterns
can optionally be perspective warped by the replaced depth (e.g., wall, floor depths) for
added realism.

[00187] In a fourth variant, the color of replacement pixels constructs a
“transparency grid” or “checkerboard” to visually suggest deletion of pixels. Optionally,
the transparency grid can be perspective warped using scene geometry of the replacement
geometry (e.g., depths, normals, etc.) to provide more realistic sense of deletion.

[00188] In a fifth variant, determining the color of replacement pixels at S730
includes: given an RGB image with “holes” for the replacement object(s) (e.g., a hole can

be associated with a region of replacement pixels associated with the objects to be

49

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

replaced), determining the color can be based on search for appropriate replacement
patterns in the scene using forms of nearest neighbor search. The search can be executed
for each pixel in each hole in an order (e.g., scan line order, inward order, etc.), the nearest
pixel in the input image, fill the hole with its color and depth. The search can be repeated
until convergence, until a predetermined threshold (e.g., based on time, based on
iterations, and/or otherwise based), or until another condition is met. Optionally,
PatchMatch techniques can used with randomized nearest neighbor search, but
additionally or alternatively any other suitable technique can be used.

[00189] Nearest neighbor search can include defining a distance between pixels
(e.g., p and g) based on their neighbors (e.g., N(p) and N(g)) wherein the distance can be
determined based on color (“c”), depth (“*d™), and label (*s™): d(p,q) = f(c_N(p), ¢_N(q),
d_N(p), d_N(q}, s_N(p), s_N(q))

[00190] In a sixth variant, S730 can include training and using a neural network
(e.g., convolutional neural network, fully-connected neural network, generative neural
network, feed forward neural network, etc.), such as a deep neural network (e.g.,
generative image inpainting with contextual attention) on images with “holes” supervised
by original images without “holes.” Holes can be generated by removing objects (e.g.,
furniture, art, etc.) or portions of objects in one or more of the collected images. During
execution, the infilled image can be generated by feeding the network a new image (e.g.,
not part of the training dataset) with “holes”, a cropped image with “holes™ and/or any
other suitable image. The training datasets can be comprised of images of representative
scenes either photographed or synthetically rendered using CGI graphics, or otherwise
constructed.

[00191] In a seventh variant, S730 can include recognizing a likely similar object
(e.g., identifying a furniture product of similar size and appearance from a database,
based on partially obscured imagery) and virtually completing the object behind the
disappearing object using the RGB pixels from the virtually rendered form of the likely
similar object, and blending appropriately.

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[00192] In an eighth variant, S730 can include using estimates of plenoptic light
fields for the scene to hypothesize colors of replacement pixels after the removal of
occlusion geometry.

[00193] In a ninth variant, determining a color for a replacement pixel includes
identifying user selection of a color patch for the replacement pixels (e.g., from
information received via the end user application 212) and using samples from the
identified patch or statistically related textures to generate the replacement pixel.
[00194] In a tenth variant, determining a color for a replacement pixel includes
identifying user selection of a color, and assigning the selected color to the pixel. The user
selection of the color can be related to the replacement pixel, or a patch of pixels that
includes the replacement pixel.

[00195] In an eleventh variant, determining a color for a replacement pixel includes
performing texture synthesis to identify a texture of pixels surrounding the replacement
pixels. In some implementations, the identified texture is represented by a pattern of
pixels having a specific assignment of colors. A replacement color for the replacement
pixel is identified by the texture, and the replacement color is assigned to the replacement
pixel. Replacement colors are assigned to a region of replacement pixels, such that after
replacement colors are assigned to the replacement pixels in the region, the colors of the
pixels in the region conform to the identified texture. Assigning replacement colors to
replacement pixels can include one or more of cloning, CNN inpainting, propagating, or
patch-matching colors of related regions (e.g., wall regions, floor regions, instances,
classes) to the region of replacement pixels. However, lexture synthesis can otherwise be
performed. If the replacement pixels have had their depth replaced by depths that agree
with or were drawn from an architectural plane (e.g., wall, floor) then the texture
synthesis can be automatically sourced from elsewhere nearby on that plane. Further, the
texture synthesis can be performed on a rectified version of the image of that plane and
then returned to the image via perspective warping (homography). Many texture
synthesis algorithms produce better results on such an image of a rectified plane.
[00196] In a twelfth variant, determining a color for a replacement pixel includes

globally replacing a region of pixels with a coherent synthetic texture. In variants, the

51

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

replaced region represents an architectural structure, such as a floor or a wall
Determining a color for replacement pixels in this example includes replacing an entire
architectural structure (e.g., a floor, a wall, etc.) that includes the replacement pixels with
a new virtual object. In variants, the new virtual object (e.g., new floor, new wall, etc.) has
a solid color. Alternatively, the new virtual object includes pixels having various colors
that represent a synthetic texture. In some implementations, the system textures a CAD
(Computer Aided Design) model (or pieces of a CAD model) to replace the real object
include in the image. In some implementations, determining a color for a replacement
pixel of a real object to be removed (S730) includes: generating a replacement virtual
object that includes the location of the replacement pixel, wherein the replacement virtual
object includes pixels having various colors that represent a synthetic texture; and
rendering the replacement virtual object. In some implementations, rendering the
replacement object replaces not only the pixels of the real object that is removed, but also
surrounding pixels. For example, to remove a real object that is placed on a floor of an
image of a room, the real object representing the floor can be replaced with a virtual object
(e.g., generated by using a CAD model) that represents the floor.

[00197] However, S730 can additionally or alternatively include any other suitable
elements performed in any other suitable manner.

[00198] Refining shadows in the remainder of the image S735 is preferably
performed, to reduce residual shadows outside the area of replacement pixels, that are

cast by objects targeted for removal.

[00199] In a first variant, S735 uses statistical image processing techniques to detect
and reduce (e.g., filter, blur, blend) likely cast shadows outside the area of replacement
pixels.

[00200] In a second variant, S735 uses shadow detection techniques, including

trained neural networks, to isolate and reduce (e.g., filter, blur, blend) cast shadows
outside the area of replacement pixels.

[00201] In a third variant, S735 uses estimates of light source locations to estimate
shadow directions from the disappearing object, to isolate and reduce (e.g., filter, blur,

blend) likely cast shadows outside the area of replacement pixels.

52

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

[00202] In a fourth variant, S735 uses intrinsic image decomposition techniques to
decompose the image into reflectance and shading lighting components. Shading
components nearby the removed object (in 2D image space or 3D space) can be evaluated
for reduction or removal.

[00203] In a fifth variant, S735 can include using estimates of plenoptic light fields
and/or inverse lighting techniques to detect and reduce (e.g., filter, blur, blend) likely cast
shadows outside the area of replacement pixels. Inverse lighting methods can include
using estimates of light sources and estimates of scene geomelry Lo estimate image
regions where cast shadows are likely, and quantify the degree of shading.

[00204] In a sixth variant, S735 can include training a neural network (e.g.,
convolutional neural network, fully-connected neural network, generative neural
network, feed forward neural network, etc.), such as a deep neural network (e.g.,
generative image inpainting with contextual attention) on images that include “a
furniture hole" and the shadow cast by the missing furniture. The network is supervised
by images with the hole but without the shadow. The training dataset can be generated by
ray tracing photorealistic images of fully furnished rooms with and without a single
selected piece of furniture. The pixels occupied by this piece of furniture form the hole.
[00205] However, S735 can additionally or alternatively include any other suitable
elements .

[00206] Refining the depth and color edges S740 is preferably performed after S730,
but can additionally or alternatively be performed contemporaneously and/or at any
other suitable time. In one example, S740 can include: creating “sharp” wall/floor seams,
improving global color patterns and/or preserving architectural seams. $740 can use the
estimated planes, the depth map, and/or any other suitable data to refine the depth edges.
However, S740 can additionally or alternatively include any other suitable elements
performed in any other suitable manner.

[00207] Updating image pixels, depths, and/or occlusion masks S750 is preferably
performed after S740, but can additionally or alternatively be performed
contemporaneously and/or at any other suitable time. In one example S750 includes

storing the changes in memory associated with the end user application. However, S750

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

can additionally or alternatively include any other suitable elements performed in any

other suitable manner.

[00208] However, S700 can additionally or alternatively include any other suitable
elements.
[00209] Embodiments of the system and/or method can include every combination

and permutation of the various system components and the various method processes,
wherein one or more instances of the method and/or processes described herein can be
performed asynchronously (e.g., sequentially), concurrently (e.g., in parallel), or in any
other suitable order by and/or using one or more instances of the systems, elements,
and/or entities described herein.

[00210] As a person skilled in the art will recognize from the previous detailed
description and from the figures and claims, modifications and changes can be made to
the preferred embodiments of the invention without departing from the scope of this

invention defined in the following claims.

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

CLAIMS

We Claim:

1. A method comprising: with an image processing platform:
accessing a photorealistic image of a room;
generating at least one segmentation mask that identifies real objects included in

the photorealistic image;
generating geometric surface information for the photorealistic image;
generating a dense depthmap that includes depth estimates for each pixel of the

photorealistic image; and
providing at least one segmentation mask, the dense depthmap, and the
geometric surface information to an end user application executed by a user device.

2. The method of Claim 1, further comprising, with the end user application:
rendering at least one virtual object onto the photorealistic image by using the

dense depthmap, at least one segmentation mask, and the geometric surface

information.

3. The method of Claim 2, wherein rendering at least one virtual object onto the
photorealistic image comprises: for each virtual object pixel of the virtual object:
determining a depth of the virtual object pixel;
determining a depth of an image pixel at the same location as the virtual object

pixel;
in response to a determination that the depth of the image pixel is greater than

the depth of the virtual object pixel, displaying the virtual object pixel; and
in response to a determination that the depth of the virtual object pixel is greater
than the depth of the image object pixel, displaying the image pixel.

4. The method of Claim 3,
wherein the photorealistic image is bound to a rectangular occlusion quad of the

user device,

wherein the occlusion quad is associated with the dense depthmap.

55

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

wherein a fragment shader included in the user device processes image candidate
pixels from the photorealistic image on the occlusion quad and virtual object candidate
pixels from the virtual objects, and

wherein, for each virtual object pixel, determining the depth of the image pixel at
the same location as the virtual object pixel comprises: for each virtual object candidate
pixel, accessing the depth of the image candidate pixel from the occlusion quad at the
same location as the virtual object pixel, by using the dense depthmap associated with
the occlusion quad.
5. The method of Claim 2, wherein rendering at least one virtual object onto the
photorealistic image comprises: for each virtual object pixel of the virtual object:
determining a depth of the virtual object pixel;
sampling the dense depthmap to generate depthmap samples;
generating a triangular occlusion mesh;
tesselating the triangular occlusion mesh, such that the depths of the pixels of the
triangular mesh correspond to depths of the depthmap samples;
registering the triangular occlusion mesh with a 3D graphics system of the user
device as an invisible, z-occluding scene model; and

using the graphics system to render the virtual objects with occlusion by the
triangular occlusion mesh,

wherein rendering the virtual objects with occlusion by the triangular occlusion
mesh comprises: discarding occluded virtual object pixels, and compositing non-
occluded virtual object pixels with the photorealistic image.

6. The method of Claim 4, further comprising: updating the dense depthmap after
rendering the virtual objects with occlusion, and providing an updated dense
depthmap to the end user application.

7. The method of Claim 4,
further comprising:
generating an updated dense depthmap; and

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

rendering at least one virtual object onto the photorealistic image by using the at
least one segmentation mask, the updated dense depthmap, and the geometric surface
information,

wherein rendering at least one virtual object onto the photorealistic image
comprises: for each virtual object pixel of the virtual object:

determining a depth of the virtual object pixel;

determining a depth of an image pixel at the same location as the virtual object
pixel;

in response to a determination that the depth of the image pixel is greater than
the depth of the virtual object pixel, displaying the virtual object pixel; and

in response to a determination that the depth of the virtual object pixel is greater
than the depth of the image object pixel, displaying the image pixel.
8. The method of Claim 1, wherein generating the dense depthmap comprises:
identifying edge pixels included in edges of real objects included in the
photorealistic image, by using at least one generated segmentation mask;
for at least one edge pixel, enhancing the depth for the pixel based on depths of
other edge pixels included in the same edge;

identifying planar surface pixels that are included in a planar surface identified
by the generated geometric surface information; and

for at least one planar surface pixel, adjusting the depth for the pixel based on
depths of other planar surface pixels included in the same planar surface.

9. The method of Claim 2, wherein rendering at least one virtual object onto the
photorealistic image comprises: for each virtual object pixel of the virtual object:
identifying placeability behavior of the virtual object;
mapping two-dimensional user interface pointer coordinates to three-

dimensional scene coordinates based on the placeability behavior of the virtual object

and nearby scene geometry;

determining a depth of the virtual object pixel;

determining a depth of an image pixel at the same location as the virtual object
pixel;

57

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

in response 1o a determination that the depth of the image pixel is greater than
the depth of the virtual object pixel, displaying the virtual object pixel; and
in response to a determination that the depth of the virtual object pixel is greater
than the depth of the image object pixel, performing placement processing for the
virtual object pixel.
10. The method of Claim 1, further comprising:
receiving user selection information identifying selected portions of at least one
real object to be removed from the photorealistic image; and
for each pixel in the selected portions:
estimating a new depth for the pixel and updating the dense depthmap to
include the new depth, and
determining a replacement color for the pixel and updating the
photorealistic image to include the determined color.
11. The method of Claim 10,
further comprising: for each real object to be removed, reducing at least one cast
shadow associated with the real object to be removed,
wherein estimating a new depth for a pixel of a selected portion comprises:
updating the dense depthmap to include a predetermined depth as the new depth for
the pixel, and
wherein reducing at least one cast shadow comprises at least one of:
inferring at least one cast shadow by performing image processing,
inferring at least one cast shadow by using a trained neural network,
inferring at least one cast shadow from detected and estimated light
sources,
inferring at least one cast shadow from intrinsic image decomposition, and
inferring at least one cast shadow from plenoptic light fields.
12. The method of Claim 10, wherein estimating a new depth for a pixel of a selected
portion comprises:
identifying a room architectural geometric surface that includes the location of
the pixel, by using the generated geometric surface information for the photorealistic

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020:/060280

image, wherein the generated geometric surface information identifies at least one room
architectural geometric surface included in the photorealistic image;

identifying at least one depth of the room architectural geometric surface, by
using the generated dense depthmap;

computing a depth for the pixel by using the identified at least one depth of the
room architectural geometric surface; and

updating the dense depthmap to include the computed depth as the new depth
for the pixel.
13. The method of Claim 10, wherein estimating a new depth for a pixel of a selected

portion comprises:

estimating a depth of an obscured geometric surface obscured by the selected
portion, by using the dense depthmap to identify depths of the real objects surrounding
the selected portion; and

updating the dense depthmap to include the estimated depth of the obscured
geometric surface as the new depth for the pixel.
14. The method of Claim 10, wherein estimating a new depth for a pixel of a selected

portion comprises:

estimating a depth of an obscured geometric surface obscured by the selected
portion, by using trained neural networks and geometric priors from the dense
depthmap; and

updating the dense depthmap to include the estimated depth of the obscured
geometric surface as the new depth for the pixel.
15. The method of Claim 10,

wherein determining a replacement color for a pixel of a selected portion
comprises: assigning to the pixel one of: a static ghosting color, a dynamic ghosting
color, a static ghosting pattern, and a dynamic ghosting pattern.
16. The method of Claim 10,

wherein determining a replacement color for a pixel of a selected portion
comprises:

identifying user selection of a color, and assigning the selected color to the pixel,

59

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280

wherein the user selection of the color relates to one of: the pixel, and a patch of
pixels that includes the pixel that is assigned the color.
17. The method of Claim 10,

wherein determining a replacement color for a pixel of a selected portion
comprises: assigning a color of a transparency grid pattern to the pixel.
18. The method of Claim 17,

wherein the transparency grid pattern is perspective warped based on inferred
geometry behind the selected portion.
19. The method of Claim 10,

wherein determining a replacement color for a pixel of a selected portion
comprises:

performing texture synthesis to identify a texture of pixels likely surrounding the
pixel;

identifying a replacement color for the pixel by using the identified texture, and

assigning the replacement color to the pixel.
20. The method of Claim 10,

wherein determining a replacement color for a pixel of a selected portion
comprises at least one of:

generating a replacement virtual object that includes the location of the pixel,
wherein the replacement virtual object includes pixels having various colors that
represent a synthetic texture; and

eslimating a plenoplic light field for a scene of the photorealistic image, and
using the light field to re-generate an image area affected by removal of pixels included

in the selected portion.

60

CA 03158287 2022-5-12

WO 2021/097126

100

|]
| Femm—m———
o Field of view '
: :
et i
1 L__Lameraangle
!

1

| P == —————— '
I Aesthetics : '
| :
T e
! Resolution

1

CA 03158287 2022-5-12

:. - ..: set of images into an image

1/ 23

Obtaining a set of images S100

Estimating visual information
from each image $200

) Adjusting and compaositing the

! scene S300

Estimating dense 3D model and
semantics of the image scene
S400

l

Computing foreground
occlusion masks and depths for
the image scene S500

!

Rendering scenes interactively
with occlusion masks S600

Maodifying objects in the
rendered scene S700

FIGURE 1A

PCT/US2020/060280

g
| pom——m ===
1 Features '
S
I
_——md e m =
el r '
! Geometry '
e
1
| F————————————
: ' Semantics '

WO 2021/097126 PCT/US2020/060280

2/ 23
5100

Receiving photos and sensor data S110

v

Uploading photos and associated data from device to platforrn $120

FIGURE 1B

CA 03158287 2022-5-12

CA 03158287 2022-5-12

WO 2021/097126

5200

3/ 23

PCT/US2020/060280

Feature extraction, tracking and matching 5210

v

Edge, contour and segmentation estimation S220

i

SLAM and VIO $230

v

Depth and disparity estimation $240

v

Photogrammetry (SFM, MWS, CNN) S250

FIGURE 1C

CA 03158287 2022-5-12

WO 2021/097126

5300

4 / 23

PCT/US2020/060280

Stitching $310

v

Rectification S320

v

Image processing S330

FIGURE 1D

WO 2021/097126 PCT/US2020/060280

57 23
5400

Estimate boundaries and depth discontinuities S410

v

Segment the scene $420

i

Estimate dense pixelwise geometry S430

v

Metric scaling geometry $440

v

Estimate horizontal planes S450

v

Perform multi-modal geometry regularization, densification, and fusion S460

v

Regularize the final geometry and segmentation 8470

FIGURE 1E

CA 03158287 2022-5-12

WO 2021/097126

T

6 / 23

PCT/US2020/060280

Compute connected components S510

v

Regularize connected component occlusion depths $520

Y

Store occlusion masks and depths S530

CA 03158287 2022-5-12

FIGURE 1F

WO 2021/097126 PCT/US2020/060280

Generate occlusion information S630

v

Facilitate interactive virtual object insertion and movement in rendered scene S640

FIGURE 1G

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280

8 / 23

5630

rag
shader writes Sample depth
supported? map
S631 8635
Tesselate
Should triangular mesh
Discard fragment fragment 5636
8633 occlude? +
8632
Render the
YES triangular mesh
S637
Update fragment
depth S634

FIGURE 1H

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280

9/ 23
8700

Identify occluding pixels to remove S710

v

Estimate depths of replacement pixels S720

Y

Determine color of replacement pixels S730

FIGURE 11

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280
200 10 / 23
User device(s) Platform
210 20 || cmdemmeo____
Tt o T T T TT T T T d-b: Image repository i
. End user application 212 1 . Client APlengine 222 : 244 :
Sy | S g S LI N 2
ittt F-———————————————————=—
| Camera sensor controller, . 1 | Camera sensor data engine 555 poo T ey
b e e e e e e e 13 -) [SR Image metadata :
: Depth sensor 215 : : Image processing engine 224 1
e e e — e i B [
Tt T T S q_.,: Sensor data i
' Inertial sensors 214 | SLAMengine/ VIO engine 225 1 ! repository 243 |
b o o o o o - | R T e I I L L L
L &1 AM arcie £ VIO, onie 216 ! L T T
| SLA enone IO enne 23| L. ey emnezze 3] | [Wodelmposton
MR- == === == ——————— == m———————————————————a =2
1 Computational photogrammetry 1 1 .
o____gngine ____ 2u_ {__Defeencedonerdal || oo
b [r———————————————————= I Geometric model |
' | . ! .
" Neural networks 218 1 Scale aligner 228 1 1 repository :
o m oo ommo oo o T tetvtots ' : 245 .
| ah araohice onding o1 ! Vo o || --==s=2Ziioizl
3D graphics engine Multi-i stitch ine220 || ¢TTTTTTTTTTTTTN
oI A | LIITIRTITEITINE e Avplication data
Fm———m—mm e mmm 1, Fm—m—mmmmmmmmmm— e, | reposttory 246 |
' Platform APl engine 219 ' Edge boundary engine 231 || Tt TTTT
e e e e e e — g G S
1 1
e T e Tt Tt Tttt H ! Training data 1
| Admin application 221 ' Segmentation engine ' | repository 247 |
[' (multi-scale, single-scale) 232 e
Fo———mmmmmm—m e -
| Geometric neural networks 233 1
b e e e e e e]
Femmmmm e -
: Fusion engine 234 :
e e e e e, — .- - - - - - -
e e 3
: Regularizer engine 235 :

CA 03158287 2022-5-12

FIGURE 2

WO 2021/097126

-

PCT/US2020/060280

Image[s]

5410

5420

Dense

500 / \\
; 2 A b —
f Photorealistic Occlusion masks Continuous dense Architectural
imagery 501 w/clean edges sgp depth 503 surfaces g5,
%

Graphics renderer & user

interaction/modification Rendered scene

FIGURE 3 S600 & S700 ——

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280

12/ 23

Virtual objects partially
occluded by real objects in
image

Real objects in image

FIGURE 4

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280

13/ 23

Object boundary probabilities
Image (e.g., from semantic segmentation)

B
R
SRR

Isolated foreground objects to
occlude objects under/behind

FIGURE 5

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280

14/ 23
veortical vanishing point ¢ ¥
{can bs oulzide imaga} - A
C cemera height piane
_ paralial o Soor (hostzon)

camen 20
ishage plans

Heferenc
object

ficor glare

FIGURE 6

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280

vgrﬁcai.’gmvity %y fverticat vanishing point)
Paim &t g direction 3
wifinity »
- : i -\‘\.,
£ e T *\c {emnera haight at the holzony
QR 7 7 7 P hodzontat vintual plarie theough top -
F N of mierence nbject
h . : H 5

20 irsagie plane (camen projection
3D physical worid o ¢ wo ’

FIGURE 7

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280

16 / 23

Input Initial floor
segmentation

Phase one

Phase two

Phase three

FIGURE 8

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280

Guidanoe image ¥ [normal map|

AN
3
N
Ry
S

FIGURE 9

CA 03158287 2022-5-12

CA 03158287 2022-5-12

WO 2021/097126

Depth map(s)
602

T

Semantic
segmentation
information 603

display

Computer and

[}

Rendered scene

W 3D application and/or

web client display

FIGURE 10

PCT/US2020/060280
18 / 23
User Device
210
Texture
memory
T T T T E T T T T T T T T T T T T T] @
i ‘ |
: Memory VRAM M
' | r————————-
1
: : I—: Frame
| o CPU GPU |1 ! | Buifer 604
e T 1 "
: Zbuffer 605
!

WO 2021/097126 PCT/US2020/060280

19/ 23

o, ey
etrasrns SRes < fogemnsE

FIGURE 11

CA 03158287 2022-5-12

PCT/US2020/060280

WO 2021/097126

20/ 23

Y

RAE

E

roiaied

tids parsprotive
oritcigal point

subs
fistortion faz from

SRR BN RIS PIIIIL LS.

FIGURE 12

CA 03158287 2022-5-12

WO 2021/097126 PCT/US2020/060280

21/ 23

JRCIERTRrOr

Fused Ensembie Semantic
Segmentation Probabilities

multiscale pyramid of wide
ongle photo

probabilistic perceptuacl edges for spatial-weighting

FIGURE 13

CA 03158287 2022-5-12

CA 03158287 2022-5-12

WO 2021/097126

22 1 23

PCT/US2020/060280

Obtaining a set of images S100

Data A: session data, images, image data, calibration,
sensor & IMU data, gravity, metric scale, poses, matches,
depthmaps, planes, segments, point cloud/world map

Estimating visual information
from each image S200

Data B: data A, lines, edgemaps, contours,
segmentation, photogrammetry

: Adjusting and compositing the
1 set of images into an image
) scene S300

]
]
: Data C: data B {(optionally stitched panos, warped
]

images, enhanced

images)

Estimating dense 3D model and
semantics of the image scene
$400

Data D: data B, optionally data C, fused metric 3D
points, fused metric depthmap, enhanced segments

Computing foreground
occlusion masks and depths for
the image scene S500

¢ Data E: data D, foreground masks, polished depths

Rendering scenes interactively
with occlusion masks S600

rendered scene with occlusion masks

Modifying objects in the
rendered scene S700

FIGURE 14

WO 2021/097126 PCT/US2020:/060280

R
N
SRR
SRS

T

gt 34Nold

R
TR
IR

E i
AN
BN

N
AR
AR
R
s

A

AT

R
N

RN

CA 03158287 2022-5-12

100
Fremccccccccea=-
' —————————————
' 1 __ Fieldofview |
]
e
T I
g ! Camera angle "
' L e e
'
| P ——————--
' Aesthetics :
'
e
T I
0 ! Resolution "
| bmm e

Obtaining a set of images $100

Estimating visual information
from each image S200

scene S300

I Adjusting and compositing the !
:. - .,: set of images into an image

Estimating dense 3D model and
semantics of the image scene
S400

'

Computing foreground
occlusion masks and depths for
the image scene S500

!

Rendering scenes interactively
with occlusion masks S600

A 4

Modifying objects in the
rendered scene S700

FIGURE 1A

g
I e
(] Features '
[P SO
I

B
! :- Geomet !
V1 ___ eomat Y __O
1

l

| Fo=m === =====
: ' Semantics

	Page 1 - COVER_PAGE
	Page 2 - COVER_PAGE
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - CLAIMS
	Page 59 - CLAIMS
	Page 60 - CLAIMS
	Page 61 - CLAIMS
	Page 62 - CLAIMS
	Page 63 - CLAIMS
	Page 64 - DRAWINGS
	Page 65 - DRAWINGS
	Page 66 - DRAWINGS
	Page 67 - DRAWINGS
	Page 68 - DRAWINGS
	Page 69 - DRAWINGS
	Page 70 - DRAWINGS
	Page 71 - DRAWINGS
	Page 72 - DRAWINGS
	Page 73 - DRAWINGS
	Page 74 - DRAWINGS
	Page 75 - DRAWINGS
	Page 76 - DRAWINGS
	Page 77 - DRAWINGS
	Page 78 - DRAWINGS
	Page 79 - DRAWINGS
	Page 80 - DRAWINGS
	Page 81 - DRAWINGS
	Page 82 - DRAWINGS
	Page 83 - DRAWINGS
	Page 84 - DRAWINGS
	Page 85 - DRAWINGS
	Page 86 - DRAWINGS
	Page 87 - REPRESENTATIVE_DRAWING

