07/1472077 A1 |V 00 OO 0

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T 0 R 50O

International Bureau

(43) International Publication Date
27 December 2007 (27.12.2007)

(10) International Publication Number

WO 2007/147207 Al

(51) International Patent Classification:
GOGF 9/45 (2006.01) HO4L 29/06 (2006.01)

(21) International Application Number:
PCT/AU2007/000859

(22) International Filing Date: 21 June 2007 (21.06.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

2006903351 21 June 2006 (21.06.2006) AU

(71) Applicant and
(72) Inventor: SLAMKOVIC, Richard [AU/AU]; 3 Hudson
Street, Hampton, Victoria 3188 (AU).

(74) Agent: MILLS OAKLEY PATENT ATTORNEYS;
4/121 William Street, PO Box 453, Collins Street West,
Melbourne, Victoria 8007 (AU).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: MIDDLEWARE BROKER

(57) Abstract: A method of flow of an outbound communication to another module with interface using a broker which is able to
& review all data structures, regardless of complexity, as being comprised of a finite set of primitive data types (e.g. integer, float etc.)
and with reference to the repository determine a mechanism for reading and writing these types to enable processing of structures of
arbitrary complexity, wherein the rules and mechanisms for reading these basic types are defined by the protocol and once the rules

are captured allow processing of any message over this protocol.

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

MIDDLEWARE BROKER

This invention relates (o a middleware broker for middleware. In particular it relates to a

data transfer means between various protocol systems to provide an integrated system.

Backgromd

Middleware is a software layer that aims to provide the glue between interacting
components in a distributed computing environment. There is a variety of middleware
types: among others, synchronous procedural RPC (Remote Procedure Call) oriented
middleware, such as DCE-RPC, and asynchronous MOM - (Message-Oriented-
Middleware) based products, such as IBM’s MQ-Series; transaction-oriented middleware
include BEA’s TUXEDO and IBM’s CICS; more recently, object-based middleware, the
best known of these being OMG’s CORBA, Microsoft’s DCOM and Java/RMI. Systems
based on one of these methods are not directly protocol-level compatible with systems
based on another. For example, a CORBA client is not plug-compatible with 4 DCOM
server, even if both run on an NT platform. Although both systems are based on an object

model, the implementations of these object-based systems are quite different.

The current cor;ﬁorate climate has placed pressure on mary organisations to expand or to
become part of larger existing networks. Companies are taking-over or merging with
others, and small companies increasingly have had to join global networks to compete
locally (e.g. “small companies, global networks™). The resulting super-organisations
typically include a mix of generally incompatible I'T systems, which need to be integrated
to fully exploit the new structures. The problem of protocol-level systems integration is
compounded if both companies use different operating environments. For example, a
large compaty may use an IBM mainframe, while a smaller one uses Windows-based
PCs. Ideally, the middleware should provide a pipeline to transparently support this
communication. However, integration with legacy systems still requires significant

amounts of coding.

The different approaches to inter-operability can be classified as:

» Handerafted Solutions: It consists of writing ad-hoc software to implement
each interoperation requirement, Although this approach is widely applicable,
and very commonly used, it is labour-intensive and requires considerable

expertise not always available. Such approaches are also difficult to mainiain

10

15

20

25

30

35

WO 2007/147207

over time.
. Proprietary approaches (commercial EAI products): Usually result in the nser
being locked-in with a proprietary solution.
) Architectural approaches: Provide mainly a high level modelling view of
systems, and are not of much practical benefit to the low level systems
integrator, Certainly, they do not allow for any automated protocol-level
integration.
. Specific middleware approach: Systems such as ASTER [14] provide an APL
that allows different protocols to be translated to CORBA. (i.e. ASTER relies
on a single middleware, CORBA, to provide all remote (RPC) and component
services.) |
Protocol-level integration of legacy systems with other systems has been reported 1o be a
major challenge with no obvious general solutions. Léw-levcl systems infegration is
difficult, because application semantics must be addressed and low-level manual data

marshalling is often required,

Direct translation between two different formats or, more generally, two different
protocols i the oldest method of achieving data interchange. By writing custom compuer
source code that is later compiled and installed on the target platform, it is possible to
achieve interoperability between two different data formats. If the source code is carefully
tuned by someone very skilled in the art, the resulting translator will be a high-
performance one. However, it will not work if any change in data format or protocol
occurs, and will require additional programming and installation effort to adapt to any
such change. Direct translation can offer excellent performance, but it is even less flexible -

than the static adapters used by "middleware" systems.

Instead of a static adapter or custom-coded direct translator, it is the use of some kind of
data or protocol description that can offer greater flexibility and, thereby, connectivity.
U.8. Pat. No.5,826,017 to Holzmann (the Holzmann implementation) generically

describes a known apparatus and method for communicating data between elements of a

 distributed system using a general protocol. The apparatus and method employs protocol

descriptions written in a device-independent protocol description language. A protocol
interpretation means or protocol description language interpreter executes a protocol to

interpret the protocol description. Each entity in a network must include a protocol

2

PCT/AU2007/000859

10

15

20

25

30

WO 2007/147207 PCT/AU2007/000859

apparatus that enables communication via a general protocol for any protocol for which
there is a protocol description. The general protocol includes a first general protocol
message which includes a protocol description for a specific protocol. The protocol
apparaius al a respective entity or node in a network which receives the first protocol
message employs a protocol descriplion language interpreter to interpret the included
protocol description and thereby execute the specific protocol.

One known but not commonly known automated approach is that proposed by Dashofy et
al who investigated usiﬁg various off-the-shelf middleware products to build bridges or
connectors for distributed systems. They present their views from a software architecture
perspeétive, restrictejd to the C2 architectural model. They have built software connectors
that are specific to four middleware packéges, Q, Polylith, RMI, and ILU, This means that
to add support for another middleware package, a new specific connector (program)
would need to be developed. Commercial tools such as those provided by commercial
Enterprise Application Integration (EAI) products are similarly restricted.

A recently published granted US patent document is \US‘ 6,772,413 which discloses a high
level tansformation method and apparatus for converting data formats in the context of
network applications, among other places. A flexible transformation mechanism is
provided that facilitates generation of translation machine code on the fly. A translator is
dynamically generated by a translator compiler engine. The translator compiler engine
implemented according to the present invention uses a pait of formal machine-readable
format descriptions (FMRFDs) and a comesponding data map (DMAP) to generate
executable machine code native to the translator platform CPU. When fed an input
stream, the translator generates an output stream by executing the native object code
generated on the fly by the translator compiler engine. In addition, the translator may be
configured to perform a bi-directional translation between the two streams as well as
translation between two distinet protocol sequences: '

However this document discloses a translation method by generating a set of executable
machine instructions for direct processing, said executable machine instructions being
generated as a function of a data segment mapping, input format description and output
formst description, said executable machine instructions to translate an input data stream
directly into an output data stream. Further the disclosure is primarily ainied at XML

10

15

20

25

30

35

WO 2007/147207

formats. This system is highly data bit intensive and therefore is primarily only suitable
for repetitive processing of a single known protocol to another single known protocol.

It is an object of the invention to provide an easier and flexible approach to provide a
middleware broker for middleware protocols, as well as for legacy systems.

It is also an object of the invention to provide protocol-level inter-operability which
supports a wide range of protocols, including legacy systems and could allow new
protocol support to be added with no impact on existing systems (i.e. protocols can be
changed (added or removed) without re-compilation of application software).

In accordance with the invention there is provided a system of intercommunication
including the steps of ‘

defining the structure of one or more protocols used in communication and storing
said structure in a library;

at run time analysing an input communication and determining an appropriate
input structure of protocol of the input communication from the library and analysing the
path of the intended output communication and determining an appropriate output
structure of protocol of the output communication from the library;

providing a dynamic marshaller for processing at run time and sending the
information in accordance with the identified output structure from the corresponding

- relevant sections of the identified input structure;

wherein the system allows ready communication between various protocols,

The system can include the library having a predefined conversion of the structure of one

or more protocols to the structure of another of the one or more protocols,

The dynamic marshaller can provide buffering or addressing as required.

The system also provides for the dynamic marshaller to include definable predefined
processing steps of corresponding relative sections of the identified output structure to the

identified input structure.

It can therefore be seen that the predefined processing steps can be protocol neutrat such

that an end user can define the processing steps in a generic manner and the dynamic

PCT/AU2007/000859

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

marshaller undertakes the required manipulation of the data in any communication based
on the predefined processing step of the relevant section of the communication protocol
siructure. This provides a required effect régardless of the protocols of communication.,
The end user therefore need not be aware of the details of the protocol languages to enable
a reguired manipulation. In particular there can be user defined or third party defined
modules can be invoked at particular points during marshalling and un-marshalling
(message processing). i
In accordance with the invention there is provided a method of intercommunication of
middleware including the steps of:

providing a table of initial definition of structure characteristics, including format
and parameter data types, of one or more protocols; |

converting said one or more structure protocol definitions into a selected format;

storing said one or more structure protocol definitions in said selected format in
one or more repositories;

at run time assessing the incoming message and selecting an appropriate structure
protocol definition to be used from the table and using the selecied format of the

converted structure protocol definition to communicate.

It can be seen that the method does not undertake a full conversion but instead, before the
time of the message, a structure of the protocol has been defined and the data and
information in the form of the protocol structure can be readily communicated in a

protocol structure format that would be understood by the receiver.

The invention also provides a method of flow of an outbound communication to another
module with interface including the steps of:

assessing the application of the outbound communication to determine and select
a protocol to try from a table of 'protocols in a priority arrangement; ‘

using the selected protocol to determine the format and arguments for the
outbound communication;

using the protocol definitions stored to prepare the outbound communication for
the particular middleware or application service;

providing required buffer;

determining which protocol to use for fransmission;

looking up table of end-point resolutions to detenmine the communication

10

15

20

23

30

35

WO 2007/147207 PCT/AU2007/000859

parameters required to communicate with the selected transmission protocol;

attempting to communicate with the designated host using the appropriate
cominunication parameters; and

if ommunication with the selected protocol fails selecting the next protocol to try
from the table of protocols in the priority arrangement.

The invention also provides a method of flow of an inbound communication from another
module with interface including the steps of:

receiving inbound message in the protocol that it was sent;

looking up table to determine whether the message needs marshalling into another
protocol before passing the inbound communication to the target application on the local
system,

il message needs marshalling into another protocol, determining the preferred
protocol from a table according to priority;

detcmziniﬁg the format and arguments for the inbound communication;

using stored protocol definitions for the selected protocol to prepare the inbound
communication for the target middleware or application service;

buffering the inbound communication as required;

determining protocol to use for transmission.

determining local end point of the target application on the local system; and

at run time passing the inbound communication to the target application on the
local systemn.

[t can be seen that the invention provides an eagier and flexible approach in which rules
and middleware characteristics are specified in a repository, for the system broker to
provide the connection and transformation for the middleware protocols, as well as for
legacy systems. In particular it is not necessary to have a converter at either' end of the
communication, Further it is not necessary for there to be two way communication in
order to ensure the receiver knows what format is arriving, instead the conversion due to
the relevant structure format correlations allows ready flow of data from one input
protocol to form readable by output protocol.

1t should be noted that protocols are specified in a language neutral machine independent
definition language. The language specifies the structure of messages and the parameter

templates to establish a connection and exchange messages.

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

In one form of the invention the language neutral machine independent definition is
compiled into binary modules known as protocol implementation modules (PIMs) and
transport interface modules (TIMs). The TIMSs contain the communication partameters.

These PIMs and TIMs are loaded at runtime and executed by interpreters (virtual
machines). PIMs are processed by the dynamic adaptive marshaller (DAM) and the TIMs
are handled by the transport mediation server (TMS). Both of these modules are
controlled by the message distribution server (MDS). The MDS is also responsible for
any interface mapping that is required, It uses either the processed request or response
message and a mapping definition. The actual mapping is performed by a mapper module
under the direction and control of the MDS.

In one preferred form of the invention the middleware broker is The Ubiquitous Broker
Environment (the TUBE system). TUBE allows any defined interface to be marshaled
across any defined protocol. This is achieved using existing clients and servers. There are
no code changes. The protocol may be switched from A to at runtime withoul
tequiting a siop/start of the application or TUBE runtime. The mode of the intetaction
may also be switched from say synchronous to agynchronous without operational impact,
The client is oblivious to the change. In other words TUBE can make a synchronous
protocol asynchronous and visa-versa. TUBE implements protocols using loadable
modules called Protocol Implementation Modules (PIMs).

The major premise behind TUBE is that all data structures, regardless of complexity, are
comprised of a finite set of primitive data types (e.g. integer, float ete.). Once we have a
mechanism for reading and writing these types, we are able to process structures of
arbitrary complexity. The rules and mechanisms for reading these basic types ate defined
by the protocol. Therefore, once we capture these Tules we can process any message over

this protocol.

For example CORBA uses an encoding known as CDR (Common Data Representation)
for reading and writing basic data types. Once we have the rules of CDR or a callable
library that implements the rules of CDR, we are able to process CDR-based (CORBA)
messages. All we now have to do is define the structure of a CORBA request and

response message.

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

This allows users or third-parties to create new protocols and drop them directly into their
environment. The protocol does not even have to be physically implemented in a client or
a server, A TUBE PIM on one side can act as the client and another PIM can act as a

server on the target side. This enables use of the protocol withour any_coding. For

example, an existing client using protocol XX is able to make a call to a server using XX.
Without disraption to either client or server TUBE can intercept the XXX message, convert
it to the new protocol and send it across to the receiving node. At the receiving end,
TUBE can convert back to protocol XX and pass 1o the original server. This allows users
“to play” with protocols before actually implementing (or rewriting) existing clients or

SCTVEIS.

What if we want to add a new middleware? Let’s say a bank wanis to develop its own
internal, secure middleware. They don’t want to change all their client-side source code.
Let us assume that the server-side has already been modified to support the new
middleware. For the remainder of this discussion we shall refer to this new middleware as
OSM (Our Secure Middleware) and to the existing middleware as XX, OSM requires that
its payload be encrypted using its own crypto algorithm. The clients are still making calls
via XX and are unaware of this requirement. OSM also introduces a new transport layer
that is also encrypted. Without re-writing all the client code to use the new OSM APls,
How can the bank achieve integration?

TUBE provides a middleware definition tool specifically for this purpose. The tool
consists of a number of modules, each dedicated to a specific task related to the definition,
The first thing that needs to be defined is the payload format. This is defined as a binary
sequence. It is also defined that this binary sequence must be obtained by a call-out to an

. OSM API, which carries-out the encryption.

The APl module-name, signature and parameters are obtained in either of two ways; they
can be imported from a C-language header or Java class definition, or be specified in the
tool. This information is stored temporarily in a meta-language format called PDL
(Protocol Definition Language). |

The next part of the definition involves the interaction”with the OSM transport. This

specifies how we get messages into and out of OSM. This operation is divided up into

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

three phases; the method of establishing a connection, the method of conducting a session,
and termination actions. These definitions include any API interactions. 4

When we are satisfied with our definitions, we generate the specification. The
specification consists of two parts; protocol implementation and transport interface. The
PDL compiler generates these specifications (modules) and. stores them in the Protocol
Definition Repository (PDR) and Transport Interface Repository (TIR) respectively: Once
these have been generated, we specify the end-point information in the End-Point
Resolution Table (EPRT) and add OSM te the Distribution Priority Table (DPT), and set
it as the preferred protocol for the interface defined in MDR. The interface was already 4
defined in the MDR, only we were using XX rules to marshal any interactions.

If TUBE wasn’t aware of the interfaces used over XX, then the IDL compiler would need
to be run to import the interface definitions and the XX clients would need to be pointed
to a TUBE XX module. This allows TUBE to intercept the client calls, while the clients
still believe they are talking to an XX server, The bank can now exchange messages over
OSM using its existing XX-based clients. No modules required modification. The only
changés were at a configuration level, Anytime an X3{-based message is intercepted by
TUBE, the OSM-PIM and OSM-TIM are invoked by DAM and TMS respectively to
marshal and send messages via OSM.

Before the bank makes the significant investment of actually implementing its “sectet”
protocol, they would like to test out its robustness and resilience to attack.

They are able to do this using TUBE as the implementation. All they need to implement is
the encryption library, which TUBE will ¢all duritig marshal and un-marshal operations.
This way theit algorithm temains secret. TUBE is unaware of its detail or structure. It
merely handles the (potentially) complex traversal of the interface definitions. Usually »
these would bave to be hand-coded for each imterface. TUBE saves the bank a vast

amount of work.

With traditional middleware and EAI tools:
« new connectors fully implementing OSM would need to be developed for
every interface that '

would be processed.

10

15

20

25

30

WO 2007/147207 PCT/AU2007/000859

+ New Protocols cannot simply be defined and “virtually” implemented.

» Protocols must be fully implemented end-to-end.

Using TUBE the bank is able to:
« test-drive its new protocol before investing in complete implementation
» choose whether or not to physically implement OSM in its servers or
~ clients _
« revert back to XX at anytime by a simple configuration change
« set-up redundancy by using TUBE’s protocol alias and prioritization
features
+ enable clients of any protocol (e.g. web-based SOAP clients) to access
services
supplied by OSM. TUBE handles the SOAP to OSM conversion
» futare-proof its clients and servers from middleware changes. Coding is
only required if the
bank wishes to change the functionality of its clients or servers.

« using TUBEs' rule engine may even alleviaie that requirement

TUBE uses a modified IDL style language (Protocol Definition Langué'ge or PDL) to
define protocols. This PDL definition is compiled into a set of binary op-codes. This
collection of op-codes is known as a Protocol Implementation Module (PIM). The
Dynamic Adaptive Marshaller (DAM) is a virtual machine, which loads and executes the
op-codes in the PIM at runime. The op-codes in the PIM contain instructions for
traversing the interface definitions stored in the Module Definition Repository (MDR).
These definitions are obtained by parsing the IDL description for the interface.

Constructs defined in the script, which are not part of the message payload (for example
the header) are stored in a run-time variable segment and only used for same-protocol
exchanges. The items that constitute the body of the message (as defined in MDR) are
stored in an intermediate format known as a TLV (Type, Length, Value) buffer. When
marshaling an out-bound (target) message, the values are obtained from the TLV buffer.

In order that the invention is more readily understood an embodiment will be described by

way of illustration only with reference to the drawings wherein:

10

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

Figure 1: is a diagrammatic view of the TUBE build time processing system in

accordance with one embodiment of the invention;
Figure 2 isa diagrammatic view of TUBE Component Architecture of one

embodiment of the middleware broker of the invention;

Figure 3 is a diagrammatic view of TUBE out-bound message scenario;

Figure 4 is a diagrammatic view of TUBE in-bound message scenario;

Figure 5: is a diagrammatic view of Fragment of mathServer IDL .

Figure 6: is a diagrammatic view of Structure of request message (highlighting

payload)

Figure 7: is a diagrammatic view of Structure of a successful response message

(highlighting payload)

Figure 8: is a diagrammatic view of Structure of an unsuccessful response message

with an exception as payload

-Figure 9: is a diagrammatic view of structure of a PIM

Figure 10: is a diagrammatic view of structure of a PIM Header

Figure 11: is a diagrammatic view of structure of a Marshalling Map

Figure 12: is a diagrammatic view of mapping op-code target to variable value

Figure 13: is a diagrammatic view of declaration of a byteSequence

Figure 14: is a declaration for an array |

Figure 15: is a declaration of a null terminated string

Figure 16: is a declaration of an object reference

Figure 17: is a contro!l clause

Figure 18: is a response message declaration showing buffer length variable

Figure 19: is a diagrammatic view of the process of invoking DAM from a PCM

Figure 20 is a PDL definition of CORBA using the PDL compiler of the invention;

Table 1; State Parameter entry

Table 2: Structure of a (Code) State-Block

Table 3: Format of Constant Segment Eniry

Table 4: Format of Variable-Definition Segment Entry
Table 5. In-memory layout of Variable Value Table
Table 6; Extensions to OMG IDL

Table 7: TUBE internal variables

Table 8: op-codes generated for reading a byteSequence
Table 9: op-codes for reading a null terminated string

11

10

15

20

25

30

35

WO 2007/147207

Table 10: op-codes for reading an object reference

Table 11: Qp-codes for processing "control” clause
Table 12: Post-Marshal map for CORBA message

Table 13: PDL Op-codes

Referring to the drawings and tables there is shown a method of intercommunication of
middleware including the steps of providing a table of initial definition of structure
characteristics, including format and parameter data types, of one or more protocols;
converting said onc or more structure protocol definitions into a selected format; storing
said one or more structure protocol definitions in said selected format in one or more
repositories; and at run time assessing the incoming message and selecting an appropriate
structure protocol definition to be used from the table and using the selecied format of the
converted structure protocol definition to communicate.

As shown in Figure 1 middleware broker of the invention includes The Ubiquitous
Broker Environment (the TUBE system) which uses PDL (Proiocol Definition
Language), and a declarative scripting language (based on OMG-IDL) to define-the
characteristics of a particular protocol. The TUBE Protocol Definition tool provides a
GUI interface for users to produce PDL scripts. This script is then submitted to the PDL
compiler, which converts it into an internal format that TUBE can process at runtime.
The output of the PDL compiler is stored in the Protocol Definition Repository. The
TUBE Interface Description Language (IDL) compiler processes the IDL definition of
the interfaces that need to communicate. These files define the format and data types of
the parameters passed between clients and servers. TUBE stores this information in ils
Module Definition Repository. This data in conjunction with the protocol definition
(stored in the Protocol Definition Repository) is all that TUBE needs to con*)ert messages

between different middleware formats.

The Distribution Priority Table stores the names of the various protocols supported for
each Interface defined in the Module Definition Repository. These protocols are stored in
priority order; that is, starting by the preferred protocol, followed by each subsequent
protocol. Each entry in the Disiribution Priority Table corresponds to an entry in the End-
Point Resolution Table. This table defines the communication parameters necessary to
communicate with the interface over the specified protocol. In the case of CORBA, for
example, this would be the IOR for a server that implements the desired interface. The

12

PCT/AU2007/000859

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

information stored here depends entirely on the protocol. These two tables are used in
conjunction by TUBE to determine where and how to send messages between different

middleware,

Figure 2 shows the main components of the architecture of The Ubiquitous Broker
Environment (TUBE). Systems that work through TUBE will use the TUBE API, or use
their own middleware API, and have these calis intercepted and processed by TUBE.
TUBE consists of four '(4) main process components, in addition to its four (4)

repositories.

The TUBE server provides the entry-points for the APls. Both client code and TUBE
internal code communicate through the interfaces provided. ’

The Message Distribution Server (MDS) associates each request for a service with a
particular protocol. Tt reads the Distribution Priority Table to determine which protocol to

use to process the message.

The Dynamic adaptive marshaller (DAM) prepares requests for a particular protocol,
Given a request from the MDS, it looks-up the definition of marshalling rules for the
requested protocol, and the target interface definition in the Module Definition
Repository, It then marshals the tarpet interface into the desired protocol, based on the
definitions from both repositories. It also un-marshals from the source protocol into an

internal protocol-neutral format .

The Transport Mediation Setrver (TMS) determines the target end-point for the interface
from the End-Point Resolution Table. Tt uses the combination of interface and protocol,
such as the IP-address and port number of an ORB, to workout the destination.

The Module Definition Repository (MDR) stores the meta-definition of the particular
interface. This includes the interface identifier and the data types of the parameters
passed, This information is derived from the IDL for the interface.

The Distribution Priority Table (DPT) provides for each interface defined in the MDR, a
list of protocols that can be used to communicate with this interface, stored in priority

order.

13

WO 2007/147207

10

15

20

25

30

35,

The Protocol Definition Repository (PDR) stores the marshalling rules for each protocol.
These rules are generic for each protocol and not specific to any interface stored in the
MDR.

The End-Point Resolution Table (EPRT) stores the target communication address for
each interface/protocol combination. This address could be, for example, the IOR for a
CORBA server, or a queue definition for MQ series. This table stores the necessary
information to send a& message to, or communicate with, a defined interface using a

particular protocol.

The protocol structure undergoes a language neutral machine independent definition and
is compiled into binary modules known as protocol impiementation modules (PIMs) and
transport interface modules (TIMs). The TIMs contain the communication partameters,

These PIMs and TIMs are loaded at runtime and executed by interpreters (virtual
machines), PIMs are processed by the dynamic adaptive marshaller (DAM) and the TIMs
are handled by the transport mediation server (TMS). Both of these modules are
controlled by the message distribution server (MDS). The MDS is aslso responsible for
any interface mapping that is required. It uses either the processed request or response
message and a mapping definition. The actual mapping is performed by a mapper module
under the direction and control of the MDS.

TUBE uses different data formats internally depending on the situation. In the diagrams
the Protocol Independent Data Streams (PIDS) are the format used internally to pass data
between the TUBE API, the server and the DAM components. The Protocol Oriented
Data streams (PODS) on the other-hand consist of data that has been marshalled into a
protocol-specific format (e.g. CORBA) by DAM. These are passed internally between
DAM, the MDS, TMS and, if required middleware-specific APls.

TUBE provides the ability to use either or both synchronous and asynchronous
communication modes, and that the desired method can be changed at anytime without
system impact. When it is required to switch from one mode to the other, all that is
required is to change the configuration. This can be done on a per module/interface basis,

even while the system is running. There is no need to shutdown and re-start the broker,

14

PCT/AU2007/000859

10

15

20

235

30

35

WO 2007/147207

The following scenario depicted in Figure 3 describes the process-flow of an out-bound

message through TUBE through the following steps:

1.
2.
3.

10.

The application call is passed to the TUBE API via the TUBE server.

The TUBE server passes the call to the Message Distribution Server.

The Message Distribution Server selects a protocol to try from the
Distribution Priority Table. |

The Message Distribution Server passes the interface/module identifier
and the preferred protocol to the Dynamic adaptive marshaller.

The Dynamic adaptive marshaller reads the Module Definition Repository
to determine the format and arguments for the call.

The Drynamic adaptive marshaller uses the protocol definitions stored in
the Protocol Definition Repository to prepare the call for the particular
middleware or application service.

 The Dynamic adaptive marshaller passes the marshalled buffer back to the
Message Distribution Server.

The Message Distribution Server passes the marshalled message to the
Transport Mediation Server and tells it which protocol to use for transmission.

The Transport Mediation Server reads the End-Point Regolution Table to
determine the host and port number required to communicate over this
protocol.

The Transport Mediation Server attempts to communicate with the

designated host using the appropriate communication parameters.

If communication with the preferred protocol fails, TUBE will try each subsequent

protocol (in priority order). The application will only receive notification of

communication failure once all the listed protocols have been exhausted. If

communication succeeds, TUBE sends a positive notification to the application. The way

that this occurs depends on the application’s relationship with TUBE. If the application
has invoked TUBE via the API, then TUBE will return the status directly to the
application. If, on the other-hand, TUBE has intercepted an out-bound call made by a

proxy or stub, then the status will be given to that module for return to the application.

The scenario shown in Figure 4 describes the process-flow of an in-bound message
through TUBE with the following steps:

15

PCT/AU2007/000859

~ 10

I5

20

25

30

35

WO 2007/147207

1. the external call is intercepted by a TUBE module.

2. the interceptor uses the TUBE API to pass the message to the TUBE
server, which passes the call to the Message Distribution Server.

3. the TUBE server passes the message to the Message Distribution Server in
the protocol that it was received. -

4. the Message Distribution Server looks-up the Distribution Priority Table
to determine whether the message needs marshalling into another protocol.

Steps 5, 6, 7 and 8 are only executed if the protocol needs to be comverted by the
Dynamic adaptive marshaller. If not then the message can be passed through to Step 9.

5. The Message Distribution Server passes the interface/module identifier and
the preferred protocol to the Dynamic adaptive marshaller.

6. The Dynamic adaptive marshaller reads the Module Definition Repository
to determine the format and arguments for the call,

7. The Dynamic adaptive marshaller uses the protocol definitions stored in
the Protocol Definition Repository to prepare the call for the particular
middleware or application service.

8. The Dynamic adaptive marshailer passes the marshalled buffer back to the
Message Distribution Server.

g. The Message Distribution Server passes the (possibly converted) message
to the Transport Mediation Server and tells it which protocol to use for
trangmission.

10. The Transport Mediation Server reads the End-Point Resolution Table to
determine how to contact the end-point for this protocol. In this case, it
determines that the end-point is local.

11 The Transport Mediation Server then passes the message to the “Target
Application™ on the local system.

It can be seen that the middleware broker of the invention using The Ubiguitous Broker
Environment (TUBE) aims to provide protocol-level inter-operability with the following
characteristics:

. Supports a wide range of protocols, including legacy systems,

. Protocol descriptions are to be declared, and developed with a wtility tool supplied
with TUBE. This allows new protocol support to be added with no impact on existing
systems. This effectively provides future-proofing of IT investments. As new
protocols emerge, they can be utilised declaratively with very litde (if any)

16

PCT/AU2007/000859

10

15

20

25

30

WO 2007/147207

development.

. Protocols can be changed (added or removed) without re-compilation of
application software,

From a user perspective, a major advantage of this approach is that application programs
don’t have to be re-compiled to use TUBE. TUBE is installed, and descriptions of the
protocols supported are declared and stored inm a protocol definition repository.
Applications specify the service that they want by using the API of the service. These
calls are intercept'ed by TUBE, which determines a gervice provider and marshals the call
appropriately. The service providers and the protocols that can satisfy a call are specified
for cach interface. If the required service is not available through a preferred protocol,
then alternative protocols are tried. For exaruple, the defaull may be CORBA, and calls
will target CORBA end-points (e.g. an IOR); however, an alternative may Be MQ-Beries,
which will be tried if a CORBA service camnnot be reached. (The onus will be on the
systems integrator t0 specify those protocols that are intcrchangcqblc for cach interface.)

Unlike some proprictary EAT products, which attempt to control workflow and broadeast
(publish) each message on 2 universal messaging bus, TUBE only communicates with
designated end-points. TUBE is capable of broadcasting or publishing to a universal bus,
if that is required. Since TUBE will provide fully synchronous or asynchronous methods,
the desired communication type may be changed at anytime without system impact. For
example, if synchronous behaviowr is required from an (essentially) asynchronous
middleware platform (e.g. MQ-Series), TUBE will handle the synchronisation through
blocking and buffering. If it is then required io go back to purely asynchronous, the
application software does not need to change, provided that the protocol is supported for
the called tnterface. This will allow remote modules to be developed independently, and
for €ach to use the middleware that best suits their purposes. There will be no need for

independent development groups to be familiar with each other’s protocols.

The messaging life-cycle employed depends upon the fype of communication mode we
are engaged in. If we are engaged in a synchronous mode operation, then we will be in a
blocked or waiting state. In the asynchronous mode, we are also waiting but can continue
to perform other tasks whilst we wait. We need to be able to handle both modes
independently of one another, and also be able to combine them. Let us consider the

17

PCT/AU2007/000859

10

15

20

25

30

WO 2007/147207

following example, a client may make a synchronous request on a server using the same
protocol as always; the client is unaware that the server implementation has been changed
to use asynchronous queuing. We need to hold the synchronous session with the client,
which is awaiting a response and is thus blocked. At the same time we must monitor a
queue on the server-side and we must wait for a response that could come at anytime.
However, we are not blocked, we are waiting to be notified when something is put on the
queue. When our response arrives we send it back to the waiting client. This entire
process invelves more than sending and receiving of the request and response; we must

marshal the data to and from the source and target protocols.

During the marshalling process the message data need to be buffered and copied from the
source to the target. Depending on message size, this could be a fast or slow task. If we
are brokering a synchronous request over an asynchronous invocation to the server, we
will keep the client blocked until we have completely marshalled and sent the request
message, The client will continue to remain blocked until we retumn the response to it.

The component in the TUBE architecture that is responsible for managing the messaging
life-cycle and ensuring that clients either; receive the response in synchronous mode or
are notified of responses in the asynchronous mode is the Message Distribution Server
(MDS). The MDS is the first and last module to handle a message and its subsequent
response (assuming a two-way exchange). The MDS$ is also responsible for determining
the target end-point from the DPT and EPRT, and providing that to the other modules via
an API. When clients elect to use the TUBE server directly via APIs, the TUBE server
creates an instance of MDS to handle the message. The same thing occurs when a
protocol interceptor intercepts a message; it uses an instance of MDS to manage the

seasion.

The basic operation of MDS may be described as follows:
¢ Receive an in-coming message
» Invoke the DAM to un-marshal the source message into protocol-neutral (TLV)
format
s Determine the target protocol and end-point from the DPT and EPRT
¢ Call DAM to marshal from the TLV format ino the target format

» Invoke the TMS to perform the actual communication and await the response

18

PCT/AU2007/000859

10

15

20

25

30

WO 2007/147207

There are some situations where the semantics required by a particular protocol cannot be
handled by MDS. The job of the MDS is primarily to distribute messages amongst other
TUBE components to ensure that they are marshaled and delivered correctly, This generic
model would be compromised if we tried to build the logic into MDS to handle these very
protocol-specific situations. Instead we relegate these protocol-specific tasks to what we
call “Protocol Control Modules”. The PCM assists the MDS with higher-level semantics
that deviate from the standard synchronous and asynchronous communication modes. An
example of this is the LOCATION-FORWARD response received in CORBA.

This response tells the client to resubmit the original request to a new target end-point.
We chose not to embed the logic to handle this in MDS. This is a very CORBA-specific
situation and it did not make sense to design any specific protocol related operations into
MDS. Had we done so, we would have most likely found ourselves addiﬁg logic to handle
the idiosyncrasies of other protocols. This would endanger MDS of becoming over
complicated and difficult to maintain as new protocols were added. A major design goal
of MDS, and for that matter all of TUBE, is to be protocol-neutral. The only parts that are
intended to be protocol-specific are the PIMs generated from the PDL scripts . The MDS
uses the PCM to make higher-level decisions about message processing. The MDS will
pass the full request or response to the PCM and will delegate all further processing to it.
MDS will wait for the PCM to either submit another request or return a response to the

client.

Protocol deﬁrﬁtion language (PDL) as its name implies is a language (symbolism) for
defining protocols. In the same way as IDL defines interfaces, PDL defines protocol
structure. The language definesthe structure of both request and response messages.
When we say it defines the structure, we are referring to the things that we need defined
in order to exchange messages with a server oﬁ behalf of a client. We discuss earlier in
the paper that the purpose of TUBE is as a broker between disparate systems. As a broker,
it sometimes needs to convert from one client protocol to another to communicate with a
server. We have various types of protocols; we have text-based protocols such as XML,
HTTP and SOAP!. Then we have binary protocols, some of which are object-based
(examples include CORBA, COM and Java-RMI) and others such as DCE-RPC, which
are not object-based. Finally, we have the MOM type protocols such as MQ and JMS.

19

PCT/AU2007/000859

10

15

20

25

30

WO 2007/147207 PCT/AU2007/000859

Each protocol wraps or ¢ncapsulates the actual message content in different ways, SOAP
for example wraps the content in a structure called a SOAP body, and then wraps this in
another structure known as a SOAP envelope. In the following discussion, we shall rcfer
to this content as the payload. This is the body of the message as defined for the interface.

To clanify this, let us use our simple math-server definition again; partially reproduced in
Figure 5 for convenience of the reader. Figure 6 and Figure 7 show the basic structure of a
request and successful response message for an “add” operation of the numbers “1000”
. ax(ld “15" on the mathServer interface. The server may also return an exception or error
condition. This is shown in Figure 8, where we assume that the div (divide) operation was
called with “1000” and “0”. This is an illegal operation and hence the server returns an
exception. The excepiion we have defined is a structure, which contains one member, a
string describing the etror. It could however be considerably more complex. The example
exception shown is protocol-neutral, that is, it does not represent any specific protocol

mapping. It is merely illustrative.

Referring to the interface definition above, if we are dealing with a request, our payload
will be a math_req structure (Scc Figure 6). If we are dealing with a response, we will
have a math_resp structure (see Figare 7) or some failure indication (see Figure 8). The
payload for a message is either the (serialized) input parameters to the operation, or the
(serialized) response from the operation, whether successful ot not. We know from the
above definition how to marshal these structures; we know at least what native types
constitute them. What we do not know however, is how to marshél them over a particular
protocol. Do we want the integer (int) values converted to text so we can send them in
XML? Does the protocol wrap the payload in some other structures, such as headers or
trailers? If we only know the structure of the interface, then we cannot broker between
protocols. We muétuknow what to add to the message or what to convert® so that the target
system can teceive and process it. We must also know the address (in protocol-specific
terms) of the end-point (target). This may be a host name and port number or a queue
name or, perhaps a directory name. These are the items of “protocol structure”, which
PDL is designed to address.

2 This i not character-set conversion such as ASCII to EBCDIC, rather conversion of nunabers to strings
and so on.

20

10

15

20

25

30

WO 2007/147207

There are also certain aspects of message structure, which are similar although not the
same between protocols, That is, they may contain varying values depending on the
protocol, or appear in different places within a message. These items are mandatory for
any message exchange regardless of protocol, We refer to such items as TUBE internal
variables. These are the variables TUBE uses to keep track of such things (amongst
othets) as; message lengths, sequence numbers, and whether we are dealing with a request
or a-response. Table 7 provides details of all these variables. In the discussion that
follows, we refer to TUBE internal variables and user variables. User variables are those
that only have meaning for the particular protocol. We obtain their value from the EPRT
entry for the interface. Alihough the variable is applicable to the entire protocol, its value
is determined on an interface-by-interface basis. In other words, the same variable may
have a different value in each EPRT entry. An example of a user-defined variable in an
EPRT entry is a CORBA object-key . This identifies the object to instantiate (or invoke)
on the target end. We discuss both types of variables and their PDL definition later.

Before this discussion, it is important to gain an understanding of some terms and
concepts that we refer to when describing PDL. Of patticular importance are code-blocks
and op-codes. A code-block, also referred to as a state-block (see Table 2) is a structure
consisting of the following elements:

¢ Op-code

s A target variable fo store the result of the operation

+ Array of parameters for the opetation

¢ Offsets into other data structures required by the operation

These code-blocks are processed at runtime by a Virtwal Machine (VM), which interprets
the op-codes and executes the given instruction. We call this VM the DAM (Dynamic
adaptive marshaller). We decided that using a VM would enable the addition of
functionality to PDL by expanding the range of op-codes.

The op-code 15 a symbolic value used (0 determine the operation to be carried-out. For
example, the op-code READ INT instructs the matshaller to read a signed 32-bit numeric
value from the input source. Likewise, the op-code WRITE_INT instructs the marshaller
to write a signed 32-bit value to the output target.

21

PCT/AU2007/000859

10

15

20

25

30

WO 2007/147207

The PDL is a series of extensions to OMG IDL . The rationale behind extending an
existing language is that most software engineers have some exposure to, or knowledge of
it. This is mostly the case with IDL. It defines CORBA interfaces and is the description
language for Java RMI . OMG IDL itself is an extension of the original DCE RPC IDL .
Microsoft also has a language based-on extension to RPC IDL called MIDL (Microsoft
Interface Definition Language). It primarily defines C+ COM interfaces . Extending an
existing language reduces the learning curve for the users, and shortens the development
time for the PDL and supporting tools. An cxample of PDL is explained later with
reference to Figure 20. The exampie uses CORBA IIOP V1.0 to illustrate in detail:

1. The use of the IDI. extensions
2. How the PDL compiler interprets the extcnsions
3, The op-codes that are emiftted

In a later section we discuss the DAM, and show how DAM interprets these op-codes to
handle messages. '

In the PDL compiler, PDL scripts are not compatible with IDL and therefore standard
DL compilers cannot process them, as they would not recognise the extensions, which
would cause parsing errors. We need a special compiler to process PDL. The PDL
compiler reads the PDL definition (also referred to as a script or PD)) and generates two
types of output, a Protocol Interface Module (PIM} and a Transport Interface Module
(TIM). There are two PIMs generated for each protocol definition, one for handling
requests and the other for handling responses. This simplifies the logic requited in both
the compiler’s code generator and the runtime interpreter (DAM). The DAM loads the
appropriate PIM based-on the current message type (i.e. request or response). The PIM is
comprised of code-blocks, derived from constructs within the PDL script. For example,
for each “struct” keyword encountered in the PD), the compiler generates what-we refer to
as a code-block. This code-block is a series of instruction blocks. An instruction block
consists of op-codes and state definitions, which define operations, variables (internal and
user-defined) and initial values. Each op-code and state is (generally) associated with a
source or target variable . The Figure 9 diagram illustrates the structure of a PIM.

22

PCT/AU2007/000859

10

15

20

23

30

WO 2007/147207 PCT/AU2007/000859

The PIM header contains information and structures that assist in the loading and

processing of the rest of the file. The header is comprised of the fields shown in Figure
10.

We will deal with each of the header elements in turn, and then discuss the other portions
of the PIM structure. The entire PIM structure and all the constituent parts are shown in
the tables and explained as we encounter them.

1. The File-Identifier is a hexadecimal value, which identifies this file as a valid
TUBRE PIM. If this value is not found or does not match, then the rest of the file is
ignored and the load aborted.

2. The Marshalling class-name specifies the name of the class that implements the
 TUBE.commsBuffer interface. This is the class that will be used for all reading
and writing operations whilst processing this PIM. The actual disk layout of this
item is an integer specifying the length of the name string, followed by the stning,
This string contains the actual name. A length of zero (0) signifies an empty class-
name and there is no string following. In this case, the DAM will use a default

(internal TUBE) implementation for encoding and decoding of native values.

3. The Constant-Segment stores all constant values. The entries specify a type, the
length of the value and the actual value. We always encode the value in a byte
array despite the data type. The compiler encodes offsets into this segment into

instroctions that require access to these values.

4, The Variable-Definition Segment contains information about all the variables
defined in the PD. It stores the name, data type and a flag to define the variable as
an internal or user-defined variable. If the variable has an initial value specified by
an “init” clause (see Table 6), then an index into the CS is also stored. |

The Marshalling map, Pre-Marshal map and Post-Marshal maps all have the same basic
structure (illustrated in Figure 11). These blocks contain the op-codes and other
information necessary to the execution of the operation, The Declarations section of the

file contains pointers into these maps for instruction-blocks gencrated from “declare” (see

23

10

15

20

25

30

35

WO 2007/147207

Figure 13) statements. These blocks contain all the code required to handle the declared
type. We now discuss variable handling and explain these relationships.

When the compiler encounters a simple (native) type in a struct definition, if it specifies
an initial value, the compiler generates an entry in the CS and stores an offset to this valuc
in a state-parameter entry (see Table 1). The compiler adds the entry o the state-block it
is currently generating. If the variable does not have an initial value, the compiler
generates a VDS definition as an empty slot for the value. This slot is a placeholder for
the value when it is read-in. Ti is also the source for the value when writing. Refer to

Table 5 for a description of the runtime usage of this entry.

In the case of compound (declared) types, the compiler generates references to two
separate code-blocks, one in the reading PIM and one in the writing PIM. These code-
blocks have a type of USER-DEFINED and have an entry created in the Declarations
section using the name of the structure with either a “ READ” or “ WRITE” appended.
This modified name is stored in the C8 and the CS index is stored in the definition entry.
The PDL compiler patches offsets to the actual code-blocks once it has completely
processed the PDL script. The instructions to bandle the declared type are generated into
the Marshalling map. The first instruction-block for handling this type contains a pointer
lo the modified name in the CS. This is how the compiler finds the value to patch into the
declaration entry. This is also, how the DAM identifies and loads individual code-blocks

at runtime.

We write the Constant-Segment to disk in its entirety. It is read-only at runtime. These

values never change during the execution of the PTM.

The compiler writes the Variable-Definition Segment to disk in the format shown in
Table 4). This is what the DAM reads when loading the PIM. At runtime, we create
another structure for storage of variable values for efficiency. We call this nntime-only
structure the Variable Value Table (VVT). The layout of the VVT appears in Table 5.

The Variable Value Table stores the values for variables as we read them from the input
source. If we are marshalling this value, then we use this entry as the source and write ti}c
current value to the output target using either, user-supplied methods or internal (default)
handlers. We extract the native type from the Object wrapper for writing and we coerce it

24

PCT/AU2007/000859

10

15

20

25

30

WO 2007/147207

from the native value into the wrapper when reading. This casting of native types to and
from objects adds some processing overhead, however we compensate for this with the
ability to handle all data types in the same manner. Refer to the section on DAM for a

more in-depth discussion on runtime variable management,

Figure 12 illustrates a read-octet operation for a target variable, which has an offset of
two (2) in the Variable-Definition Segment. If we follow this offset, the VDS entry stores
an offset of five (5) imto the CS. This is where we find the name of the variable
“objectKey”. Because this is a USER-DEFINED variable (indicated by the declaration
“Sobjectey$” in the PDL seript in the Figure 20 CORBA example), initially we obtain
this value from the EPRT entry for this interface. This entry then remains constant for the
life of the PIM, unless explicitly changed by invoking set method or gxecuting a code-
block. When we have read the value, it will be stored in offset two (2) of the Variable
Value Table (VVT). We create this table only at runtime to manage the storage of actual
values, which are not constants. After the read, the entry at offset two (2) contains the
value “6OBJECT:myObject”. When we marshal this in a request, its value comes from
this VVT eniry. '

In the application of extensions to OMG IDL, table 6 shows the new keywords and
constructs introduced to extend OMG IDL. A brief description of each is also given. We
expand these deseriptions as we work through our CORBA example,

Table 7 describes the internal TUBE variables that may appear in a PDL definition. The
entry referred to in the text, unless otherwise noted, is a record in the Variable-Definition
Segtent.

These are reserved words and are expected enclosed in the '%' character (e.g. %count%).
The PDL compiler throws an exception if it encounters any other usage.

We will now examine each section of the PDL script (see Figure 20 CORBA example) in
detail, We also assumne throughout the discussion that the compiler has built a symbol
table and other internal structures during the parsing phase. Our discussion will
concentrate on the code generated from these constructs, rather than their actual
construction, Most of the examples show the instructions generated for reading. We must

25

PCT/AU2007/000859

10

15

20

25

30

35

WO 2007/147207

note that for each set of read instructions generated, there is also a corresponding set of

wiite instructions emitted.

We begin with the protocol declaration,
protocol CORBA ’
{

The first keyword that we encounter is “protocol” followed by the value “CORBA”. This
tells the compiler to generate the following two filenames:

¢ CORBA_Req.PIM — defines rules for marshalling réquests
¢« CORBA_Resp.PIM — defines rule for marshalling responses

The “{* character identifies this as the opening of the PD script.

Next, we encounter three “typedef” statements. These behave the same way in PDL as in
standard IDL and programming languages such as C and C++. In that, they define an alias
for the type. For instance, the following statement:

“typedef sequence<octet, 3> reserved;”
causes the compiler to create a variable named “reserved” and whenever it encounters this
variable to point to a code-block. The code-block will define op-codes for reading and
writing a sequence of three octets. The definition for GIOP_MAGIC is very similar
except that it also generates a four-byte entry in the CS with the valne ‘G’ I"’O"P’.
Whenever we begin to read a message, we first look for those four bytes and conversely,
when writing & message we always write this initial value, The definition for “olist”
specifies an octet sequence of unbounded length. The important distinction to note here is
that sequences of native items (such as octets) defined with “typedef “ do not have their
length encoded and neither do. we expect to read the length during decoding. If the length
is requited when reading or writing, we must define this using a “declare” clause (see

byteSequence in above) as explained next.
Before we explain the “declare” clause however, we need to skip'ahcad a little and

explain the “bufferFormat” construct and how the DAM uses it in conjunction with the
MDR at runtime. The “bufferFormat” definition tells DAM, which code-blocks to use

26

PCT/AU2007/000859

1)

15

20

25

30

WO 2007/147207 PCT/AU2007/000859

when marshalling the payload. The payload can be made-up of cither native types or
constructed complex types. The complex types may contain native types and other
complex types. We must provide the DAM with marshalling instructions for the following
standard constructed types:

o STRING - how to marshall a String

e BYTESEQ — marshall an arbitrary byte sequence

e ARRAY —marshalt an array (fixed-size sequence) of native or complex types
¢ SEQUENCE - marshall a variable-length sequence of native ot complex types
» OBJECTDEF — marshall an object definition

The DAM assumes that a mes;sage may only be comprised of a combination of those
items and native types. If we do not provide these instructions in the PDL, consequently
there will be no handlers (code-blocks) generated, as there will be no “declare” clauses to
define them. In this case, DAM will use internal marshalling rules, which may or may not
be suitable for the particular protocol. For example, an object definition is very protocol
specific. [f none is given, DAM will simply encode and decode an item defined in MDR
as an object, as an un-interpreted array of bytes, Tf we look at the PDL definition for an
“objectDef” in our CORBA example, we can se¢ that if we omitted the “declare” and
“hufferFormat” statements, the default behaviour would not be suitable for our protocol3 .
If the PDL compiler encounters multiple bufferFormat statements, it throws an exception

and terminates processing.

The next keyword we encounler is “declare”. We use this for defining compound or

complex types, which may be composed of many native and or other, compound types.

Referring to Figure 13 we are defining a “byteSequence”. This will generate op-codes
that tell the DAM how to read and write an arbitrary sequence of bytes. We define a
reference to an internal TUBE variable “%num_bytes%” (sce Table 7: TUBE internal
varigbles). This indicates how many bytes (octats) to read or write next. We then have a

reference to an “olist”. Next we find the cnd of this declare clause, signified by “};”.

3 For example, strings would not be null terminated.

27

10

13

20

25

30

WO 2007/147207

The compiler will now create a code-block named “byteSequence READ™ with the op-

codes shown in Table 8.

From this point on wherever a reference to “byteSequence” appears, the compiler will
¢ncode an instruction to load this code-block and execute it. Any other code-blocks that
refer to this code-block will have a flag set that specifies a reference to a “USER-
DEFIND” code-block. The instruction (in the referring block) will also have an offset (in
the CS) to the name of this block.

Referring to Figure 14, the next declaration we encounter is for an array, This entry

. specifies how DAM: should handle arrays. This is very similar to the byteSequence

example, except that we use another special variable “array_size” to keep track of the
number of actual entries. An array is a fixed-size sequence. The interpreter derives the
upper-limit of the array dimension at runtime by referencing the MDR entry for the
particular interface being marshalled. Currently PDL supports only single dimension

arrays.

Rcfcnjlng to Figure 15, the declaration for ‘fnString” demonstrates the use of op-codes to
add and subtract constant values to and from those currently being processed. The “+ 17
tells the compiler that we always have one exftra byte than the actual string length, Here
we read the length of the string including the null byte, and then we must subtract one (1)
from it. This is so we do not consume the null as part of the string. We read it scparately
and discard it. Conversely, when we are writing the siring, we first add one (1) to the
length and write it. We then write the string itself, and finally we write the null byte.

The compiler generates the code-block as per Table 9.

Referring to Figure 16, the “objectDef” declaration illustrates the usage of declared types
within declared types. ' "

Tablc 10 illustrates the resultant code-block. .

The interpreter executes the instructions. above whenever an “object” definition is

encountered in the payload and the value being marshalled is defined as an “object” type

28

PCT/AU2007/000859

10

15

20

25

30

35

WO 2007/147207

in the MDR. The statement “OBJECT=objectDef:” in the bufferFormat clause defines this

association.

The “bufferFormat” clause is the next construct that we encounter. As we have already
explained the bufferFormat clause above, we will not repeat it here.

Referring to Figure 17 the next significant construct we encounter is the “control”
statement. The compiler writes the op-codes generated here (see Table 11) into the Pre-
Marshal map. These are loaded and executed just before marshalling the payload. When
the interpreter encounters the special opcode START PAYLOAD, it will search for a
pre-marshal map. If none is found, then the DAM will travetse the payload according to
the MDR definition for the interface being processed. Otherwise, if there is a map présent
we invoke a module to handle the tests. ‘

The statement above tells the compiler to generate some branching op-codes based-on the
value of the internal variable reply_status. When the value of reply_status is read from the)
input at runtime it is examined and tested for the values: 0, 1, 2 and 3. The value
determines what action to take for encoding or decoding the payload. After executing the
appropriate action, we exit this module and return to the main interpreter code. According
(o the rules specified above, we will execute the following process:

If the value is zero (0) we push a false onto the stack. This indicates that we will follow

the MDR definition for the interface and marshall the values accordingly. In this case, the
module returns » Boolean false. I it is not zero (0) we then perform a test for one (1), and
if this is true we follow the definition of the exception for this operation (as defined) in
the MDR. Unlike the case for zero above where we return false, for MDR-defined
exceptions we return true to indicate that it is not the standard payload; although, we are
still following an MDR definition. Otherwise, we test for two (2), and if this is true, we
push the pame of the code-block defined as “sysiemException READ” and return it.
?inally, we test for a value of three (3). If this is true, we load the name of the
“objectDef READ” code-block and return. 1f none of the defined values exists, the DAM

throws a marshalling exception.

In summary, the module that performs the “control” instructions returns one of three
values to the main interpreter. It tetuns false if we are marshalling the payload by

29

PCT/AU2007/000859

10

15

20

235

30

WO 2007/147207

following the MDR representation, or it returns true if we must handle the payload
differently. A string vaiue indicates that this module has pushed the name of a
USER_DEFINED code-block (that was defined with the declare clause) onto the stack,
The main interpreter loop will load and execute this code-block. After marshalling the
payload, the interpreter will search for a Post-Marshal map. ’

Table 11 shows op-codes for processing “control” clause. Unlike the control clause forA
pre-marshal maps, there is no keyword to indicate the start of a post-marshalling map®.
The compiler will always generate code to write-out the body (payload) length after
marshalling the payload. Therefore wherever the variable %buffer length% is
encountered this tells the compiler that this is the payload length. We initially marshal the
length as zero (0) and then we re-write it with the correct value after mmhaﬂhg the
body.

Referring to Figure 18, statements that contain the buffer_length variable, such as the one
shown, automatically cause the compiler to create a post-marshalling block. This block
contains instructions to save the current point in the buffer, calculate the new position,
write the length and return to the current position.

Table 12 shows post marshal maop for CORDA message.

Next, we encounter the “external” clause. This defines the full class-name (including
packages) of the class that the interpreter is to call for marshalling native types. Because
CORBA uses CDR encoding for primitive data, the default TUBE codec is not suitable.
Therefore, we define our own special clags to handle the CDR padding of the bytes that
the PIM reads or writes. We only need to define this class once in the PDL. From then on,
it will be available for marshalling any defined interface across this protocol. For
example, when the PIM contains a READ INT op-code, the DAM will call
MYORB.marshaller, CDRBuffer.read_int() to obtain the value. Conversely, when we
encounter . WRITE_INT, we call MYORB.Marslllallcr.CDRBuffer.writc__inl(value) to
output the value. This clause causes the compiler to populate the Marshalling class-name
member of the PIM header (see Figure).

4 We may introduce one or more if we feel it would add flexibility to PDL.

30

PCT/AU2007/000859

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

The final construct we shall deal with in this example is the “endPoint” definition. It

appears in PDL as follows: -
endPoint ; "TCP"

{
H

// These are transport and protocol-specific items

" '

"host"; // This is the host for the object
© "port"; // This is the port on the host

8 ‘

The value following the *;” is transport for the protocol, in this case “TCP* for IIOP. The
‘DAM must find these values in the EPRT entry for this interface. The compiler generates
code into the TIM for loading and using these values. As the definition for this endpoint
defines the use of TCP/IP, the TIM will use these values to create a sockets-based
connection to the defined host on the designated port. We cover the operation of TIMs in
more detail in the section on the Transport Mediation Server (TMS) . '

In the next section, we will continue with our CORBA example and show how parts of

the message may be re-marshalled.

The Dynamic adaptive marshaller (DAM) is the name we have given to the VM, or
interpreter, which executes the PIMs that we discussed in the previous section. As the

- name suggests, this component must dynamically adapt to the protoce! that it needs to

marshal. Before we discuss the DAM in detail however, it is important to understand the
two (2) types of invocation modes (i.e. the ways we invoke DAM).

We can invoke DAM in ¢ither of the following ways:
¢ Via a Protocol Control Module (PCM)
¢ Via the Megsage Distribution Server (MDS)

| J
Both invocations actually occur via MDS, however in the case of a PCM, the MDS first
routes to the PCM, which then invokes the DAM. In the other case, the MDS invokes the
DAM directly.

31

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

Firstly, we must discuss the role of the Message Distribution Server (MDS) in the
message processing cycle. We assume throughout the discussion, that we are processing a

synchronous (two-way) message.

When a request is intercepted by a protocol listener, the listener creates an instance of
MDS and passes it the message. The MDS will then attempt to create an instance of a
Protocol Control Module (discussed below) using the Java Reflection APL If the creation
is successful, MDS hands the request to the PCM and takes no further part in the process
until the PCM returns the response. Whereas, if the creation fails: MDS passes the request
to DAM and waits for DAM to return a protocol-neutral representation of the request (a
TLV buffer). The MDS will now look-up the DPT to ascertain the target protocol. The
MDS passes the TL'V buffer back to DAM for marshalling into the target protocol. After
DAM returns the marshalled xreqi]cst, MDS passes the message to TMS for transmission
to the target end-point. The MDS now waits for TMS 1o return the response. When MDS
receives the response, it carries out the reverse of the above procedure; it uses DAM to
convert the response from the target protocol info the source protocol. The MDS returns

the marshalled response to the listener,

A Protocol Control Module (PCM) is a piece of software written by a user. This module
provides higher-level protocol semantics than those required for marshalling, As an
example, consider our CORBA PDL definition (see

). In this script, we have a “con@l” clause, which is a switch statement that controls what
sort of message payload we are dealing with. The decision as to what to do with this
payload after marshalling and return belongs to the PCM. The PCM implements the same
switch logic as that specified in the conirol ¢lause with the addition of logic to handle the
resuitant payload. To further clarify this we will again give an example based on our
CORBA PDL using a response message. The PCM must decide what to do with this
response based on the value of the reply_status field of the message.

. Ope of the values specified for reply status in the control clause is a three (3), which
éigniﬁes that the response payload is a CORBA object-reference (defined as objectDef).
To a CORBA client or server the value of three (3) actually means more than the type of
response payload; it means the response is a LOCATION-FORWARD response
<CORBA spec.>. This indicates that we should re-marshal the original request and submit

it to the object whose reference is contained in the response message. We believe an

32

10

5

20

25

30

WO 2007/147207 PCT/AU2007/000859

atternpt to support the specification of this logic in PDL would result in an overly
complex language. That is why we have chosen to delegate these higher-level semantics
to a user-supplied module. The PDL still provides support for the marshalling of the
various payload types, without however attempting to interpret their meaning. That is, the
decision whether or not to re-submit the request to the new object is left to the PCM. The
DAM APIT provides methods for retrieval and population of various fields within the
message by name. Therefore, the PCM makes a request of DAM to re-marshall the
request using the new object-reference received in the response. We must emphasise that
only one PCM is required for a given protocol, and this can manage any message for any
defined interface handled by this protocol. Using a CORBA LOCATION-FORWARD
response message, the PCM performs the following steps (illustrated in Figure 19):

Receive the original request from MDS

Invoke DAM to marshal the request

Invoke TMS to send the request and wait for a reply

Receive the response from TMS

Invoke DAM to un-marshal the response

Make a decision of what to do based-on the reply_status in the response

ifthe PCM decides to re-submit the request
o Use DAM APIs to set appropriate fields in the request with new values
o Retumn to step 2.

7. Return the response to MDS for subsequent teturn to client

A T o e

The main difference between the MDS direct invocation of DAM and the PCM
invocation is that MDS does not attempt to interpret any of the messages. The MDS

simply routes the messages to the other compbnents.

Once we invoke DAM either, directly from MDS or via a PCM it must dynamically adapt
to the source protocol of the in-bound message, and to the target protocol of the out-
bound message. The MDS or PCM will tell DAM what protocol the in-coming message is
encoded in. The DAM will then search the Protocol Definition Repository (PDR) for a
request PIM that implements the wn-marshalling rules for the particular protocol. The
DAM will throw an exception if it does not find the required PIM.

33

10

15

20

25

30

35

WO 2007/147207

Once the source PIM is located, it is loaded and DAM checks the header for external class
declarations. I we find any, DAM creates an instance of the classes using the Java
Reflection APL. We recall from our discussion in that these classes must implement
TUBE~dlefined interfaces. This allows DAM to handle different buffer types and encoding
schemes uniformly. Users are free to wrap or implement any underlying methods or
formats that they choose. The DAM calls pre-defined method signatures to read and write
the different native data types. Therefore, if & user requires compression or encryption and
does not want to reveal the algorithm in the PDL definition, they can implement the
algorithm in their commsBuffer class. This way the defails remain hidden, whilst still
taking advantage of DAM and a PIM to perform the actual traversal of the interface and
its data structures. This applies to any interface, regardless of complexity. Provided we
define the interface in the MDR, DAM and the PIM ensure encoding of the message as
per the rules specified in the PDL definition for the protocol. The fact that we encrypt the
values with a proprietary algorithm does not inferfere with the encoding and de-coding
process. We feel that this is a very powerful feature of the TUBE approach to message
processing; special protocol handling code only needs to be wrilten once, not for every
interface. This allows optimal te-use of code and uniform treatment of all interfaces over

the protocol.

The DAM uses the source PIM to un-marshal the in-bound message into an internal
protocol-neutral format known as TLV (Type, Length and Value). The next step in the
process is to determine the target protocol. We achieve this by using MDS APIs to look-
up the Distribution Priority Table (DPT) and determine, which' protocol has the highest
priotity. The DAM creates a request marshalling PIM for the target protocol. The DAM
then uses values from the TLV to populate values within the target PIM.

TUBE’s major objective to provide brokerage between different types of middleware is
implemented by storing interaction rules in PIMs and TIMs. The major categories of
information required by TUBE to mediate between disparate middleware are:

. On-the-wire protocol and payload format.

. Communications sessions. The communication sessions are further decomposed
into a nurber of operations. These are: session-establishment (hand-shaking), session-
management and session-termination. Each in-turn may require further de-
composition, depending on the middleware in question. For example, session-

management may involve simply sending data, or sending data and waiting for a

34

PCT/AU2007/000859

10

20

25

30

35

WO 2007/147207

response. The exact nature of the interaction depends on several factors: the target
middleware, the session type (one-way or two-way) and the invoking application

(interface) requirements.

As discussed, the Modnle Definition Repository holds the definition of the interface. This
is necessary because there Vis likely to be an impedance mismatch between the two
middleware interfaces, such as for example, with CORBA, which is object-based, as
opposed to MQ that is message-based. The interface definition may need to be altered to
reflect this. If MathServer is MQ-based, whereas its clients are CORBA-based, method
calls in CORBA must be properly mapped to MQ messages to ensure that the correct
operation is performed by the receiving end. ‘

The MathServer IDL defines four methods: add, sub, mul and div. To specify the
operation to MQ, we encode the parameters using information from the MDR. If the
information were sent as is (i.e. with only math_req encoded), the MQ server would not
know which operation to perform. Therefore, the IDL needs to be modified to reflect
what MQ requires as established by the MQ server team. For example, let us assume that
the MQ team established the following COBOL definition for the MathServer

interface.
01 MATH REQ.
03 ‘OP_CODE PIC X VALUE SPACES,
88 ADD_OP VALUE ‘A'.
88 3UB_ QP VALUE ‘S'.
88 MUL_OP VALUE ‘M.
88 DIV OP VALUE ‘D’
03 NumMl . PIC 9(4) VALUE O.
03 NUM2 PIC 9(4) VALUE 0, .

01 MATH_RESP.
03 RESP_NUM PIC 9(4) VALUE 0.

We assume for the remainder of the discussion that the server has been changed from
CORBA to MQ-based and that the clients remain CORBA-based.

The data structures math_req and math_resp arc almost the same, except for the op_code
in the request structure. The client development team creates the IDL shown below.

335

PCT/AU2007/000859

10

15

20

25

30

35

WO 2007/147207 PCT/AU2007/000859

interface MathServer
{
struct math_reqg
{
char op_code;
int numl;

int num2;

struct math_resp

{
int resp num;

// methods for each operation

struct resp_num add(in struct math_req);
struct resp num sub{in struct math_req):
struct resp num mul{in struct math req):
struct resp pum div{in struct math reg):
¥:

It is worth noting that:

. The interface remains largely un-altered

¢ The request and response paramctcrs‘havc not changed

. None of the object-oriented properties of the client interface has been violated
. Simply the op_code member has been added to the request structure.

We may now use this interface with object-based and non-object based systems.

If the IDL were left in its original state, the CORBA call obj->add(10, 9) would be
encoded by TUBE into an MQ message as method-name serialised-parameters, for
example:
add 10 9// spaces between values are for readability only

This is the default behaviour based on the IDL definition. The onus is on the systems
integrator (the client development team in this case) to ensure that the definitions match.
Conversely, if the call was being marshalled from an MQ message to a CORBA call and
the TDL were in its original state, TUBE would not be able to determine which method to

call. This is because TUBE only receives a sequence of bytes representing the

36

10

15

20

25

30

35

WO 2007/147207

math req stmctui"e, and therefore there is no way that the operation can be determined
from the original math _req structure. The necessary information is just not there. Using
the new IDL, a mapping is defined that instructs TURE to use the op_code member of
the request structure to determine the method to call on the CORBA object. There is still,
however, a missing a link between the op_code value and the actual me thod~name.

Therefore, a mapping definition such as the following is defined:

<FieldMap action="operation">

<Field name="math reqg.op_code" offzet="0" type="byte"
len="1"> '
<XForm Map="R,add M,mul D,div $§,sub” />

</Field>

</FieldMap>

The XML (fragment above shows that to derive a method-name, we use either;

) A byte from offset zero (0) in the in-bound buffer, and then map it according 1o the rules defined
by the XML tag XForm. This is used when only a buffer of bytes is available, such in an MQ or IMS
BytesMessage,

. “The op_code member of the marh_req structure, This is used where the structure of the buffer
(2 SOAP mossage for example) is known, and then map it according to the rules defined by the XML
tag XForm. This shows, for example, that an ‘A’ is mapped to “add”.

The following example shows a complete translation from an in-bound M client request to a CORBA-

based object request to illustrate the mapping process. We use the add ot;eration with the decimal numbers

1000 and 15 respectively.

M Q Message Buffer (Hexadecimal, little-endian) as extracted by MO PIM

00000 —- 41 —~-——-m———— ASCII character ‘Af
00001 —-- e8 03 00 Q0 -——- Decimal number 1000
00005 -~ 0Of 00 00 Q0 -——- Decimal number 15

Using the rules defired in the XML shown above we derive the method name add from the byte at offset
zero in this buffer. We now show how the CORBA PIM marshals these values inio the CORBA GIOP
request buffer. (The PIM actually receives an intermediate representation of the buffer, which is not shown
here for brevity.)

GIOP Header
00000 -- 47 49 4f 50 —— GIOP
00004 -—— 01 Q1 ———=——— IIOP version = 1.1
00006 == 0l =~rrewmco—— Byte Order = Little-~Endian
00007 ~= 00 —~=—w=————— Message Type = Request

00008 -- 3c 00 00 00 -- Message Length = 60 bytes ({octets)

37

PCT/AU2007/000859

10

15

20

25

30

35

WO 2007/147207

Request Header
00012 -- 00 00 00 00 =~ NULL (zero-length) Service Context List

00016 -- 01 00 00 00 -- Request-id = 1

00020 == 01 -—————-———— Response Expected = true // two-way call
00021 ~= Q0 00 00 ----- 3 Reserved octets
QObject Key
00024 —— 13 00 00 00 -- Length of Object Key (octet sequence) = 19
octets
00028 -- 2f 31 35 3332 2f 31 30 34 35 32 37 31 32 Bé 39 2f 5f£ 30
00 /1532/1045271289/ 0.

Operation and parameters
00048 —- 04 00 00 00 =-- Length of Method Name = 4
00052 -~ 61 64 64 00 -- NULL terminated string = “add”
00056 == 00 00 00 00 —-- NULL {zero-length) Requesting Principal
00060 == 41 —-————=————- op_code = ‘A" -
00061 —— 00 00 00 ====~ CDR padding for alignment of 4
byte boundary for long value.
00064 - €8 03 00 00 —-- Degimal number 1000
00068 -- Of 00 00 00 —- Decimal number 15

The following excerpt from the EPRT (End-Point Resolution Table) for the
MathServer interface shows the specification for the remote object key at offset 28 in

the example above.

<interface Name="MathServer™ Mode="Synch® >
<CORBA ObjectKey="/1532/1045271289/_0" Host~"182.168_1.3" Port="1578" endian="1"/>
</Interface>

The CORBA TIM uses the Hosr and Port values to establish communication with the remote ORB, and the -
CORBA PIM uses the ObjectKey value to ensure that the correct object Is Invoked at the end-point.

Once the IDL definition is complete, the IDL is submitted to the TUBE JDL compiler,
which populates the Module Definition Repository with the interface information, This
information is protocol-independent. That is, the same MDR definition is used to marshal
CORBA, MQ or any other supported middleware protocol. The protocol marshalling rules
are already contained in the relevant PIMs and the transport (coﬁmunication—level)
interactions are defined in TIMs. ‘

We will now present a detailed example of the items discussed and as shown in Figure 20.
A PDL definition of CORBA using IIOP V1.0 is shown. The PDL script and each
construct and data member are shown and how the PDL compiler processes them. We

will use symbolic names to ?epresent op-code and offset values. The actual numeric

38

PCT/AU2007/000859

10

WO 2007/147207 PCT/AU2007/000859

values are not relevant to our discussion and we feel that symbolic names are easier to
understand,

It should be undersiood that the above description is of a preferred embodiment and
included as jllustration only. It is not limiting of the invention. Clearly variations of the
middleware broker and method of intercommunication would be understood by a person
skilled in the art without any inventiveness and such variations are included within the
scope of this invention.

39

10

15

20

25

30

35

WO 2007/147207

cLAIMS

L. A protocol-level middleware inter-operability system which
supporté a wide range of communication protocols, including legacy systems,
the middleware inter-operability system having

a, an input for receiving communication messége in a
communication protocol; ’

b. a repository in which general rules and middleware
characteristics are specified, to provide the conneetion and transformation for
middleware protocols, as well as for legacy systems to allow exchange of said
communication message whereby it is not necessary to have a converter at
either end of the communication and whereby it is not necessary for there to
be two way communication in order to ensure the receiver knows what format
is arriving;

c. a broker which is able to review all data structures, regardless
of complexity, as being comprised of a finite set of primitive data types (e.g.
integer, float ete.) and with reference to the repository determine a mechanism
for reading and writing these types to enable processing of structures of
arbitrary complexity, wherein the rules and mechanisms for reading these
basic types are defined by the protocol and once the rules are captured allow
processing and exchange of any communication message over this protocol;

d. a dynamic matshaller for the conversion based on the rules
determined by the broker due to the relevant structure format correlations to
allow ready flow of data from one input protocol to be readable by output
protocol; and '

&, an output in a lénguage neutral machine independent definition
language specifying the structure of communication messages and the
parameter templates to establish a connection and to exchange the
communication messages;

wherein the system provides the interface definitions of the selected
communication protocol and allows the communication messages to be sent
and understood at the receiver and further allows new protocol support to be
added without impact on existing systems and without re-compilation of

application software.

40

PCT/AU2007/000859

10

15

20

25

30

WO 2007/147207

2. The system of claim 1 wherein a middleware definition too} for
this purpose consists of a number of modules, each dedicated to a specific task
related to the definition of mechanism for reading and writing data typés.

3. The system of claim 1 or 2 wherein the broker uses a modified
IDL style language (Protocol Definition Language or PDL) to define
protocols, the PDL deﬁnition'being compiled into a set of binary op-codes
known as a Protocol Implementation Module (PIM), the op-codes in the PIM
containing instructions for traversing the interface definitions stored in the
repository with the definitions obtained by parsing the IDL description for the
interface and including a Dynamic Adaptive Marshaller (DAM) which is a
virtual machine, which loads and executes the op-codes in the PIM at run-

time.

4. A method of intercommunication across communication
protocols including the steps of:

a. defining the structure of one or more protocols used in
commmmication using a Protocol Definition Lavnguage, compiling this
structure into a byte-code structure and storing said result structurc in a
library;

b. at run time analysing an input communication and determining an
appropriate input structure of protocol of the input communication from the
library and analysing the path of the intended output communication and
determining an appropriate output structure of protocol of the output
cornmunication from the library;

. providing a dynamic marshaller for processing of the byte-code
giructure at run time and sending the information in accordance with the
identified output structure from the corresponding relevant sections of the
identified input structure;

d. wherein the method allows ready communication between vatious

communication protocols and middleware systems.

41

PCT/AU2007/000859

10

15

20

25

30

35

WO 2007/147207

5. A method of intercommunication according to claim 4
including

a. providing ability to define new encoders and decoders using said
Protocol Definition Language or to specify external pre-existing encoders and
decoders using said Protocol Definition Language; and

b. providing ability to define new transport mechanisms or specify
external pre-existing transport mechanisms using said Protocol Definition
Langnage.

6. A method of intercommunication according to claim 4 or 5
including the library having a predefined conversion of the structure of one or

mote protocols to the structure of another of the one or more protocols.

7. A method of intercommunication according to ¢laim 4. 5 or 6
wherein the dynamic marshaller provides buffering and/or addressing as

required.

8. A method of intercommunication dccording to any one of
claims 4 to 7 also QprovidingAfor the dynamic marshaller to include definable
predefined processing steps of corresponding relative sections of the identified
output structure to the identified input structure.

9. A method of intercommunication according to claim 8 wherein
the dynamic marshaller is able to review all data structures, regardless of
complexity, as being comprised of a finite set of primitive data types (e.g.
integer, float etc.) and with reference to the repository determine a mechanism
for reading and writing these types to enable processing of structures of
arbitrary complexity, wherein the rules and mechanisms for reading these
basic types are defined by the protocol and once the rules are captured allow

processing of any message over this protocol.

10. A method of intercommunication according to any one of
claims 8 or 9 wherein the predefined processing steps are protocol neutral

such that an end user output defincs the processing steps in a generic manner

-and the dynamic marshaller undertakes the required manipulation of the data

42

PCT/AU2007/000859

10

15

20,

25

30

35

WO 2007/147207

in any communication based on the predefined processing step of the relevant
section of the communication protocol structure so as to provide a required

effect regardiess of the protocols of communication.

11. A method of intercommunication according to any one of
claims 4 to 10 wherein the language neutral machine independent definition is
compiled into binary modules known as protocol implementation modules
(PIMs) and transport interface modules (TIMs) which contain the
communication parameters, and wherein the PIMs and TIMs are loaded at
runtime and executed by interpreters (virtual machines) with the PIMs
processed by the dynamic adaptive marshaller (DAM) and the ‘TIMs handled
by the transport mediation server (TMS) and both of these modules are
controlled by the message distribution server (MDS) which is also responsible
for any interface mapping that is required and uses either the processed
request or response message and a mapping definition with the actual
mappiﬁg being performed by a mapper module under the direction and control
of the MDS.

12. A method of intercommunication of middleware including the
steps of:

a. providing a table of initial definition of structure characteristics,
including format and parameter data types, of one or more protocols;

b, converting said one or more structure protacol definitions into a
selected format;

¢. storing said one or more structure prbtocol definitions in said
selected format in one or more repositories;

d. at run time assessing the incoming message and selecting an
appropriate struetute protocol definition to be used from the table and using
the selected format of the converted structure protocol definition to
communicate;

wherein before the time of the message, a structure of the protocol has
been defined and the data and information in the form of the protocol structure
can be readily communicated in a protocol structure format that would be

understood by the receiver.

43

PCT/AU2007/000859

10

15

20

25

30

335

WO 2007/147207

13. The method of intercommunication of middleware of claim 12
wherein before the time of the message, a structure of the protocol has been
defined and the data and information in the form of the protocol structure can
be readily communicated in a protocol structure format that would be

understood by the receiver,

14. The method of intercommunication of middleware of claim 12
or 13 wherein the data structures are reviewed, regardless of complexity, and
assessed as comprised of a finite set of primitive data types (e.g. integer, float
etc.) and a mechanism determined for reading and writing these types, to
process structures of arbitrary complexity, with the rules and mechanisms for
reading these basic types defined by the protocol and wherein after capturing
the rules any message can be processed over this protocol by defining the

structure of a request and response message on said communication protocol.

15, The method of intercommunication of middleware of claim 12
13, or 14 including a user or third-parties to create new further protocols and
inserting directly into the conversion environment whercin a broker PIM on
one side can act as the client and another PIM can act as a server on the ta}gct
side enabling use of the protocol without any coding wherein a message in
one communication protocol can be intercepled, the message converted to the
new protocol and sent across to the receiving node where it can be can

converted back to original protocol and pass to the original server.

16. A method of flow of an outbound communication to another
module with interface including the steps of'

i. assessing the application of the outbound communication to
determine and select a protocol to try from a table of protocols in a priority
arrangement;

ii. using the selected protocol to determine the format and arguinents
for the outbound communication; . '

il using the protocol definitions stored to prepare the outbound
cormmmunication for the particular middleware or application service;

iv. providing required buffer;

v. determining which protocol to use for transmission;

44

PCT/AU2007/000859

10

15

20

25

30

335

WO 2007/147207

vi. looking up table of end-point rtesolutions' to determine the
communication parameters required to communicate with the selected
transmission protocol;

vii. altempting to communicate with the designated host using the
appropriate communication parameters; and

vili. 'if communication with the selected protocol fails selecting the next
protocod to try from the table of protocols in the priority arrangemen;c.

17. A method of flow of an outbound communication to another
module with interface according to claim 16 using a broker which is able to
review all data structures, regatdiess of complexity, as being comprised of a
finite set of primitive data types (e.g. integer, float etc.) and with reference to
the repository determine a mechanism for reading and writing these types to
enable processing of structures of arbitrary complexity, wherein the rules and
mechanisms for reading these basic types are defined by the protocol and
once the rules are captured allow prdcessing of any message over this

protocol

18. A method of flow of an inbound communication from another
module with interface in¢luding the steps oft
i receiving inbound message in the protocol that it was sent;

ii. looking up table to determine whether the message needs
marshalling into another protocol before passing the inbound communication
to the target application on the local system;

iti. if message needs marshalling into another protocol, determining the
preferred protocol from a table according to priority;

iv. determining the format and arpuments for the _inbound
communication;

V. using stored protocol definitions for the selected protocol to prepare
the inbound communication for the target middleware or application service;

vi. buffering the inbound communication as required;
vii, determining protocol to use for fransmissiorn.
viil. determining local end point of the target application on the local
system; and
ix. at run time passing the inbound communication to the target

45

~ PCT/AU2007/000859

10

15

20

25

30

WO 2007/147207

application on the local system.

19. A method of flow of an inbound communication from another
module with interface according to claim 18 using a broker which is able to
review all data structures, regardless of complexity, as being comprised of a
finite set of primitive data fypes (e.g. integer, float ete.) and with reference to
the repository determine a mechanism for reading and writing these types to

. enable processing of structures of arbitrary complexity, wherein the rules and

mechanisms for reading these basic types are defined by the protocol and once

the rules are captured allow processing of any message over this protocol

20. A method of flow of an inbound communication from another
module with interface according to claim 18 or 19 in which rules and
middleware characteristics are specified in a repository, for the system broker
10 provide the connection and transformation for the middleware protocols, as
well as for legacy systems and wherein it is not necessary to have a converter
at either end of the communication and farther it is not necessary for there to
be two way communication in order to ensure the receiver knows what format
is arriving, instead the conversion due to the relevant structure format
correlations allows ready flow of data from one input protocol to form

readable by output protocol.

21, A programmable semiconductor device programmed to perform
the steps of the method as defined in any one of claims 4 to 17,

22. A method of intercommunication substantially as hereinbefore
described with reference to the drawings.

46

PCT/AU2007/000859

PCT/AU2007/000859

WO 2007/147207

Sronzoday
aopPIuYI Y
Smpoy

£ioysoday
UINIBYI(
1220304

Suisseoosd owm-PING TELLL T SBLT

£l

WO 2007/147207 PCT/AU2007/000859

2/23

Figure 2 TUBE Component Architecture

WO 2007/147207 PCT/AU2007/000859

3/23

Figure 3 TUBE Out-bound message scenario

WO 2007/147207 PCT/AU2007/000859

4/23

Figure 4 TUBE in-bound message scenario

WO 2007/147207

523

interface mathServer

()
// request structure
struct math_req
{

char op;
int numl;
int num2;
I

// response structure
struct math_resp
{

int ret_num;

b

// define the exception
exception mathException

{
¥

string error_text,

// methods (services, functions, operations)
struct math_resp add(in math_req mr) raises (mathException);
struct math_resp div(in math_req mr) raises (mathException);

// Remainder omitted for brevity

|5

Figure 5: Fragment of mathServer IDL

PCT/AU2007/000859

WO 2007/147207

6/23

Header

Payload
(math_req structure} J

Traller

Figure 6: Structure of request message (highlighting payload)

Hesdar

Peyload
(math_resp structure) —'

1000
15

1015

Trailer

PCT/AU2007/000859

Figure 7: Structure of a successful response message (highlighting payload)

Header

Fayload
(mathExeoption
s{cuclure)

L

“Cannol divide by zero~

Trailar

Figure 8:Structure of an unsuccessful response message with an exception as payload

WO 2007/147207 PCT/AU2007/000859

7/23

PIM Header
Marshalling Map

Prg—Marshal Map
Post-Marshal Map

Figure 9: Structure of a PIM

Field Description
File-identifier This identifies this file as a valid PIM
Marshalling class-name The name of a class specified in an
external clause. Thig can be empty.
Constant-Segment (CS) Contains all constant values.
Variable-Definition Segment (VDS) Contains information about all variables
defined in PD,

Figure 10: Structure of a PIM Header

J { -Slgte Biock J———

Marshalling Map

1 Conglant Swgment Entry

L Varidile Definition Segment Entry }

Figure 11 : Stracture of a Marshalling Map

PCT/AU2007/000859

2 in tho Vaoriabln Value

“Variable valua e at otiset

Yabl. Same ofizet 25 n

Variania Dafinton
Segment.

Varzably game is af offael
% in tha Ganstant
BRgmant

WO 2007/147207
OP_CODE TARGET _VAR_CFF
OF_READ_OCTETS (a)
Tagot variabie is ot offsol
B 2 I e Varabike Demndion
Pastial Code (lnstruction) Segmant.
Block
Gttaad Flag Osia Type Nema Crisat var-id
0 USER_DEF STRING 4 -1
i SYS_DEF INTEGER -1 NUM_BYTES
'\
(o2 USER_DEF OCTET 5 -1
< e
A Partial Vorlabia
Varebk neme i o offsat
5 the Conalant QefinRion Iegment
Segment,
Offsat Bata Type Valus Length Value
[INTEGER 4 4
4 STRING 4 “hoet”
<- s\ OCTET ["obpaKsy
Partial Canatant
Eegment
onst Fiag - DeETYe Namy Oriset Vo
0 USER_DEF ITRING 4 "Begnost
1 SYS_DEF INTEGER B 128
'p"
¥ ~_\\ 2 LISER_DEF OCTET ["30BJECT:myObMRE"
I Partial Varisbla Valus
Tabk (runtime enly)

Figure 12: Mapping op-code target to variable value

WO 2007/147207 PCT/AU2007/000859

9/23
declare byteSequence
int Y%num_bytes%; // mo of bytes in olist
olist bytes;
K
Figure 13: declaration of a byteSequence
declare artay
int Yearray size%; - /f no of items in sequence, arrays don't have this encoded
// although, we can calculate it at runtime
olist bytes; /1 actual sequence of Ttems {can be simple or complex)
b
Figure 14: declaration for an array
declare nSiring
int %enum_bytes% + 1; /! length of string_bytes (incl. null)
olist string_bytes; /f the actual bytes of the string
init octet null_byte = 0; // the terminating nufl
h
/
Figure 15: declaration of a nuil terminated string
declare objectDef
{
nString repo_id; /] repository-id of object
int profile_count; // number of profiles in reference
int profile_id; /1 id of profile
int length; ‘ /! length of following stream
short version, /1 TIOP version for this profile
nString host; /{ Host for this object
short port; /f Port for this object
byteSequence objecl_key; // Object key — includes length and byte(]
B
Figure 16: declaration of an object reference
control

switch(Yereply_status%)
{

case 0:

WO 2007/147207

10/23

buffer = body; /! follow MDR
case 1:

buffer = USER_EXCEPTION; // follow Exception in MDR
case 2:

buffer = systemException; /! use declared struchure
case 3.

buffer = objectDef; /f use declared structure

h

Figure 17: The control clause

// Response message , |
siruct GIOPRespMessage

{
GIOPHdr hdr;
int Sebuffer length%; /{ the length of the following buffer (body}
GIOPRespBody body;)
N

Figure 18: Response message declaration showing buffer length variable

PCT/AU2007/000859

(]2 M GAM THE
3

request
2
marshairequest

marshalied request

Fond roquey!

Reoelve rasponse

un-marshal respanse

s]

un-marshafiod rovponee

Mako Joci3n nasvdren roply_slatus

] !]
i response '

Figure 19: The process of invoking DAM frem a PCM

WO 2007/147207 PCT/AU2007/000859

11/23

JEREAE R R R R R R SRR R R R R R AR PR S RO TR AR E R R R R R R R R R R E LR REEES
/! Ttems surrownded in % symbols are :

i interntal TUBE variables (eg. buffer length - %buffer_length?s)
// Tterns swirounded in § symbols are : ‘
/W user-defined variables (eg. ObjectKey —> $ObjectKey$)
"o
Y The user-defined variables are expected to be found in either;
i - The End Point Resolution Table (EPRT)
/s - The XFORM wap for protocel mapping rules (different to
i marshalling rules)
i

/! The generated PIM will Took in both of these repositories and generaie a
// runtime error if the name is not found.
/I

i R Eh o AR AR A KR R R K AR oK A AR R KA o AR AR o o R oK ok A A K

protocol CORBA

{
typedef sequence<octet, 3> reserved;
typedef sequence<octet> olist;
typedef sequence<octet, 4> GIOP_MAGIC;
i
// This is an arbifrary sequence of bytes
{/ This iz referenced in the bufferFormat
// statement below.
I
declare byteSequence

{

int Y%num_bytes%; /7 no of bytes in olist
. olist bytes;

b

14
/] An id] sequence<,,., size>
/{ This is a bounded (fixed-size) sequence
// The only difference between an array and a sequence
/f ig that arrays don't have a length encoded because
// theit size iy fixed!
// This is referenced in the bufferFormat
// statement below.,
i

declare array

{

int Yearray_size%,; J/ mo of items in sequence, arrays don't have this encoded

‘ J/ although, we can calculate it at runtime
olist bytes; 17 actual sequence of items (can be simple or complex)

b

"

/! An idl sequence<., >

// This is an un-bounded sequence (see array above for a bounded sequence)
J/ This iz referenced in the bufferFormat

// statement below.

i

WO 2007/147207 PCT/AU2007/000859

12/23

declare sequence

nt Y%sequence_size%; // no of items to read/write
olist bytes: /f the {tems as defined in IDL

H

i

/ CORBA uses a hybrid (between C & Paseal) String structure

/ The length precedes the bytes (as in Pascal) and the String is zero (null) terminated (as in C)
// Therefore the number of byies to write and read is always one more than the actual siting

length,
7 ’
// define an nString — a null terminated string
7
declare nString
{
. int %num_bytes% + 1; /! length of string_bytes (incl. null)
olist string_bytes; // the actual bytes of the string
init octet null_byre = 0: /f the terminating null
B
N
!/ declare a CORBA Object Reference
// .
declare objectDef ’
{
nString repo_id; // repository-id of object
int profile_count; {/ number of profiles in reference
int profile_id; // id of profile
int length; /1 Tength of following stream
short version; . /1 HOP version for this profile
nString host; ‘ {/ Bost for this object
short port; /f Port for this object
byteSequence object key; /f Object key — includes length and byte{]
f
// define how to handle a (CORBA) System Exception (ref. CORBA spec.)
i
declare systemException
{
nString exc_repoid, /f repository-id of Exception.
int minor_code; /! minor-code
int completion_status; {1 completion-status
5
/"

// This is how to treat a buffer - payload

// This item is referenced uvsing the keyword "buffer”
// in any subsequent declarations below

{/ This declaration statement can anly appear once!{l!
i

bufferFormat

{
STRING = nSiring; // marshall a string
BYTESEQ — byteSequence; / marshall a buffer of bytes

WO 2007/147207 PCT/AU2007/000859

13723
ARRAY = array; // marshall a sequence<..., size>>
OBJECT=objectDef; /] an Object definition

// all other ftems are assumed to be native or constructed
// from those above ‘
SEQUENCE=sequence; // marshall an un-bounded sequence (sequence<...>)
5

/i :

" /1 The follawing control clause uses the reply_status metber of the request body
/1o perform some decision-making. The payload in the response message may be
/1 either of four (4) different types depending on the value of reply_status.

" 0 - normal payload as per MDR definition of operation

/i 1 - a USER defined EXCEPTION as defined in the MDR entry
i 2 -a SYSTEM EXCEPTION of a fixed format

" 3 - an OBJECT_REPERENCE as encoded for a

/) LOCATION_FORWARD response (see CORBA spec.)

o

‘control

switch(%ereply_statis%)

case O:
buffer = body; /7 fallow MDR
case I: |
buffer = USER. EXCEPTION; /1 follow Exception in MDR
case 2; .
buffer = systemException; 1 use declared structure
case 3:
buffer = objectDef; /{ use declared structure
}
¥
i

!/ The “external” clause defines our own CDR marshalling class.
// This class implements interface TUBE.commsBuffer and supplies methods to marshall
// native data types using CDR encoding (refer to CORBA spec).
#/ When we have to marshall an int. The DAM will call read_int or write_int on this
/7 clasg
N
external
{
class = *MYORB.marshaller CDRBuffer”; /f the fll classname

b

/! Define a Request
Request

GIOPReqMessage message;
IH

// Request message
struct GIOPReqMessage
{
GIOPHdr hdr;
int %buffer_length%s; // the length of the following buffer (body)
GIOPRcqBody body;’

WO 2007/147207 PCT/AU2007/000859

14/23
HH
/{ Common GIQP header
struct GIOPHdr
{
init GTOP_MAGIC GIOPId = "GIOP"; /0'G'["O"P" - first 4 bytes
init octet majver = 1; . }{ major version, default 1
init octet minver = 0 // minor version, default ¢
init octet flags = %endian¥s, // the endian-ness of the host

init octet msg_type = %bisResponse¥s; // built-in flag determines message type

)

"t

// This is how a gervice context is encoded
/!

declare ServiceContext

int context_id;
byteSequence contaxtData;

4

// This is a list (sequence) of service contexts — will generate a loop wrapper
{/ around the declared code-block
typedef sequence<ServiceContext> contextList

/{ Request body
struct GIOPReqBady
{ :
contextList clist; /f sequence of ServiceContexts

int Yerequest_id%:; /1 request-id

octet Yoexpect_respio; /! do we expect a response

reserved res; /! 3 reserved bytes

byteSequence $objectieys; - /{ another byte sequence

nString %operation%; // declared type (NULL terminated string)
byteSequence req_principal; // another byte sequence

buifer params; {/ a buffer, which can contain various

{/ parameters (native/constructed) follows MDR, format
/{ uses bufferFormat clause above

I
/! Define a Response
Response

G1OPRespMessage response;
b ,
// Response message
struct GIQPRespMessage

{

GIQPHAe hdr;

int Ybuffer length%; / the length of the following buffer (body)
GIOPRespBody body;

|

/f Response body

WO 2007/147207 PCT/AU2007/000859

15/23
stuct GIOPRespBody
contextList clist; ! a byte sequence of the form <length><bytes,..>
kt Yorequest_id%; 1/ request-id ,
int Yareply _status%; /1 a reply code, identifies the response format
buffer response; /1 a buffer, which can contain various
/7 parameters (pative/constructed) follows MDR. format
// uses bufferFormat clause above
b
1

!/ These are values that are encoded into the EPRT
'/ The generated TIM wilf look for these items in the EPRT entry

H

endPoint : "TCP" / The transport (eg. TCP, HTTP, JMS etc)
{

i

#/ Thesg are transport and protocol-specific items

i

"host™; // This is the host for the object
"port”; /I This s the port on the host

b

b

Figure 20 a PDL definition of CORBA using IIOP V1.0. First, we will show the PDL
- script and then examine in detail, each construct and data member and show how the
PDL compiler processes them.

PCT/AU2007/000859

WO 2007/147207
16/23
Type Name Description
Integer Type Type of this vatiable, ‘
Integer Use Usage of this variable. Add or subtract from
. another value or use value ag-is.
Integer value_offset Offset to constant value of this variable in CS.
Table 1: State Parameter entry
 Type Name | Description I o
Integer op_code Specifies the action to perform.
Integer farget var Target variable indicates the variable to use as
the source or target for this operation.
State param state param A state parameter entry for this op-code..
Integer handler offset Qffset to “declared” type handler map.
Integer handier natne Offset of handler name in CS
Table 2: Structure of a (Code) State-Bloek
Type Name Description
Integer Type Type of constant.
Integer length Length of constant value.
Byte[l Name Name of constant,
Byte[] Value Constant value.
Table 3: Format of Counstant Segment Entry
Type Name Description
Integer Flag Flag to indicate if this is a system or user-
A I definied variable.
Integer Type Type of this variable,
Integer name offset QOffset to name of this variable in CS,
Integer var_id Symbelic identifier for this variable. This is —1
for a user-defined variable,
Table 4; Format of Variable-Definition Segment Entry
‘Type [Name Desc}iption
Integer flag Flag to indicate if this is a system or user-
defined variable,
Integer type Type of this variable.
Integer | name_offset _| Offset to name of this variable in CS.
Object var_value The current value of this variable. This may be
. initially empty until we read the value,

Table 5: In-memory

layout of Variable Value Table

WO 2007/147207 PCT/AU2007/000859

17/23
 Keyword Description i
Protocol Signifies the beginning of a PDL script. This replaces the module
o or interface keywords found in IDL.
| Request | Defines the structure of a request message. _
] Response . Deﬁnes the structure of a response message '
Yovar¥e Represents an internal TUBE variable. There are several of these

explained in Table 7below. An example is Yooperation%, which
represents the operation or method to invoke on an object-based
interface. It may be empty; its value depends on the protocol. |

init Defines a variable of the specified type with an initial value. Refer
to the Variable-Definition Segment discussion below <sec, ref.>.
As an example, we want to define an integer variable mynum and
initialise it to the value one (1); we would write

“init int mynum=1;".

control Specifies a field in the message to use as a switch (decision
making) value. This allows us to handle different types of payload
depending on the value of this field. For instance, we may receive
an exception rather than the expected return value. The CORBA
example below demonstrates this usage,

buffer Signals the start of the payload (as defined in the interface) within
the message. The compound (complex) types defined by “declare™
stateruents can be marshalled and un-marshalled from this
position in the message. The processmg follows the MDR
definition. The only exception to this is if some condition
specified in a “control” clause has been met, and this specified the
o execution of another code-block.
$vars Specifies a user-defined variable. We retrieve the values for these
variables at marshal time from the EPRT <sec. refi>, During un-
marshalling we read them from the input stream. In either case,
the value is stored in the Variable-Definition Segment entry. An
example of a user-defined variable is a CORBA object-key, we
define it as follows: “byteSequence $objectKey$”. This means
when we reach this point in the message, read a byteSequence
structure and assign its value to the variable “objectKey”.

struct This is not sirictly an extension to the syntax, rather a usage of the
keyword struct. We use this to define individual parts of the
message, such as beader, body or trailer. Each struct declaration
causes the generation of a CODE_BLOCK (see Error! Reference
source not found.). This allows different parts of the message to
be handled out-of sequence, Where it may be necessary to re-
marshal only some values. We explain this fully in the DAM

| CORBA example.

declare Define marshalling rules for a particular compound (complex)

type.

WO 2007/147207 PCT/AU2007/000859

18/23

Keyword
bufferFormat

Description
Defines how to cncodc/dccode declared types encouniered in the
payload (refer to Error! Reference source not found.).

endPoint
external

Defines the communications cnd-pomt in protocol-specific terms.

Defines an external class that will provide marshalling functions
for this protocol and communication management functions. If

-there are no external clagses defined, TUBE will use its own to

carry out these operations. The specified classes must implement
specific TUBE defined interfaces. These classes may be used as
wrappers around vendor-specific or home-grown APIs.

sequence

This is not an extension. It causes the generation of a looping
wrapper around the CODE_BLOCK, which marshals the defined
type. This is closely associated to the %count% (internal) variable,
which holds the value of the loop count. TUBE must know from
this definition, at what point and from where in the message, to
read this value. In the case of marshalling, TUBE will write this
value into this point in the message. The encoding of the specified

sequence then follows.

[Variable

s g 4 e

Table §; Extensions to QMG IDL

Description

Marsha]lmg

andian

Defines the endian
representation of the
target host.

Value obtained

from EPRT eniry.

buffer_length

requesf_id

Specifies the overall

1 lengih of the payload. |

Ensures processing in
COITECt sequence.

Encoded after

payload.

“Un-marshalling
Value stored for
reference only.

Read before
payload.

Read from entry
and encoded.

Stored in entry.

isResponse

operation

Determines if this is a

| TESPONSE MESSAZC.

Read from entry
and encoded.

Stored in entry.

Specifies the method
to invoke. Only

‘| applies to protocols
that support methods’.

Read from entry
and encoded or
obtainied from an
XFORM map.

Stored in entry.

Marshalling

expect resp

Specifies if this is a

two-way invocation.

Read from entry

and encoded.

Un«marshalling
Stored in entry.

WO 2007/147207 PCT/AU2007/000859
19/23
Variable Description L
num_bytes The number of bytes | Read from entry | Stored in entry and
in the next set of and used to write | used to read next
bytes. next block of block of bytes.
I | bytes.
reply_status The status of the Read from entry | Stored in entry.
communication and encoded. The
session. Only applies | value is protocol-
- to responses. | specific.
target_tlv Read/Write the value | Read from TLV | Stored in TLV
from a TLV entry. We | entry and entry.
use the TLV primarily | encoded.
for payload
_processing. o ‘ o
count Internally created | Written at the Read from stream
when we encounter start of a loop at expected start of
“sequence” in PDL, | wrapper. _laloop.
array_size Internally created Value obtained Value obtained
when an item is from MDR entry. | from MDR entry.
defined as an ARRAY
sequence_size | The size (in elements) | Read from entry | Written from entry.
of the sequence to and encoded.
read/write
Table 7: TUBE internal variables
OP-Code Source / Target variable | Comment
| READ INT o Read an integer from input
PUSH _| Put on top of value stack
POP Get value on top of value
stack N
ASSIGN_TO NUM_BYTES Asgign value to internal
o NUM BYTES o
GET_FROM NUM _BYTES Retrieve NUM._BYTES

READ OCTETARRAY

Read NUM BYTESNOCtQt'SW

PUSH

END_BLOCK

Put octet array on top of
value stack. Caller will POP
and retrieve value.

| End of this code-block

Table 8: op-codes generated for reading a byteSequence

WO 2007/147207 PCT/AU2007/000859

20/23
OP-Code Sounrce / Target variable Commeut]
READ INT Read an integer from input -/ -
SUB Subtract a value from the We have an offset to the
offset into the C8 from the | value “1” in the CS.
value just read
PUSH Put on top of value stack We now have value - 1
USER_DEFINED —T"A declared code block
POP Get valuc on top of valuc o
| StACK ‘ T
ASSIGN_TO NUM_BYTES Assign value to
NUM_BYTES
GET FROM NUM BYTES Retrieve NUM. BYTES
READ OCTETARRAY i Read NUM_BYTES octets
PUSH Put octet array on top of
\ : value stack. Caller will POP
’ and retrieve value,
READ _OCTET Read null byte
END_BLOCK End of this code-block

Table 9; op-codes for reading & null terminated string

OP-Code Source / Target variable | Comment
USER DEFINED A declared code-block
LOAD_BLOCK repo_id Load and exe¢cute the block

named “nString READ” and
place the value in the variable

repo_id”
READ_INT profile_count Read an integer and assign it
to the variable “profile_count™
READ INT profile_id - Read an integer and assign it
. o to the variable “profile_id”
READ_INT length Read an integer and assign it
. o to the variable “length”
READ SHORT version Read a short and assign it to
o o the variable “version”
LOAD_BLOCK host Load and execute the block

named “nString READ” and
place the value in the variable
“host”

READ_SHORT port Read a short and assign it to
the variable “port”

WO 2007/147207 PCT/AU2007/000859
21/23
OP-Code Source / Target variable | Comment
LOAD BLOCK object_key Load and execute the block |
' named
“byteSequence READ” and
place the value in the variable
» R “object_key”
END_BLOCK N End of this code-block
Table 10: op-codes for reading an object reference
OP-Code Source / Target variable | Comment
TEST EQ REPLY STATUS Test if reply_status ==0
JUMP LABEL 0 The test returns true. Jump to
, the given label.
TEST EQ REPLY STATUS Test if reply status == 1
JUMP LABEL 1 The test returns true, Jump to
the given label.
TEST_EQ REPLY_STATUS Test if reply_status ==2 .
JUMP LABEL 2 The test returns true. Jump to
the given label.
TEST_EQ REPLY_STATUS Test if reply _status — 3
JUMP LABEL 3 The test returns true. Jump to
the given label, _—
PUSH Exception All tests failed. Push an
Exception value onto the
stack. This causes the
interpreter to throw an
' | exception,
| JUMP LABEL_4 Jump to the last label.
LABEL 0 _
PUSH False Push a false value omto the
stack. This is the return value.
Therefore, we follow the
MDR,
JUMP LABEL 4 . _Jum_p to the last label.
"LABEL_! This is an MDR-defined
‘ o Exception.)
| PUSH True Return true
LABEL 2
PUSH “gystemException READ” | Push the name of the block to
decode a system exception.,
| JUMP LABEL 4 Jump to the last label.

WO 2007/147207

PCT/AU2007/000859

22/23
OP-Code | Source/ Target variable | Comment) _‘_—]
JUMP LABEL 4 Jump to the last label.
LABEL 3 \] _
PUSH “objectDef READ" Push the name of the block to
. decode an object definition.
JUMP LABEL 4 Jump to the last label.
LABEL 4
Return value on top of stack,
Table 11;: Op-codes for processing "'contrel" clause
OP-Code Seurce / Target variable Comment B
SAVEPQOS BUFFER _POS Save current buffer posmon.
SETPOS BUFFER_POS (POS=8) Set the buffer posmon to the
value of the constant at the
. offset given by the parameter. |
SUBTRACT A constant value of “12” | Subtract the length of the
from the buffer length. header + the length of the
Header length (8) + integer from the buffer_length
| length of integer (4) = 12. | to give only payload length.
WRITE_INT BUFFER_LENGTH Write-out the value of the
)) internal variable buffer length
GETPOS BUFFER_POS Get the saved buffer position.
SETPOS BUFFER_POS Set the buffer position to the
saved value,
Table 12: Post-Marshal map for CORBA mussage
OP-Code Description Comments
READ_OCTET Read a single octet (byte)
from a source.
WRITE_OCTET Write a smgle octet (byte)
to a target
JUMP | Jump to the given LABEL | .
LABEL The targct of a JUMP
instruction.
LOOP The start of a loopmg
' sequence.
LOOP_END The end of a looping
sequence.
Eic.

WO 2007/147207 PCT/AU2007/000859

23/23

OP-Code De.{c.ripfizm Comments

— e

Table 13;: PDL Op-codes .

International application No.
INTERNATIONAL SEARCH REPORT

PCT/AU2007/000859
A CLASSIFICATION OF SUBJECT MATTER
" mtClL
GO6F 9/45 (2006.01) HO4L 29/06 (2006.01)

According to International Patent Classification (IPC) or to both national classification and TPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the ficlds searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

DWPI & keywords: Protocol, Middleware, Convert, Structure, Library, Dynamic and Priority; ESP@CE keywords:
Protocol, Priority, Convert and similar terms; Internet Search Engine (www.google.com.au/patents) keywords:
Priority, Protocol, Convert and similar terms

C. DOCUMENTS CONSIDERED TO BE RELEVANT

‘Category* | Citation of docuument, with indication, where appropriate, of the relevant passages Relevant to
‘ claim No.

US 6 971 090 B1 (GRUTTADAURIA et al) 29 November 2005

X Column 2, line 63 — column 4, line 5; column 5, line 40 — column 7, line 31 1-15

A 16-22
US 6 772 413 B2 (KUZNETSOV) 3 August 2004

X Abstract; column 4, line 66 — column 6, line 10; colummn 6, line 63 — column 8, line 7; column 9, 1-15
line 34 — column 18, line 56 ‘

A 16-22

US 6 085 250 A (PERRY) 4 July 2000
X See the whole document 1-15

A ' 16-22

Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents:
"A" document defining the general state of the art which is "T" later document published after the international filing date or priority date and not in
not considered to be of particular relevance conflict with the application but cited to understand the principle or theory
underlying the invention
“"E" carlier application or patent but published on or after the "X" document of particular relevance; the claimed invention cannot be considered novel
international filing date or cannot be considered to involve an inventive step when the document is taken
alone
"L." document which may throw doubts on priority claim(s) "Y" document of particular relevance; the claimed invention cannot be considered to
' or which is cited to establish the publication date of involve an inventive step when the document is combined with one or more other
another citation or other special reason (as specified) such documents, such combination being obvious to a person skilled in the art
- . : s .
© g: c;l:lr]l:r:;;:imng to an oral disclosure, use, exhibition "&" document member of the same patent family

"P" document published prior to the international filing date
but later than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
26 September 2007 05 QCT 2007

Name and mailing address of the ISA/AU Authorized officer

AUSTRALIAN PATENT OFFICE Evan Sulcs

PO BOX 200, WODEN ACT 2606, AUSTRALIA AUSTRALIAN PATENT OFFICE

E-mai] address: pct@ipaustralia.gov.au (SO 9001 Quality Certified Service)

Facsimile No. (02) 6285 3929 Telephone No : (02) 6283 2442

Form PCT/ISA/210 (second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/AU2007/000859
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
WO 2000/038389 A2 (DMR CONSULTING GROUP INC.) 29 June 2000
X Page 4, line 14 —page 5, line 18; page 6, line 15 — page 22, line 16 1-15
A 16-22
WO 1999/003036 A1 (TELEFONAKTIEBOLAGET LM ERICSSON) 21 January
1999
X See the whole document 4-15
A 1-3, 16-22
US 5 826 017 A (HOLZMANN) 20 October 1998
X Abstract; column 1, line 65 — column 3, line 5; column 4, line 44 — colurmm 15, line 48 1-15
16-22
EP 0 690 599 A2 (AT & T CORP.) 3 January 1996
X See the whole document 1-15
A 16-22
US 2006/0140199 A1 (MA et al) 29 June 2006
A See the whole document 1-22
US 6 625 804 B1 (RINGSETH et al) 23 September 2003
A See the whole document 1-22
WO 2003/034183 A2 (BEA SYSTEMS, INC.) 24 April 2003
A See the whole document 1-22
US 6 466 974 B1 (NELSON et al) 15 October 2002
A See the whole document 1-22
US 2001/0052031 Al (KINKADE) 13 December 2001
A See the whole document 1-22
WO 1997/019411 A1 (MCI COMMUNICATIONS CORP. et al) 29 May 1997
A See the whole document 1-22

Form PCT/ISA/210 (continuation of second sheet) (April 2007)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/AU2007/000859

This Annex lists the known "A“ publication level patent family members relating to the patent documents cited in the above-mentioned
interhational search report, The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of
information.

Patent Document Cited in Search Patent Family Member
" Report .
Us 6971090
Us 6772413 AU 22866/01 CA 2394058 EP 1242907
Us 200105 6504; Us 2005273772 Us 2006235868
Us 2006236224 us 2006236225 us 2006253465
WO 2001/046837 WO 2005/082102
us 6085250
WO 2000038389 AU 17520/00
wo 1999003036 AU 86312/98 SE 0000044
us 5826017 CA 2088395- EP 0555997 Jp 6006406
- EP 0690599 CA 2150062 CN 1117616 JP 8051468
SG 33392 '
US - 2006140199 us 2006153072 WO 2006071468 WO 2007002242
us 6625804
WO 2003034183 AU 2002347919 AU 2002347927 AU 2003223760
AU 2003231295 AU 2003247645 AU 2003261085
CN 11585948 EP 1444609 US 6988099
Uus 7080092 uUs 7117214 Us 7152204
Us 2003079029 us 2003093402 Us 2003093403
Us 2003093470 Us 2003093471 Us 2003093575
us 2003097345 Us 2003097574 uUs 2003105884
uUs 2003110315 Us 2003145047 Us 2003182452
Us 2004025169 us 2004049481 Us 2004068728
us 2004221261 us 2005144170 Us 2005149526
woO 2003034182 WO 2003034219 WO 2003034228
WO 2003034285 WO 2003044661 WO 2003093946
wO 2003102722 WO 2004003685 WO 2004003686
uUs 6466974
Us 2001052031
' wo 9719411 AU 76793/96 CA 2237646 -EP 0861471
Us 5790809
Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.
' END OF ANNEX

Form PCT/ISA/210 (patent family annex) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - wo-search-report
	Page 72 - wo-search-report
	Page 73 - wo-search-report

