wo 20187022011 A1 | 0K 000 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
01 February 2018 (01.02.2018)

(10) International Publication Number

WO 2018/022011 A1

WIPO I PCT

(51) International Patent Classification:
GO06T 17/00 (2006.01) B33Y 50/00 (2015.01)
GO06T 9/40 (2006.01)

(21) International Application Number:
PCT/US2016/043996

(22) International Filing Date:

26 July 2016 (26.07.2016)
(25) Filing Language: English
English

(71) Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY, L.P. [US/US]; 11445 Compac Center Drive
W., Houston, Texas 77070 (US).

(26) Publication Language:

(72) Imventors: ZENG, Jun; 1501 Page Mill Rd., Palo Alto,
California 94304-1100 (US). DEL ANGEL, Ana; Monte-
morelos 299, Fraccionamiento. Loma Bonita, Guadalajara,
45060 (MX). WHITE, Scott; Cami de Can Graells, 1-21,
08174 Sant Cugat del Valles (ES). CORTES, Sebastia; Ca-

74

62y

mi de Can Graells, 1-21, 08174 Sant Cugat del Valles (ES).
DISPOTO, Gary J.; 1501 Page Mill Road, Palo Alto, Cal-
ifornia 94304 (US).

Agent: BURROWS, Sarah E. et al.; HP Inc., 3390 E. Har-
mony Road, Mail Stop 35, Fort Collins, Colorado 80528
(Us).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN,CO,CR, CU,CZ,DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR,
HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA,
LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE,
PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE,
SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ,
UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.

(54) Title: INDEXING VOXELS FOR 3D PRINTING

/130

PROCESSCR

102

|_/m4

MACHINE-READABLE STORAGE MEDIUM

108

VOXELS ORGANIZED BY AN OCTREE
DEFINING AN OBJECT TO BE 3D PRINTED

|08

AT LEAST ONE QUAD-TREE INDEX TO
INGEX AT LEAST ONE NCDE OF THE
QCTREE

| 110

Fig. 1

(57) Abstract: One example includes a non-transitory machine readable storage medium including voxels organized by an octree and
at least one quad-tree index. The octree defines an object to be three-dimensionally printed and includes a list of nodes for each depth
of the octree where each node includes nodal content representing at least one voxel. The at least one quad-tree index is to index at
least one node of the octree and has a depth less than or equal to a maximum resolved depth. The at least one quad-tree index is to
be accessed by computer executable instructions to retrieve nodal content from the octree to control a processor to process the object

to be three-dimensionally printed.

[Continued on next page]

WO 2018/022011 AT { ML) 010 O 0

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to the identity of the inventor (Rule 4.17(i))

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

Published:
— with international search report (Art. 21(3))

WO 2018/022011 PCT/US2016/043996

INDEXING VOXELS FOR 3D PRINTING

Background

[0001] Printing technologies may be used to create three-dimensional objects
from data output from a computerized modeling source. For example, a three-
dimensional object may be designed using a computer program (e.g., a
computer aided design (CAD) application), and the computer may output the
data of the design to a printing system capable of forming the solid three-
dimensional object. Solid free-form fabrication (or layer manufacturing) may be
defined generally as a fabrication technology used to build a three-dimensional
object using layer by layer or point-by-point fabrication. With this fabrication
process, complex shapes may be formed without the use of a pre-shaped die or
mold.

Brief Description of the Drawings

[0002] Figure 1 is a block diagram illustrating one example of a processing
system for three-dimensional printing.

[0003] Figure 2 is a diagram illustrating one example of an octree
representation.

[0004] Figures 3A-3D are diagrams illustrating each depth of the example octree
representation of Figure 2.

[0005] Figure 4A is a diagram illustrating one example of the quaternary nodal
numbering rule.

[0006] Figure 4B is a diagram illustrating one example of the mapping of a quad-
tree index to a quad-tree.

[0007] Figure 5 is a flow diagram illustrating one example of a method to
generate quad-tree indices for an octree.

WO 2018/022011 PCT/US2016/043996

[0008] Figure 6 is a flow diagram illustrating another example of a method to
generate quad-tree indices for an octree.

[0009] Figure 7 is a flow diagram illustrating one example of a method to
process an object for three-dimensional printing.

[0010] Figure 8 is a diagram illustrating one example of normalized Z-
coordinates indicating which z-slices of an object are defined by each quad-tree
index.

[0011] Figure 9 is a flow diagram illustrating another example of a method to
process an object for three-dimensional printing.

[0012] Figure 10 is a flow diagram illustrating one example of a method to
prepare an image for printing.

[0013] Figure 11 is a diagram illustrating one example of an image to be printed.
[0014] Figure 12 is a flow diagram illustrating one example of a method to
perform the micro-slicing of Figure 9.

Detailed Description

[0015] In the following detailed description, reference is made to the
accompanying drawings which form a part hereof, and in which is shown by way
of illustration specific examples in which the disclosure may be practiced. It is to
be understood that other examples may be utilized and structural or logical
changes may be made without departing from the scope of the present
disclosure. The following detailed description, therefore, is not to be taken in a
limiting sense, and the scope of the present disclosure is defined by the
appended claims. It is to be understood that features of the various examples
described herein may be combined, in part or whole, with each other, unless
specifically noted otherwise.

[0016] Heterogeneous objects are three-dimensional (3D) objects whose interior
volume is composed of different materials (where a void may be considered a
distinctive material type) to meet design objectives (e.g., light-weighting,
processing compensation). For example, by spatially arranging different
materials and empty spaces, a heterogeneous structure may be obtained that

WO 2018/022011 PCT/US2016/043996

has mechanical properties that go beyond those of the base constitutive
materials.

[0017] One practical means to fabricate heterogeneous objects is 3D printing.
Documenting and processing heterogeneous objects (e.g., post-design and pre-
print), however, may require highly granular knowledge into the make-up of the
interior volume of the objects. There is a computing challenge for providing the
highly granular 3D description of the object and for accommodating the runtime
and storage constraints, particularly in an industrial setting where objects may
be large and complex and there is an overall throughput requirement for the
factory’s profitability.

[0018] Accordingly, as disclosed herein, a hierarchical data structure to
accelerate the processing (e.g., slicing, compensating the systematic bias due
to the physical process of the layered manufacturing) of an object to be 3D
printed is described. The data structure includes a set of voxels organized by
an octree defining an object to be printed, where each node of the octree
represents at least one voxel, and a list of quad-tree indices indexing nodes of
the octree to enable each indexed node of the octree to be individually
addressable. The quad-tree indices may be resolved to a maximum resolved
depth less than or equal to the depth of the octree. The greater the maximum
resolved depth, the greater the size of the list of quad-tree indices and the lower
the runtime latency when the list of quad-tree indices is accessed to 3D print the
object. The lower the maximum resolved depth, the smaller the size of the list
of quad-tree indices and the greater the runtime latency when the list of quad-
tree indices is accessed to 3D print the object.

[0019] Figure 1 is a block diagram illustrating one example of a processing
system 100 for 3D printing. System 100 includes a processor 102 and a
machine-readable storage medium 106. Processor 102 is communicatively
coupled to machine-readable storage medium 106 through a communication
path 104. Although the following description refers to a single processor and a
single machine-readable storage medium, the description may also apply to a
system with multiple processors and multiple machine-readable storage
mediums. In such examples, the instructions and/or data may be distributed

WO 2018/022011 PCT/US2016/043996

(e.g., stored) across multiple machine-readable storage mediums and the
instructions and/or data may be distributed (e.g., executed/processed by) across
multiple processors.

[0020] Processor 102 includes one or more central processing units (CPUSs),
microprocessors, and/or other suitable hardware devices for retrieval and
execution of instructions and/or retrieval and processing of data stored in
machine-readable storage medium 106. As will be described in more detail with
reference to the following figures, processor 102 may fetch, decode, and
execute instructions to create and/or modify data 108 including voxels
organized by an octree defining an object to be 3D printed. The octree includes
a list of nodes for each depth of the octree, where each node includes nodal
content (e.g., material for the node) representing at least one voxel.
Collectively, all the voxels form the 3D object. Processor 102 may fetch,
decode, and execute instructions to create and/or modify data 110 including at
least one quad-tree index to index at least one node of the octree. The at least
one indexed node of the octree has a depth less than or equal to a maximum
resolved depth, which indicates the resolved depth of the quad-tree index.
Processor 102 may fetch, decode, and execute instructions to access the at
least one quad-tree index to retrieve nodal content from the octree to process
(e.g., slice) the object to be 3D printed.

[0021] As will be described in more detail with reference to the following figures,
in one example, the at least one quad-tree index includes an ordered list of
tuples. Each tuple indexes a corresponding node of the octree and includes a
corresponding depth of the octree, an offset indicating the location of the
corresponding node in the octree at the corresponding depth, and a non-leaf
node flag indicating whether the corresponding node is a non-leaf node (i.e.,
has children nodes) or a leaf node (i.e., does not have children nodes). The at
least one quad-tree index includes a resolved depth of the at least one quad-
tree index and a flag indicating whether the nodes indexed by the at least one
quad-tree index are fully resolved.

[0022] In one example, machine-readable storage medium 106 also includes an
index for the at least one quad-tree index. The index includes the depth of the

WO 2018/022011 PCT/US2016/043996

octree, the maximum resolved depth, and an ordered list specifying the at least
one quad-tree index and the resolved depth of the at least one quad-tree index.
The octree may be a human readable and editable serial data file and the at
least one quad-tree index may be a human readable and editable serial data
file.

[0023] Machine-readable storage medium 106 is a non-transitory storage
medium and may be any suitable electronic, magnetic, optical, or other physical
storage device that stores executable instructions and/or data. Thus, machine-
readable storage medium 106 may be, for example, random access memory
(RAM), an electrically-erasable programmable read-only memory (EEPROM), a
storage drive, an optical disc, and the like. Machine-readable storage medium
106 may be disposed within system 100, as illustrated in Figure 1. In this case,
the executable instructions and/or data may be installed on system 100.
Alternatively, machine-readable storage medium 106 may be a portable,
external, or remote storage medium that allows system 100 to download the
instructions and/or data from the portable/external/remote storage medium. In
this case, the executable instructions and/or data may be part of an installation
package.

[0024] Figure 2 is a diagram illustrating one example of an octree representation
200. An octree is stored in a machine-readable storage medium as a list of a
list of nodes. The length of the outer list is the tree depth (e.g., four in the
example of Figure 2). The length of each inner list is the number of nodes in the
depth (e.g., one node for depth zero, eight nodes for depth one, 16 nodes for
depth two, and eight nodes for depth three in the example of Figure 2). In
octree representation 200, the root or zero depth includes a single non-leaf
node 202. Node 202 has eight children nodes 204 at depth one. Of nodes 204
at depth one, nodes 206 and 208 are non-leaf nodes and the remaining nodes
are leaf nodes. Node 206 has eight children leaf nodes 210 at depth two. Node
208 has eight children nodes 212 at depth two where node 214 is a non-leaf
node and the remaining nodes are leaf nodes. Node 214 has eight children leaf
nodes 216 at depth three.

WO 2018/022011 PCT/US2016/043996

[0025] Figures 3A-3D are diagrams illustrating each depth of the example octree
representation 200 of Figure 2. Figure 3A illustrates an object 300 resolved to
the root or zero depth of octree representation 200 (i.e., node 202). Figure 3B
illustrates an object 302 resolved to depth one of octree 200 (i.e., nodes 204).
At depth one, based on the octree nodal numbering rule, object 302 is divided
into eight portions with each portion being defined by a node 204, respectively.
[0026] Figure 3C illustrates an object 304 resolved to depth two of octree
representation 200 (i.e., nodes 210 and 212). At depth two, based on the
octree nodal numbering rule, two portions (i.e., nodes 206 and 208) of object
304 are further divided into eight portions with each portion being defined by a
node 210 and 212, respectively. The eight portions of node 208 are indicated at
306. The eight portions of node 206 are not visible in Figure 3C.

[0027] Figure 3D illustrates an object 308 resolved to depth three of octree
representation 200 (i.e., nodes 216). At depth three, based on the octree nodal
numbering rule, one portion (i.e., node 214) of object 308 is further divided into
eight portions with each portion being defined by a node 216, respectively. The
eight portions of node 214 are indicated at 310. Accordingly, any object may be
defined by an octree having a depth suitable to represent the object to a desired
resolution.

[0028] Each node represents at least one voxel. The payload for each leaf node
in the octree includes the nodal content for the node, such as the material
composition for the node (i.e., which material(s) to be used to form the at least
one voxel represented by the node). The payload for each non-leaf node in the
octree is the location of the first child node of the non-leaf node in the node list
of the next depth. The nodes are stored sequentially one after the other in an
octree (OCT) file in a machine-readable storage medium. Accordingly, in the
example octree representation 200 of Figure 2, the nodes are stored in the
following order: 202, 204, 210, 212, and 216.

[0029] The OCT file includes a header section and a body section. The header
section includes the tree depth and the number of nodes for each depth. The
body section includes each node. For each non-leaf node, the node includes a
non-leaf node (NLN) flag. For each leaf node, the node includes the nodal

WO 2018/022011 PCT/US2016/043996

content for the node. The NLN flag may be a Boolean value indicating the node
is a non-leaf node. In one example, the NLN flag is “-1”. The nodal content
may be a JavaScript object notation (JSON) object, which may be a list (e.g.,
floating point, material identifier (ID)) of tuples indicating the material
composition of the node. If the node is filled by a single material, the size of the
list may be one.

[0030] In one example, the body section of the OCT file follows two rules: 1)
starting from the root depth, there is one line per depth array of the octree; and
2) within the same depth array, each node has seven siblings. The nodes are
placed together and sequentially following the octal nodal numbering rule.
Accordingly, each 8-node block (e.g., array indices from 8%i to 8%i+7)
corresponds to one non-leaf node one line above (e.g., the i non-leaf node in
its node array). Below is an example OCT file for octree representation 200
illustrated in Figure 2.

/*header*/

4 /*depth*/

1 8 16 8 /*node count per depth*/

/*body*/

-1 /*root NLN*/

-11222-121 /*depth 1 wherein “1” indicates a first material ID and “2”
indicates a second material ID*/

222111112211 -11/*depth 2%/

122222 /*depth 3%/

11

11
[0031] The OCT file may be generated by first writing the header including the
tree depth and the number of nodes per depth. Next, a loop over the outer list
is performed starting from the root depth (i.e., zero depth) and a loop over the
inner list is performed. When a non-leaf node is encountered, the NLN flag
(e.g., “17) is written. When a leaf node is encountered, the content of the node
(e.g., tuple of material ID and volume faction) is written (e.g., “1” or “2” in the
above example). A line break may be inserted after each inner loop to improve
readability. Generating the OCT file is efficient since each node is visited a
single time for a single read/write operation. No sorting or other computations

are involved.

WO 2018/022011 PCT/US2016/043996

[0032] Figure 4A is a diagram illustrating one example of the quaternary nodal
numbering rule. Area 400 is divided into four quadrants 402, 404, 406, and 408.
The (y, x) coordinates for quadrant 402 are (0, 0) = 0 indicating quadrant zero.
The (y, x) coordinates for quadrant 404 are (0, 1) = 1 indicating quadrant one.
The (y, x) coordinates for quadrant 406 are (1, 0) = 2 indicating quadrant two.
The (y, x) coordinates for quadrant 408 are (1, 1) = 3 indicating quadrant three.
[0033] The quad-tree indices (QTI) are organized in a machine-readable storage
medium as a list (e.g., a linked list). The quad-tree indices are a set of files
including an index file (e.g., index.qti) and a set of quad-tree index files (e.g.,
*.qti) named sequentially starting from 0.qti. The index.qti file includes the depth
of the corresponding octree, a maximum resolved depth for the quad-tree
indices, and an ordered list specifying each quad-tree index and the resolved
depth of the each quad-tree index. One example of an index.qti file is provided
below.

8 /* octree depth*/
3 /*maximum resolved depth*/
3, 3, 2, 1 /*the resolved depth for each *.qti file in sequential order*/

In this example, there are three *.qti files including 0.qti having a resolved depth
of three, 1.qgti having a resolved depth of three, 2.qti having a resolved depth of
two, and 3.qti having a resolved depth of one.

[0034] The maximum resolved depth (MRD) may be a user input. The
maximum resolved depth is a variable that tunes a tradeoff between the storage
(e.g., QTl file sizes) and the runtime computing (e.g., slicing) speed. If the
maximum resolved depth equals zero, the assistance of the quad-tree indices is
effectively turned off and the QTI file size is near zero. In this case, accessing a
voxel during runtime will require walking the octree. If the maximum resolved
depth equals the octree depth, the QTI file sizes are larger and the QTl files
effectively resolve the entire octree maximizing runtime computing (e.g., slicing)
speed. In this case, random access of voxels during runtime with constant cost

is effectively enabled.

WO 2018/022011 PCT/US2016/043996

[0035] Each *.qti file is used to write a z-slice of varying thickness of the octree.
The thickness of each *.qti file is determined by the resolved depth of the *.qti
file. In a computer readable storage medium, a *.qti file may be a node of a
linked list, defined as:

Class QTI /*z-slice of the octree™/ {
QTlI*preyv;

QTI*next; /*linked list*/

Int CRD; /*current resolved depth*/
Boolean isFullyresolved;

tuple_list [(depth, offset, NLN) ...];

The above linked list class may be used to create the QT files and deleted once
the QTl files are created. Therefore, once created, the QTI files may be a list of
files rather than a linked list. Each tuple indexes a corresponding node of the
octree and includes a corresponding depth of the octree, an offset indicating the
location of the corresponding node in the octree at the corresponding depth,
and a NLN flag indicating whether the corresponding node is a non-leaf node
(i.e., not fully resolved) or a leaf node (i.e., fully resolved). The tuple list is
ordered as follows: 1) within the same depth array, each node has four siblings,
which are placed together and sequentially following the quaternary nodal
numbering rule; and 2) a non-leaf node is replaced by its children nodes in
place.

[0036] Figure 4B is a diagram illustrating one example of the mapping of a quad-
tree index (*.qti file) to a quad-tree. The example *.qti mapped in Figure 4B is
provided below.

3 /*resolved depth*/

{

(2, 0, T) /*indicated at 412*/
(2,1, T) /*indicated at 414*/
(2,2, T) *indicated at 416*/

(3,0, T)(3,1,T) (3,2, T) (3, 3, T) /*indicated at 418, 420,
422, and 424, respectively*/

[*first quadrant (0, 0) = 0*/
1,1, T) /*second quadrant (0, 1) = 1, indicated at 426*/
1, 2, T) /*third quadrant (1, 0) = 2, indicated at 428*/

3

PN)

WO 2018/022011 PCT/US2016/043996

10

(2, 8, T) /*indicated at 430/
(2,9, T) /*indicated at 432"/
(2,10, T) /*indicated at 434"/

(2,11, T) /*indicated at 436"/
} /*fourth quadrant (1,1)=3%

The brackets and indentations in the above example are included for improved
readability and are not required for the *.qti file. The same quad-tree may be
resolved at different depths For example, the above quad-tree may be resolved
to depth 1:“1, (1,0, F) (1,1, T) (1,2, T) (1, 3, F)” or depth 2: “2, (2,0, T) (2, 1,
T (2,2, T(2,3F1,1,T)(1,2,T) (2,8, T) (2,9, T) (2,10, T), (2, 11, T)".
[0037] Figure 5 is a flow diagram illustrating one example of a method 500 to
generate quad-tree indices for an octree. In one example, method 500 is
performed by a processor, such as processor 102 previously described and
illustrated with reference to Figure 1. At 502, method 500 includes receiving an
octree defining an object to be three-dimensionally printed, the octree including
a list of nodes for each depth of the octree. At 504, method 500 includes
receiving a maximum resolved depth less than or equal to the depth of the
octree. At 506, method 500 includes generating a list of quad-tree indices to
index each node of the octree up to the maximum resolved depth, each quad-
tree index of the quad-tree indices comprising an ordered list of tuples, each
tuple indexing a corresponding node of the octree and including a
corresponding depth of the octree, an offset indicating the location of the
corresponding node in the octree at the corresponding depth, and a non-leaf
node flag indicating whether the corresponding node is a non-leaf node or a leaf
node.

[0038] Method 500 may further include generating an index for the list of quad-
tree indices, the index comprising the depth of the octree, the maximum
resolved depth, and an ordered list specifying each quad-tree index and the
resolved depth of each quad-tree index. The greater the maximum resolved
depth, the greater the size of the list of quad-tree indices and the lower the
runtime latency when the list of quad-tree indices is accessed to 3D print the
object.

WO 2018/022011 PCT/US2016/043996

11

[0039] Figure 6 is a flow diagram illustrating another example of a method 600
to generate quad-tree indices for an octree. In one example, method 600 is
performed by a processor, such as processor 102 previously described and
illustrated with reference to Figure 1. At 602, a maximum resolved depth (MRD)
is received. MRD is an integer less than or equal to the depth of the octree. At
604, a linked list (QTILIST) of quad-tree indices is initialized and a current
resolved depth (CRD) is initialized to zero. At 606, method 600 determines
whether CRD is less than MRD.

[0040] If CRD is less than MRD, then at 610 a QTI pointer is reset to the head of
the QTILIST. At612, a QTl is retrieved based on the QTI pointer. At 614,
method 600 determines whether the QTl is fully resolved. In one example,
determining whether the QTI if fully resolved includes reading the
isFullyresolved Boolean value for the QTI. If the QTl is not fully resolved, then
at 616, the QTI is duplicated to provide an upper QTI (UQTI) and a lower QTI
(LQTI). At 618, the tuples of the QTI are scanned and for each tuple of the QTI
that is not resolved, eight children are retrieved and the tuple in the UQTI is
replaced with four tuples corresponding to the upper four children and the tuple
in the LQT]I is replaced with four tuples corresponding to the lower four children.
At 620, the QTIl in QTILIST is replaced with the LQTI and the UQT] is inserted
into the QTILIST after the LQTI.

[0041] If the QTl is fully resolved at 614 or after block 620, at 622 the next QTl in
the QTILIST is retrieved. At 624, method 600 determines whether the end of
the QTILIST has been reached. If the end of the QTILIST has not been
reached, then method 600 returns to decision block 614 and the process
continues. If the end of the QTILIST has been reached, then at 626 CRD is set
equal to CRD plus one (i.e., incremented) and method 600 returns to decision
block 606 and the process continues. If CRD is not less than MRD at 606, then
at 608 the QTI files are written since the QTILIST is completed up to the MRD.
The index.qti file is generated and each *.qti file is written by walking the
QTILIST.

[0042] The following figures describe the runtime operation using the octree and
quad-tree indices for 3D printing of an object. The resolution of the octree and

WO 2018/022011 PCT/US2016/043996

12

quad-tree indices are hardware (e.g., printer) independent. During runtime, the
octree and quad-tree indices are loaded into memory to produce slices (e.g.,
images with material assignment per pixel) to provide to a printer for printing. At
this time, the hardware characteristics may be addressed including additional
3D computation to compensate for process physics and/or the hardware
resolution (e.g., printing resolution).

[0043] Prior to printing, the OCT file is loaded into memory. The OCT file is
scanned and the header section is read to allocate memory for the list of node
lists (per depth). The nodes are then read from the OCT file per depth starting
from the root depth and the node content is filled accordingly. For each depth, a
non-leaf node counter (NLNC) is initiated to zero. When a leaf-node is
encountered, the payload for the node is filled with the content from the OCT
file. When a non-leaf node is encountered, the payload for the node is set to
NLNC*8, which indicates that the children for the node are in the next depth
starting position from NLNC to NLNC+8. NLNC is incremented by one for each
non-leaf node. In this way, the octree is recreated in memory. The compute
time is linear to the node count and for each node the compute time is small
(i.e., largely reading from the OCT file).

[0044] Additional 3D computations may be used to generate auxiliary data to
support and/or to compensate for printing physics. For example, in multi-jet
fusion printers thermal diffusion is an effect that may be compensated for by
active management for geometry fidelity (e.g., sharp corners). Preserving the
octree in memory enables this type of computation since the new nodal values
are stored in the octree. The quad-tree indices are assistive indices that
accelerate nodal content retrieval from the octree.

[0045] Figure 7 is a flow diagram illustrating one example of a method 700 to
process an object for 3D printing. In one example, method 700 is performed by
a processor, such as processor 102 previously described and illustrated with
reference to Figure 1. At 702, method 700 includes receiving an octree defining
an object to be three-dimensionally printed, the octree including a list of nodes
for each depth of the octree, each node including nodal content. At 704,
method 700 includes receiving a list of quad-tree indices indexing each node of

WO 2018/022011 PCT/US2016/043996

13

the octree up to a maximum resolved depth, each quad-tree index of the quad-
tree indices comprising an ordered list of tuples, each tuple indexing a
corresponding node of the octree and including a corresponding depth of the
octree, an offset indicating the location of the corresponding node in the octree
at the corresponding depth, and a non-leaf node flag indicating whether the
corresponding node is a non-leaf node or a leaf node. At 706, method 700
includes rasterizing each slice of the object to be three-dimensionally printed by
accessing a corresponding quad-tree index for the slice to retrieve nodal
content from the octree.

[0046] Method 700 may further include determining normalized z-coordinates for
each quad-tree index between zmin and zmax and slicing sequentially from
zmin to zmax based on a thickness for each slice to identify each slice prior to
rasterizing. The nodal content of the octree may be modified based on the
characteristics of a specified three-dimensional printer prior to rasterizing each
slice (e.g., to compensate for thermal diffusion effects).

[0047] Figure 8 is a diagram illustrating one example of normalized z-
coordinates indicating which z-slices of an object 800 are defined by each quad-
tree index. The index.qti file is loaded into memory and based on the depth list,
a gti_marker[], which are the normalized z-coordinates for each QTI slice are
computed. The qti_marker[] is used to select the correct QT] file for each slice.
The z-coordinates for the object are normalized between -1 and 1 as indicated
at 802. The z-resolution (Zres) is based on the maximum resolved depth (MRD)

and is calculated as follows:
1
ZRgs = SMRD
For example, for a maximum resolved depth of three for the example of Figure
8, the z-resolution is 1/8. The qti_marker for each QTI is determined as follows:

gti_marker[] = NULL;
marker = -1; /*normalized zmin for octree*/
for (depth in depth_list):
thickness = 2.0/(29pth)
marker += thickness
gti_marker.append(marker)

WO 2018/022011 PCT/US2016/043996

14

[0048] In the example of Figure 8, therefore, 0.qti as indicated at 804 having a
depth of 3 extends between -1 and -0.75; 1.qti as indicated at 806 having a
depth of 3 extends between -0.75 and -0.50; 2.qti as indicated at 808 having a
depth of 2 extends between -0.50 and 0; and 3.qti as indicated at 810 having a
depth of 1 extends between 0 and 1. Thus, gti_marker[] is qti_marker[-0.75, -
0.50, 0, 1] in this example.

[0049] Figure 9 is a flow diagram illustrating another example of a method 900
to process an object for 3D printing. In one example, method 900 is performed
by a processor, such as processor 102 previously described and illustrated with
reference to Figure 1. At 902, the octree defining the object to be 3D printed is
loaded and reconstructed in memory. At 904, 3D processing for hardware
compensation is performed. At 906, the index.qti file is loaded and the
gti_marker[] is computed. At 908, z is initialized to zmin (i.e., -1). At 910,
method 900 determines whether z is less the zmax (i.e., 1). If zis less than
zmax, then at 914 the correct QTI for the slice is found based on the
gti_marker[]. At 916, method 900 determines whether the slice has already
been rasterized. If the slice has not already been rasterized, then at 918
method 900 determines whether the QTl is fully resolved. If the QTl is not fully
resolved, then at 920 micro-slicing is performed to fully resolve the QTI. Micro-
slicing is further described below with reference to Figure 12. If the QTl is fully
resolved at 918 or after performing micro-slicing at 920, the slice or micro-slice
is rasterized at 922. Rasterizing the QTI is further described below with
reference to Figures 10 and 11. If the slice is already rasterized at 916 or after
rasterizing the slice or micro-slice at 922, the image is printed at 924. At 926, z
is incremented by the next slice thickness and the process returns to decision
block 910. An external program may set the thickness for each slice. The
thickness for each slice may be a constant (e.g., 100 um) or may be different for
different slices. If z is not less than zmax at 910, then at 912 the printing of the
object is complete.

[0050] Figure 10 is a flow diagram illustrating one example of a method 1000 to
prepare an image (i.e., slice) for printing. Method 1000 is performed by a
processor, such as processor 102 previously described and illustrated with

WO 2018/022011 PCT/US2016/043996

15

reference to Figure 1. At 1002, method 1000 includes initializing an image. In
one example, the image is initialized to an NxN image where “N” is a suitable
value indicating the length of one side of the image. The initializing of the image
may be based on polygon boundaries obtained via vector slices. At 1004,
method 1000 includes reading each tuple of the quad-tree index for the slice. At
1006, method 1000 includes computing a pixel array in the image that
corresponds to each tuple based on the position of the tuple in the quad-tree
index for the slice. At 1008, method 1000 includes retrieving nodal content from
the octree based on the offset of each tuple and assigning the nodal content to
the pixel array. The nodal content may include the material composition. After
scanning all tuples in the quad-tree index, the content composition for the
image, and thus the slicing operation, is complete.

[0051] Figure 11 is a diagram illustrating one example of an image 1100 to be
printed, which is generated by rasterizing the QT for a slice. In this example,
image 1100 defines a slice of an object having a border indicated at 1101. The
slice is partitioned into two-dimensional (2D) tiles based on the resolved depth
(i.e., a 2D array of [2resolved depth ' presolved depth]) - |n the example of Figure 11,
where the resolved depth is three, the slice is partitioned into 8x8 tiles. Each
tuple (depth, offset) corresponds to a unique set of tiles. An address index
(addr) is used to compute the tuple-tile mapping as follows:

addr=0
for (int i=0; i < tuple_list.size(); i++) {
addr_of_this_tuple = addr
addr = addr + 4(this_tuple_depth - resolved_depth) /*quigternary numbering*/

The addr compute may happen while scanning the tuple list. For a given tuple,
the addr of the tuple may be written as sum(ai*4resolved depth-i-1)) or [g 0, a_1,
a_2]*[4©-0-1 4149 i=0,1, ... (resolved_depth -1),ai =0, 1, 2, or 3. Integer
ai is further mapped to a tuple of (0, 0), (1, 0), (0, 1), (1, 1) denoted as (ai[0],
ai[1]) where [0] corresponds to the x index and [1] corresponds to the y index.
[0052] An addr can translate a list of ai[0] (x-index array) (in this example
(a_0[0], a_1[0], a_2[0Q])) and ai[1] (y-index array) (in this example (a_0[1],
a_1[1], a_2[1])) as indicated at 1102, 1104, and 1106, respectively. Therefore:

WO 2018/022011 PCT/US2016/043996

16

x-addr = sum (a_i[0] * 2(resolved_depth -i-1))

y-addr = sum (a_j[1] * 2(resolved_depth-i- 1))
The linear coverage of each tuple is determined by the depth of the tuple,
2(this_tuple_depth - resolved depth) - The tiles covered by each tuple is between [x-addr, y-
addr] and [x-addr + linear_coverage, y-addr + linear_coverage]. To map to the
NxN sliced image, each tuple corresponds to the pixel array between (int(float(x-
addr)/(2resolved_depthy * N int(float(y-addr)/(2resolved_depth) * N)) and (int(float(x-addr
+ linear_coverage)/(2resoived_depthy * N “int(float(y-addr +
linear_coverage)/(2esoved_depthy * N)),
[0053] Based on the offset and depth value of each tuple, the octree node
corresponding to the tuple may be directly accessed to retrieve the nodal
content. If the content (e.g., material ID and/or distribution) is uniform, all pixels
in the pixel array are assigned the same value. [f sub-node resolution is
enabled (e.g., multiple materials reside at different portions of the same node),
different pixels with different values may be assigned based on the nodal
content (e.g., via interpolation schemes).
[0054] A voxel-based data structure may not be body-fitted. The voxel cubes
may not align with complex shape boundaries. Therefore, the resulting slices
may have shape error where the size of this error is about the size of a voxel at
the boundary. To overcome this, vector slicing may be implemented as part of
the rasterization. A very efficient vector slicer can handle 20 million or more
triangles and generate a slice in approximately 100 milliseconds.
[0055] The vector slicer is used to generate the slices in the form of boundary
polygons. The boundary polygons are body fitted and have zero slicing induced
shape error (as opposed to voxel slicing with slicing induced shape error of
voxel size). The boundary polygons are used to generate image pixels for the
boundaries.
[0056] The boundary pixels on the slices obtain the material properties through
voxels. For each boundary pixel, the region of influence (ROI) is identified,
which may cover multiple voxels. The value assigned to the pixel is the
weighted-average of the values carried by the voxels within the ROI. The
weight is the inverse of the distance from the voxel center to the pixel.

WO 2018/022011 PCT/US2016/043996

17

[0057] Figure 12 is a flow diagram illustrating one example of a method 1200 to
perform the micro-slicing of block 920 of Figure 9. In one example, method
1200 is performed by a processor, such as processor 102 previously described
and illustrated with reference to Figure 1. At 1202, a linked list
(MICRO_QTILIST) of quad-tree indices is initialized and the current resolved
depth (CRD) is initialized to the CRD of the current QTI (QTI_CRD). At 1204,
method 1200 determines whether CRD is less than the octree depth.

[0058] If CRD is less than the octree depth, then at 1212, a MICRO_QT]I pointer
is reset to the head of the MICRO_QTILIST. At 1214, a MICRO_QTl is
retrieved based on the MICRO_QT]I pointer. At 1216, method 1200 determines
whether the MICRO_QT] if fully resolved. If the MICRO_QTlI is not fully
resolved, then at 1218, the MICRO_QT] is duplicated to provide an upper
MICRO_QTI (MICRO_UQTI) and a lower MICRO_QTI (MICRO_LQTI). At
1220, the tuples of the MICRO_QT]I are scanned and for each tuple of the
MICRO_QT]I that is not resolved, eight children are retrieved and the tuple in the
MICRO_UQTl is replaced with four tuples corresponding to the upper four
children and the tuple in the MICRO_LQT]I is replaced with four tuples
corresponding to the lower four children. At 1222, the MICRO_QTI in the
MICRO_QTILIST is replaced with the MICRO_LQTI and the MICRO_UQTlI is
inserted into the MICRO_QTILIST after the MICRO_LQTI.

[0059] If the MIRCRO_QTl is fully resolved at 1216 or after block 1222, at 1224
the next MICRO_QTI in the MICRO_QTILIST is retrieved. At 1226, method
1200 determines whether the end of the MICRO_QTILIST has been reached. If
the end of the MICRO_QTILIST has not been reached, then method 1200
returns to decision block 1216 and the process continues. If the end of the
MICRO_QTILIST has been reached, then at 1228 CRD is set equal to CRD plus
one (i.e., incremented) and method 1200 returns to decision block 1204 and the
process continues. If CRD is not less than the octree depth at 1204, then at
1206, the correct MICRO _QTI for the micro-slice is found. The micro-slice is
then rasterized at block 922 as previously described and illustrated with

reference to Figure 9.

WO 2018/022011 PCT/US2016/043996

18

[0060] In summary, the *.qgti that the slice plane intercepts is rasterized. The
rasterized image is cached until the image is obsolete so that no *.qti is
rasterized twice. In one example, to rasterize a *.qti, each pixel is visited only
once and only relevant nodes are visited and visited only once. The MRD and
micro-slicing add elasticity into the balancing between the OCT and QTl file size
generated by the pre-print and the additional runtime overhead.

[0061] Although specific examples have been illustrated and described herein, a
variety of alternate and/or equivalent implementations may be substituted for the
specific examples shown and described without departing from the scope of the
present disclosure. This application is intended to cover any adaptations or
variations of the specific examples discussed herein. Therefore, it is intended
that this disclosure be limited only by the claims and the equivalents thereof.

WO 2018/022011 PCT/US2016/043996

19

CLAIMS

1. A non-transitory machine readable storage medium comprising:

voxels organized by an octree defining an object to be three-
dimensionally printed, the octree including a list of nodes for each depth of the
octree, each node including nodal content representing at least one voxel; and

at least one quad-tree index to index at least one node of the octree
having a depth less than or equal to a maximum resolved depth,

wherein the at least one quad-tree index is to be accessed by computer
executable instructions to retrieve nodal content from the octree to control a

processor to process the object to be three-dimensionally printed.

2. The non-transitory machine readable storage medium of claim 1, wherein
the at least one quad-tree index comprises an ordered list of tuples, each tuple
indexing a corresponding node of the octree and including a corresponding
depth of the octree, an offset indicating the location of the corresponding node
in the octree at the corresponding depth, and a non-leaf node flag indicating

whether the corresponding node is a non-leaf node or a leaf node.

3. The non-transitory machine readable storage medium of claim 1, wherein
the at least one quad-tree index comprises a resolved depth of the at least one
quad-tree index and a flag indicating whether the nodes indexed by the at least

one quad-tree index are fully resolved.

4. The non-transitory machine readable storage medium of claim 1, further
comprising:

an index for the at least one quad-tree index, the index comprising the
depth of the octree, the maximum resolved depth, and an ordered list specifying
the at least one quad-tree index and the resolved depth of the at least one

quad-tree index.

WO 2018/022011 PCT/US2016/043996

20

5. The non-transitory machine readable storage medium of claim 1, wherein
the octree is a human readable and editable serial data file, and
wherein the at least one quad-tree index is a human readable and

editable serial data file.

6. A method to generate quad-tree indices for an octree, the method
comprising;

receiving, via a processor, voxels organized by an octree defining an
object to be three-dimensionally printed, the octree including a list of nodes for
each depth of the octree, each node representing at least one voxel;

receiving, via the processor, a maximum resolved depth less than or
equal to the depth of the octree; and

generating, via the processor, a list of quad-tree indices to index each
node of the octree up to the maximum resolved depth, each quad-tree index of
the quad-tree indices comprising an ordered list of tuples, each tuple indexing a
corresponding node of the octree and including a corresponding depth of the
octree, an offset indicating the location of the corresponding node in the octree
at the corresponding depth, and a non-leaf node flag indicating whether the

corresponding node is a non-leaf node or a leaf node.

7. The method of claim 6, wherein generating the list of quad-tree indices
comprises:

initializing a linked list of quad-tree indices and initializing a current depth
to zero;

iterating the linked list of quad-tree indices until a current depth equals
the maximum resolved depth;

for each quad-tree index of the quad-tree indices, determining whether
the quad-tree index is fully resolved;

in response to determining that a quad-tree index is not fully resolved,
dividing the quad-tree index into two quad-tree indices and updating each of the
two quad-tree indices for the current depth to further resolve each of the two

quad-tree indices;

WO 2018/022011 PCT/US2016/043996

21

in response to determining that the quad-tree index is fully resolved,
moving to the next quad-tree index in the linked list of quad-tree indices; and

in response to reaching the end of the linked list of quad-tree indices,
incrementing the current depth by one and repeating the iterating of the linked
list of quad-tree indices until the current depth equals the maximum resolved
depth.

8. The method of claim 7, wherein dividing the quad-tree index into two
quad-tree indices and updating each of the two quad-tree indices for the current
depth comprises:

duplicating the quad-tree index to provide an upper quad-tree index and
a lower quad-tree index;

scanning each tuple of the quad-tree index;

for each tuple indicating a non-leaf node, retrieving eight of the children
of the non-leaf node and replacing the tuple in the lower quad-tree index with
tuples corresponding to the lower four children and replacing the tuple in the
upper quad-tree index with tuples corresponding to the upper four children; and

replacing the quad-tree index with the lower quad-tree index and
inserting the upper quad-tree index into the linked list of quad-tree indices after

the lower quad-tree index.

9. The method of claim 6, further comprising:

generating an index for the list of quad-tree indices, the index comprising
the depth of the octree, the maximum resolved depth, and an ordered list
specifying each quad-tree index and the resolved depth of each quad-tree

index.

10. The method of claim 6, wherein the greater the maximum resolved depth,
the greater the size of the list of quad-tree indices and the lower the runtime
latency when the list of quad-tree indices is accessed to three-dimensionally

print the object.

WO 2018/022011 PCT/US2016/043996

22

11. A method to process an object for three-dimensional printing, the method
comprising;

receiving, via a processor, voxels organized by an octree defining an
object to be three-dimensionally printed, the octree including a list of nodes for
each depth of the octree, each node including nodal content representing at
least one voxel;

receiving, via the processor, a list of quad-tree indices indexing each
node of the octree up to a maximum resolved depth, each quad-tree index of
the quad-tree indices comprising an ordered list of tuples, each tuple indexing a
corresponding node of the octree and including a corresponding depth of the
octree, an offset indicating the location of the corresponding node in the octree
at the corresponding depth, and a non-leaf node flag indicating whether the
corresponding node is a non-leaf node or a leaf node; and

rasterizing, via the processor, each slice of the object to be three-
dimensionally printed by accessing a corresponding quad-tree index for the slice

to retrieve nodal content from the octree.

12. The method of claim 11, wherein rasterizing each slice of the object to be
three-dimensionally printed comprises:

determining whether the quad-tree index for the slice is fully resolved,;

in response to determining the quad-tree index for the slice is fully
resolved, rasterizing the slice;

in response to determining the quad-tree index for the slice is not fully
resolved, fully resolving the quad-tree index prior to rasterizing the slice.

13. The method of claim 11, wherein rasterizing each slice of the object to be
three-dimensionally printed comprises:

initializing an image based on polygon boundaries obtained via vector
slices;

reading each tuple of the quad-tree index for the slice;

computing a pixel array in the image that corresponds to each tuple
based on the position of the tuple in the quad-tree index for the slice; and

WO 2018/022011 PCT/US2016/043996

23

retrieving nodal content from the octree based on the offset of each tuple
and assigning the nodal content to the pixel array.

14. The method of claim 11, further comprising:

determining normalized z-coordinates for each quad-tree index between
zmin and zmax; and

slicing sequentially from zmin to zmax based on a thickness for each

slice to identify each slice prior to rasterizing.

15. The method of claim 11, further comprising:
modifying nodal content of the octree based on characteristics of a
specified three-dimensional printer prior to rasterizing each slice.

WO 2018/022011 PCT/US2016/043996

110

/160

PROCESSOR 102

| 104

106

MACHINE-READABLE STORAGE MEDIUM

VOXELS ORGANIZED BY AN OCTREE 108
DEFINING AN OBJECT TO BE 3D PRINTED

AT LEAST ONE QUAD-TREE INDEX TO 110
INDEX AT LEAST ONE NODE OF THE —
OCTREE

WO 2018/022011 PCT/US2016/043996

210

200

o
-
@@@@j@@

/210 - /212/214

990900000000000090 /4~
99000000

Fig. 2

/300 /304

Fig. 3A Fig. 3C

/3@2 /3@8

Fig. 3B Fig. 3D

WO 2018/022011

3/10

{(1,0)=2 (t, H=3
408 408
0,0=0 O, =1
402 404
Fig. 4A

434 438
428
430 432
422 | 424
416
418 | 420
428
412 414

Fig. 4B

PCT/US2016/043996

WO 2018/022011 PCT/US2016/043996

4/10

500
'/- /‘ 502

RECEIVING VOXELS ORGANIZED BY AN OCTREE DEFINING AN OBJECT TO

BE THREE-DIMENSIONALLY PRINTED, THE OCTREE INCLUDING A LIST OF

NODES FOR EACH DEPTH OF THE OCTREE, EACH NODE REPRESENTING
AT LEAST ONE VOXEL

/‘ 504

RECEIVING A MAXIMUM RESOLVED DEPTH LESS THAN OR EQUAL TO THE
DEPTH OF THE OCTREE

/‘ 506

GENERATING A LIST OF QUAD-TREE INDICES TO INDEX EACH NODE OF
THE OCTREE UP TO THE MAXIMUM RESOLVED DEPTH, EACH QUAD-TREE
INDEX OF THE QUAD-TREE INDICES COMPRISING AN ORDERED LIST OF
TUPLES, EACH TUPLE INDEXING A CORRESPONDING NODE OF THE
OCTREE AND INCLUDING A CORRESPONDING DEPTH OF THE OCTREE, AN
OFFSET INDICATING THE LOCATION OF THE CORRESPONDING NODE IN
THE OCTREE AT THE CORRESPONDING DEPTH, AND A NON-LEAF NODE
FLAG INDICATING WHETHER THE CORRESPONDING NODE 1S A NON-LEAF
NODE OR A LEAF NODE

Fig. 5

WO 2018/022011

5/10

/‘ 802

RECEIVE MRD |

+ /‘ 604

INITIALIZE QTILIST AND INITIALIZE CRD=0

606

PCT/US2016/043996

’/- 600

/‘ 608

CRD<MRD? NO | WRITE QT! FILES

Y%S /‘ 810

RESET QT POINTER TO HEAD OF QTILIST

+ /‘612

RETRIEVE A QTI

614

18 QTIFULLY

RESOCLVED?

NO
Y

616

DUPLICATE QTITO PROVIDE UQTIAND LQTI

* /-618

FOR EACH TUPLE OF QTI NOT RESOLVED, RETRIEVE 8
CHILDREN AND REPLACE THE TUPLE IN UQTI WITH THE
UPPER 4 CHILDREN AND REPLACE THE TUPLE IN LQTI
WATH THE LOWER 4 CHILDREN

¢ ~ 620 v/ 622

REPLACE QT1IN QTILIST WITH LQTI AND INSERT UQT!
INTO QTILIST AFTER LQTI

— GET NEXT QT

/‘ 6268

END OF

CRD=CRD+1 |« YES

Fig. 6

QTILIST?

WO 2018/022011 PCT/US2016/043996

6/10

700
’/- /‘ 702

RECEIVING VOXELS ORGANIZED BY AN OCTREE DEFINING AN OBJECT TO
BE THREE-DIMENSIONALLY PRINTED, THE OCTREE INCLUDING A LIST OF
NOBDES FOR EACH DEPTH OF THE OCTREE, EACH NODE INCLUDING
NODAL CONTENT REPRESENTING AT LEAST ONE VOXEL

/‘ 704

RECEIVING A LIST OF QUAD-TREE INDICES INDEXING EACH NODE OF THE
OCTREE UP TO A MAXIMUM RESOLVED DEPTH, EACH QUAD-TREE INDEX
OF THE QUAD-TREE INDICES COMPRISING AN ORDERED LIST OF TUPLEE,
EACH TUPLE INDEXING A CORRESPONDING NODE OF THE OCTREE AND
INCLUDING A CORRESPONDING DEPTH OF THE OCTREE, AN OFFSET
INDICATING THE LOCATION OF THE CORRESPONDING NODE INTHE
OCTREE AT THE CORRESPONDING DEPTH, AND A NON-LEAF NODE FLAG
INDICATING WHETHER THE CORRESPONDING NODE 1S A NON-LEAF NODE
OR A LEAF NODE

/‘ 706

RASTERIZING EACH SLICE OF THE OBJECT TO BE THREE-DIMENSIONALLY
PRINTED BY ACCESSING A CORRESPONDING QUAD-TREE INDEX FOR THE
SLICE TO RETRIEVE NODAL CONTENT FROM THE OCTREE

Fig. 7

WO 2018/022011

Zing

PCT/US2016/043996

710

/800

>3,nt, D=1

\810

>2.qii, D=2

WO 2018/022011

8/10

/‘ 802

LOAD OCTREE |

* s 004

30 PROCESSING FOR HARDWARE
COMPENSATION

s 906

LOAD INDEX.QT! AND COMPUTE
QTL MARKER] |

* / 008

INITIALIZE Z=ZMIN

910

PCT/US2016/043996

’/- 900

/‘912

Z<ZMAX? NO -

PRINTING COMPLETE

YES

* /‘914

FIND CORRECT QTi FOR SLICE

IS SLICE ALREADY
RASTERIZED?

v /‘ 824

IS QTIFULLY
RESOLVED?

NO

/‘ 920

PERFORM MICRO-
YES SLICING

< |

v /‘ 922

PRINT IMAGE -t

RASTERIZE SLICE OR MICRO-

SLICE

l /‘ 826

INCREMENT Z BY NEXT SLICE THICKNESS

Fig. 9

WO 2018/022011 PCT/US2016/043996

9/10

’/- 1000 / 1002

INITIALIZING AN IMAGE

|

READING EACH TUPLE OF THE QUAD-TREE INDEX FOR THE SLICE

|

COMPUTING A PIXEL ARRAY IN THE IMAGE THAT CORRESPONDS TO EACH
TUPLE BASED ON THE POSITION OF THE TUPLE IN THE QUAD-TREE INDEX
FOR THE SLICE

/‘ 1008

RETRIEVING NODAL CONTENT FROM THE OCTREE BASED ON THE OFFEET
OF EACH TUPLE AND ASSIGNING THE NODAL CONTENT TO THE PIXEL
ARRAY

\
\
\
\
\
v 1
/ | . | _1104
1101— /___4___////
\ \ T /
\
\

1106

Il il 4
o3
N
-~
”
7

WO 2018/022011 PCT/US2016/043996

10/10

1200
1202 r

INITIALIZE MICRO_QTILIST AND INITIALIZE
CRD=QTI_CRD

1204

1206
CRO<OCTREE i FIND CORRECT MICRO_QiTI
DEPTH? NO— FOR SLICE
YES 1212
RESET MICRO_QT! POINTER TO HEAD OF
MICRO_QTILIST
+ 1214
RETRIEVE A MICRQ_QTI
IS MICRO_QT! N
ULLY RESOLVED?
YES
NG
Y 1218
DUPLICATE MICRO_QTI TO PROVIDE MICRO_UQT] AND
MICRO_LOTI
* 1220
FOR EACH TUPLE OF MICRO_QTI NOT RESOLVED,
RETRIEVE 8 CHILDREN AND REPLACE THE TUPLE IN
MICRO_UQTI WITH THE UPPER 4 CHILDREN AND
REPLACE THE TUPLE IN MICRO_LQTI WITH THE LOWER 4
CHILDREN
1224
¢ 1222 Y-
REPLACE MICRO_QTHIN MICRO_QTILIST WITH GET NEXT
MICRC_LQTI AND INSERT MICRO_UQT! INTO —> icro QT
MICRO_QTILIST AFTER MICRO_LQT! =
1228
- 1228

CRD=CRD+1 |« YES

MICRO_QTILIST

Fig. 12

International application No.

INTERNATIONAL SEARCH REPORT PCT/US 2016/043996

A CLASSIFICATION OF SUBJECT MATTER
GO6T 17/00 (2006.01)
GO6T 9/40 (2006.01)
B33Y 50/00 (2015.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F 1/00-17/50, GO6T 1/00-17/30, GO6Q 10/00-50/34, HO4N 9/00-9/38, 19/00-19/98, GO9G 5/00-5/42, B29C 67/00-67/24,
B33Y 50/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatSearch (RUPTO internal), USPTO, PAJ, K-PION, Esp@cenet, Information Retrieval System of FIPS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2011/0087350 A1 (3D M.T.P. LTD) 14.04.2011, abstract, paragraphs [0025],
[00501-[0052], [0062], [0088], [0091], [0097], [0101], [0106], [0109],

X [0113]-[0115], [0123]-[0124], [0128]-[0129], [0131] 1-2,5-6, 11, 13-15
Y 3,4,7-10, 12

Y US 2010/0082703 A1 (MICROSOFT CORPORATION) 01.04.2010, paragraphs 3,4,7-10, 12

[0045]-[0051], [0058]-[0060], [0067], [0070], [0082], [0085]
A US 2003/0197698 A1 (RONALD N. PERRY et al.) 23.10.2003 1-15
A EP 1574996 A2 (SAMSUNG ELECTRONICS CO., LTD) 14.09.2005 1-15
D Further documents are listed in the continuation of Box C. D See patent family annex.
* Special categories of cited documents: “T” later document published after the international filing date or priority

date and not in conflict with the application but cited to understand

“A” document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance “X” document of particular relevance; the claimed invention cannot be
“E” earlier document but published on or after the international filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other “Y” document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
“Q” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
“P” document published prior to the international filing date but later than ~ “&” document member of the same patent family

the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
06 February 2017 (06.02.2017) 09 February 2017 (09.02.2017)

Name and mailing address of the [SA/RU: Authorized officer

Federal Institute of Industrial Property,

Berezhkovskaya nab., 30-1, Moscow, G-59, V. Zhakovich

GSP-3, Russia, 125993

Facsimile No: (8-495) 531-63-18, (8-499) 243-33-37 Telephone No. (499) 240-25-91

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report

