wo 2015/116592 A1 || I0FI0 A0 00O OO 0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/116592 A1l

6 August 2015 (06.08.2015) WIPOIPCT
(51) International Patent Classification: (72) Inventor: RICE, Jeffrey, David; 821 Folsom Street, San
G06Q 50/10 (2012.01) Francisco, CA 94107 (US).
(21) International Application Number: (74) Agent: ALTMAN, Daniel, E.; Knobbe Martens Olson &
PCT/US2015/013094 Bear, LLP, 2040 Main Street, 14th Floor, Irvine, CA
. . 92614 (US).
(22) International Filing Date:
27 January 2015 (27.01.2015) (81) Designated States (unless otherwise indicated, for every
.] . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
L. DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
61/932,646 28 January 2014 (28.01.2014) us KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(71) Applicant: MOBOOM LTD. [US/US]; 821 Folsom MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

Street, San Francisco, CA 94107 (US).

PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

[Continued on next page]

(54) Title: ADAPTIVE CONTENT MANAGEMENT

HG. 1

(57) Abstract: Methods and systems for enabling a user to define a webpage and
webpage layout without knowing a programming language are disclosed. A library

of modules is provided usable to configure a layout and look of a webpage. The

import and map content
100

/’K
T S

Yes f/ “ Page layout
sl configured?
\\ 102 f’/«
\Y‘_“;“rp
iNo
Configure page layout
04

},@M

™

¥
S

.

o
,/§ nchronize cante\m\?\\ Yo
y Yes)

“‘Q\ 106 /

- o
No

Dynamically generate content
108

L

é Stop \3

user may add modules from the library to a webpage layout design area. The user
may configure a given module so as to control the look and feel of the content ac-
cessed and displayed by the module. Different instantiations of the same module
may be used to access content from ditferent sources, including sources using dif-
ferent file and data formats. Content from the different sources may be accessed
and stored in a schema-less database.

WO 2015/116592 A1 W00V VT AN RO

84)

SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, Declarations under Rule 4.17:

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

WO 2015/116592 PCT/US2015/013094

Adaptive Content Management

INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS
[0001] Any and all applications for which a foreign or domestic priority claim is
identified in the Application Data Sheet as filed with the present application, are hereby
incorporated by reference in their entirety under 37 CFR 1.57.
BACKGROUND OF THE INVENTION

Field of the Invention

[0002] The field relates to content management, such as content management for
electronic document content.

Description of the Related Art

[0003] A plugin is also known by other names, such as extension, widget, or
module. Plugins are typically built to work with external data and may be configured to
ingest content or display content on a webpage. Plugins may be used to extend the
functionality of a content management system to enable functionality to be added to a user’s

website.

SUMMARY

[0004] The following presents a simplified summary of one or more aspects in
order to provide a basic understanding of such aspects. This summary is not an extensive
overview of all contemplated aspects, and is intended to neither identify key or critical
elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to
present some concepts of one or more aspects in a simplified form as a prelude to the more
detailed description that is presented later. It is understood that while various aspects are
described, certain embodiments may include any combination of the described aspects, or
subsets thereof.

[0005] An aspect of the disclosure includes methods and systems for enabling a
user to define a webpage and webpage layout without knowing a programming language are
disclosed. A library of modules may be provided that is usable to configure a layout and look

of a webpage. The user may add modules from the library to a webpage layout design area

1-

WO 2015/116592 PCT/US2015/013094

(e.g., using a drag-and-drop or other technique). The user may configure a given module so
as to control the look and feel of the content accessed and displayed by the module. Different
instantiations of the same module may optionally be used to access content from different
sources, including sources using different file and data formats. Content from the different
sources may be accessed and stored in a schema-less database.

[0006] An aspect of the disclosure includes a computer-implemented method of
configuring a web page layout, the method comprising: providing a user access to a library of
modules usable to configure a layout of a webpage, wherein a given module from the library
of modules is user configurable, without the user programming in a programming language,
to control how content is to be displayed on a webpage; enabling the user to drag and drop
one or more modules from the library of modules onto a webpage layout design area to define
a webpage layout; providing, for a given module selected by the user, a module configuration
user interface, wherein the module configuration user interface enables the user to specify
what content is to be displayed on the webpage being designed and how the content is to be
displayed without the user having to program using a programming language, wherein the
module user interface comprises interfaces configured to receive at least: access information
for content from a source, the access information including at least a content locator; content
attributes comprising at least one attribute affecting how content from the source is displayed;
receiving a user specified layout for a first webpage specified by the user via the webpage
layout design area, wherein the user specified layout comprises a layout of a plurality of
modules, including: a first instantiation of a first module configured by the user to specify
access information and at least one attribute for a first content source that provides content
using a first content format; a second instantiation of the first module configured by the user
to specify access information and at least one attribute for a second content source that
provides content using a second content format, the second content format different than the
first content format; accessing content from the first content source based at least in part on
the user configuration of the first instantiation of the first module, including at least a portion
of the user specified access information for the first source, wherein the content from the first
content source utilizes the first content format; storing content from the first content source in

a schema-less data store; accessing content from the second content source based at least in

WO 2015/116592 PCT/US2015/013094

part on the user configuration of the second instantiation of the first module, including at
least a portion of the user specified access information for the second source, wherein the
content from the second content source utilizes the second content format; storing content
from the second content source in the schema-less data store; enabling the webpage to be
rendered, including the content from the first content source and the content from the second
content source.

[0007] An aspect of the disclosure includes a computer-implemented method of
configuring a web page layout, the method comprising: providing a user access to a library
of modules usable to configure a layout of a webpage, wherein a given module from the
library of modules is user configurable, without the user programming in a programming
language, to control how content is to be displayed on a webpage; enabling the user to
instantiate one or more modules from the library of modules onto a webpage layout design
area to define a webpage layout; providing, for a given module selected by the user, a module
configuration user interface, wherein the module user interface comprises interfaces
configured to receive at least: access information for content from a source, the access
information including at least a content locator; receiving a user specified layout for a first
webpage specified by the user via the webpage layout design area, wherein the user specified
layout comprises a layout of a plurality of modules, including: a first instantiation of a first
module configured by the user to specify access information and at least one attribute for a
first content source that provides content using a first content format; a second instantiation
of the first module configured by the user to specify access information and at least one
attribute for a second content source that provides content using a second content format, the
second content format different than the first content format; accessing content from the first
content source based at least in part on the user configuration of the first instantiation of the
first module, including at least a portion of the user specified access information for the first
source, wherein the content from the first content source utilizes the first content format;
optionally storing content from the first content source in a schema-less data store; accessing
content from the second content source based at least in part on the user configuration of the
second instantiation of the first module, including at least a portion of the user specified

access information for the second source, wherein the content from the second content source

WO 2015/116592 PCT/US2015/013094

utilizes the second content format; optionally storing content from the second content source
in the schema-less data store; enabling the webpage to be rendered, including the content
from the first content source and the content from the second content source.

[0008] An aspect of the disclosure includes a system, comprising: a network
interface configured to communicate over a network; a computing system comprising one or
more computing devices; a computer storage system comprising a non-transitory storage
device, said computer storage system having stored thereon executable program instructions
that direct the computer system to at least: provide, over the network, a user access to a
library of modules usable to configure a layout of a webpage, wherein a given module from
the library of modules is user configurable, without the user programming in a programming
language, to control how content is to be displayed on a webpage; enable the user to
instantiate one or more modules from the library of modules onto a webpage layout design
area to define a webpage layout; provide, for a given module selected by the user, a module
configuration user interface, wherein the module configuration user interface enables the user
to specify what content is to be displayed on the webpage being designed and how the
content is to be displayed without the user having to program using a programming language,
wherein the module user interface comprises interfaces configured to receive at least: access
information for content from a source, the access information including at least a content
locator; content attributes comprising at least one attribute affecting how content from the
source is displayed; receive, over the network, a user specified layout for a first webpage
specified by the user via the webpage layout design area, wherein the user specified layout
comprises a layout of a plurality of modules, including: a first instantiation of a first module
configured by the user to specify access information and at least one attribute for a first
content source that provides content using a first content format; a second instantiation of the
first module configured by the user to specify access information and at least one attribute for
a second content source that provides content using a second content format, the second
content format different than the first content format; access content from the first content
source based at least in part on the user configuration of the first instantiation of the first
module, including at least a portion of the user specified access information for the first

source, wherein the content from the first content source utilizes the first content format;

WO 2015/116592 PCT/US2015/013094

store content from the first content source in a schema-less data store; access content from the
second content source based at least in part on the user configuration of the second
instantiation of the first module, including at least a portion of the user specified access
information for the second source, wherein the content from the second content source
utilizes the second content format; store content from the second content source in the
schema-less data store; enable the webpage to be rendered, including the content from the
first content source and the content from the second content source.

[0009] An aspect of the disclosure includes a computer storage system comprising
a non-transitory storage device, said computer storage system having stored thereon
executable program instructions that direct a computer system to at least: provide a user
access to a library of modules usable to configure a layout of a webpage, wherein a given
module from the library of modules is user configurable, without the user programming in a
programming language, to control how content is to be displayed on a webpage; enable the
user to instantiate one or more modules from the library of modules onto a webpage layout
design area to define a webpage layout; provide, for a given module selected by the user, a
module configuration user interface, wherein the module configuration user interface enables
the user to specify what content is to be displayed on the webpage being designed and how
the content is to be displayed without the user having to program using a programming
language, wherein the module user interface comprises interfaces configured to receive at
least: access information for content from a source, the access information including at least a
content locator; content attributes comprising at least one attribute affecting how content
from the source is displayed; receive a user specified layout for a first webpage specified by
the user via the webpage layout design area, wherein the user specified layout comprises a
layout of a plurality of modules, including: a first instantiation of a first module configured
by the user to specify access information and at least one attribute for a first content source
that provides content using a first content format; a second instantiation of the first module
configured by the user to specify access information and at least one attribute for a second
content source that provides content using a second content format, the second content format
different than the first content format; access content from the first content source based at

least in part on the user configuration of the first instantiation of the first module, including at

WO 2015/116592 PCT/US2015/013094

least a portion of the user specified access information for the first source, wherein the
content from the first content source utilizes the first content format; store content from the
first content source in a schema-less data store; access content from the second content
source based at least in part on the user configuration of the second instantiation of the first
module, including at least a portion of the user specified access information for the second
source, wherein the content from the second content source utilizes the second content
format; store content from the second content source in the schema-less data store; enable the
webpage to be rendered, including the content from the first content source and the content
from the second content source.
BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Embodiments will now be described with reference to the drawings

summarized below. These drawings and the associated description are provided to illustrate

example embodiments, and not to limit the scope of the invention.

[0011] Fig. 1 is an overview of an example overall process for handling content.

[0012] Fig. 2 illustrates an example process for importing content.

[0013] Fig. 3 illustrates an example of how imported content is configured for
display.

[0014] Fig. 4 illustrates an example of how attributes can be selected when
configuring content for display.

[0015] Fig. 5 shows an example of how a page layout can be configured.

[0016] Fig. 6 illustrates an example process for rendering pages.

[0017] Fig. 7A illustrates an example relationship between content sets, items,
and attributes.

[0018] Fig. 7B illustrates the optional use of a unique ID to reference a respective
item.

[0019] Fig. 8A illustrates example information that enables a CMS to import and
map a data feed.

[0020] Fig. 8B illustrates example information that may be pertinent for XML
data feeds.

WO 2015/116592 PCT/US2015/013094

[0021] Fig. 8C illustrates example information that may be pertinent for
password-protected files.

[0022] Fig. 8D illustrates example information that may be pertinent for files
stored on an FTP.

[0023] Fig. 9 shows an example embodiment that enables manual verification and

control over the mapping process.

[0024] Fig. 10 shows a screenshot of an example embodiment for importing a
data feed.
[0025] Fig. 11A shows a screenshot of an example embodiment of a user

interface for configuring an Image module.

[0026] Fig. 11B shows a screenshot of an example embodiment of the user
interface for configuring an Image module, including a menu for selecting attributes from a
content set.

[0027] Fig. 11C shows a screenshot of an example embodiment of the user
interface for configuring an Image module, including attributes of a content set.

[0028] Fig. 12A shows a screenshot of an example embodiment of a user
interface for configuring a page layout, including a blank preview screen.

[0029] Fig. 12B shows a screenshot of an example embodiment of the user
interface for adding a module onto a page layout.

[0030] Fig. 12C shows a screenshot of an example embodiment of the user
interface for configuring a page layout, including an un-configured Image module.

[0031] Fig. 12D shows a screenshot of an example embodiment of the user
interface for configuring a page layout, including a configured Image module.

[0032] Fig. 12E shows a screenshot of an example embodiment of the user
interface for configuring a page layout with several configured modules.

[0033] Fig. 12F shows a screenshot of an example embodiment of a generated
webpage displayed in a web browser.

[0034] Fig. 13 shows a screenshot of an example embodiment of the user

interface for importing a data feed.

WO 2015/116592 PCT/US2015/013094

[0035] Fig. 14 shows a screenshot of an example embodiment of the user
interface for configuring the synchronization details of a data feed.
[0036] Fig. 15 shows a screenshot of an example embodiment of the user

interface for a marketplace, which allows users to add additional modules.

DETAILED DESCRIPTION

[0037] Described herein are example systems and methods for managing content.

[0038] An example adaptive content management system (CMS) is disclosed that
is configured to interact with data without requiring a schema (although optionally a schema
may be used). The example content management system (CMS) enables the management
and publishing of digital content. In certain embodiments, the content can be in any digital
form, such as text, images, videos, and/or audio. The CMS may publish content as pages
(e.g., webpages) and/or export content through data feeds to other applications and user
interfaces.

[0039] An example adaptive CMS will now be described. The adaptive content
management system may auto-detect and map content and optionally store the content in a
schema-less data store. With a schema-based database, it may be challenging to push data
into the database as the data has to perfectly fit the schema. By contrast, with a schema-less
data store, data can be pushed directly to the schema-less data store without having to
massage the data to match a schema. A standardized user interface (UI) may be used for
content (e.g., all content corresponding to the user interface). The described example
technique of interacting with content enables the content management system to dynamically
generate webpages based at least in part on imported content without requiring custom
plugins or custom software development (although such may be used). Optionally, when
creating the design for the dynamically generated webpages, users can interact with different
imported data feeds through a standardized Ul without the need for additional content-
specific software.

[0040] An illustrative example case will now be described to provide context. In
this example, a user manages her digital photographs through an online image-management

service. The user wants to display those images on a separate portfolio website (operated by

WO 2015/116592 PCT/US2015/013094

an entity different than the entity that operates the online image-management service), but she
wants to continue to manage the photos through the image-management service. This
situation is common among users of the image-management service, and so the image-
management service may enable its users to export their photographs through a data feed so
that the photographs can be displayed on their users’ websites.

[0041] In this example, the user’s portfolio website is built with a conventional
CMS (although in other examples a non-conventional CMS may be used), and so a relatively
easy way for the user to import the data feed is to look for a specific plugin that imports that
specific data feed and then displays that content on a webpage.

[0042] A plugin is also known by other names, such as extension, widget, or
module. The exact model that each CMS uses to define a plugin may be different, but in
general, with respect to a CMS, the term refers to separate software that extends the core
functionality of a CMS. A plugin built to work with external data typically handles both
ingesting the content and displaying the content.

[0043] Unfortunately, with the conventional model, a plugin will typically work
with only one type of content having a specific schema. Therefore, if the user wants to
import a data feed from a separate image-management service, then she must look for a
different plugin that is designed for that specific service. To understand why a conventional
plugin will only work with one type of content, the following description of conventional
plugin development and how a conventional CMS works is provided.

[0044] A conventional CMS stores data in a database that uses a particular
structure or schema. To add custom content, such as a data feed from a separate image-
management service, conventionally a plugin developer must define a new database table that
fits the schema of the content. Because this is a custom table, the developer must then build
basic functionality that defines how users can interact with the content. This functionality is
often summarized as create, read, update, and delete (CRUD).

[0045] The approach of a conventional CMS has some clear disadvantages,
including some or all of the following:

. To use a particular data feed, a user must find a plugin for that particular

feed.

WO 2015/116592 PCT/US2015/013094

. If a plugin does not exist for a particular data feed, then to use the feed, a
user must develop a new plugin.

. Even if a plugin exists, it will often perform certain functions, but not all
the functions a given user wants or needs (e.g., a plugin might import images but not
associated captions or alt text). This situation conventionally requires custom development
to add the missing functionality.

. Adding functionality to another developer’s plugin might not be possible
or feasible if the code for the plugin is not available to the user for modification.

. The behavior of a conventional plugin is dependent on the content that the
plugin interacts with. So users must find a plugin that has both the behavior that they want
(e.g., formats the content for display in a desired manner) and that works with the content
source, making it more difficult to find appropriate plugins.

. Using the conventional approach, the administration user interface (UI) of
different plugins may work differently. This non-standardized approach makes the user
experience confusing. Because a given conventional plugin uses custom CRUD
functionality, the plugin developer must decide how the plugin should interact with the
administration Ul of the CMS. For example, suppose for plugin 1, developer X puts certain
settings in menu A and other settings in menu B. For plugin 2, developer Y puts settings in
menu C and requires that a user copy and paste a specific code snippet onto each page. These
inconsistent approaches are commonly used by conventional content management systems,
and degrade the user experience.

. If a CMS changes its administration Ul in a new version, then a plugin that
was dependent on the previous version Ul might no longer work properly. By way of
illustrative example, suppose in version 1.0 of a CMS, developer X put certain settings in
menu A and menu B. If Version 2.0 of the CMS no longer supports menu B, X’s plugin can
no longer be properly configured.

. Plugins typically need to be updated (i.e., the plugin would require
additional software development) if the data feed provider changes the structure of the feed.
Because of the nature of a schema, conventionally a plugin designed to work with content of

one particular schema will only work with content that fits that schema.

-10-

WO 2015/116592 PCT/US2015/013094

. When a CMS releases a new version, a plugin might not work with that
new version, and a developer would have to migrate the plugin to the new version (i.e., the
plugin would require additional software development). Because a conventional CMS stores
and calls content in a particular manner, references to that content must take into account that
particular manner. Therefore, if that manner of calling content changes, then a plugin might
no longer work with the CMS.

[0046] Often, content management systems or plugins support multiple feeds by
supporting common schemas. If the schema is broadly adopted, then the CMS can use one
plugin to support many data feeds. However, even if many data feeds are supported via a
broadly adopted schema, there will typically be many data feeds that are still not supported
and would need different plugins.

[0047] Below, a Program Listing section is provided that includes several
illustrative example markups for three different example data feeds: an Extensible Markup
Language (XML) feed, a JavaScript Object Notation (JSON) feed, and a comma-separated
values (CSV) feed. In this example, these three data feeds all describe the same information,
but these three feeds are structured using three different respective markup languages. Using
the conventional approach, a plugin designed for the schema of one feed would not work
with the other feeds.

[0048] In an example embodiment, a content management system (CMS) as
described herein can accept and display content regardless of schema by automatically
detecting and mapping the schema of imported content (optionally without user intervention)
and then by storing the content in a schema-less database. By not committing to or being
limited to a particular type of content, the CMS can expose the content to a plugin (e.g.,
widget, module, or extension) either through an API (application programming interface) that
contains methods for calling the content or by injecting the content into the module in the
form of a data type such as an array. Because each type of content may optionally be
referenced in the same way, the CMS can use a standardized user interface (UI) for multiple
plugins or every plugin (e.g., widget, module, or extension). Optionally, the CMS also
enables the user of the CMS to determine if content is appropriate for the plugin. Thus, users

do not have to create a schema defining the content. With this treatment of content, plugins

-11-

WO 2015/116592 PCT/US2015/013094

can work with and receive imported content (e.g., any imported content), regardless of source
or schema.

[0049] Accordingly, several optional advantages (not all of which need be
achieved by a given embodiment) of one or more aspects are as follows:

. Any plugin (also known by other names such as a widget, module, and
extension) is able to accept any imported content without custom software development, and
will attempt to render such content. The user is enabled to determine if the way the content is
rendered is as the user intended.

. Users without software development abilities can combine several
different data feeds for use on their webpages (or otherwise) without installing custom
plugins and without employing a software developer.

. Changes to the structure of a data feed may be auto-detected and mapped
without requiring additional software development to conform to such changes.

. A CMS can use a standardized user interface (having the same look and
feel) for many or all plugins offered by the CMS, including custom plugins developed by
third parties and submitted to the CMS for use by other users. For example, a third-party
developer may specify to the CMS which fields are needed (e.g., a text field called “name”),
and the CMS determines the appearance of the fields (i.e., the UI), how content will be
entered into the fields (e.g., via drop-down menu, text field, check box), and what types of
content will be allowed (e.g., static text or references/links to imported content). The third-
party developer may then refer to the content in fields, for example, using methods in an API
or references to a data type (e.g., an array).

. The content of some or all of an entire website can be changed by just
synchronizing a different data feed—also, without the need for additional software
development.

[0050] An example embodiment of a process of importing and rendering content
for a given page (e.g., one or more webpages) with an adaptive content management system
(CMYS) is illustrated in Fig. 1. The example process will be described in greater detail with

reference to other figures.

-12-

WO 2015/116592 PCT/US2015/013094

[0051] Referring to Fig. 1, at state 100, the CMS imports and maps content from a
data (content) feed specified by a user. A state 102, a determination is made as to whether a
page layout (for the page which will use content from the feed) is already been configured.
The page layout describes which content is included in a generated page. If a page layout is
not already configured, then a page layout is configured at state 104. Once the page layout is
configured, optionally the content can be synchronized at state 106; for example, a
determination may be made as to whether the feed has been updated since it was last
imported. If the feed has been updated, then the content for the page may be
updated/synchronized. With the content imported and the page layout configured, at state
108 the CMS may dynamically generate pages (to be rendered on a user terminal, such as a
browser equipped computing device) based at least in part on the content from the feed.

[0052] Import Content

[0053] An example import process (corresponding to state 100 in Fig 1) is
illustrated in Fig. 2. To identify the feed, the adaptive CMS uses information about the feed
200, such as the location of the feed (e.g., the URL or local directory) and information on
how to access the feed (e.g., username, password, port, server, and/or path). For example,
optionally the location and/or access information may be received from a user, where the
information may be entered by the user in fields presented by a data feed specification user
interface. Other embodiments, such as those discussed below and illustrated in Fig. 8A — D,
may use more or less feed information. Optionally, the CMS may verify the feed information
to determine whether it is valid or not. For example, if, when attempting to retrieve data
from the feed, the CMS receives an HI'TP 404 Not Found error, then the CMS determines
that the URL provided is invalid. Optionally, if the information is determined to be invalid,
the user may be informed via a notification user interface and the CMS may prompt the user
to enter correct feed information. If the CMS receives new information from the user, the
CMS may again verify the information.

[0054] If the feed information is valid, at state 202, the CMS can begin mapping
the content. By way of example, the content may be in the form of a flat file, XML, JSON,
CSV, and/or other form.

13-

WO 2015/116592 PCT/US2015/013094

[0055] If the data is well formed (has proper syntax), then the CMS can accurately
map the data 208; otherwise, the process can optionally return to the input state 200.
Optionally, certain embodiments may guess or infer the appropriate structure of malformed
data (e.g., HTML code with syntax errors). For example, the CMS may search for a specific
pattern (e.g., using a regular expression) of malformed markup (e.g., an opened but not closed
element, unescaped character entities, malformed HTML tags, improperly nested HML
elements, etc.). Optionally, the CMS may correct certain malformed date (e.g., by replacing
the malformed markup (e.g., by closing the element before the next element is opened)).
Generally, with respect to a markup language, well-formed data complies with the basic
rules/syntax of its markup language (e.g., all opened elements are also closed, elements are
properly nested so that they do not overlap, proper delimiters are used, etc.).

[0056] Conventional approaches for automatically mapping data force content to
fit a particular schema. Such conventional approaches fail to alleviate disadvantages
mentioned previously. Optionally, rather than using such conventional approaches, the
example embodiment illustrated in Fig. 2 uses data mapping to create a CMS database based
at least in part on the relationship of the imported data (e.g., see the example Program
Listings below). So once mapped, the data is optionally stored in a schema-less database 210
that does not rely on a fixed data model. Thus, the organization of the database can
adaptively change in the future in response to changes in the structure of the content. An
example process comprises storing the imported content through key-value stores (e.g.,
highly optimized key-value stores, document-based store that stores documents made up of
tagged elements, etc.), such as in the data structure of a programming language (e.g., an
associative array), although other techniques may also be used.

[0057] For example, the illustrative Program Listing below includes an
associative array based on the relationship of the data in any one of the feeds shown in the
Program Listing.

[0058] Thus, using key-value stores, data may be stored in a programming
language data type or an object, and so a fixed data model is not required. Indeed, utilizing
this technique of content import and storage, the three different example data feeds shown in

the Program Listing section would each be stored and referenced in the same way because the

-14-

WO 2015/116592 PCT/US2015/013094

relationship of the information (and the information itself) is the same across all three data
feeds.

[0059] It is understood that certain embodiments may not utilize mapping (e.g.,
where the user defines his or her own content set rather than using a third party feed).

[0060] Configure a Page Layout

[0061] In an example embodiment, to use imported content, the adaptive CMS
applies the content set model, but other models may also be used. For example, another
suitable model uses the columns and rows technique, which represents data like a
spreadsheet: separating data into individual rows that are defined by columns. For example,
in a spreadsheet of user information, each user might be represented by a separate row, and
the columns that define each user might include Name, Email, Password, and Phone number
columns. A page layout can then be configured to use certain columns. The page layout may
be used to generate dynamic web pages when passed different rows. The content set model
(described below) is similar to the columns and rows model, but the content set model is
more abstract, and it, therefore, has certain advantages for conceptualizing complexly
organized data. For example, deeply nested elements where one element is actually an array
(e.g., an array of images) of arrays (e.g., alt text, link, and URL of the image) may be utilized.

[0062] The content set model comprises a high-level organization, an example of
which is illustrated in Fig. 7A. A given imported data feed is organized into a separate
content set 700. For example, a data feed for a blog might be a content set. The content set
is then organized into items 702. For example, if the content set is the feed for a blog, then a
given item may correspond to an individual blog post. Each item is then organized into one
or more attributes 704. For example, if each item is an individual blog post, typical item
attributes might, in this example, include title, author, posted date, categories, and blog body.

[0063] In the content set model, each item of a given type has the same attributes,
but the value of the attributes might be different across items. Consider an example of a
content set based on a blog: each blog post (each item) has a title (an attribute), but the value
of the title is probably different for each blog post—the value of the title for one blog post
might be "How to Properly Steep Peppermint Tea," and the value of the title for another blog

post might be "The Secret to Preparing Al Dente Pasta.”

-15-

WO 2015/116592 PCT/US2015/013094

[0064] Using the model shown in Fig. 7A, attributes of any imported content can
then be used to dynamically generate pages, such as web pages. The page generation process
is described in greater detail below. In the example embodiment illustrated in Fig. 5, the
layout of a page is determined, at least in part, by assigning attributes (such as 504, 506, and
508) to modules (such as 502). This page layout is stored by the CMS so that the renderer
(which is described later) can access it in order to properly generate a page. In the content set
model in the context of the disclosure herein, a module (also referred to by other names such
as a plugin, widget, or extension) is software that interacts with the CMS to perform a
specific function such as display text or an image. Modules may be used to generate each
element of the page layout. For example, text on the page might be generated by a Text
module, videos on the page might be generated by a Video module, and an interactive map on
the page might be generated by a Map module.

[0065] In this example embodiment, each module is encapsulated to first accept
input in high-level terms (e.g., text, image, or HIML), to execute code that transforms the
input in a particular way (e.g., transform a URL of an image into HTML describing the
image), and to output the transformation. A given module in this example does not expect
the original content to fit a particular schema or to be from a particular source, and so a
module can accept any attribute of a given item type of any content set.

[0066] This example process also enables a module to interact with a given item
attribute through a standardized administrative user interface (Ul). As described earlier, the
conventional approach requires the developers of custom modules (or plugins) to create their
own database table and CRUD functionality, which prevents a conventional CMS from using
a standardized administrative Ul for custom modules. However, with the adaptive CMS,
because modules are not dependent on specific content and because the content conforms to
the content set model (as described earlier and illustrated in Fig. 7A), the adaptive CMS is
able to create a standardized Ul for each module, including for custom modules designed by
third-parties. For the CMS to create the Ul, the developer of a module gives the CMS a high-
level description about what type of fields will be needed. For example, this information may
include type of content (e.g., image, text, integer), the name of the element, a label to appear

in the Ul, and so on. The CMS may start with a template defining the appearance the

-16-

WO 2015/116592 PCT/US2015/013094

administrative UL, and then the CMS populates the template with this descriptive
information. This way the CMS creates a Ul that is both customized to the needs of each
module, and standardized across the modules.

[0067] The CMS may host or provide access to a library of modules from which a
user can select and configure to control the look and feel of data (accessed from data sources
via the module) that will be displayed on a page. An example screenshot of the interface for
the library is shown in Fig. 10. The example shows some modules grouped into categories
according to use 1000, other uncategorized modules 1002, and a button that, when clicked,
displays additional modules 1004. For example, the library may include an image slide
module, a blog module, a news feed module, a financial data module, a sports score module,
a video playlist module, a graphing module, a responsive menu module, a shopping cart
module, a map module, a search module, a text module, a navigation module, a markup
module, a layout module, a content module, an accordion menu module, a carousel module, a
share page or content module, a social media module, and/or other modules.

[0068] As will be discussed below, the user can configure a given module for
their specific use without having to code the module and without having to know the schema
used by the data source. Thus, user configuration of a module, rather than user coding of a
module, enables a module to be used with multiple data sources and for different pages. For
example, menu selections may be provided (e.g., via a drop down menu or otherwise) for
various item attributes from which the user may select. A given module may be used with a
variety of unrelated content sources. By way of illustration, the same image slide module
(used to present a slide show of images on a webpage) may be used to obtain images feeds
from multiple data sources (e.g., Picasa®, Flickr®, Facebook®, Photobucket®, etc.). The
user is spared from learning the particulars of the data sources interface or schema, and from
having to obtain code or ask for customization from the data source. Further, as noted above,
optionally the various modules available from the library have the same look and feel with
respect to the user configuration interface. Having a consistent look and feel makes
configuration of the modules less confusing and more efficient for the user. Optionally, the
CMS may include a module uploading interface which enables users to contribute modules to

the library for use by other users.

-17-

WO 2015/116592 PCT/US2015/013094

[0069] To add content to a module, users associate attributes from a content set
with the fields of a module. One example module is the Image module. For example, Fig.
11A illustrates an image module configuration user interface with common fields that might
be used for an Image module, such as:

. Current Image 1100. For example, users may set this field to an attribute
that contains the URL (or other locator) of an image.

. Image drop-down menu 1102. Users may use this menu to manually
select an image that they had previously uploaded to the site.

. Alternate Text 1104. If the image cannot be displayed, then the text
entered in this field is displayed instead.

. Link 1106. Once the website is rendered, if visitors click the image, they
will be directed to the URL entered in this field.

. Apply button 1110. This button allows users to save configuration
settings.

[0070] A “remove widget” control is optionally provided. In response to a user
activation of the “remove widget” control, the CMS will delete the module. A “reset” control
is optionally provided. In response to a user activation of the “reset” control, the module
fields will be reset to their initial state (e.g., empty).

[0071] Optionally, a preview mode is provided where, in response to a user
configuration and user preview instruction, the CMS causes a preview of how a page (or a
portion thereof) will look (e.g., when rendered by a browser) given the current user-specified
module configuration. Fig. 12A illustrates an example instance of a preview user interface
before a user has added any widgets. A library of widgets 1200 (which is also separately
represented illustrated in Fig. 10) that users can use to build the page layout is illustrated at
the top of the user interface. A navigation menu 1204 to navigate the CMS is shown on the
left of the user interface. The preview itself is represented by layout area user interface 1202.
Fig. 12D depicts the example preview screen (with the navigation menu cropped out) after a
user has added and configured an Image module 1206.

[0072] In the example embodiment illustrated in Fig. 3, the user interface of a

module 300 has three fields: field 1 302, field 2 306, and field 3 310—although, the number

18-

WO 2015/116592 PCT/US2015/013094

of fields may vary between modules. For example, a module for an image might have four
(or other number of) fields: image, alt text, image link, and caption. To facilitate the
generation of dynamic pages, the fields accept references to attributes, as shown by 304, 308,
and 312. A module may determine how content is displayed/rendered. For example, if the
module is configured to display an image and associated text (e.g., alt text and a caption), the
module may determine the resolution the image will be displayed in, the text font, the text
font size, and the position or other formatting of the text. The specifics of dynamically
generating a page are described in greater detail below.

[0073] While Fig. 3 has attributes already selected for each of its fields, the
example embodiment shown in Fig. 4 uses a menu 400 to illustrate that any available
attribute can be applied to any of the fields. For example, the function of a given module
could be to display an image (from a content source). In this example, one field might accept
an attribute containing a URL for the image and another field might accept an attribute
containing a caption for the image. Thus, rather than requiring a user to program a module
for a specific content source, the user may specify which attribute is to be applied to which
field via an easy to use menu interface (by selecting a desired menu entry), where the menu
choices for each field may include all the attributes applicable to the module. For example,
the menu selections for a module configured to display an image may include: image, link,
and caption.

[0074] The module may optionally treat each attribute the same, so the user
determines and specifies which attribute is appropriate for which field. For example, if one
field is designed to accept the URL for an image, a user can select an attribute (from the
menu 400) that contains the caption for that image. In that case, the module would still use
the attribute, and the module would attempt to display an image using the caption as the
URL. The resulting HTML would most likely not display an image. While this method has
the possibility to, for example, create broken images, the method also allows the content of
any data feed to work with any module.

[0075] In an example embodiment, for the CMS to implement the administrative
UI of a module, a module communicates to the CMS an identification of what high-level

content it needs (e.g., text for two text fields and an image for one image field), and the CMS

-19-

WO 2015/116592 PCT/US2015/013094

applies a standard UI (as described earlier and as illustrated in Fig. 3). Optionally, along with
the fields, the module might also communicate clarifying information such as the name of the
fields (e.g., Caption, Alt Text, and Image), the arrangement of the fields (e.g., first Image,
then Alt Text (alternative text associated with an image that serves the same purpose and
conveys the same or corresponding essential information as the image), and then Caption),
and tooltips text (e.g., “Alt Text is alternative text that will be displayed if the image cannot
be rendered”). As is understood, a tooltip may be in the form of a hint or prompt that appears
when a user hovers a cursor/pointer over and/or adjacent an item for a specified period of
time.

[0076] Fig. 5 illustrates an example of a page layout 500 that includes two
modules (although fewer or additional modules may be added by a user). While Fig. 3 shows
the Ul that enables a module to use an attribute, Fig. 5 illustrates how modules display
content based on those attributes. The modules can be arranged in any order, and each
module might have a different functionality. For example, if the original data feed contained
URLs for images, then one module might use the URLSs to display the images, while another
module might use the URLSs to display links to the images. The module determines how the
data is displayed. The CMS provides a user interface via which the user can select modules
from a module library and drag and drop the modules onto the page layout interface to
specify where the data from a given module is to be displayed on the page. Fig. 12B
illustrates an example process of dragging an Image module 1208 onto a page. The module
will be inserted at the location indicated by outline1210. In Fig. 12C, the Image module has
been placed on the page. A gray box and outline 1212 indicate the placement of the module.
The CMS will then store the corresponding layout in memory.

[0077] The example page layout in Fig. 5 comprises two example modules: 502
and 510. In this example, module 502 is set to use three attributes: 504, 506, and 508.
Module 510 is also set to use three attributes: 512, 514, and 516. In this example, module
502 is configured to display the attributes as circles and module 510 is configured to display
the attributes as squares. While each module uses a different method to display these

attributes (module 502 displays the attributes as circles and module 510 displays the

-20-

WO 2015/116592 PCT/US2015/013094

attributes as squares), the content that the modules display is based on the content of each
attribute.

[0078] Referring to the blog example described earlier, if a page layout represents
a blog post, then one module might display a heading by using a title attribute, another
module might display an author's name using an author attribute, and another module might
display the text of the blog using a body attribute. The module may display a given attribute
accordingly (e.g., the title may be displayed first with a first font size, the author’s name may
be displayed centered just beneath the title in a second font size that is smaller than the first
font size, and the blog body may be displayed beneath the author’s name in a third font size).

[0079] Fig. 7B illustrates an embodiment that contains an identifier (e.g., a unique
ID 706) for each item. The ID can be used as a parameter to reference each item 702, but
other techniques for referencing a particular item may also be used. So while the page layout
500 specifies particular attributes, the layout does not specify a particular item, meaning that
one page layout can be used to display the attributes of any item in a content set. Using the
previous blog example, a blog post layout can be created once using one or more modules,
and then the same blog post layout (the same modules) may be used to display each blog post
in a content set.

[0080] Generate a Page

[0081] An example page generation process will now be described with reference
to Fig. 6, which illustrates an example page layout technique that may be executed by the
CMS to generate a page (e.g., a webpage). A request 600 is sent to the renderer 610.
Typically, this request would be sent by a web browser or other requester hosted on a user
terminal (e.g., a mobile communication device (e.g., a mobile phone), a desktop computer, a
laptop computer, a tablet computer, a smart television system, etc.) over a network (e.g., the
Internet) to the renderer 610 which receives and processes the request. The renderer 610 may
optionally be hosted on a system separate from the content source (physically separate from
and operated by a different entity than the content source), or the renderer 610 may be hosted
on the same system as the content source. The renderer 610 may comprise a software engine,

which may be part of the CMS.

21-

WO 2015/116592 PCT/US2015/013094

[0082] Referring again to Fig. 6, the renderer 610 receives several requests (e.g.,
from the user browser): requests 602, 604, 606, and 608 in this example. In this example,
each request includes a unique ID, which is a request for a particular item. For example,
request 602 includes "id=triangle," which is a request for the item with the unique ID equal to
"triangle."

[0083] As described earlier, the ID 706 determines, at least in part, what item 702
is displayed, and the page layout 612 (defined using one or more modules) determines what
attributes 704 to display and how to display those attributes. For example, request 602 is a
request for the item with the ID "triangle.” As item 616 (corresponding to the “triangle” item)
illustrates, that item has several attributes, and the page layout 612 requests three of these
attributes (which may be fewer than the total number of attributes associated with the item).

[0084] The renderer 610 then generates webpages 624 based at least in part on the
requested items 600 and the page layout 612. For example, the request for "id=triangle" 602
causes the renderer 610 to generate a webpage represented by generated page 626.

[0085] With this process, a single page layout can be used to generate multiple
webpages with different content. The data feeds shown in the Program Listing section would
each generate one content set with three items, and one page layout could therefore be used to
create three pages in that instance.

[0086] Optionally, the page layout, the renderer, the code for the modules, and/or
the generated webpages may reside on the CMS.

[0087] Process Overview of Example Embodiments

[0088] To further elucidate the process of the first example, this section will
describe a hypothetical example where a user imports a data feed, configures a page layout,
and where the renderer generates a webpage. To provide additional clarification, this section
will also reference example screenshots of the user interface (Ul) for an example embodiment
of the CMS, but other UI designs are also suitable.

[0089] In the hypothetical example, a user wants to import an XML feed that
contains a list of products. This XML feed is shown in the Program Listing section. The

user then wants to use this feed generate an individual webpage for each product.

[0090] Import

20

WO 2015/116592 PCT/US2015/013094

[0091] To ensure that the data feed is accurately mapped, the user provides the
CMS with following details about the feed (a screenshot of this example step is shown in Fig.
13):

. Name 1300. The Name enables a user to later distinguish between
multiple content sets. Because the name optionally is only used to provide clarity to the user,
the name could be any word, phrase, number, etc. In the hypothetical example, the user used
the name “Products,” so the CMS will refer to the feed as the “Products” content set.

. File Format 1302. The File Format specifies how the file is encoded and
what markup language is used. In the hypothetical example, the feed is in XML format.

. Location 1304. The Location field specifies how the file is stored (e.g., if
the file is stored on an FTP, on the web, or locally). In the hypothetical example, the feed is
located on the web.

. XML Document Element 1306. As described previously (and as shown in
Fig. 7A), the CMS may organize data feeds into separate items. This field asks for the
document element that surrounds each item in the file. In the hypothetical example, this
element is called “tea.”

. ID 1308. As described previously (and as shown in Fig. 7B), each item
may be assigned a unique ID. This field asks for the name of the element/field in the source
data containing the unique ID (which can be used to uniquely identify the record). In the
hypothetical example, this element is called “id.”

. URL 1310. The URL is the location of the data feed. In the hypothetical
example, the URL is “http://example.com/feeds/teas.xml.”

. Username 1312. If the feed is password protected, a username might be
required, and so the user name may be inserted into this field. In the hypothetical example,
the feed is not password protected, so this field is left blank.

. Password 1314. If the feed is password protected, a password may be
required, and so the password may be inserted into this field. In the hypothetical example,
the feed is not password protected, so this field is left blank.

[0092] Once the details have been entered, the user clicks the “Create” control

1316 to begin the mapping and import process (as shown in Fig. 2). The preceding are

23

WO 2015/116592 PCT/US2015/013094

optional features details of an example embodiment, and different, more, or fewer features
may also be used. Additional discussion of example features and details that may be
beneficial to the import step is provided below in the Additional Example Embodiments
section.

[0093] In this example, the CMS maps the XML data feed so that there are three

items, because the data feed has three tea elements, and each item has the following

attributes:
. id
. name
. caffeine
* type
. description
. price
. image
. thumb
[0094] Each attribute corresponds to an element in the data feed. As discussed

above, the CMS optionally stores the data in a schema-less database (see, e.g., block 210, Fig.
2), and an optional storage method involves storing the imported content in key-value stores
such as in the data structure of a programming language (e.g., an associative array), but other
methods may be used.

[0095] Once the data feed has been mapped and stored as the “Products” content
set, the CMS displays a configuration user interface to the user (an example of which is
shown in Fig. 14), but other methods of confirming that the content set successfully imported
may be used. The configuration screen provides the user with information about the last time
the content set was updated via an update status user interface 1406.

[0096] Because the content of the feed is controlled externally to the CMS, the
content of the feed and the content stored in the CMS might become unsynchronized. To
keep the content synchronized, the user can either (1) manually synchronize the content by
manually activating a “run batch update” control 1416 or (2) set a reoccurring update via an

update scheduling user interface 1408 — 1414, which enables the user to specify a start time

24-

WO 2015/116592 PCT/US2015/013094

and the update period (e.g., hourly, every 4 hours, daily, weekly, etc.). The manual and auto-
synchronization features are further discussed below in the Additional Example
Embodiments section.

[0097] Using the example configuration user interface illustrated in Fig. 14, the
user can configure how the CMS treats updated content. For example, if the Add to Existing
Data Set function is enabled (via control 1400), tea elements deleted from the feed are not
deleted from the synchronized content set, but any updates to tea elements (e.g., if a
description is changed) are updated in the synchronized content set. However, if instead, for
example, if the Replace Data Set function is enabled (via control 1402), any tea elements
deleted from the feed are deleted in the synchronized content set.

[0098] Additionally, the configuration user interface illustrated in Fig. 14, enables
the user to adjust/modify the details that she entered initially via fields 1300 — 1314 in case
any of the details of the feed change in the future. Optionally, the user may save such
modifications by activating the Save control 1404, but other methods for saving changes may
be used.

[0099] Configcure a Page Lavout

[0100] Once the feed is imported, the user can configure a page layout to use the
imported content. A depiction of a blank, un-configured layout area user interfacel202 is
shown in Fig. 12A. To build the page layout, the user uses modules. As described earlier
(and as shown in Fig. 5), optionally every element in the page layout is a module. For
example, to add an image to a page, the user would add an Image module, and then configure
the module, through its Ul, to accept the URL (or other locator) of an image (which is
described in more detail later and shown in Figs. 11A — C). To add an interactive map, for
example, the user would add and configure a Map module.

[0101] As described earlier (and illustrated by Figs. 3-4), optionally each module
will accept attributes from any content set, which means that any imported data feed may
provide these attributes. Therefore, when selecting a module, the user looks/searches for a
module that performs a particular action, such as a module that displays text or a module that

displays an image.

5.

WO 2015/116592 PCT/US2015/013094

[0102] Some modules are available by default, and the user can select these
modules from the toolbar 1200 on the same screen as the page layout area user interface
1202. Referring to Fig. 15, a user interface 1502 is optionally provided via which the user
can also select and obtain other modules from a widget marketplace. In this embodiment, the
widget marketplace contains modules created and submitted by third-party developers. The
1200 toolbar and widget marketplace 1502 are example techniques which may be used to
provide users with a variety of modules from which to select, but other techniques may also
be used.

[0103] Referring to Fig. 12B, in this example, to build the page layout, the user
starts by dragging an Image module 1208 from the toolbar 1200 onto the page layout area
1202. Referring to Fig. 12C, the inserted and un-configured module 1212 is shown. The
user then configures the settings of the module 1212, so that it accepts the image attribute
from the Products content set the user created earlier. An example process for configuring
the module may utilize the user interface as shown in Fig. 11A —C.

[0104] Referring to Fig. 11A, the user selects the Current Image field 1100 (e.g.,
by moving a cursor to, or pointing at the Current Image field 1100). Referring Fig. 11B, the
CMS presents the user with an attribute menu 1112 containing some or all attributes of some
of all content sets. In this embodiment, the user can cause the CMS to present the attribute
menu 1112 by pressing a key (e.g., the down-arrow key), but other techniques for bringing up
the menu may also be used. In this example, the user selects the Products: image attribute
1114 (i.e., the image attribute of the Products content set). Fig. 11C shows the Products:
Image attribute 1116 entered in the Current Image field 1100. The example Image module
has other fields and options (1104 — 1108), and in the Alternate Text field 1104, the user has
selected and instructed the CMS to add the Products:name attribute 1118 as similarly
discussed above with respect to the addition of the image attribute 1114. The fully
configured example Image module 1206 is shown in Fig. 12D.

[0105] The user may add and configure other modules in the same or other
manner to use the other attributes of the Products content set. Because each module is not

dependent on a particular data feed, the CMS is able to use a similar Ul for each module.

26-

WO 2015/116592 PCT/US2015/013094

[0106] The fully configured example page layout is shown in Fig. 12E. This
layout combines several modules. For example, the image of a tea bag 1206 is provided via
the Image module described earlier (with reference to Fig. 11A — C), and the
“PEPPERMINT” heading 1214 is provided via a Heading module that is using the Products:
name attribute.

[0107] Generate a Page

[0108] Once the user publishes the page layout, the CMS is configured to
generate a webpage for each item in the Products content set. To view a webpage for a
particular item, a visitor directs his/her browser to the URL of the page layout (e.g.,
http://example.com/product-details), including the unique identifier for the particular item
(e.g., id=1). For example, if the URL of the page layout that the user created earlier (as
shown in Fig. 12E) is http://example.com/product-details, then to view a webpage for the
Earl Grey item of the Products content set, a user would visit: http://example.com/product-
details?id=1. The Earl Grey item has a unique identifier of 1 because that is the id that is
defined in the original data feed (as shown in the Program Listing).

[0109] Fig. 12F shows the example Earl Grey webpage when viewed in a
browser. The URL 1216 indicates that the browser requested the item with an id equal to 1.
As described earlier (and as shown in Fig. 6), the request 600 is transmitted to the renderer
610, which passes the request to the page layout 612. The page layout passes the request to
the individual modules, which each call for attributes of a particular content set.

[0110] As noted, in the example shown in Fig. 12A — E, the modules are
configured to use attributes of the Products content set. The id requested is 1, which
corresponds to the Earl Grey item. Therefore, the modules (as shown in Fig. 5) use content
from the attributes of the Earl Grey item and the generated webpage 624 is for Earl Grey tea
1218.

[0111] Additional Example Embodiments

[0112] Detect the File Format

[0113] While content of any schema can be imported into the adaptive content
management system (CMS), the CMS is optionally configured to determine how to decode

and read the format of imported content. The format refers to the manner in which the data

27-

WO 2015/116592 PCT/US2015/013094

feed was encoded and the markup language used to create the data feed. Examples of
possible file formats include but are not limited to Extensible Markup Language (XML),
character-separated values (CSV), JavaScript Object Notation (JSON), and Excel Binary File
Format (XLS). Understanding the semantics of the encoding method and markup language
of imported content enables the CMS to properly map that content.

[0114] Various techniques may be used to communicate the file format to the
CMS. In an example embodiment, the CMS can specifically request this information (e.g.,
from the content source or the user) when importing a data feed. This embodiment is shown
in Fig. 8A, where the content set information included file format 804. The CMS can then
receive and utilize the file format information.

[0115] Optionally, the CMS is configured to detect the file format of a data feed
automatically. For example, information about the file format might be embedded in the
metadata of a data feed which may be read by the CMS. The extension of a data feed may
also indicate its format, and so the CMS may determine the format based on the extension.
Optionally, the CMS can compare patterns in the data encoding against a database of known
patterns to determine the encoding method. Certain embodiments may use any combination
of the foregoing techniques to determine the format.

[0116] Data Feed Details

[0117] In one or more embodiments, certain details about an imported data feed
may be passed to the CMS, as will be discussed with reference to the examples illustrated in
Figs. 8A — D. Many variations and modifications to the requested details are possible, and
the details described here and illustrated in Figs. 8A — D are to be understood as being among
other acceptable examples. The content set information 800 represents information about the
data feed that the CMS requests before beginning the import process 100. This information
enables a user to control how the feed is mapped.

[0118] As shown in Fig. 8A, in this example, the content set information includes
the following details (it being understood that other example may include different details):

. Name 802 (e.g., a unique name that identifies the content set)

. File format 804 (e.g., the manner in which the data feed was encoded and

the markup language used to create the data feed)

8-

WO 2015/116592 PCT/US2015/013094

. Location type 806 (e.g., webpage, TP, or local directory)

. Location of file 808 (e.g., the URL or directory where the file is stored)

. Unique ID 810 (e.g., the name of the unique identifier field in the data
feed)

[0119] Another example embodiment of content set information is shown in Fig.

8B. If the file format of the data feed is an XML file, then requesting and receiving the name
of the root element that surrounds each item 812 enables the CMS to more accurately map
the data feed.

[0120] The example embodiment of content set information illustrated in Fig. 8C
includes two optional fields: username 814 and password 816. This embodiment handles the
case of password-protected data feeds.

[0121] The embodiment of content set information shown in Fig. 8D includes
additional fields to handle the case of a file stored on an FTP server. Additional pertinent

information includes:

. Server 818 (the location of the sever that stores the data feed)

. Port 820 (the number of the port that should be used to open a data
connection)

. Path 822 (the location where the file is stored on the server)

[0122] Synchronization and Auto-Synchronization
[0123] As illustrated in Fig. 1, once a feed is imported into the CMS 100, at block

106, the feed may be synchronized. In an example embodiment, as part of the
synchronization process, the CMS will reimport the feed using any feed details that have
already been entered. There are various reasons for synchronizing an already imported feed,
but one optional reason is to ensure that the imported content matches the current content in
the data feed.

[0124] Optionally, the process of synchronizing content involves synchronizing in
response to a manual instruction. For example, a user accessible synchronization control may
be provided. If a user wants to synchronize content, then the user may select the
synchronization control, and in response to detecting the selection of the synchronization

control, the CMS imports and maps the latest content from the data feed. Optionally in

20.

WO 2015/116592 PCT/US2015/013094

addition or instead, a user may specify a synchronization schedule which may be received and
stored by the CMS. The CMS may then perform the content synchronization according to the
schedule. For example, synchronization could be set to occur at a designated start time
and/or at designated intervals (e.g., once a minute, once an hour, or every Tuesday at 5:00
PM).

[0125] By enabling users to synchronize an imported feed, users are enabled to
manage content residing outside of the adaptive CMS. For example, a user can manage
photos through an image-management service and then use an adaptive CMS to display the
photos on a separate portfolio website by regularly synchronizing the CMS with a feed from
the image-management service. By way of further example, a user could upload a new photo
to the image-management service, and the adaptive CMS may generate a new webpage based
on the new photo the next time the CMS is synchronized with the feed.

[0126] Multiple Content Sets on One Page

[0127] The example page rendering process illustrated in Fig. 6 may be utilized to
render one or multiple content sets on a page. As illustrated, a page layout 612 displays
different content depending on the ID in a request, such as in request 602 (ID=triangle). In
this example, only one content set per page layout is used. Optionally, multiple content sets
per page may be used. An example process enabling multiple content sets per page to be
used comprises having a given page include arrays of content set and ID pairs, but other
techniques may also be used.

[0128] Friendly URLs

[0129] While an example URL for a webpage might look like

http://example.com/product-details?id=1, a webpage may optionally be generated using a
friendly URL (a Web address that is easy to read and includes words that describe the content
of the webpage). An example of a friendly URL is: http://example.com/product-details/earl-
grey. One suitable embodiment of this process involves mapping a friendly name (e.g., earl-
grey) to the unique ID (e.g., 1), for example, using a data structure such as an associative
array.

[0130] Manual Mapping

30-

WO 2015/116592 PCT/US2015/013094

[0131] Auto-mapping of content, as described above with reference to Fig. 1,
might not be without error. To address such an eventuality, an example embodiment, such as
that illustrated in Fig. 9, enables manual verification and control of the mapping process.
With each content set 900, the attribute type 904 for each attribute 902 can be selected by the
user and the selected is received and stored by the CMS for later use in the mapping process.
Optionally, a menu 907 containing possible attribute types 908 — 926 (string 908, float 910,
double 912, byte 914, short 916, integer 918, long 920, date 922, Boolean 924, binary 926)
can be provided by the CMS to aid the user in selecting an appropriate attribute type, but
other attribute types may also be used.

[0132] In the example embodiment shown in Fig. 9, the user may manually
specify how the attribute is stored via menu interface 906 (e.g., which enables the user to
specify whether the attribute is to be indexed, ignored, or not analyzed). For example, if a
data feed contains an unnecessary attribute, then a user might choose to instruct the CMS to
ignore the attribute by selecting the ignored menu selection 932. Optionally instead, a user
can instruct the CMS to index the attribute by selecting the index menu selection 930, to
make it discoverable by other widgets, or a user could set the attribute to non-analyzed by
selecting the non-analyzed menu selection 934 to force the attribute to be treated as a whole
by the CMS and prevent it from being broken down through further processing.

[0133] Multi-Tenant Development

[0134] In an example embodiment, if each module is properly encapsulated to
accept content in only high-level terms (e.g., text, image, or URL) and to execute
independently of other modules, then one or more modules can be incorporated within
another module (e.g., without requiring an open source environment which user are provided
with the ability to modify the source code).

[0135] For example, suppose developer A wants to create a module that displays a
heading, followed by an image, followed by text. If each module is properly encapsulated as
described earlier, instead of hand coding the entire module, A could just incorporate a
premade heading, image, and text module. If developer B, wants to expand on A’s module

by adding a video, then B could just incorporate A’s module with a premade video module.

31-

WO 2015/116592 PCT/US2015/013094

[0136] This type of customization conventionally requires sharing source code,
but with proper encapsulation and a content agnostic approach as described herein, multi-
tenant modules of this type may be performed without sharing any source code.

[0137] Generated Qutput

[0138] While the example CMS optionally eventually generates a webpage, the
CMS may be configured to generate other types of data in any form, such as, by way of
example, XML, JSON, or CSV data feeds. The ability to transform the data and the method
by which the data are transformed are not dependent on the eventual output.

[0139] Involving Additional Systems

[0140] While a single CMS may optionally be used to execute the process for
transforming a data feed into a website, optionally different systems may be utilized at
different stages. In an example embodiment, one system may be used to import the content,
another separate system may be used to configure the page layout, and a third system may be
used to dynamically generate the content. The use of multiple systems may provide the same
or similar ability to transform the data feed using the same or similar processes as the single
system embodiment.

[0141] The methods and processes described herein may have fewer or additional
steps or states and the steps or states may be performed in a different order. Not all steps or
states need to be reached. The methods and processes described herein may be embodied in,
and fully or partially automated via, software code modules executed by one or more general
or special purpose computers comprising one or more hardware computing devices. The
code modules may be stored in any type of non-transitory computer-readable medium or
other computer storage device. Some or all of the methods may alternatively be embodied in
whole or in part in specialized computer or state machine hardware. The results of the
disclosed methods may be stored in any type of computer data repository, such as relational
databases and flat file systems that use volatile and/or non-volatile memory (e.g., magnetic
disk storage, optical storage, EEPROM and/or solid state RAM). The servers discussed
herein may include (or be hosted on systems that include) network interfaces configured to
receive document requests (e.g., webpage requests from a browser) and to transmit responses

to the requester. The servers and other devices described herein may optionally include

32-

WO 2015/116592 PCT/US2015/013094

displays and user input devices (e.g., keyboards, touch screens, mice, voice recognition,
gesture recognition, etc.).

[0142] Many variations and modifications may be made to the above-described
embodiments, the elements of which are to be understood as being among other acceptable
examples. All such modifications and variations are intended to be included herein within
the scope of this disclosure. The foregoing description details certain embodiments. It will
be appreciated, however, that no matter how detailed the foregoing appears in text, the
invention can be practiced in many ways. The use of particular terminology when describing
certain features or aspects of certain embodiments should not be taken to imply that the
terminology is being re-defined herein to be restricted to including any specific characteristics
of the features or aspects of the invention with which that terminology is associated.

[0143] Optional Advantages

[0144] From the previous description, a number of optional advantages of some
embodiments of adaptive content management become evident. A given embodiment may
provide one or more of the following advantages:

. A user can import content without having to consider if its schema is
compatible with the content management system (CMS); therefore, a user does not have to
search for particular feed-compatible widget/module before using a feed.

. Plugins are optionally not designed for or limited to specific feeds, and so
users are more likely to find modules with the behavior that they desire. For example, if one
developer builds a module that displays an image slideshow, then that slideshow module will
work with any imported image feed. With the conventional approach described earlier, a
developer would have to design that same slideshow module for each different image feed
that has a different schema.

. A module developer can incorporate other modules into a custom module,
because modules are optionally completely encapsulated to accept high-level input and to
generate output. This feature enables the type of sharing available in an open-source
environment, but unlike in an open-source environment, developers are able to conceal

source code. So if a first module performs some but not all functions that a user wants, then

-33-

WO 2015/116592 PCT/US2015/013094

another developer can just add functionality without redesigning the first module from
scratch and without having access to the source code of the first module.

. The CMS optionally handles all content management, and the CMS
handles the administration UI for the modules. Modules are therefore likely to remain
compatible as new versions of the CMS are released.

. Users can migrate content from an old CMS to a new adaptive CMS by
exporting their old content as a feed, and then by giving the location of that feed to the
adaptive CMS. With the conventional approach, migrating from an old CMS requires a
custom plugin.

. If a user likes the way the old CMS manages content, but prefers the way
the new adaptive CMS displays the content, then the user can continue to manage that
content via the old CMS. The user would just set the adaptive CMS to regularly sync with a
feed from that old CMS. As described earlier, with the conventional approach, this scenario
requires custom software development.

. Because modules are not designed to work with only one feed or with only
one schema in particular, a user can change the contents of an entire website by first
importing a new feed and then assigning the attributes of that feed to the already created page
layouts. Users do not have to find or develop new modules to work with the new feed.

. In the case of the three example data feeds shown in the Program Listing
section, a user could change the import details on a content set from referencing one feed
(e.g., the JSON feed) to referencing another feed (e.g., the CSV feed). Although both feeds
are in different markup languages and might be stored at different locations, both feeds have
the same relationship between information. Therefore, page layouts and modules will
interact with any of the three data feeds identically, and the previous configuration would still
be accurate.

[0145] Conclusion

[0146] Thus, as described herein, using the example adaptive content
management system and process, scenarios that once required a high level of technical
knowledge (e.g., combining several different feeds from several different locations into one

coherent website) now no longer require that a user understand even a single markup or

34-

WO 2015/116592 PCT/US2015/013094

programming language. Indeed, a user with a high level of technical knowledge can save a
significant amount of time and effort by using an adaptive content management system
(CMN).

[0147] Furthermore, certain embodiments of the adaptive CMS have additional
optional advantages, including one or more of the following:

. Because an adaptive CMS adapts to the relationship of content stored
within a data feed, optionally all content is treated equally regardless of its data structure or
format.

. Users can pull and use data from a variety of feeds without having to
install or build custom plugins.

. Migrating from one CMS to another is a common scenario, however many
conventional systems will support migration in only specific instances. By creating an
environment that is agnostic to the structure of content, an adaptive CMS is able to import
content from any CMS that can export content as a data feed.

. By not committing to one particular content structure, an adaptive CMS
lets a user manage content in multiple content management systems and then synchronize the
content in order to output one website. For example, the user may merely need to copy and
paste a URL to the content and cause the synchronization to be initiated; the user does not
need to develop custom software or even install custom plugins in order to synchronize the
content.

. By not depending on content to have a particular structure, an example
adaptive CMS can completely change the content on a site by synchronizing with a different
feed and then assigning the attributes of that feed to the already present page layouts.

[0148] Program Listing

[0149] The following section provide several non-limiting examples. The
example XML, JSON, and CSV data feeds all contain the same information, but they are
structured using three different markup languages. These three examples are not meant to be
all inclusive of possible types of data feeds; for example, data feeds might be in any schema,
and data feeds might even be encoded in machine-readable formats such as Excel Binary File

Format (XLS).

-35-

WO 2015/116592 PCT/US2015/013094

[0150] Example XML Feed

<?xml version="1.0" encoding="UTF-8"7>

<teas>

[0151] <tea>

[0152] <id>3</id>

[0153] <name>Peppermint</name>

[0154] <caffeine>0</caffeine>

[0155] <type>Herbal</type>

[0156] <description>It's better than tea. It's peppermint.</description>

[0157] <price>4.99</price>

[0158]


[0159]
<thumb>http://example.com/feeds/imgs/tea_bag peppermint small.png</thumb>

[0160] </tea>

[0161] <tea>

[0162] <id>2</id>

[0163] <name>Ginger Mint</name>

[0164] <caffeine>0</caffeine>

[0165] <type>Herbal</type>

[0166] <description>Some days you get the ginger mint, and some days the

ginger mint gets you.</description>

[0167] <price>5.99</price>
[0168]

[0169]
<thumb>http://example.com/feeds/imgs/tea_bag ginger mint small.png</thumb>
[0170] </tea>
[0171] <tea>
[0172] <id>1</id>

36-

WO 2015/116592 PCT/US2015/013094

[0173] <name>Farl Grey</name>

[0174] <caffeine>50</caffeine>

[0175] <type>Black</type>

[0176] <description>Earl Grey tea is flavored with bergamot to imitate more

expensive types of Chinese tea.</description>

[0177] <price>3.99</price>
[0178]

[0179]
<thumb>http://example.com/feeds/imgs/tea_bag earl grey small.png</thumb>
[0180] </tea>
</teas>
[0181] Example JSON Feed
[0182] [
[0183] {
[0184] "id": "3",
[0185] "name": "Peppermint”,
[0186] "caffeine": "0",
[0187] "type": "Herbal",
[0188] "description”: "It's better than tea. It's peppermint.”,
[0189] "price": "4.99",
[0190] "image": "http://example.com/feeds/imgs/tea_bag peppermint.png”,
[0191] "thumb":
"http://example.com/feeds/imgs/tea_bag peppermint_small.png"
[0192] b
[0193] {
[0194] "id": "2,
[0195] "name": "Ginger Mint",
[0196] "caffeine": "0",
[0197] "type": "Herbal",

37-

WO 2015/116592 PCT/US2015/013094

[0198] "description”: "Some days you get the ginger mint, and some days the

ginger mint gets you.",

[0199] "price": "5.99",

[0200] "image": "http://example.com/feeds/imgs/tea_bag_ginger mint.png",

[0201] "thumb":
"http://example.com/feeds/imgs/tea_bag ginger mint_small.png”

[0202] b

[0203] {

[0204] "id": "1,

[0205] "name": "Earl Grey",

[0206] "caffeine": "50",

[0207] "type": "Black",

[0208] "description": "Earl Grey tea is flavored with bergamot to imitate more

expensive types of Chinese tea.",

[0209] "price": "3.99",
[0210] "image": "http://example.com/feeds/imgs/tea_bag earl grey.png",
[0211] "thumb":

"http://example.com/feeds/imgs/tea_bag earl grey small.png"

[0212] }

|

[0213] Example CSV Feed

[0214] id,name,caffeine,type,description,price,image,thumb

"3" "Peppermint”,"0","Herbal","It's better than tea. It's
peppermint.”,"4.99" "http://example.com/feeds/imgs/tea_bag peppermint.png"”,"http://examp
le.com/feeds/imgs/tea_bag_peppermint_small.png"

"2","Ginger Mint","0","Herbal","Some days you get the ginger mint, and some days
the ginger mint gets
you.","5.99","http://example.com/feeds/imgs/tea_bag ginger mint.png","http://example.com/

feeds/imgs/tea_bag ginger mint small.png"

-38-

WO 2015/116592 PCT/US2015/013094

"1","Earl Grey","50","Black","Earl Grey tea is flavored with bergamot to imitate more
expensive types of Chinese
tea.","3.99","http://example.com/feeds/imgs/tea_bag_earl grey.png","http://example.com/fee
ds/imgs/tea_bag_earl grey small.png”

[0215] Example Associative Array Relationship

[0216] The following example demonstrates the relationship of data in a feed
stored using an associative array, but other methods of storing the data may also be used.

[0217] array(3) {

[0218] [1]=>

[0219] array(8) {

[0220] ["id"]=>

[0221] string(1) "1"

[0222] ["name"]=>

[0223] string(9) "Earl Grey"

[0224] ["caffeine"|=>

[0225] string(2) "50"

[0226] ["type"]=>

[0227] string(5) "Black"

[0228] ["description”]=>

[0229] string(87) "Earl Grey tea is flavored with bergamot to imitate more

expensive types of Chinese tea."

[0230] ["price"]=>

[0231] string(4) "3.99"

[0232] ["image"]=>

[0233] string(51) "http://example.com/feeds/imgs/tea_bag_earl grey.png"
[0234] ["thumb"]=>

[0235] string(57)

"http://example.com/feeds/imgs/tea_bag earl grey small.png"
[0236] }
[0237] [2]=>

-30.

WO 2015/116592 PCT/US2015/013094

[0238] array(8) {

[0239] ["id"]=>

[0240] string(1) "2"

[0241] ["name"|=>

[0242] string(11) "Ginger Mint"

[0243] ["caffeine"]=>

[0244] string(1) "0"

[0245] ["type"]=>

[0246] string(6) "Herbal"

[0247] ["description"]=>

[0248] string(74) "Some days you get the ginger mint, and some days the
ginger mint gets you."

[0249] ["price"]=>

[0250] string(4) "5.99"

[0251] ["image"]=>

[0252] string(53) "http://example.com/feeds/imgs/tea_bag ginger mint.png"

[0253] ["thumb"]=>

[0254] string(59)

"http://example.com/feeds/imgs/tea_bag ginger mint small.png”
[0255] }
[0256] [3]=>
[0257] array(8) {

[0258] ["id"]=>

[0259] string(1) "3"

[0260] ["name"]=>

[0261] string(10) "Peppermint”
[0262] ["caffeine"]=>

[0263] string(1) "0"

[0264] ["type"]=>

[0265] string(6) "Herbal"

-40-

WO 2015/116592 PCT/US2015/013094

[0266] ["description”]=>
[0267] string(38) "It's better than tea. It's peppermint.”
[0268] ["price"]=>
[0269] string(4) "4.99"
[0270] ["image"]=>
[0271] string(52) "http://example.com/feeds/imgs/tea_bag_peppermint.png”
[0272] ["thumb"]=>
[0273] string(58)
"http://example.com/feeds/imgs/tea_bag peppermint_small.png"
[0274] }
[0275] The methods and processes described herein may have fewer or additional

steps or states and the steps or states may be performed in a different order. Not all steps or
states need to be reached. The methods and processes described herein may be embodied in,
and fully or partially automated via, software code modules executed by one or more general
or special purpose computers comprising one or more hardware computing devices. The
code modules may be stored in any type of non-transitory computer-readable medium or
other computer storage device. Some or all of the methods may alternatively be embodied in
whole or in part in specialized computer or state machine hardware. The results of the
disclosed methods may be stored in any type of computer data repository, such as relational
databases and flat file systems that use volatile and/or non-volatile memory (e.g., magnetic
disk storage, optical storage, EEPROM and/or solid state RAM). The servers discussed
herein may include (or be hosted on systems that include) network interfaces configured to
receive document requests (e.g., webpage requests from a browser) and to transmit responses
to the requester. The servers and other devices described herein may optionally include
displays and user input devices (e.g., keyboards, touch screens, mice, voice recognition,
gesture recognition, etc.).

[0276] Many variations and modifications may be made to the above-described
embodiments, the elements of which are to be understood as being among other acceptable
examples. All such modifications and variations are intended to be included herein within

the scope of this disclosure. The foregoing description details certain embodiments. It will

41-

WO 2015/116592 PCT/US2015/013094

be appreciated, however, that no matter how detailed the foregoing appears in text, the
invention can be practiced in many ways. The use of particular terminology when describing
certain features or aspects of certain embodiments should not be taken to imply that the
terminology is being re-defined herein to be restricted to including any specific characteristics
of the features or aspects of the invention with which that terminology is associated.

[0277] All of the methods and processes described above may be embodied in,
and fully automated via, software code modules executed by one or more general purpose
computers. The code modules may be stored in any type of computer-readable medium or
other computer storage device. Some or all of the methods may alternatively be embodied in
specialized computer hardware. The results of the disclosed methods may be stored in any
type of computer data repository, such as relational databases and flat file systems that use
magnetic disk storage and/or solid state RAM.

[0278] While the phrase “click” may be used with respect to a user selecting a
control or the like, other user inputs may be used, such as voice commands, text entry,
gestures, ctc.

[0279] Many variations and modifications may be made to the above-described
embodiments, the elements of which are to be understood as being among other acceptable
examples. All such modifications and variations are intended to be included herein within
the scope of this disclosure. The foregoing description details certain embodiments of the
invention. It will be appreciated, however, that no matter how detailed the foregoing appears
in text, the invention can be practiced in many ways. As is also stated above, the use of
particular terminology when describing certain features or aspects of the invention should not
be taken to imply that the terminology is being re-defined herein to be restricted to including
any specific characteristics of the features or aspects of the invention with which that

terminology is associated.

42

WO 2015/116592 PCT/US2015/013094

WHATIS CLAIMED IS:

1. A computer-implemented method of configuring a web page layout, the
method comprising:

providing a user access to a library of modules usable to configure a layout of
a webpage, wherein a given module from the library of modules is user configurable,
without the user programming in a programming language, to control how content is
to be displayed on a webpage;

enabling the user to drag and drop one or more modules from the library of
modules onto a webpage layout design area to define a webpage layout;

providing, for a given module selected by the user, a module configuration
user interface, wherein the module configuration user interface enables the user to
specify what content is to be displayed on the webpage being designed and how the
content is to be displayed without the user having to program using a programming
language, wherein the module user interface comprises interfaces configured to
receive at least:

access information for content from a source, the access information
including at least a content locator;

content attributes comprising at least one attribute affecting how
content from the source is displayed;
receiving a user specified layout for a first webpage specified by the user via
the webpage layout design area, wherein the user specified layout comprises a layout
of a plurality of modules, including:

a first instantiation of a first module configured by the user to specify
access information and at least one attribute for a first content source that
provides content using a first content format;

a second instantiation of the first module configured by the user to
specify access information and at least one attribute for a second content
source that provides content using a second content format, the second content

format different than the first content format;

43-

WO 2015/116592 PCT/US2015/013094

accessing content from the first content source based at least in part on the

user configuration of the first instantiation of the first module, including at least a

portion of the user specified access information for the first source, wherein the

content from the first content source utilizes the first content format;
storing content from the first content source in a schema-less data store;
accessing content from the second content source based at least in part on the

user configuration of the second instantiation of the first module, including at least a

portion of the user specified access information for the second source, wherein the

content from the second content source utilizes the second content format;

storing content from the second content source in the schema-less data store;
and

enabling the webpage to be rendered, including the content from the first
content source and the content from the second content source.

2. The method as defined in claim 1, wherein the library comprises an image
slide module configurable by the user for use with a plurality of different image sources
having different data formats.

3. The method as defined in claim 1, wherein the library of modules comprises
an image slide module, a blog module, a news feed module, a sports score module, a video
playlist module, a responsive menu module, a shopping cart module, a map module, a search
module, a text module, a navigation module, an accordion menu module, a share page or
content module, and a social media module, wherein a module user interface for each of the
foregoing modules enables the user to specify a content name, a content file format, and a
document element, the method further comprising:

verifying at least a portion of the user specified access information for the first
content source;,

at least partly in response to determining that the verification of user specified
access information for the first content source failed, generating a user notification
indicating that the verification of the user specified access information for the first

content source failed without rendering content from the first content source;

_44-

WO 2015/116592 PCT/US2015/013094

verifying at least a portion of the user specified access information for the
second content source; and

at least partly in response to determining that the verification of user specified
access information for the first content source succeeded, enabling the content from
the second content source to be rendered.
4. The method as defined in claim 1, the method further comprising performing

data mapping on the content from the first content source.

5. The method as defined in claim 1, the method further comprising:

verifying at least a portion of the user specified access information for the first
content source;,

at least partly in response to determining that the verification of user specified
access information for the first content source failed, generating a user notification
indicating that the verification of the user specified access information for the first
content source failed without rendering content from the first content source;

verifying at least a portion of the user specified access information for the
second content source;

at least partly in response to determining that the verification of user specified
access information for the first content source succeeded, enabling the content from
the second content source to be rendered.
6. The method as defined in claim 1, the method further comprising:

accessing content from the first content source using the user specified access
information for the first content source;

determining if content from the first content source is malformed;

at least partly in response to determining that the content from the first content
source is malformed, attempting to correct the malformed content from the first
content source.
1. The method as defined in claim 1, the method further comprising:

detecting the first format of the first content source;

detecting the second format of the first content source.

45-

WO 2015/116592 PCT/US2015/013094

8. The method as defined in claim 1, wherein the schema-less data store
comprises key-value data.

9. The method as defined in claim 1, wherein the schema-less data store
comprises an associative array.

10. The method as defined in claim 1, wherein the schema-less data store
comprises content having tagged elements.

11. The method as defined in claim 1, wherein the user specified access
information for the first content source further comprises a username, a password, a port
identifier, and/or a server identifier.

12. The method as defined in claim 1, wherein the module user interface enables
the user to specify a content name, a content file format, a document element, a user name,
and a user password.

13. The method as defined in claim 1, wherein the library of modules comprises
an image slide module, a blog module, a news feed module, a sports score module, a video
playlist module, a responsive menu module, a shopping cart module, a map module, a search
module, a text module, a navigation module, an accordion menu module, a share page or
content module, and a social media module.

14. A system, comprising:

a network interface configured to communicate over a network;

a computing system comprising one or more computing devices; and

a computer storage system comprising a non-transitory storage device, said computer
storage system having stored thereon executable program instructions that direct the
computer system to at least:

provide, over the network, a user access to a library of modules usable to
configure a layout of a webpage, wherein a given module from the library of modules
1s user configurable, without the user programming in a programming language, to
control how content is to be displayed on a webpage;

enable the user to instantiate one or more modules from the library of modules

onto a webpage layout design area to define a webpage layout;

-46-

WO 2015/116592 PCT/US2015/013094

provide, for a given module selected by the user, a module configuration user
interface, wherein the module configuration user interface enables the user to specify
what content is to be displayed on the webpage being designed and how the content is
to be displayed without the user having to program using a programming language,
wherein the module user interface comprises interfaces configured to receive at least:
access information for content from a source, the access information
including at least a content locator;

content attributes comprising at least one attribute affecting how
content from the source is displayed;
receive, over the network, a user specified layout for a first webpage specified

by the user via the webpage layout design area, wherein the user specified layout
comprises a layout of a plurality of modules, including:
a first instantiation of a first module configured by the user to specify
access information and at least one attribute for a first content source that
provides content using a first content format;
a second instantiation of the first module configured by the user to
specify access information and at least one attribute for a second content
source that provides content using a second content format, the second content
format different than the first content format;
access content from the first content source based at least in part on the user
configuration of the first instantiation of the first module, including at least a portion
of the user specified access information for the first source, wherein the content from
the first content source utilizes the first content format;

store content from the first content source in a schema-less data store;

access content from the second content source based at least in part on the user
configuration of the second instantiation of the first module, including at least a
portion of the user specified access information for the second source, wherein the
content from the second content source utilizes the second content format;

store content from the second content source in the schema-less data store;

47-

WO 2015/116592 PCT/US2015/013094

enable the webpage to be rendered, including the content from the first content
source and the content from the second content source.

15. The system as defined in claim 14, wherein the library comprises an image
slide module configurable by the user for use with a plurality of different image sources
having different data formats.

16. The system as defined in claim 14, wherein the library of modules comprises
an image slide module, a blog module, a news feed module, a sports score module, a video
playlist module, a responsive menu module, a shopping cart module, a map module, a search
module, a text module, a navigation module, an accordion menu module, a share page or
content module, and a social media module, wherein a module user interface for each of the
foregoing modules enables the user to specify a content name, a content file format, and a
document element, wherein the executable program instructions are further configured to
direct the computer system to:

verify at least a portion of the user specified access information for the first
content source;,

at least partly in response to determining that the verification of user specified
access information for the first content source failed, generate a user notification
indicating that the verification of the user specified access information for the first
content source failed without rendering content from the first content source;

verify at least a portion of the user specified access information for the second
content source; and

at least partly in response to determining that the verification of user specified
access information for the first content source succeeded, enabling the content from
the second content source to be rendered.

17. The system as defined in claim 14, wherein the executable program
instructions are further configured to direct the computer system to perform data mapping on
the content from the first content source.

18. The system as defined in claim 14, wherein the executable program

instructions are further configured to direct the computer system to:

-48-

WO 2015/116592 PCT/US2015/013094

verify at least a portion of the user specified access information for the first
content source;,

at least partly in response to determining that the verification of user specified
access information for the first content source failed, generate a user notification
indicating that the verification of the user specified access information for the first
content source failed without rendering content from the first content source;

verify at least a portion of the user specified access information for the second
content source;,

at least partly in response to determining that the verification of user specified
access information for the first content source succeeded, enable the content from the
second content source to be rendered.

19. The system as defined in claim 14, wherein the executable program
instructions are further configured to direct the computer system to:

access content from the first content source using the user specified access
information for the first content source;

determine if content from the first content source is malformed;

at least partly in response to determining that the content from the first content
source is malformed, attempt to correct the malformed content from the first content
source.

20. The system as defined in claim 14, wherein the schema-less data store
comprises key-value data, an associative array, or content having tagged elements.

21. The system as defined in claim 14, wherein the user specified access
information for the first content source further comprises a username, a password, a port
identifier, and/or a server identifier.

22. The system as defined in claim 14, wherein the module user interface enables
the user to specify a content name, a content file format, a document element, a user name,
and a user password.

23. The system as defined in claim 14, wherein the library of modules comprises
an image slide module, a blog module, a news feed module, a sports score module, a video

playlist module, a responsive menu module, a shopping cart module, a map module, a search

-49-

WO 2015/116592 PCT/US2015/013094

module, a text module, a navigation module, an accordion menu module, a share page or
content module, and a social media module.

24. A computer storage system comprising a non-transitory storage device, said
computer storage system having stored thereon executable program instructions that direct a
computer system to at least:

provide a user access to a library of modules usable to configure a layout of a
webpage, wherein a given module from the library of modules is user configurable,
without the user programming in a programming language, to control how content is
to be displayed on a webpage;

enable the user to instantiate one or more modules from the library of modules
onto a webpage layout design area to define a webpage layout;

provide, for a given module selected by the user, a module configuration user
interface, wherein the module configuration user interface enables the user to specify
what content is to be displayed on the webpage being designed and how the content is
to be displayed without the user having to program using a programming language,
wherein the module user interface comprises interfaces configured to receive at least:

access information for content from a source, the access information
including at least a content locator;

content attributes comprising at least one attribute affecting how content from
the source is displayed;

receive a user specified layout for a first webpage specified by the user via the

webpage layout design area, wherein the user specified layout comprises a layout of a

plurality of modules, including:

a first instantiation of a first module configured by the user to specify access
information and at least one attribute for a first content source that provides content
using a first content format;

a second instantiation of the first module configured by the user to specify
access information and at least one attribute for a second content source that provides
content using a second content format, the second content format different than the

first content format;

-50-

WO 2015/116592 PCT/US2015/013094

access content from the first content source based at least in part on the user
configuration of the first instantiation of the first module, including at least a portion
of the user specified access information for the first source, wherein the content from
the first content source utilizes the first content format;

store content from the first content source in a schema-less data store;

access content from the second content source based at least in part on the user

configuration of the second instantiation of the first module, including at least a

portion of the user specified access information for the second source, wherein the

content from the second content source utilizes the second content format;
store content from the second content source in the schema-less data store; and
enable the webpage to be rendered, including the content from the first content
source and the content from the second content source.

25. The computer storage system as defined in claim 24, wherein the executable
program instructions are further configured to direct a computer system to perform data
mapping on the content from the first content source.

26. The computer storage system as defined in claim 24, wherein the library of
modules comprises an image slide module, a blog module, a news feed module, a sports
score module, a video playlist module, a responsive menu module, a shopping cart module, a
map module, a search module, a text module, a navigation module, an accordion menu
module, a share page or content module, and a social media module, wherein a module user
interface for each of the foregoing modules enables the user to specify a content name, a
content file format, and a document element, wherein the executable program instructions are
further configured to direct a computer system to:

verify at least a portion of the user specified access information for the first
content source;,

at least partly in response to determining that the verification of user specified
access information for the first content source failed, generate a user notification
indicating that the verification of the user specified access information for the first

content source failed without rendering content from the first content source;

-51-

WO 2015/116592 PCT/US2015/013094

verify at least a portion of the user specified access information for the second
content source; and

at least partly in response to determining that the verification of user specified
access information for the first content source succeeded, enabling the content from
the second content source to be rendered.
27. The computer storage system as defined in claim 24, wherein the executable

program instructions are further configured to direct a computer system to:

verify at least a portion of the user specified access information for the first
content source;,

at least partly in response to determining that the verification of user specified
access information for the first content source failed, generate a user notification
indicating that the verification of the user specified access information for the first
content source failed without rendering content from the first content source;

verify at least a portion of the user specified access information for the second
content source;,

at least partly in response to determining that the verification of user specified
access information for the first content source succeeded, enable the content from the
second content source to be rendered.
28. The computer storage system as defined in claim 24, wherein the executable

program instructions are further configured to direct a computer system to:

access content from the first content source using the user specified access
information for the first content source;

determine if content from the first content source is malformed;

at least partly in response to determining that the content from the first content
source is malformed, attempt to correct the malformed content from the first content
source.
29. The computer storage system as defined in claim 24, wherein the schema-less

data store comprises key-value data, an associative array, or content having tagged elements.

-52-

WO 2015/116592 PCT/US2015/013094

30. The computer storage system as defined in claim 24, wherein the user
specified access information for the first content source further comprises a username, a

password, a port identifier, and/or a server identifier.

-53-

WO 2015/116592 PCT/US2015/013094

1/25

FiG. 1

Import and map content i
100 '

Yes " Page layout
g configured?

~ 102
. -

“) fu“
No

{ Configure page layout

104

X ;

™ {,ﬂ"”wgynchmnize content? >~ Yes
| 106)—

fw
’__’,f"”

:LNO

Dynamically generate content
108

v
i Stop ;
N

WO 2015/116592 PCT/US2015/013094

2/25

ﬁ[G 2 Content Import

(o)
v

input data feed details | R
200 4

! Begin detecting and mapping)

cortent
202

“_,f

Al the data s
well-formed?
204

No

Finish detecting and mapping
208

,,,,,,,,, -

Store content in schema-less
database
210

R
\i Siop X}

WO 2015/116592 PCT/US2015/013094

3/25

FIG. 5

Configure Content

Moduls
360

Field 1
302

f/ Content Set A: Attribute 3\
k 304 S

\, - o

Fiold 2 i
306

4 Content Set A: Attribute 2
308

e

™

(Field 3
| 310

e R
& Content Sat A: Attribute 1 \

312 M/’

™, o

WO 2015/116592 PCT/US2015/013094

4/25

FIG. 4

Select Attributes

fM@duEa
kil

(Field 1
302

Menu
400

,« Content Set A: Attribute 1 o
312

Content Set A: Atlribute 2
308

§ Content Set A: Attribute 3
304

o oy
%, ot

' Field 3
310

Content Set A: Attribute 1 \
' 312 /

R,

WO 2015/116592 PCT/US2015/013094
5/25
n7alls
F j C 0 Page Layoul
T R —
‘ 500
Module)
502
. ff"'“““w , M«*’MNM\ .ﬂ*“w“x\ |
Content Set A; Content Set A: Content Sat A:\
Attribute 5 Attribute 15 Attribute 25)
; 504 508 ' 508
\ | /’;
\ A » .
k»ww*x‘“‘f \\“__m ™ "‘;/ Mmﬁ a
e Y
;Maduie
518
Content Set A: Content Set A; Content Set A:
Attribute 1 Attrbute 3 Atiribute 2
512 514 516

WO 2015/116592 PCT/US2015/013094

6/25

FIG. 6

FPage Rendering Process

it Nt i Nt e R N R N R N S S g AT A A e sy

¢ Bequesis {
} 600 §
{

{ & Request: \ / Request \ ¢ Request: '\ ¢ Request: N
tH id=triangle &admsquare id=circle t\ fd==... ii
i 802 /N 604 j A...808 ,1‘ 808 } z

Benderer “‘“‘“““‘“““‘”""*""‘“”’”““““‘“"““"“"““’““’““““\

810 2 CQntf‘nt Set: A i

1814 {

{ i

} i

} 620 {

{ }

f

FPage layout ¥ i« 618 !

812 } !

b e idesquare | {

- P16 *

Atrribute: 3 ! !

----- “ﬁ%i item: id=triangle i

Atinbute 2 : §.

, ; ;

Attribute: 1 i {

! i

! §

!

§

i

{

i

!

i i i e R)

i Gsrerated pages ;
' g24 ‘
f }
L |
i Page: id=triangle} | Page: id=square | | Page: id=gircle Page: id=... g
; 826 628 630 632 |
} !
i ¢ G K : 4
} ~ |
i }
t B F J :
} 1
f A g i !
i !
i {

PCT/US2015/013094

WO 2015/116592

7/25

i enbiun

4. Old

L

o~

voL
aynquuy |

saingully pue

&

SLWBY ‘5198 JUSIUsT

Vi Old

WO 2015/116592

FIG. §A

8/25

Content Set Information

Content set info
800

Al N

Name File format
802 804

Location k Location of 1
type file

; 8086) 808)
f———————

Unique 1D

810

Nanmmammamamassasmasmans®

PCT/US2015/013094

WO 2015/116592

9/25

FIG. 6B

Content Set Information for XML Feeds

Content set info
800

Name File format
802 804
Location 10 Location of)
type file
&06] 808
Unique 1D Surrounding
810 element
5 812

PCT/US2015/013094

WO 2015/116592

10/25

FIG. §C

PCT/US2015/013094

Content Set information for Password Protected Data

Corntent set info
800G

5

Y

Name File format
802 844
o U A
[Location ! Location of]
type file
806 808)
I
Unique 1D
810
Username Password
Bi4 8186

WO 2015/116592

11/25

FIG. §D

Content Set Information for FTP Feeds

&

Content set info
800

IR

e ————

Unique ID
810

Nrmnerercrneereoreresmennmnei

Name File format
862 804
T ———————
Location
type
806

s

Username
814

FPassword
816

Server
818

Port
820

Path
822

PCT/US2015/013094

WO 2015/116592

FIG. 9

12/25

rConten& set
800

Attribute
ag2

804

Attribute type

~ Index or ignore

806

Menu

{[
Sinen]

807

henu

928

String
808

indexed
830

Float
910

ignored
832

Double
812

Non-Analyzed

Byte
914

Short
916

integer
918

Long
920

Date
922

924

934

PCT/US2015/013094

Manual Mapping of Attributes for a Content Set

PCT/US2015/013094

13/25

SUBSTITUTE SHEET (RULE 26)

WO 2015/116592

nuspy [eos aleys depy |esnoJes uoIpJoIoy uen nuspy
ojewojly PecUEADY PSOUBAPY PSOUEADY PSOUBAPY PSOUEADY OJPPY UOIpIoody | INJINOO || LNOAVT | dnXvW MUED
= LI
(%06 —H 0o — || O|& te1) || || BREH OO =
= @@ <1 [||
[== =] jLOa « £ 4| > /tgw\\\-
Des T ==t [E El|HD|=E| B | El
|
roo/ coo/

ol OId

WO 2015/116592 PCT/US2015/013094

14/25

FIG. 11A

{ N

Image Settings X

SETTINGS STYLES ABOUT PERMISSIONS

IMAGE SOURCE
CURRENT IMAGE
7700 —1 1
7702 —+ 1 Replace: Dynamic Content Image... | ~
ALTERNATE TEXT
7704 —T1
LINK
7706 —T11

7708 —1—L] OPENINA NEW WINDOW @

[Remove Widget] [Reset]

SUBSTITUTE SHEET (RULE 26)

WO 2015/116592 PCT/US2015/013094

15/25

FIG. 11B

{ N

Image Settings X

SETTINGS STYLES ABOUT PERMISSIONS

IMAGE SOURCE

CURRENT IMAGE

7700 vf\[, J

Products : caffeine
7702 g"‘[Products : description

Products : id / 1774 —

ALT Products : image

~1—7772

7704 — Products : name

LIN| Products : price

//05—/{ Products : thumb :I
7708 ——1l Products : type

[Remove Widget] [Reset]

SUBSTITUTE SHEET (RULE 26)

WO 2015/116592 PCT/US2015/013094

16/25

FIG. 11C

{ N

Image Settings X

SETTINGS STYLES ABOUT PERMISSIONS

IMAGE SOURCE
CURRENT IMAGE 7776
7700 —+ (Products : Image x?
7702 —t1+ Replace: Dynamic Content Image... | ~
ALTERNATE TEXT 7778
7704 J«-(Products : Name 6
LINK

7706 —11

7708 —1—L] OPENINA NEW WINDOW @

[Remove Widget] [Reset]

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/013094

WO 2015/116592

coc/ aN

17/25

o0z/
N

SONILIFSINd v

obespuocesmajepanesise] Wwdggg0- £10g equiene(L) Uosinay Pausiand H0TALIALLOY

1NOXO3HDO 1OVINOOD S10Ndodd 1Nnogv 3NOH

ooea|

=

T

dDRW W

1N0AVI
oy - E ey H y #
=490 E ﬂ Sefmt E& S|

fHa
i

‘gs.nof pngajeedayauo
spfpmuauo oasay feig
S139AIM

INNODJV AN %

d3H @

FOVIdIDRIVIN &

AdvEan &

UoIeag pPoAes ¢

JoS JUSUOD) =

spnpold o
IN3INOD -

Juswie|g ebed =
nual\ <

JopesH «

Joj00H <
SIN3IWN3T3 3OV -
"SS9 MOUS

abed =
SWOH T

- P02/

s|ieed Pnpoid T

J0ENOD |
Jnoay g

NOYO8YD U

spnpaid 0
S39Vd -

QS s;2oeIS)

S3als &

(M | [] ysind J{pene [opn | (@[T

B 00O] mon |

wooqow 7

Vel Old

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/013094

WO 2015/116592

18/25

coct U

SONLISHVd v ofespucoss mgjepanesise] wid g0 - €10 Pquisteq 2| osnay ‘Pausiand 90T ALIALLOY
Jaujejuon
N O
L1M¥3SNI
abed sy \ /
} _
INEINOD | LNOAYT || DRI || VIGEIN || AWN | DAL oLy ey Gpey | FETApragebadayouo
Q 3 Q[#) sebpm.e o oesayfeq
[E|| l={&] 8= LH ER
(wevad] (] usiond] (Yo) (on) (m) (1] 8 00 [men

qcl Old

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/013094

WO 2015/116592

19/25

coc/ v

SONILIFS I v oBespucossmajepanesise] WdggZ0-£1,0¢4equIsoaq] /| Uosnay ‘Pausiand 90T ALIALLOY
2144 — E—
N (& ey Wai Be oy |
I]
] Y
abed siy|
‘ _l
ININGO |{ LNOAYT|[o DRIVIV|| VI || AWN || DAL WLy ey Gpeyy | FTipRagefedayouo
<€ lgol] =] || | [] # spdpm.auypo oesauy feg
[EC || fe={& || R || EE =D || |] 2| LH S139aIMm

(W) (] v) (70) (o) (8)(7) 5071 s o0l I OIH

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/013094

WO 2015/116592

coct U

20/25

a0¢t ~ |

SONLISS3OVd v | pucoasajepanesser] (Gouen) wdgzz)-6)(7.AOuR0a() WS PP UM L7261 7 POuenar] /| Losva PRSI 0T ALALLY

902/
~d

(& ~Arein Wi 8bew| eoecey |

~—

Bupeat

€H
¢H

IH

‘gis.nof pq g sbedayauo
spipm.aup.oesayBeiq

S139dIm

B 00 [] :maA

dcl Oid

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/013094

WO 2015/116592

21/25

coc/ ~

aoc/
N

SONLLIIS IV v

0Bespuoas NEy e PreES ISE] w620~ €402 LAUR0a(£} UOSASR ‘PRUSINd 90T ALALLDY

"Wooqoj Aq paismod '00es] €102 0 O O ed ._.
[won/ng |
661$
leqieH ‘es}jo adA|
Bwq euleyed
uisdded s)| "es) uewy Jepeq sy
7/2/ —1NINdddddd
G0c/
LNOMOIHO 1OVINOD SLONAO¥d LNOgvy 3NOH opoes |
1
INAINGO || LNOAYT |[cDRIWAI || WIGEIN || AWN || DAL Isrofprgqatedayauo | |
g o= | = = Fpp s
o || [E0T || el || e || BT | (O S139aIM
[(Mevad | (] wiond | (e] (o | (=) (7] B 00 [men

AT Ol

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/013094

WO 2015/116592

22/25

512/
~

"Wo0qoN Ag paiomod ‘0Deal £1.0Z ®

66'€S$

yoelg :eey jo adAL
Bwps :euleyen

"B9) 9saUIY) Jo sadA] anisuadxs
aJow ajejwl 0] Joweblaq Yim paloae) S| es) Aalo) e

AFHO Tdv3

onea|

1AOXMOIHD 1OVINOD S10Naddd 1nogvy 3INOH

odea|

I
]

P \ N\ %

L L=pl¢ S|ielep-1onpo.d/woo ejdwexe _H; D = D

siiejeq Jonpoid [/ 000

/
g/c/

Al Ol

SUBSTITUTE SHEET (RULE 26)

WO 2015/116592 PCT/US2015/013094
23/25
FIG. I3
Content Set Info
NAME *
Products —— /300
FILE FORMAT LOCATION
7302 —11 XML < | | On the web v 7304
XML DOCUMENT ELEMENT *
(THE DOCUMENT ELEMENT THAT SURROUNDS EACH ITEM IN THE FILE)
tea —— /306
ID FIELD
(THE FIELD IN THE SOURCE DATA THAT CAN BE USED TO UNIQUELY IDENTIFY THE RECORDS)
id —— 1308
URL *
http://example.com/feeds/teas.xml ~—— 7370
USERNAME
~—— 7372
PASSWORD

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/013094

WO 2015/116592

24/25

PO#/ —
L) —

AN S

018/ —

&05/ —

908/ —

P05/ —

005/ —

aneg

QUOMSSYd

ANVYNHISN

|wix sea)/spasy/wos-ajdwexs//:dyy _

« ™N
pr|

(SAYOD3Y FHL A4LLNIAI ATINDINN OL A3SN 38 NVO 1VHL V1VA 30UNO0S IHL NI @13I4 3HD
a3 ai

e8] _

(3714 IHL NI W3LI HOVA SAONNOYHNS 1VHL LINIWF 13 INIWNO0Ad IHD
= LLIWITT LNFWNDOA TNX

TNX _(\! cos/

LVNNOL 314

13s vava 3ovid Q—— ZOF /
138 V1va ONILSIX3 OL aaY —— JOF/

ddAl

-+ L L 1 1

A gam 8y} :O_ _ a

NOILVOO1

| moN sepdn yoeg uny |-{— 9/£/
az1avnNa awvadn —— £/ %/
Z1#/ — = w|- o= Ayeq |+— S0#/
I\l 1V 1dvIS alvadn
774 44

a|npayas slepdn yojeg

I_ sjonpoud

« JAVN

Oju| }9§ jusjuo)d

€
ejol

obe spuodses maj e :ajepdn yojeq ise

0 0 0 €
sioug spasu| sejoleg seepdn |1—— 907/

ﬁ SUOISSILLBY _ Runoy _ Buddey | 1esiueoD H

S]oNpo.d :18S Jusjuon

vl Old

SUBSTITUTE SHEET (RULE 26)

PCT/US2015/013094

WO 2015/116592

051~

25/25

o]

=0

m
®)

papndu|
Juli ¥oed

&)

papn|ou|
UoJEaS PaoUBADY

o4

paseyoind
LOIRIOOOY PROLIBADYY

ANTTAVIH

old

paseyoind

NUSJ\ OJeWIOINY

0o

paseyoind

de pasueApy

P
[

peseyoing
ue)d O} ppy

OO@

g

% % m WM / INNODJOV AN &
— d3H @
paseyoind paseyaind
MBI [E00S Paoueny 9leyg psoueApy
NEE
BUO
3R
e paseyoind
~PirA afew] peouenpy [esnaseD peouenpy
00000 |\4
peseyaind 00°'S$
NUS|\ UOIRICOOY uoIpJOdOY
FOVIdIDIEYN &2

ST OIA

(<)1p1e4 (>) 00S|00L|0S|0Z :MOHS

(=~ EowceydiveueN | AGLNOS PUnod 16

AdvEan &

S3ls @

o_eoedeepyayypeeg |

sjeBpIA @smolg : aoe|djedel\ Wooqoy

wooqow <

SUBSTITUTE SHEET (RULE 26)

International application No.

A A A
INTERNATIONAL SEARCH REPORT PCT/US2015/013094

A. CLASSIFICATION OF SUBJECT MATTER
G06Q 50/10(2012.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G06Q 50/10; GOGF 3/048; GO6F 17/30; GO6F 17/21; GO6F 9/44;, GO6F 3/048; GOGF 17/21

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: webpage, layout, modules, interface, access, attribute, format, source, store, schema-less

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2010-0037168 A1 (NILE THAYNE et al.) 11 February 2010 1-30
See abstract, paragraphs [0012],[0043]1-[0044]1,[0055], [0061], claims 13,16
and figures 3-4A.
Y US 2008-0282171 A1 (ARNON KATZ et al.) 13 November 2008 1-30
See abstract, claims 2,23-24 and figures 1,3.
Y US 6779153 B1 (JONATHAN KAGLE) 17 August 2004 1-30
See abstract, column 2, lines 51-55, column 5, lines 21,41-52, column 7,
lines 40-43, column 8, lines 43-49, claims 1,5,8 and figures 2-3.
Y US 2006-0195819 A1 (SUSAN CHORY et al.) 31 August 2006 3,5-6,16,18-19
See abstract, paragraph [0003], claims 1,11 and figures 1-3. ,26-28
A US 2011-0214078 A1 (KENNETH J. KLASK et al.) 01 September 2011 1-30
See abstract, paragraph [0024], claims 1-10 and figures 1-2.
A KR 10-1130397 B1 (MICROSOFT CORPORATION) 27 March 2012 1-30
See abstract, claims 1-9 and figure 4.

See patent family annex.

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

|:| Further documents are listed in the continuation of Box C.

* Special categories of cited documents: "
"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be

special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later
than the priority date claimed

combined with one or more other such documents,such combination
being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
19 May 2015 (19.05.2015)

Date of mailing of the international search report

19 May 2015 (19.05.2015)

Name and mailing address of the ISA/KR
International Application Division
¢ Korean Intellectual Property Office
189 Cheongsa-1o, Seo-gu, Dagjeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No. ++82 42 472 7140

Authorized officer

Jang, Gijeong

Telephone No. +82-42-481-8364

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2015/013094

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2010-0037168 Al 11/02/2010 None

US 2008-0282171 Al 13/11/2008 None

US 6779153 Bl 17/08/2004 None

US 2006-0195819 Al 31/08/2006 US 7448023 B2 04/11/2008

US 2011-0214078 Al 01/09/2011 EP 2539810 Al 02/01/2013
US 8458605 B2 04/06/2013
WO 2011-106566 Al 01/09/2011

KR 10-1130397 B1 27/03/2012 CN 1801149 A 12/07/2006
CN 1801149 B 16/06/2010
EP 1672524 A2 21/06/2006
EP 1672524 A3 20/02/2008
EP 1672524 Bl 28/11/2012
JP 2006-172450 A 29/06/2006
KR 10-2006-0069248 A 21/06/2006
US 2006-0136353 Al 22/06/2006
US 7627592 B2 01/12/2009

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - wo-search-report
	Page 82 - wo-search-report

